1
|
Mattioda C, Voena C, Ciardelli G, Mattu C. In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead? Cells 2025; 14:38. [PMID: 39791739 PMCID: PMC11720277 DOI: 10.3390/cells14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment. The development of biomimetic, in vitro models may promote the investigation of the interactions between cancer cells and the tumor microenvironment and may help to better understand the mechanisms leading to drug resistance. Although advanced in vitro models have been largely explored in the field of solid tumors, due to the complex nature of the blood cancer tumor microenvironment, the mimicking of haematological malignancies mostly relies on simpler systems, often limited to two-dimensional cell culture, which intrinsically excludes the microenvironmental niche, or to ethically debated animal models. This review aims at reporting an updated overview of state-of-the-art hematological malignancies 3D in vitro models, emphasizing the key features and limitations of existing systems to inspire further research in this underexplored field.
Collapse
Affiliation(s)
- Carlotta Mattioda
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy;
| | - Gianluca Ciardelli
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Clara Mattu
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| |
Collapse
|
2
|
Xue HY, Wei F. TGF-β: an active participant in the immune and metabolic microenvironment of multiple myeloma : TGF-β in the microenvironment of multiple myeloma. Ann Hematol 2024; 103:4351-4362. [PMID: 38900304 PMCID: PMC11534828 DOI: 10.1007/s00277-024-05843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Although substantial quantities of potent therapies for multiple myeloma (MM) have been established, MM remains an incurable disease. In recent years, our understanding of the initiation, development, and metastasis of cancers has made a qualitative leap. Cancers attain the abilities to maintain proliferation signals, escape growth inhibitors, resist cell death, induce angiogenesis, and more importantly, escape anti-tumor immunity and reprogram metabolism, which are the hallmarks of cancers. Besides, different cancers have different tumor microenvironments (TME), thus, we pay more attention to the TME in the pathogenesis of MM. Many researchers have identified that myeloma cells interact with the components of TME, which is beneficial for their survival, ultimately causing the formation of immunosuppressive and high-metabolism TME. In the process, transforming growth factor-β (TGF-β), as a pivotal cytokine in the TME, controls various cells' fates and influences numerous metabolic pathways, including inhibiting immune cells to infiltrate the tumors, suppressing the activation of anti-tumor immune cells, facilitating more immunosuppressive cells, enhancing glucose and glutamine metabolism, dysregulating bone metabolism and so on. Thus, we consider TGF-β as the tumor promoter. However, in healthy cells and the early stage of tumors, it functions as a tumor suppressor. Due to the effect of context dependence, TGF-β has dual roles in TME, which attracts us to further explore whether targeting it can overcome obstacles in the treatment of MM by regulating the progression of myeloma, molecular mechanisms of drug resistance, and various signaling pathways in the immune and metabolic microenvironment. In this review, we predominantly discuss that TGF-β promotes the development of MM by influencing immunity and metabolism.
Collapse
Affiliation(s)
- Han-Yue Xue
- The First Clinical Medical College of Shanxi Medical University, 56 Xinjian South Road, Yingze District, Taiyuan, Shanxi, People's Republic of China
| | - Fang Wei
- Department of Hematology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi, People's Republic of China.
| |
Collapse
|
3
|
Lakhwani S, Mateos MV, Martínez-López J, Paiva B, Rosiñol Dachs L, Martínez R, Oriol A, Bargay J, González-Montes Y, Gironella M, Encinas C, Martín J, Jarque I, Granell M, Abella E, García-Mateo A, Hernández-Rivas JÁ, Ramila E, Krsnik I, Casado Montero LF, De Arriba F, Palomera L, Sampol A, Moraleda JM, Casanova M, Delgado P, Lafuente A, Amutio E, López-Martínez A, Altés A, Ruíz MÁ, Alegre A, Lopez-Anglada L, De La Cruz J, Alonso Fernández R, Bladé Creixenti J, Lahuerta JJ, San-Miguel J, Hernández MT. Immunoparesis recovery in newly diagnosed transplant ineligible multiple myeloma patients, an independent prognostic factor that complements minimal residual disease. Ann Hematol 2024:10.1007/s00277-024-06031-0. [PMID: 39438321 DOI: 10.1007/s00277-024-06031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Information on the prognostic value of immunoparesis (IP) recovery in multiple myeloma (MM) patients has been only generated in some observational and retrospective studies. We have evaluated the prognostic impact of IP recovery and its association with minimal residual disease (MRD) in a series of 113 newly diagnosed transplant-ineligible (NDTI) patients, that received fix duration treatment (18 cycles of VMP/lenalidomide-dexamethasone) within the PETHEMA/GEM2010MAS65 trial and who achieved CR or VGPR. Immunoglobulin levels were measured at diagnosis, at the end of treatment (after cycle 18th) and during subsequent follow up whereas MRD was analyzed only at the end of the treatment (after cycle 18th). We found that patients who had IP at diagnosis and recovered it during or after treatment had longer progression free survival (PFS) [p < 0.001; HR 0.32 (0.19-0.52)] and longer overall survival (OS) [p = 0.007; HR 0.40 (0.20-0.80)] compared to those who failed to recover it. When we analyzed IP recovery in MRD negative patients, we found that those cases with IP recovery had longer PFS [p = 0.007; HR 0.31 (0.13-0.76)] and longer OS [p = 0.012; HR 0.21 (0.06-0.80)] as compared to MRD negative patients but without IP recovery. In conclusion, IP recovery confers better prognosis in NDTI-MM patients with fixed duration treatment who achieve CR or VGPR and the prognostic value of MRD can be complemented when combined with IP recovery.
Collapse
Affiliation(s)
- Sunil Lakhwani
- Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Spain.
| | | | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre, Universidad Complutense, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Bruno Paiva
- Cancer Center Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | | | | | - Albert Oriol
- Institut Català d'Oncologia, Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Joan Bargay
- Hospital Son Llàtzer, IdIsBa, Palma de Mallorca, Spain
| | | | | | - Cristina Encinas
- Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Jesús Martín
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Isidro Jarque
- Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | | | | | | | | | | | - Isabel Krsnik
- Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | - Felipe De Arriba
- Hospital Morales Meseguer, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Luis Palomera
- Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Antonia Sampol
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - José María Moraleda
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | - Albert Altés
- Hospital Althaia, Xarxa Assistencial de Manresa, Manresa, Spain
| | | | | | - Lucia Lopez-Anglada
- Unidad de Terapias Avanzadas de la Consejería de Sanidad de la Comunidad de Madrid, Madrid, Spain
| | - Javier De La Cruz
- Instituto De Investigación Sanitaria, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rafael Alonso Fernández
- Hospital Universitario 12 de Octubre, Universidad Complutense, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Juan-José Lahuerta
- Instituto De Investigación Sanitaria, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús San-Miguel
- Cancer Center Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | | |
Collapse
|
4
|
Knop S, Szarejko M, Grząśko N, Bringhen S, Trautmann‐Grill K, Jurczyszyn A, Vacca A, Khandanpour C, Gamberi B, Pour L, Iversen KF, Stumpp MT, Suter C, Dawson KM, Zitt C, Legenne P, Stavropoulou V, Fey MF, Leupin N, Goldschmidt H. A phase 1b/2 study evaluating efficacy and safety of MP0250, a designed ankyrin repeat protein (DARPin) simultaneously targeting vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), in combination with bortezomib and dexamethasone, in patients with relapsed or refractory multiple myeloma. EJHAEM 2024; 5:940-950. [PMID: 39415900 PMCID: PMC11474421 DOI: 10.1002/jha2.968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 10/19/2024]
Abstract
MP0250 is a designed ankyrin repeat protein that specifically inhibits both vascular endothelial growth factor A (VEGF-A) and hepatocyte growth factor (HGF), aiming at potentiating cancer therapy by disrupting the tumour microenvironment. Encouraging results from a phase 1 trial of MP0250 in patients with solid tumours prompted further investigation in multiple myeloma (MM) as both MP0250 targets are reported to be drivers of MM pathogenesis. In this open-label, single-arm phase 1b/2 study (NCT03136653) in patients with proteasome inhibitor- and/or immunomodulatory drug-relapsed or refractory MM, MP0250 was administered every 3 weeks with standard bortezomib/dexamethasone regimen. Thirty-three patients received at least one dose of MP0250. The most frequent treatment-related adverse events were arterial hypertension (58.1%), thrombocytopenia (32.3%), proteinuria (29.0%) and peripheral oedema (19.4%). Of the 28 patients evaluable for response (median age: 60 [range 44-75]), nine achieved at least partial response, corresponding to an overall response rate of 32.1% (95% confidence interval [CI]: 17.9%, 50.7%), with a median duration of response of 8 months (95% CI 5-NR). An additional three patients achieved minimal response and nine stable diseases as the best overall response. Overall median progression-free survival was 4.2 months (95% CI 1.9-7.1). These findings are in line with the results of recent trials testing new agents on comparable patient cohorts and provide initial evidence of clinical benefit for patients with refractory/relapsed MM treated with MP0250 in combination with bortezomib/dexamethasone. Further clinical evaluation in the emerging MM treatment landscape would be required to confirm the clinical potential of MP0250.
Collapse
Affiliation(s)
- Stefan Knop
- Universitätsklinikum WürzburgWürzburgGermany
| | | | - Norbert Grząśko
- Department of Experimental HematooncologyMedical University of Lublin and Centrum Onkologii Ziemi LubelskiejLublinPoland
| | - Sara Bringhen
- SSD Clinical Trial in Oncoematologia e Myeloma, Dipartimento di OncologiaAzienda Ospedaliera‐Universitaria Città della Salute e della Scienza di TorinoTorinoItaly
| | | | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Department of HematologyJagiellonian University Medical CollegeKrakowPoland
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area Unit of Medicina Interna “Guido Baccelli”University of Bari Aldo MoroAzienda PoliclinicoBariItaly
| | - Cyrus Khandanpour
- Universitätsklinikum Münster, Münster, Germany and University Hospital Schleswig‐Holstein Campus LübeckUniversity Cancer Center Schleswig‐Holstein, and University of LübeckLübeckGermany
| | | | | | | | | | - Cosima Suter
- Molecular Partners AGZurich‐SchlierenSwitzerland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Vanderboom PM, Chawla Y, Dasari S, Kapoor I, Kumar SK, Nair KS, Gonsalves WI. Differences in the proteome within extracellular vesicles between premalignant and malignant plasma cell disorders. Eur J Haematol 2024; 113:351-356. [PMID: 38804098 PMCID: PMC11296916 DOI: 10.1111/ejh.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Precursor plasma cell disorders such as monoclonal gammopathy of undetermined significance (MGUS) always precede the development of active malignancies such as multiple myeloma (MM). There is a need for novel biomarkers to identify those patients with such precursor plasma cell disorders who rapidly progress to MM. Plasma-derived extracellular vesicles (EVs) may serve as a reservoir of potential biomarkers that can shed light on the pathogenesis and disease biology of MM. METHODS This study isolated small EVs (SEVs) and large EVs (LEVs) from the platelet-poor peripheral blood plasma of MGUS (n = 9) and MM (n = 12) patients using the size exclusion chromatography-based method and evaluated their proteome using a label-free proteomics workflow. RESULTS In total, 2055 proteins were identified in SEVs, while 2794 proteins were identified in LEVs. The transferrin receptor (or CD71) protein was upregulated in both populations of EVs derived from MM patients compared to MGUS patients and was of prognostic significance. Similarly, three isoforms of serum amyloid A (SAA) protein, SAA1, SAA2, and SAA4, were also highly upregulated in SEVs within MM patients relative to MGUS patients. Finally, CD40 expression was also higher in the LEVs derived from MM patients than in MGUS patients. CONCLUSIONS This study demonstrates the feasibility of successfully isolating both SEVs and LEVs from the peripheral blood of patients with plasma cell disorders and quantifying protein biomarkers within these EVs that could be of prognostic and diagnostic interest.
Collapse
Affiliation(s)
- Patrick M. Vanderboom
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Isha Kapoor
- Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
6
|
Tagliari de Oliveira S, Binato R, Ellen Broto G, Tomie Takakura E, Navarro Gordan Ferreira Martins L, Abdelhay E, Panis C. Transcriptome of bone marrow-Derived stem cells reveals new inflammatory mediators related to increased survival in patients with multiple myeloma. Cytokine 2024; 179:156613. [PMID: 38643632 DOI: 10.1016/j.cyto.2024.156613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Although multiple myeloma (MM) is a neoplasm that leads affected individuals to death, little is known about why some patients survive much longer than others. In this context, we investigated the transcriptomic profile of bone marrow hematopoietic stem cells obtained from MM patients and compared the clinical outcomes of death and survival six months after bone marrow transplantation. The leukapheresis products of 39 patients with MM eligible for autologous transplantation were collected and analyzed. After extraction, the RNA was analyzed using the GeneChip Human Exon 1.0 Array method. The transcriptome profile was analyzed in silico, and the differentially expressed signaling pathways of interest were validated. The results showed a difference in the expression of inflammation-related genes, immune response processes, and the oxidative stress pathway. The in silico study also pointed out the involvement of the NFκB transcription factor in the possible modulation of these genes. We chose to validate molecules participating in these processes, including the cytokines TNF-α, IFN-γ, and TGF-β1; in addition, we measured the levels of oxidative stress mediators (pro-oxidant profile and the total antioxidant capacity). TNF-α levels were significantly reduced in patients who died and were over 50 years old at diagnosis, as well as in patients with plasmacytoma. Increased TNF-α was detected in patients with very high levels of β2-microglobulin. IFN-γ reduction was observed in patients with a complete response to treatment compared to those with a very good response. Patients with plasmacytoma who died also had an increased pro-oxidant profile. These data show the profile of inflammatory response markers that are altered in patients with MM who die quickly and serve as a basis for the development of future studies of markers to predict better survival in this disease.
Collapse
Affiliation(s)
- Stefania Tagliari de Oliveira
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil; Rede de Assistência a Saúde Metropolitana de Sarandi - Programa de Residência Médica em Clínica Médica - Sarandi - Paraná, Brazil
| | - Renata Binato
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, Brazil
| | - Geise Ellen Broto
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil
| | - Erika Tomie Takakura
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil
| | | | - Eliana Abdelhay
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, Brazil
| | - Carolina Panis
- Laboratório de Biologia de Tumores, Universidade Estadual do Oeste do Paraná, Unioeste - Francisco Beltrão - Paraná, Brazil.
| |
Collapse
|
7
|
Miller K, Hashmi H, Rajeeve S. Beyond BCMA: the next wave of CAR T cell therapy in multiple myeloma. Front Oncol 2024; 14:1398902. [PMID: 38800372 PMCID: PMC11116580 DOI: 10.3389/fonc.2024.1398902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment landscape of relapsed/refractory multiple myeloma. The current Food and Drug Administration approved CAR T cell therapies idecabtagene vicleucel and ciltacabtagene autoleucel both target B cell maturation antigen (BCMA), which is expressed on the surface of malignant plasma cells. Despite deep initial responses in most patients, relapse after anti-BCMA CAR T cell therapy is common. Investigations of acquired resistance to anti-BCMA CAR T cell therapy are underway. Meanwhile, other viable antigenic targets are being pursued, including G protein-coupled receptor class C group 5 member D (GPRC5D), signaling lymphocytic activation molecule family member 7 (SLAMF7), and CD38, among others. CAR T cells targeting these antigens, alone or in combination with anti-BCMA approaches, appear to be highly promising as they move from preclinical studies to early phase clinical trials. This review summarizes the current data with novel CAR T cell targets beyond BCMA that have the potential to enter the treatment landscape in the near future.
Collapse
Affiliation(s)
| | | | - Sridevi Rajeeve
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
8
|
Bishop RT, Miller AK, Froid M, Nerlakanti N, Li T, Frieling JS, Nasr MM, Nyman KJ, Sudalagunta PR, Canevarolo RR, Silva AS, Shain KH, Lynch CC, Basanta D. The bone ecosystem facilitates multiple myeloma relapse and the evolution of heterogeneous drug resistant disease. Nat Commun 2024; 15:2458. [PMID: 38503736 PMCID: PMC10951361 DOI: 10.1038/s41467-024-46594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Multiple myeloma (MM) is an osteolytic malignancy that is incurable due to the emergence of treatment resistant disease. Defining how, when and where myeloma cell intrinsic and extrinsic bone microenvironmental mechanisms cause relapse is challenging with current biological approaches. Here, we report a biology-driven spatiotemporal hybrid agent-based model of the MM-bone microenvironment. Results indicate MM intrinsic mechanisms drive the evolution of treatment resistant disease but that the protective effects of bone microenvironment mediated drug resistance (EMDR) significantly enhances the probability and heterogeneity of resistant clones arising under treatment. Further, the model predicts that targeting of EMDR deepens therapy response by eliminating sensitive clones proximal to stroma and bone, a finding supported by in vivo studies. Altogether, our model allows for the study of MM clonal evolution over time in the bone microenvironment and will be beneficial for optimizing treatment efficacy so as to significantly delay disease relapse.
Collapse
Affiliation(s)
- Ryan T Bishop
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Anna K Miller
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Matthew Froid
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Niveditha Nerlakanti
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Tao Li
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jeremy S Frieling
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mostafa M Nasr
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Karl J Nyman
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Praneeth R Sudalagunta
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Rafael R Canevarolo
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ariosto Siqueira Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kenneth H Shain
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Conor C Lynch
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Ho M, Zanwar S, Paludo J. Chimeric antigen receptor T-cell therapy in hematologic malignancies: Successes, challenges, and opportunities. Eur J Haematol 2024; 112:197-210. [PMID: 37545132 DOI: 10.1111/ejh.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies has realized a longstanding effort toward harnessing the immune system to fight cancer in a truly personalized fashion. Second generation chimeric antigen receptors (CAR) incorporating co-stimulatory molecules like 4-1BB or CD28 were able to overcome some of the hindrances with initial CAR constructs resulting in efficacious products. Many second-generation CAR-T products have been approved in the treatment of relapsed/refractory hematologic malignancies including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and acute lymphoblastic leukemia. However, challenges remain in optimizing the manufacturing, timely access, limiting the toxicity from CAR-T infusions and improving sustainability of responses derived with CAR-T therapy. Here, we summarize the clinical trial data leading to approval CAR-T therapies in MM and NHL, discuss the limitations with current CAR-T therapy strategies and review emerging strategies for overcoming these limitations.
Collapse
Affiliation(s)
- Matthew Ho
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonas Paludo
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Yang M, Chen Y, Zhu L, You L, Tong H, Meng H, Sheng J, Jin J. Harnessing Nanotechnology: Emerging Strategies for Multiple Myeloma Therapy. Biomolecules 2024; 14:83. [PMID: 38254683 PMCID: PMC10813273 DOI: 10.3390/biom14010083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Advances in nanotechnology have provided novel avenues for the diagnosis and treatment of multiple myeloma (MM), a hematological malignancy characterized by the clonal proliferation of plasma cells in the bone marrow. This review elucidates the potential of nanotechnology to revolutionize myeloma therapy, focusing on nanoparticle-based drug delivery systems, nanoscale imaging techniques, and nano-immunotherapy. Nanoparticle-based drug delivery systems offer enhanced drug targeting, reduced systemic toxicity, and improved therapeutic efficacy. We discuss the latest developments in nanocarriers, such as liposomes, polymeric nanoparticles, and inorganic nanoparticles, used for the delivery of chemotherapeutic agents, siRNA, and miRNA in MM treatment. We delve into nanoscale imaging techniques which provide spatial multi-omic data, offering a holistic view of the tumor microenvironment. This spatial resolution can help decipher the complex interplay between cancer cells and their surrounding environment, facilitating the development of highly targeted therapies. Lastly, we explore the burgeoning field of nano-immunotherapy, which employs nanoparticles to modulate the immune system for myeloma treatment. Specifically, we consider how nanoparticles can be used to deliver tumor antigens to antigen-presenting cells, thus enhancing the body's immune response against myeloma cells. In conclusion, nanotechnology holds great promise for improving the prognosis and quality of life of MM patients. However, several challenges remain, including the need for further preclinical and clinical trials to assess the safety and efficacy of these emerging strategies. Future research should also focus on developing personalized nanomedicine approaches, which could tailor treatments to individual patients based on their genetic and molecular profiles.
Collapse
Affiliation(s)
- Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Yu Chen
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Li Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Liangshun You
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Jianpeng Sheng
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| |
Collapse
|
11
|
Xu F, Li L, Jiang L, Zhang J. Identification of key genes and immune infiltration in multiple myeloma by bioinformatics analysis. Hematology 2023; 28:2264517. [PMID: 37815499 DOI: 10.1080/16078454.2023.2264517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Multiple Myeloma (MM) is a hematologic malignant disease with unclear molecular mechanisms. This integrated bioinformatic study aimed to identify key genes, pathways and immune cell infiltration pattern in MM. METHODS Differentially expressed genes (DEGs) from GSE6477 and GSE16558 dataset were filtrated with R package 'limma', whose function were explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The key genes were selected from Protein-protein interaction network (PPI) and logistic regression model. The correlation between key genes and survival in MM was evaluated using the survival and survminer package. Additionally, immune filtration analysis was accomplished by CIBERSORT tools. RESULTS 118 DEGs (92 up-regulated and 26 down-regulated) from two GSE datasets were identified, which were closely related with B cell receptor signaling pathway and Epstein-Barr virus infection. Furthermore, CD24 and PTPRC of five hub genes identified in PPI network were further screened out by the logistic regression model. Besides, CD24 and PTPRC expression were significantly correlated to the survival time in MM patients. Finally, MM might cause different infiltrating immune cell compositions, including increased infiltrations of B cells memory, Plasma cells, T cells CD4 memory resting, T cells follicular helper, Tregs, NK cells resting, Macrophages(M0/M1), Dendritic cells resting and Mast cells activating, and lower proportions of B cells naïve, T cells CD4 naïve, Macrophages M2 and Neutrophils. CONCLUSION Targeting CD24 and PTPRC as molecular markers of MM is valuable to MM therapy. Moreover, the immune cell infiltration will provide new insights into MM immunopathology.
Collapse
Affiliation(s)
- Fei Xu
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ling Li
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - LiMei Jiang
- Department of Hematology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Jing Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
12
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of Non-Coding RNAs: Roles of miRNAs and lncRNAs in the Pathogenesis of Multiple Myeloma. Noncoding RNA 2023; 9:68. [PMID: 37987364 PMCID: PMC10660696 DOI: 10.3390/ncrna9060068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), leads to the development and advancement of multiple myeloma (MM). miRNAs, in particular, are paramount in post-transcriptional gene regulation, promoting mRNA degradation and translational inhibition. As a result, miRNAs can serve as oncogenes or tumor suppressors depending on the target genes. In MM, miRNA disruption could result in abnormal gene expression responsible for cell growth, apoptosis, and other biological processes pertinent to cancer development. The dysregulated miRNAs inhibit the activity of tumor suppressor genes, contributing to disease progression. Nonetheless, several miRNAs are downregulated in MM and have been identified as gene regulators implicated in extracellular matrix remodeling and cell adhesion. miRNA depletion potentially facilitates the tumor advancement and resistance of therapeutic drugs. Additionally, lncRNAs are key regulators of numerous cellular processes, such as gene expression, chromatin remodeling, protein trafficking, and recently linked MM development. The lncRNAs are uniquely expressed and influence gene expression that supports MM growth, in addition to facilitating cellular proliferation and viability via multiple molecular pathways. miRNA and lncRNA alterations potentially result in anomalous gene expression and interfere with the regular functioning of MM. Thus, this review aims to highlight the dysregulation of these ncRNAs, which engender novel therapeutic modalities for the treatment of MM.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman 11111, Sudan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
13
|
Liu X, Moscvin M, Oh S, Chen T, Choi W, Evans B, Rowell SM, Nadeem O, Mo CC, Sperling AS, Anderson KC, Yaqoob Z, Bianchi G, Sung Y. Characterizing dry mass and volume changes in human multiple myeloma cells upon treatment with proteotoxic and genotoxic drugs. Clin Exp Med 2023; 23:3821-3832. [PMID: 37421589 PMCID: PMC10777533 DOI: 10.1007/s10238-023-01124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of terminally differentiated plasma cells. MM remains incurable, but overall survival of patients has progressively increased over the past two decades largely due to novel agents such as proteasome inhibitors (PI) and the immunomodulatory agents. While these therapies are highly effective, MM patients can be de novo resistant and acquired resistance with prolonged treatment is inevitable. There is growing interest in early, accurate identification of responsive versus non-responsive patients; however, limited sample availability and need for rapid assays are limiting factors. Here, we test dry mass and volume as label-free biomarkers to monitor early response of MM cells to treatment with bortezomib, doxorubicin, and ultraviolet light. For the dry mass measurement, we use two types of phase-sensitive optical microscopy techniques: digital holographic tomography and computationally enhanced quantitative phase microscopy. We show that human MM cell lines (RPMI8226, MM.1S, KMS20, and AMO1) increase dry mass upon bortezomib treatment. This dry mass increase after bortezomib treatment occurs as early as 1 h for sensitive cells and 4 h for all tested cells. We further confirm this observation using primary multiple myeloma cells derived from patients and show that a correlation exists between increase in dry mass and sensitivity to bortezomib, supporting the use of dry mass as a biomarker. The volume measurement using Coulter counter shows a more complex behavior; RPMI8226 cells increase the volume at an early stage of apoptosis, but MM.1S cells show the volume decrease typically observed with apoptotic cells. Altogether, this cell study presents complex kinetics of dry mass and volume at an early stage of apoptosis, which may serve as a basis for the detection and treatment of MM cells.
Collapse
Affiliation(s)
- Xili Liu
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Moscvin
- Amyloidosis Program, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Seungeun Oh
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Tianzeng Chen
- Amyloidosis Program, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wonshik Choi
- Department of Physics, Korea University, Seoul, Korea
| | - Benjamin Evans
- Amyloidosis Program, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sean M Rowell
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Omar Nadeem
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Clifton C Mo
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Adam S Sperling
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Giada Bianchi
- Amyloidosis Program, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yongjin Sung
- College of Engineering and Applied Science, University of Wisconsin, Milwaukee, WI, 53211, USA.
| |
Collapse
|
14
|
Li L, Yu Z, Ren J, Niu T. Low cholesterol levels are associated with increasing risk of plasma cell neoplasm: A UK biobank cohort study. Cancer Med 2023; 12:20964-20975. [PMID: 37908181 PMCID: PMC10709719 DOI: 10.1002/cam4.6649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Plasma cell neoplasms are a group of hematologic neoplasms that often develop in the elderly population. The relationship between cholesterol levels and hematologic malignancy has been identified in population studies. However, it is still unclear if there is a relationship between cholesterol levels and plasma cell neoplasm in European ancestry. METHODS Prospective cohorts included 502,507 individuals from the UK Biobank who were followed up to 2019 and assessed total cholesterol(TC) levels, low-density lipoprotein (LDL) levels, high-density lipoprotein (HDL) levels, apolipoprotein A (ApoA) and apolipoprotein B (ApoB) as risk factors for plasma cell neoplasms with Cox proportional hazard regression and restricted cubic spline model. We also used two-sample Mendelian randomization to determine if the cholesterol level has a causal effect on developing plasma cell neoplasms. RESULTS We observed 1819 plasma cell neoplasm cases during 14.2 years of follow-up in the UK Biobank. We found higher blood serum cholesterol levels at baseline were associated with a lower risk of plasma cell neoplasm in our study. All lipid profiles we analyzed in this study were inversely associated with plasma cell neoplasm risk (all ptrend <0.005) but triglycerides did not have such association. However, there was no suggestive association of genetically predicted serum LDL, HDL, and total cholesterol levels with multiple myeloma. CONCLUSION Low serum total cholesterol, LDL, HDL, ApoA, and ApoB levels were all associated with increasing the risk of plasma cell neoplasm.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Hematology, Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Zhengyu Yu
- Department of Hematology, Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Jianjun Ren
- Department of Otolaryngology‐Head and Neck Surgery, West China Hospital, West China Medical SchoolSichuan UniversityChengduChina
| | - Ting Niu
- Department of Hematology, Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
15
|
Wang P, Jin SY. Meta-analysis of the efficacy and safety of daratumumab in the treatment of multiple myeloma. World J Clin Cases 2023; 11:7091-7100. [PMID: 37946760 PMCID: PMC10631397 DOI: 10.12998/wjcc.v11.i29.7091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The treatment of multiple myeloma has significantly progressed over the past half-century. The purpose of this study was to perform a systematic review and meta-analysis in order to explore the efficacy and safety of daratumumab in treating multiple myeloma. AIM To explore the efficacy and safety of daratumumab in treating multiple myeloma. METHODS A systematic literature search was performed using Chinese and English databases, including the China National Knowledge Infrastructure, Wanfang, China Biology Medicine, VIP, the Cochrane Library, Embase, and PubMed. The search encompassed studies in treating multiple myeloma with daratumumab, spanning from the inception of the database to June 2023. Revman 5.1 software was used for analysis. RESULTS Our analysis included eight English articles and one Chinese article of high quality. The meta-analysis results indicated that compared to other therapies, daratumumab could improve the overall response rate (ORR) [odds ratio (OR) = 2.67, 95% confidence interval (CI) = 2.01, 3.53, Z = 6.85, P < 0.00001], complete remission (CR) (OR = 2.87, 95%CI = 2.16, 3.83, Z = 7.23, P < 0.00001) and progression-free survival (PFS) time (hazard ratio = 0.48, 95%CI = 0.38,0.60, Z = 6.54, P < 0.00001) in patients with multiple myeloma. These differences were statistically significant. Additionally, these results suggested that daratumumab increases the risk of neutropenia and thrombocytopenia with minimal effect on the incidences of anemia and upper respiratory tract infections. CONCLUSION Daratumumab can improve ORR, CR rate, and PFS in patients with multiple myeloma. It also increases the risk of neutropenia and thrombocytopenia, necessitating careful monitoring during its clinical application.
Collapse
Affiliation(s)
- Pei Wang
- Department of Hematology, Yanbian University Hospital, Yanji 133000, Jilin Province, China
| | - Sheng-Yu Jin
- Department of Hematology, Yanbian University Hospital, Yanji 133000, Jilin Province, China
| |
Collapse
|
16
|
Zanwar S, Jacob EK, Greiner C, Pavelko K, Strausbauch M, Anderson E, Arsana A, Weivoda M, Shah MV, Kourelis T. The immunome of mobilized peripheral blood stem cells is predictive of long-term outcomes and therapy-related myeloid neoplasms in patients with multiple myeloma undergoing autologous stem cell transplant. Blood Cancer J 2023; 13:151. [PMID: 37752130 PMCID: PMC10522581 DOI: 10.1038/s41408-023-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Upfront autologous stem cell transplant (ASCT) is the standard of care for newly diagnosed multiple myeloma (MM) patients. However, relapse is ubiquitous and therapy-related myeloid neoplasms (t-MN) post-ASCT are commonly associated with poor outcomes. We hypothesized that the enrichment of abnormal myeloid progenitors and immune effector cells (IEC) in the peripheral blood stem cells (PBSCs) is associated with a higher risk of relapse and/or development of t-MN. We performed a comprehensive myeloid and lymphoid immunophenotyping on PBSCs from 54 patients with MM who underwent ASCT. Median progression-free (PFS), myeloid neoplasm-free (MNFS), and overall survival (OS) from ASCT were 49.6 months (95% CI: 39.5-Not Reached), 59.7 months (95% CI: 55-74), and 75.6 months (95% CI: 62-105), respectively. Abnormal expression of CD7 and HLA-DR on the myeloid progenitor cells was associated with an inferior PFS, MNFS, and OS. Similarly, enrichment of terminally differentiated (CD27/CD28-, CD57/KLRG1+) and exhausted (TIGIT/PD-1+) T-cells, and inhibitory NK-T like (CD159a+/CD56+) T-cells was associated with inferior PFS, MNFS, and OS post-transplant. Our observation of abnormal myeloid and IEC phenotype being present even before ASCT and maintenance therapy suggests an early predisposition to t-MN and inferior outcomes for MM, and has the potential to guide sequencing of future treatment modalities.
Collapse
Affiliation(s)
| | - Eapen K Jacob
- Division of Transfusion Medicine, Human Cellular Therapy Laboratory, Rochester, MN, USA
| | - Carl Greiner
- Division of Transfusion Medicine, Human Cellular Therapy Laboratory, Rochester, MN, USA
| | - Kevin Pavelko
- Immune Monitoring Core, Mayo Clinic, Rochester, MN, USA
| | | | - Emilie Anderson
- Division of Hematology Research, Mayo Clinic, Rochester, MN, USA
| | - Arini Arsana
- Division of Hematology Research, Mayo Clinic, Rochester, MN, USA
| | - Megan Weivoda
- Division of Hematology Research, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
17
|
Jia Y, Liu R, Shi L, Feng Y, Zhang L, Guo N, He A, Kong G. Integrative analysis of the prognostic value and immune microenvironment of mitophagy-related signature for multiple myeloma. BMC Cancer 2023; 23:859. [PMID: 37700273 PMCID: PMC10496355 DOI: 10.1186/s12885-023-11371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a fatal malignant tumor in hematology. Mitophagy plays vital roles in the pathogenesis and drug sensitivity of MM. METHODS We acquired transcriptomic expression data and clinical index of MM patients from NCI public database, and 36 genes involved in mitophagy from the gene set enrichment analysis (GSEA) database. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted to construct a risk score prognostic model. Kaplan-Meier survival analysis and receiver operation characteristic curves (ROC) were conducted to identify the efficiency of prognosis and diagnosis. ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA) was performed to uncover the level of immune infiltration. QRT-PCR was performed to verify gene expression in clinical samples of MM patients. The sensitivity to chemotherapy drugs was evaluated upon the database of the genomics of drug sensitivity in cancer (GDSC). RESULTS Fifty mitophagy-related genes were differently expressed in two independent cohorts. Ten out of these genes were identified to be related to MM overall survival (OS) rate. A prognostic risk signature model was built upon on these genes: VDAC1, PINK1, VPS13C, ATG13, and HUWE1, which predicted the survival of MM accurately and stably both in training and validation cohorts. MM patients suffered more adverse prognosis showed more higher risk core. In addition, the risk score was considered as an independent prognostic element for OS of MM patients by multivariate cox regression analysis. Functional pathway enrichment analysis of differentially expressed genes (DEGs) based on risk score showed terms of cell cycle, immune response, mTOR pathway, and MYC targets were obviously enriched. Furthermore, MM patients with higher risk score were observed lower immune scores and lower immune infiltration levels. The results of qRT-PCR verified VDAC1, PINK1, and HUWE1 were dysregulated in new diagnosed MM patients. Finally, further analysis indicated MM patients showed more susceptive to bortezomib, lenalidomide and rapamycin in high-risk group. CONCLUSION Our research provided a neoteric prognostic model of MM based on mitophagy genes. The immune infiltration level based on risk score paved a better understanding of the participation of mitophagy in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ni Guo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
18
|
Forster S, Radpour R, Ochsenbein AF. Molecular and immunological mechanisms of clonal evolution in multiple myeloma. Front Immunol 2023; 14:1243997. [PMID: 37744361 PMCID: PMC10516567 DOI: 10.3389/fimmu.2023.1243997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of clonal plasma cells in the bone marrow (BM). It is known that early genetic mutations in post-germinal center B/plasma cells are the cause of myelomagenesis. The acquisition of additional chromosomal abnormalities and distinct mutations further promote the outgrowth of malignant plasma cell populations that are resistant to conventional treatments, finally resulting in relapsed and therapy-refractory terminal stages of MM. In addition, myeloma cells are supported by autocrine signaling pathways and the tumor microenvironment (TME), which consists of diverse cell types such as stromal cells, immune cells, and components of the extracellular matrix. The TME provides essential signals and stimuli that induce proliferation and/or prevent apoptosis. In particular, the molecular pathways by which MM cells interact with the TME are crucial for the development of MM. To generate successful therapies and prevent MM recurrence, a thorough understanding of the molecular mechanisms that drive MM progression and therapy resistance is essential. In this review, we summarize key mechanisms that promote myelomagenesis and drive the clonal expansion in the course of MM progression such as autocrine signaling cascades, as well as direct and indirect interactions between the TME and malignant plasma cells. In addition, we highlight drug-resistance mechanisms and emerging therapies that are currently tested in clinical trials to overcome therapy-refractory MM stages.
Collapse
Affiliation(s)
- Stefan Forster
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F. Ochsenbein
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Jia Y, Yu X, Liu R, Shi L, Jin H, Yang D, Zhang X, Shen Y, Feng Y, Zhang P, Yang Y, Zhang L, Zhang P, Li Z, He A, Kong G. PRMT1 methylation of WTAP promotes multiple myeloma tumorigenesis by activating oxidative phosphorylation via m6A modification of NDUFS6. Cell Death Dis 2023; 14:512. [PMID: 37558663 PMCID: PMC10412649 DOI: 10.1038/s41419-023-06036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Epigenetic modifications play important roles during the pathogenesis of multiple myeloma (MM). Herein, we found that protein arginine methyltransferase 1 (PRMT1) was highly expressed in MM patients, which was positively correlated with MM stages. High PRMT1 expression was correlated with adverse prognosis in MM patients. We further showed that silencing PRMT1 inhibited MM proliferation and tumorigenesis in vitro and in vivo. Mechanistically, we revealed that the knockdown of PRMT1 reduced the oxidative phosphorylation (OXPHOS) of MM cells through NDUFS6 downregulation. Meanwhile, we identified that WTAP, a key component of the m6A methyltransferase complex, was methylated by PRMT1, and NDUFS6 was identified as a bona fide m6A target of WTAP. Finally, we found that the combination of PRMT1 inhibitor and bortezomib synergistically inhibited MM progression. Collectively, our results demonstrate that PRMT1 plays a crucial role during MM tumorigenesis and suggeste that PRMT1 could be a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiao Yu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Hua Jin
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Dan Yang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiaofeng Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Peihua Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yi Yang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Pengyu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
20
|
Milan E, Gullà A. Editorial: Proteomic and metabolic reprogramming in myeloma cells within the tumor microenvironment. Front Oncol 2023; 13:1264740. [PMID: 37609386 PMCID: PMC10441542 DOI: 10.3389/fonc.2023.1264740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Enrico Milan
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Milano, Italy
| | - Annamaria Gullà
- Experimental Hematology and Immunology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
21
|
Samur MK, Szalat R, Munshi NC. Single-cell profiling in multiple myeloma: insights, problems, and promises. Blood 2023; 142:313-324. [PMID: 37196627 PMCID: PMC10485379 DOI: 10.1182/blood.2022017145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
In a short time, single-cell platforms have become the norm in many fields of research, including multiple myeloma (MM). In fact, the large amount of cellular heterogeneity in MM makes single-cell platforms particularly attractive because bulk assessments can miss valuable information about cellular subpopulations and cell-to-cell interactions. The decreasing cost and increasing accessibility of single-cell platform, combined with breakthroughs in obtaining multiomics data for the same cell and innovative computational programs for analyzing data, have allowed single-cell studies to make important insights into MM pathogenesis; yet, there is still much to be done. In this review, we will first focus on the types of single-cell profiling and the considerations for designing a single-cell profiling experiment. Then, we will discuss what have learned from single-cell profiling about myeloma clonal evolution, transcriptional reprogramming, and drug resistance, and about the MM microenvironment during precursor and advanced disease.
Collapse
Affiliation(s)
- Mehmet Kemal Samur
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Raphael Szalat
- Department of Hematology and Medical Oncology, Boston University Medical Center, Boston, MA
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
22
|
Semenzato G, Ghobrial IM, Ghia P. Monoclonal B-cell lymphocytosis, monoclonal gammopathy of undetermined significance, and T-cell clones of uncertain significance: are these premalignant conditions sharing a common identity? Lancet Haematol 2023; 10:e549-e556. [PMID: 37407144 DOI: 10.1016/s2352-3026(23)00086-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 07/07/2023]
Abstract
Monoclonal B-cell lymphocytosis, monoclonal gammopathy of undetermined significance, and T-cell clones of uncertain significance are three premalignant conditions characterised by the presence of small clonal cell expansions in individuals without symptoms or signs that distinguish the related overt malignancies (chronic lymphocytic leukaemia, multiple myeloma, and T-cell large granular lymphocytic leukaemia). As most individuals with these precursor states never progress to malignancies, considerable interest has arisen in comprehending the steps involved in the progression to malignancy, providing more accurate models to investigate potential mechanisms of early blood cancer identification, prevention, and, possibly, intervention. Single-cell technologies and recent progress in high-throughput sequencing and multiomics approaches have contributed to a better definition of the pathophysiological mechanisms of these premalignant conditions, moving our knowledge in the field forward. In this Viewpoint, we analyse the seemingly shared biological trajectories in these precursor haematological malignancies in search of common pathogenetic events. In particular, we address the issue of interactions between expanding clones and their immune ecosystem, offering new clues that might prompt innovative ideas and inspire further investigations to understand the cellular and molecular dynamics entailing progression into overt malignant disease. The relationships between the non-leukaemic microenvironmental cells and the leukaemic counterpart, and the primary drivers of their initial clonal expansion, represent shared biologies that suggest a common identity among the premalignant conditions considered in this Viewpoint.
Collapse
Affiliation(s)
- Gianpietro Semenzato
- Haematology Section, Department of Medicine, University of Padova, Padua, Italy; Veneto Institute of Molecular Medicine, Padua, Italy.
| | | | - Paolo Ghia
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
23
|
Kastnes M, Aass KR, Bouma SA, Årseth C, Zahoor M, Yurchenko M, Standal T. The pro-tumorigenic cytokine IL-32 has a high turnover in multiple myeloma cells due to proteolysis regulated by oxygen-sensing cysteine dioxygenase and deubiquitinating enzymes. Front Oncol 2023; 13:1197542. [PMID: 37313466 PMCID: PMC10258340 DOI: 10.3389/fonc.2023.1197542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
IL-32 is a pro-inflammatory cytokine expressed by several types of cancer cells and immune cells. Currently, no treatment targeting IL-32 is available, and its intracellular and exosomal localization make IL-32 less accessible to drugs. We previously showed that hypoxia promotes IL-32 expression through HIF1α in multiple myeloma cells. Here, we demonstrate that high-speed translation and ubiquitin-dependent proteasomal degradation lead to a rapid IL-32 protein turnover. We find that IL-32 protein half-life is regulated by the oxygen-sensing cysteine-dioxygenase ADO and that deubiquitinases actively remove ubiquitin from IL-32 and promote protein stability. Deubiquitinase inhibitors promoted the degradation of IL-32 and may represent a strategy for reducing IL-32 levels in multiple myeloma. The fast turnover and enzymatic deubiquitination of IL-32 are conserved in primary human T cells; thus, deubiquitinase inhibitors may also affect T-cell responses in various diseases.
Collapse
Affiliation(s)
- Martin Kastnes
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Anshushaug Bouma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Charlotte Årseth
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St.Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
24
|
Moscvin M, Evans B, Bianchi G. Dissecting molecular mechanisms of immune microenvironment dysfunction in multiple myeloma and precursor conditions. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:17. [PMID: 38213954 PMCID: PMC10783205 DOI: 10.20517/2394-4722.2022.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Multiple myeloma (MM) is a disease of clonally differentiated plasma cells. MM is almost always preceded by precursor conditions, monoclonal gammopathy of unknown significance (MGUS), and smoldering MM (SMM) through largely unknown molecular events. Genetic alterations of the malignant plasma cells play a critical role in patient clinical outcomes. Del(17p), t(4;14), and additional chromosomal alterations such as del(1p32), gain(1q) and MYC translocations are involved in active MM evolution. Interestingly, these genetic alterations appear strikingly similar in transformed plasma cell (PC) clones from MGUS, SMM, and MM stages. Recent studies show that effectors of the innate and adaptive immune response show marked dysfunction and skewing towards a tolerant environment that favors disease progression. The MM myeloid compartment is characterized by myeloid-derived suppressor cells (MDSCs), dendritic cells as well as M2-like phenotype macrophages that promote immune evasion. Major deregulations are found in the lymphoid compartment as well, with skewing towards immune tolerant Th17 and Treg and inhibition of CD8+ cytotoxic and CD4+ activated effector T cells. In summary, this review will provide an overview of the complex cross-talk between MM plasma cells and immune cells in the microenvironment and the molecular mechanisms promoting progression from precursor states to full-blown myeloma.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Evans
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Russell BM, Avigan DE. Immune dysregulation in multiple myeloma: the current and future role of cell-based immunotherapy. Int J Hematol 2023; 117:652-659. [PMID: 36964840 PMCID: PMC10039687 DOI: 10.1007/s12185-023-03579-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/26/2023]
Abstract
Immune dysregulation is a hallmark of clinically active multiple myeloma (MM). Interactions between malignant clonal cells and immune cells within the bone marrow microenvironment are associated with the formation of a milieu favorable to tumor progression. IL-10, TGF-β and other immunoregulatory pathways are upregulated, promoting angiogenesis, tumor cell survival and inhibition of the native immune response. Transcriptomic evaluation of the bone marrow microenvironment reveals polarization of the T cell repertoire towards exhaustion and predominance of accessory cells with immunosuppressive qualities. These changes facilitate the immune escape of tumor cells and functional deficiencies that manifest as an increased risk of infection and a reduction in response to vaccinations. Immunotherapy with Chimeric Antigen Receptor (CAR) T cells and other cellular-based approaches have transformed outcomes for patients with advanced MM. Characterization of the immune milieu and identification of biomarkers predictive of treatment response are essential to increasing durability and allowing for the incorporation of novel strategies such as cancer vaccines. This paper will review the current use of cancer vaccines and CAR T cell therapy in MM as well as potential opportunities to expand and improve the application of these platforms.
Collapse
Affiliation(s)
- Brian M Russell
- Department of Medicine, Divisions of Hematology & Hematologic Malignancies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA
| | - David E Avigan
- Department of Medicine, Divisions of Hematology & Hematologic Malignancies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Dicanio M, Giaccherini M, Clay‐Gilmour A, Macauda A, Sainz J, Machiela MJ, Rybicka‐Ramos M, Norman AD, Tyczyńska A, Chanock SJ, Barington T, Kumar SK, Bhatti P, Cozen W, Brown EE, Suska A, Haastrup EK, Orlowski RZ, Dudziński M, Garcia‐Sanz R, Kruszewski M, Martinez‐Lopez J, Beider K, Iskierka‐Jazdzewska E, Pelosini M, Berndt SI, Raźny M, Jamroziak K, Rajkumar SV, Jurczyszyn A, Vangsted AJ, Collado PG, Vogel U, Hofmann JN, Petrini M, Butrym A, Slager SL, Ziv E, Subocz E, Giles GG, Andersen NF, Mazur G, Watek M, Lesueur F, Hildebrandt MAT, Zawirska D, Ebbesen LH, Marques H, Gemignani F, Dumontet C, Várkonyi J, Buda G, Nagler A, Druzd‐Sitek A, Wu X, Kadar K, Camp NJ, Grzasko N, Waller RG, Vachon C, Canzian F, Campa D. A pleiotropic variant in DNAJB4 is associated with multiple myeloma risk. Int J Cancer 2023; 152:239-248. [PMID: 36082445 PMCID: PMC9828677 DOI: 10.1002/ijc.34278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
Pleiotropy, which consists of a single gene or allelic variant affecting multiple unrelated traits, is common across cancers, with evidence for genome-wide significant loci shared across cancer and noncancer traits. This feature is particularly relevant in multiple myeloma (MM) because several susceptibility loci that have been identified to date are pleiotropic. Therefore, the aim of this study was to identify novel pleiotropic variants involved in MM risk using 28 684 independent single nucleotide polymorphisms (SNPs) from GWAS Catalog that reached a significant association (P < 5 × 10-8 ) with their respective trait. The selected SNPs were analyzed in 2434 MM cases and 3446 controls from the International Lymphoma Epidemiology Consortium (InterLymph). The 10 SNPs showing the strongest associations with MM risk in InterLymph were selected for replication in an independent set of 1955 MM cases and 1549 controls from the International Multiple Myeloma rESEarch (IMMEnSE) consortium and 418 MM cases and 147 282 controls from the FinnGen project. The combined analysis of the three studies identified an association between DNAJB4-rs34517439-A and an increased risk of developing MM (OR = 1.22, 95%CI 1.13-1.32, P = 4.81 × 10-7 ). rs34517439-A is associated with a modified expression of the FUBP1 gene, which encodes a multifunctional DNA and RNA-binding protein that it was observed to influence the regulation of various genes involved in cell cycle regulation, among which various oncogenes and oncosuppressors. In conclusion, with a pleiotropic scan approach we identified DNAJB4-rs34517439 as a potentially novel MM risk locus.
Collapse
Affiliation(s)
| | | | - Alyssa Clay‐Gilmour
- Department of Epidemiology and Biostatistics, Arnold School of Public HealthUniversity of South CarolinaGreenvilleSouth CarolinaUSA
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Juan Sainz
- Genomic Oncology Area, GENYO. Center for Genomics and Oncological Research: PfizerUniversity of Granada/Andalusian Regional GovernmentGranadaSpain,Department of HematologyVirgen de las Nieves University HospitalGranadaSpain,Department of MedicineUniversity of GranadaGranadaSpain
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | | | - Aaron D. Norman
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA,Division of Biomedical Statistics and Informatics, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Agata Tyczyńska
- Department of Hematology and TransplantologyMedical University of GdańskGdańskPoland
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | | | - Shaji K. Kumar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterOntarioUSA
| | - Parveen Bhatti
- Cancer Control ResearchBC CancerVancouverCanada,Program in Epidemiology, Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Wendy Cozen
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Susan and Henry Samueli College of Health SciencesChao Family Comprehensive Cancer Center, University of CaliforniaIrvineCaliforniaUSA,Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health SciencesChao Family Comprehensive Cancer Center, University of CaliforniaIrvineCaliforniaUSA
| | - Elizabeth E. Brown
- Department of Pathology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anna Suska
- Plasma Cell Dyscrasia Center Department of Hematology Jagiellonian University Faculty of MedicineKrakówPoland
| | | | - Robert Z. Orlowski
- Department of Lymphoma ‐ Myeloma, Division of Cancer MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Marek Dudziński
- Department of Hematology, Institute of Medical Sciences, College of Medical SciencesUniversity of RzeszowRzeszowPoland
| | - Ramon Garcia‐Sanz
- Medina A. Department of Hematology, University Hospital of Salamanca (HUS/IBSAL)CIBERONC and Cancer Research Institute of Salamanca‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Marcin Kruszewski
- Department of HematologyUniversity Hospital No. 2 in BydgoszczBydgoszczPoland
| | | | - Katia Beider
- Hematology Division Chaim Sheba Medical CenterTel HashomerIsrael
| | | | - Matteo Pelosini
- U.O. Dipartimento di EmatologiaAzienda USL Toscana Nord OvestLivornoItaly,Present address:
Ospedale Santa ChiaraPisaItaly
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | | | - Krzysztof Jamroziak
- Department of HematologyInstitute of Hematology and Transfusion MedicineWarsawPoland
| | - S. Vincent Rajkumar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterOntarioUSA
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasia Center Department of Hematology Jagiellonian University Faculty of MedicineKrakówPoland
| | | | | | - Ulla Vogel
- National Research Center for the Working EnvironmentCopenhagenDenmark
| | - Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | - Mario Petrini
- Hematology Unit, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Aleksandra Butrym
- Department of Cancer Prevention and TherapyWroclaw Medical UniversityWroclawPoland
| | - Susan L. Slager
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Elad Ziv
- Department of MedicineUniversity of California San Francisco Helen Diller Family Comprehensive Cancer CenterSan FranciscoCaliforniaUSA
| | - Edyta Subocz
- Department of HematologyMilitary Institute of MedicineWarsawPoland
| | - Graham G. Giles
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia,Center for Epidemiology and Biostatistics, School of Population and Global HealthThe University of MelbourneMelbourneVictoriaAustralia,Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
| | | | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical OncologyWroclaw Medical UniversityWroclawPoland
| | - Marzena Watek
- Department of HematologyInstitute of Hematology and Transfusion MedicineWarsawPoland,Department of HematologyHolycross Cancer CenterKielcePoland
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL Research University, Mines ParisTechParisFrance
| | - Michelle A. T. Hildebrandt
- Department of Lymphoma ‐ Myeloma, Division of Cancer MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Daria Zawirska
- Department of HematologyUniversity Hospital in CracowCracowPoland
| | | | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of Minho, Braga, Portugal and ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | | | | | - Judit Várkonyi
- Department of Hematology and Internal MedicineSemmelweis UniversityBudapestHungary
| | - Gabriele Buda
- Hematology Unit, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Arnon Nagler
- Hematology Division Chaim Sheba Medical CenterTel HashomerIsrael
| | - Agnieszka Druzd‐Sitek
- Department of Lymphoproliferative DiseasesMaria Skłodowska‐Curie National Research Institute of OncologyWarsawPoland
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population SciencesUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Katalin Kadar
- Department of Hematology and Internal MedicineSemmelweis UniversityBudapestHungary
| | - Nicola J. Camp
- Division of Hematology and Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Norbert Grzasko
- Department of Experimental HematooncologyMedical University of LublinLublinPoland
| | - Rosalie G. Waller
- Division of Biomedical Statistics and Informatics, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Celine Vachon
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ)HeidelbergGermany
| | | |
Collapse
|
27
|
Chen Y, Ma T. LAMP5 may promote MM progression by activating p38. Pathol Oncol Res 2023; 29:1611083. [PMID: 37033323 PMCID: PMC10073510 DOI: 10.3389/pore.2023.1611083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
Multiple myeloma (MM) is the second most common tumor of the hematologic system. MM remains incurable at this time. In this study, we used bioinformatics analysis to find key genes in the pathogenesis of MM. We first found that Lysosome associated membrane protein 5 (LAMP5) expression was sequentially increased in healthy donors (HD), monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM) and newly diagnosed MM (NDMM), relapsed MM (RMM). We collected bone marrow from patients with NDMM, HD and post-treatment MM (PTMM) and performed qPCR analysis of LAMP5, and found that the expression of LAMP5 is stronger in NDMM than in HD, and decreases after treatment. Western blotting assay also found more expression of LAMP5 in NDMM than in HD. Patients with high LAMP5 expression have a higher DS (Durie-Salmon) stage and worse prognosis. We next verified the expression of LAMP5 in four MM cell lines and silenced LAMP5 expression in RPMI-8226 and AMO-1, and explored the effects of LAMP5 silencing on MM cell apoptosis and cell cycle by flow cytometry and western blotting. Knockdown of LAMP5 promoted apoptosis in MM cells, but had no effect on the cell cycle. Mechanistically, LAMP5 may exert its pro-tumor effects in MM in part through activation of p38 protein. We screened LAMP5 for the first time as a key gene for MM progression and recurrence, and found that LAMP5 may exert its pro-tumor effects in MM through activation of p38 protein.
Collapse
|
28
|
Evaluation of Genes and Molecular Pathways Involved in the Progression of Monoclonal Gammopathy of Undetermined Significance (MGUS) to Multiple Myeloma: A Systems Biology Approach. Mol Biotechnol 2022:10.1007/s12033-022-00634-6. [DOI: 10.1007/s12033-022-00634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
|
29
|
Trtkova KS, Luzna P, Drozdkova DW, Cizkova K, Janovska L, Gursky J, Prukova D, Frydrych I, Hajduch M, Minarik J. The epigenetic impact of suberohydroxamic acid and 5‑Aza‑2'‑deoxycytidine on DNMT3B expression in myeloma cell lines differing in IL‑6 expression. Mol Med Rep 2022; 26:321. [PMID: 36043519 PMCID: PMC9471560 DOI: 10.3892/mmr.2022.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/08/2022] [Indexed: 11/06/2022] Open
Abstract
Gene inactivation of the cyclin-dependent kinase inhibitors p16INK4a, p15INK4b and p21WAF is frequently mediated by promoter gene methylation, whereas histone deacetylases (HDACs) control gene expression through their ability to deacetylate proteins. The effect of suberohydroxamic acid (SBHA) and 5-Aza-2′-deoxycytidine (Decitabine) (DAC) treatments on the transcription of CDKN2A, CDKN2B and CDKN1A genes, and their effects on molecular biological behavior were examined in two myeloma cell lines, RPMI8226 and U266, which differ in p53-functionality and IL-6 expression. In both tested myeloma cell lines, a non-methylated state of the CDKN2B gene promoter region was detected with normal gene expression, and the same level of p15INK4b protein was detected by immunocytochemical staining. Furthermore, in myeloma cells treated with SBHA and DAC alone, the expression of both p15INK4b and p21WAF was significantly upregulated in RPMI8226 cells (p53-functional, without IL-6 expression), whereas in the U266 cell line (p53 deleted, expressing IL-6) only p21WAF expression was significantly increased. Moreover, the analysis revealed that treatment with DAC induced DNMT3B enhancement in U266 cells. In conclusion, in myeloma cells with IL-6 expression, significantly increased DNMT3B expression indicated the tumorigenic consequences of 5-Aza-2′deoxycytidine treatment, which requires careful use in diseases involving epigenetic dysregulation, such as multiple myeloma (MM).
Collapse
Affiliation(s)
- Katerina Smesny Trtkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Petra Luzna
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Denisa Weiser Drozdkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Lucie Janovska
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Jan Gursky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Dana Prukova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Jiri Minarik
- Department of Hemato‑Oncology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
30
|
Wei R, Zhu Y, Zhang Y, Zhao W, Yu X, Wang L, Gu C, Gu X, Yang Y. AIMP1 promotes multiple myeloma malignancy through interacting with ANP32A to mediate histone H3 acetylation. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1185-1206. [PMID: 36042007 DOI: 10.1002/cac2.12356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is the second most common hematological malignancy. An overwhelming majority of patients with MM progress to serious osteolytic bone disease. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) participates in several steps during cancer development and osteoclast differentiation. This study aimed to explore its role in MM. METHODS The gene expression profiling cohorts of MM were applied to determine the expression of AIMP1 and its association with MM patient prognosis. Enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting were used to detect AIMP1 expression. Protein chip analysis, RNA-sequencing, and chromatin immunoprecipitation and next-generation sequencing were employed to screen the interacting proteins and key downstream targets of AIMP1. The impact of AIMP1 on cellular proliferation was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in vitro and a xenograft model in vivo. Bone lesions were evaluated using tartrate-resistant acid phosphatase staining in vitro. A NOD/SCID-TIBIA mouse model was used to evaluate the effect of siAIMP1-loaded exosomes on bone lesion formation in vivo. RESULTS AIMP1 expression was increased in MM patients and strongly associated with unfavorable outcomes. Increased AIMP1 expression promoted MM cell proliferation in vitro and in vivo via activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Protein chip assays and subsequent experiments revealed that AIMP1 interacted with acidic leucine-rich nuclear phosphoprotein 32 family member A (ANP32A) to regulate histone H3 acetylation. In addition, AIMP1 increased histone H3 acetylation enrichment function of GRB2-associated and regulator of MAPK protein 2 (GAREM2) to increase the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2). Furthermore, AIMP1 promoted osteoclast differentiation by activating nuclear factor of activated T cells c1 (NFATc1) in vitro. In contrast, exosome-coated small interfering RNA of AIMP1 effectively suppressed MM progression and osteoclast differentiation in vitro and in vivo. CONCLUSIONS Our data demonstrate that AIMP1 is a novel regulator of histone H3 acetylation interacting with ANP32A in MM, which accelerates MM malignancy via activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Rongfang Wei
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, P. R. China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yuanjiao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Wene Zhao
- Department of Analytical and Testing Center, Nanjing Medical University, Nanjing, Jiangsu, 211112, P. R. China
| | - Xichao Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Ling Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, P. R. China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Xiaosong Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, P. R. China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
31
|
Muylaert C, Van Hemelrijck LA, Maes A, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. Aberrant DNA methylation in multiple myeloma: A major obstacle or an opportunity? Front Oncol 2022; 12:979569. [PMID: 36059621 PMCID: PMC9434119 DOI: 10.3389/fonc.2022.979569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drug resistance (DR) of cancer cells leading to relapse is a huge problem nowadays to achieve long-lasting cures for cancer patients. This also holds true for the incurable hematological malignancy multiple myeloma (MM), which is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Although new treatment approaches combining immunomodulatory drugs, corticosteroids, proteasome inhibitors, alkylating agents, and monoclonal antibodies have significantly improved median life expectancy, MM remains incurable due to the development of DR, with the underlying mechanisms remaining largely ill-defined. It is well-known that MM is a heterogeneous disease, encompassing both genetic and epigenetic aberrations. In normal circumstances, epigenetic modifications, including DNA methylation and posttranslational histone modifications, play an important role in proper chromatin structure and transcriptional regulation. However, in MM, numerous epigenetic defects or so-called ‘epimutations’ have been observed and this especially at the level of DNA methylation. These include genome-wide DNA hypomethylation, locus specific hypermethylation and somatic mutations, copy number variations and/or deregulated expression patterns in DNA methylation modifiers and regulators. The aberrant DNA methylation patterns lead to reduced gene expression of tumor suppressor genes, genomic instability, DR, disease progression, and high-risk disease. In addition, the frequency of somatic mutations in the DNA methylation modifiers seems increased in relapsed patients, again suggesting a role in DR and relapse. In this review, we discuss the recent advances in understanding the involvement of aberrant DNA methylation patterns and/or DNA methylation modifiers in MM development, progression, and relapse. In addition, we discuss their involvement in MM cell plasticity, driving myeloma cells to a cancer stem cell state characterized by a more immature and drug-resistant phenotype. Finally, we briefly touch upon the potential of DNA methyltransferase inhibitors to prevent relapse after treatment with the current standard of care agents and/or new, promising (immuno) therapies.
Collapse
|
32
|
Serum Free Light-Chain Ratio at Diagnosis Is Associated with Early Renal Damage in Multiple Myeloma: A Case Series Real-World Study. Biomedicines 2022; 10:biomedicines10071657. [PMID: 35884962 PMCID: PMC9313319 DOI: 10.3390/biomedicines10071657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
The serum free light-chain (FLC) ratio is a sensitive tool for the differential diagnosis of plasma cell disorders and is biomarker of multiple myeloma (MM) progression from premalignant conditions. Here, we investigate the potential role of FLC ratio at diagnosis in identifying early renal damage in MM patients and other correlations with clinical, laboratory, and molecular findings. A total of 34 MM patients who had undergone autologous stem cell transplantation were included in this retrospective case series study, and FLC quantification was performed with nephelometric assays. In our study, sFLC ratio was significantly associated with light-chain MM and β-2 microglobulin levels, likely indicating a high disease burden at diagnosis, especially in patients without heavy chain M-protein at serum electrophoresis. Moreover, the sFLC ratio was inversely correlated with glomerular filtration rate, possibly identifying early renal damage in MM patients. Our preliminary results confirm the importance of early sFLC evaluation, especially in patients with the light-chain MM type and low disease burden, to minimize the risk of late renal failure.
Collapse
|
33
|
Weisel K, Wadlund AO, Gungor G, Dergarabetian E, Pacheco C, Masurkar N, Rodriguez-Otero P. Real-world study on adoption of standard of care (SoC) for transplant-eligible newly diagnosed multiple myeloma (TE-NDMM) patients between 2017 and 2020/2021 across France, Germany, Spain, and Italy. Eur J Haematol 2022; 109:388-397. [PMID: 35775385 DOI: 10.1111/ejh.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This non-interventional observational study described the current standard-of-care (SoC) for transplant-eligible newly diagnosed multiple myeloma (TE-NDMM) patients in France, Germany, Spain, and Italy, and recorded the evolution in regimen adoption in distinct elements of frontline treatment during 2017-2020/2021. METHODS Clinical information on ongoing (I) or previous (II) TE-NDMM patients was extracted from the Cancerology database. Proportions of patients receiving regimens in each element and the evolution in regimen adoption were determined for the entire population and each country. RESULTS Most common induction regimens among I patients were VRd in France (75.3%) and Spain (44.1%), VTd in Italy (65.2%), and regimens other than VRd/VTd/VCd in Germany. Maintenance was ongoing/planned for 78.3%, 62.3%, 65.2%, and 61.4% patients in France, Germany, Spain, and Italy, respectively. Among II patients, VRd induction increased from 27.0% in 2017 to 65.7% in 2019 in France, remained relatively low in Spain and Germany, and not present in Italy. In Italy and Spain, VTd induction declined from 72.4% and 58.3% in 2017 to 52.8% and 17.3% in 2019, respectively. VCd induction in Germany declined from 85.2% in 2017 to 64.1% in 2019. CONCLUSION The use of bortezomib triplets in induction varied markedly over time and between selected countries.
Collapse
Affiliation(s)
- Katja Weisel
- University Medical Center Hamburg-Eppendorf, Dept. Oncology, Hematology, BMT with Section of Pneumology, Martinistrasse 52, Hamburg, Germany
| | | | - Guntug Gungor
- Janssen, Kavacık, Keçeli Plaza, Ertürk Sk. No:13, 34810 Beykoz/İstanbul, Turkey
| | - Eileen Dergarabetian
- Janssen-Cilag Limited, 50-100 Holmers Farm Way, High Wycombe, Buckinghamshire, United Kingdom
| | - Cécile Pacheco
- Cerner Enviza France SAS, 198 avenue de France, Paris, France
| | - Nihar Masurkar
- Cerner Enviza France SAS, 198 avenue de France, Paris, France
| | - Paula Rodriguez-Otero
- Department of Hematology, Clínica Universidad de Navarra, Av. de Pío XII, 36, Pamplona, Navarra, Spain
| |
Collapse
|
34
|
Yang P, Qu Y, Wang M, Chu B, Chen W, Zheng Y, Niu T, Qian Z. Pathogenesis and treatment of multiple myeloma. MedComm (Beijing) 2022; 3:e146. [PMID: 35665368 PMCID: PMC9162151 DOI: 10.1002/mco2.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second‐ranking malignancy in hematological tumors. The pathogenesis of MM is complex with high heterogeneity, and the development of the disease is a multistep process. Chromosomal translocations, aneuploidy, genetic mutations, and epigenetic aberrations are essential in disease initiation and progression. The correlation between MM cells and the bone marrow microenvironment is associated with the survival, progression, migration, and drug resistance of MM cells. In recent decades, there has been a significant change in the paradigm for the management of MM. With the development of proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, chimeric antigen receptor T‐cell therapies, and novel agents, the survival of MM patients has been significantly improved. In addition, nanotechnology acts as both a nanocarrier and a treatment tool for MM. The properties and responsive conditions of nanomedicine can be tailored to reach different goals. Nanomedicine with a precise targeting property has offered great potential for drug delivery and assisted in tumor immunotherapy. In this review, we summarize the pathogenesis and current treatment options of MM, then overview recent advances in nanomedicine‐based systems, aiming to provide more insights into the treatment of MM.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Mengyao Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Wen Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Yuhuan Zheng
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
35
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
36
|
Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic Crosstalk between Malignant Plasma Cells and the Tumour Microenvironment in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112597. [PMID: 35681577 PMCID: PMC9179362 DOI: 10.3390/cancers14112597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
In multiple myeloma, cells of the bone marrow microenvironment have a relevant responsibility in promoting the growth, survival, and drug resistance of multiple myeloma plasma cells. In addition to the well-recognized role of genetic lesions, microenvironmental cells also present deregulated epigenetic systems. However, the effect of epigenetic changes in reshaping the tumour microenvironment is still not well identified. An assortment of epigenetic regulators, comprising histone methyltransferases, histone acetyltransferases, and lysine demethylases, are altered in bone marrow microenvironmental cells in multiple myeloma subjects participating in disease progression and prognosis. Aberrant epigenetics affect numerous processes correlated with the tumour microenvironment, such as angiogenesis, bone homeostasis, and extracellular matrix remodelling. This review focuses on the interplay between epigenetic alterations of the tumour milieu and neoplastic cells, trying to decipher the crosstalk between these cells. We also evaluate the possibility of intervening specifically in modified signalling or counterbalancing epigenetic mechanisms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
- Correspondence:
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Paola Barone
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
37
|
Chahin M, Branham Z, Fox A, Leurinda C, Keruakous AR. Clinical Considerations for Immunoparesis in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14092278. [PMID: 35565407 PMCID: PMC9104750 DOI: 10.3390/cancers14092278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunoparesis in multiple myeloma is defined as the suppression of one or more of the uninvolved immunoglobulins, AKA, polyclonal immunoglobulin. The extent of immunoparesis is an independent prognostic factor in patients with newly diagnosed multiple myeloma. Myeloma patients with suppressed uninvolved immunoglobulins at diagnosis have shorter median overall survival (OS) and progression-free survival (PFS). This review article summarizes immunoparesis in myeloma patients, contributing factors, its impact on myeloma progression, general outcomes, and infectious complications. Abstract Multiple myeloma is a relatively common clonal plasma cell disorder, comprising 17% of hematologic malignancies. One of the hallmark features of this disease is immunoparesis, which is characterized by the suppression of immunoglobulin polyclonality. Though not entirely elucidated, the mechanism behind this process can be attributed to the changes in the tumor microenvironment. All treating clinicians must consider potential complications related to immunoparesis in the management of multiple myeloma. Though not explicitly described in large data series, the increased risk of infection in multiple myeloma is likely, at least in part, due to immunoglobulin suppression. Additionally, the presence of immunoparesis serves as a prognostic factor, conveying poorer survival and a higher risk of relapse. Even in the era of novel agents, these findings are preserved, and immunoglobulin recovery also serves as a sign of improved outcome following autologous HSCT. Though not within the diagnostic criteria for multiple myeloma, the presence and degree of immunoparesis should be at diagnosis for prognostication, and immunoglobulin recovery should be tracked following myeloablative therapy and autologous HSCT.
Collapse
Affiliation(s)
- Michael Chahin
- Section of Hematology and Oncology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
| | - Zachery Branham
- Internal Medicine, Augusta University, Augusta, GA 30912, USA; (Z.B.); (A.F.); (C.L.)
| | - Ashley Fox
- Internal Medicine, Augusta University, Augusta, GA 30912, USA; (Z.B.); (A.F.); (C.L.)
| | - Christian Leurinda
- Internal Medicine, Augusta University, Augusta, GA 30912, USA; (Z.B.); (A.F.); (C.L.)
| | - Amany R. Keruakous
- Section of Hematology and Oncology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Correspondence: ; Tel.: +1-216-571-3654; Fax: +1-706-721-5566
| |
Collapse
|
38
|
Analysis of Serum IgG1 to Predict Progression and Therapeutic Effect in Patients with Multiple Myeloma. JOURNAL OF ONCOLOGY 2022; 2022:8628781. [PMID: 35342422 PMCID: PMC8947869 DOI: 10.1155/2022/8628781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
Objective The correlation between laboratory indicators and clinical treatment effects and the prognosis of multiple myeloma remains poorly understood. Therefore, our study investigated whether serum IgG subclasses could be employed as potential indicators contributed to evaluate the therapeutic effect and prognosis of patients with multiple myeloma. Patients and Methods. Records of patients with multiple myeloma were initially diagnosed at the First Affiliated Hospital of Soochow University, China, from August 1, 2017, to February 28, 2020. The assessment abilities of serological indicators for therapeutic effect were evaluated in patients compared with healthy controls. Results In 560 study patients with multiple myeloma, serum IgA, IgG, IgM, κ-LC, and λ-LC increased by15%, 33.04%, 1.96%, 27.50%, and 26.43%, respectively. Further analysis found that IgG1, IgG2, IgG3, and IgG4 were over the upper limit of the reference range with 26.38%, 6.09%, 8.12%, and 4.64%, respectively. κ-LC and λ-LC were found in the urine in 65.13% and 29.70%, respectively. In peripheral blood, the proportion of CD3+CD4+, CD3−CD19+ cells, and CD4+/CD8+ decreased, whereas CD3+CD8+ cells and CD16+/CD56+ increased, and the associated cytokines IL-2, IL-4, IL-6, TNF-α, and IFN-γ were upregulated in patients when compared with healthy controls. Furthermore, the serum levels of IgA, IgG, IgG1, IgG2, IgG3, and IgG4 gradually decreased in patients before, during, and after treatment. Similar results were found in serum and urine κ-LC and λ-LC. Conclusion Serum IgG1 level could serve as the potential indicator for evaluating the therapeutic effect for patients with multiple myeloma. κ-LC and λ-LC also have the potential to be prognostic indicators. More studies are warranted to explore these serological indicators for personalized therapy in the future.
Collapse
|
39
|
Lee HF, Lacbay CM, Boutin R, Matralis AN, Park J, Waller DD, Guan TL, Sebag M, Tsantrizos YS. Synthesis and Evaluation of Structurally Diverse C-2-Substituted Thienopyrimidine-Based Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase. J Med Chem 2022; 65:2471-2496. [PMID: 35077178 DOI: 10.1021/acs.jmedchem.1c01913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.
Collapse
Affiliation(s)
- Hiu-Fung Lee
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Cyrus M Lacbay
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Rebecca Boutin
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Alexios N Matralis
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Daniel D Waller
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Tian Lai Guan
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Michael Sebag
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
40
|
Aass KR, Mjelle R, Kastnes MH, Tryggestad SS, van den Brink LM, Aass Roseth I, Westhrin M, Zahoor M, Moen SH, Vikene Nedal TM, Buene G, Misund K, Sponaas AM, Ma Q, Sundan A, Groen RW, Slørdahl TS, Waage A, Standal T. Intracellular IL-32 regulates mitochondrial metabolism, proliferation, and differentiation of malignant plasma cells. iScience 2022; 25:103605. [PMID: 35005550 PMCID: PMC8717606 DOI: 10.1016/j.isci.2021.103605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Interleukin-32 (IL-32) is a nonclassical cytokine expressed in cancers, inflammatory diseases, and infections. Its expression is regulated by two different oxygen sensing systems; HIF1α and cysteamine dioxygenase (ADO), indicating that IL-32 may be involved in the response to hypoxia. We here demonstrate that endogenously expressed, intracellular IL-32 interacts with components of the mitochondrial respiratory chain and promotes oxidative phosphorylation. Knocking out IL-32 in three myeloma cell lines reduced cell survival and proliferation in vitro and in vivo. High-throughput transcriptomic and MS-metabolomic profiling of IL-32 KO cells revealed that cells depleted of IL-32 had perturbations in metabolic pathways, with accumulation of lipids, pyruvate precursors, and citrate. IL-32 was expressed in a subgroup of myeloma patients with inferior survival, and primary myeloma cells expressing IL-32 had a gene signature associated with immaturity, proliferation, and oxidative phosphorylation. In conclusion, we demonstrate a previously unrecognized role of IL-32 in the regulation of plasma cell metabolism. Intracellular IL-32 is an endogenous growth factor for malignant plasma cells IL-32 interacts with components of the electron transport chain IL-32 promotes oxidative phosphorylation IL-32 is expressed by immature, CD45 + highly proliferating malignant plasma cells
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Martin H Kastnes
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Synne S Tryggestad
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Luca M van den Brink
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Ingrid Aass Roseth
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Marita Westhrin
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway
| | - Siv H Moen
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Tonje M Vikene Nedal
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Glenn Buene
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Qianli Ma
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Anders Sundan
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Richard Wj Groen
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam 1081, the Netherlands
| | - Tobias S Slørdahl
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Hematology, St.Olavs University Hospital, Trondheim 7491, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Hematology, St.Olavs University Hospital, Trondheim 7491, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Hematology, St.Olavs University Hospital, Trondheim 7491, Norway
| |
Collapse
|
41
|
Jalloul M, Sater AA, Ballout I, Annan K, Mokdad T, Lakis ZA, Khachfe HH. Multiple myeloma in Lebanon: Trend analysis, 10-year projections and comparisons to other countries. Cancer Treat Res Commun 2022; 30:100513. [PMID: 35026534 DOI: 10.1016/j.ctarc.2022.100513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/23/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a common hematological malignancy in aging populations. This study aims to inspect the trends from 2005 to 2016 and future projections of MM in Lebanon and to compare its incidence-rates to other MENA and non-MENA countries. METHODS The data concerning MM cases over the studied period was extracted from the National Cancer Registry (NCR) of Lebanon. The online database "Cancer Incidence in Five Continents" was screened and data of other countries were collected. The age-specific and age-standardized incidence rates (ASR(w)) were computed and analyzed using Joinpoint regression. 10 year projections were predicted by employing a logarithmic model. RESULTS During the time period 2005-2016, MM was significantly more common in males. Both genders had a cancer peak in patients older than 75 years. MM demonstrated a significantly increasing trend in both genders over the 12 years of study. Compared to other countries in the MENA region, Lebanon ranked first in females and second in males, while it came among the lowest when compared to randomly selected developed countries from non-MENA regions. Projecting to 2026, incidence rates of MM in Lebanon are expected to rise in both males and females. CONCLUSION Incidence of MM in Lebanon is continually rising. The elderly population, especially males, is much more affected than the younger one. Different risk factors, specifically obesity and toxic exposures, can explain the escalating burden of MM among the population. A collaboration of efforts between the government and health organization is expected for an effective disease control.
Collapse
Affiliation(s)
- Mohammad Jalloul
- Faculty of Medical Science, Lebanese University, Beirut, Lebanon
| | - AliH Abdel Sater
- Faculty of Medical Science, Lebanese University, Beirut, Lebanon
| | - Ibrahim Ballout
- Faculty of Medical Science, Lebanese University, Beirut, Lebanon
| | - KhalilEl Annan
- Faculty of Medical Science, Lebanese University, Beirut, Lebanon
| | - Taha Mokdad
- Faculty of Medical Science, Lebanese University, Beirut, Lebanon
| | - Zeina A Lakis
- Faculty of Medical Science, Lebanese University, Beirut, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
42
|
Aly NAR, Rizk S, Aboul Enein A, El Desoukey N, Zawam H, Ahmed M, El Shikh ME, Pitzalis C. The role of lymphoid tissue SPARC in the pathogenesis and response to treatment of multiple myeloma. Front Oncol 2022; 12:1009993. [PMID: 36605435 PMCID: PMC9807864 DOI: 10.3389/fonc.2022.1009993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background Despite the significant progress in the treatment of multiple myeloma (MM), the disease remains untreatable and its cure is still an unmet clinical need. Neoplastic transformation in MM is initiated in the germinal centers (GCs) of secondary lymphoid tissue (SLT) where B cells experience extensive somatic hypermutation induced by follicular dendritic cells (FDCs) and T-cell signals. Objective We reason that secreted protein acidic and rich in cysteine (SPARC), a common stromal motif expressed by FDCs at the origin (SLTs) and the destination (BM) of MM, plays a role in the pathogenesis of MM, and, here, we sought to investigate this role. Methods There were 107 BM biopsies from 57 MM patients (taken at different time points) together with 13 control specimens assessed for SPARC gene and protein expression and compared with tonsillar tissues. In addition, regulation of myeloma-promoting genes by SPARC-secreting FDCs was assessed in in vitro GC reactions (GCRs). Results SPARC gene expression was confirmed in both human primary (BM) and secondary (tonsils) lymphoid tissues, and the expression was significantly higher in the BM. Sparc was detectable in the BM and tonsillar lysates, co-localized with the FDC markers in both tissues, and stimulation of FDCs in vitro induced significantly higher levels of SPARC expression than unstimulated controls. In addition, SPARC inversely correlated with BM PC infiltration, ISS staging, and ECOG performance of the MM patients, and in vitro addition of FDCs to lymphocytes inhibited the expression of several oncogenes associated with malignant transformation of PCs. Conclusion FDC-SPARC inhibits several myelomagenic gene expression and inversely correlates with PC infiltration and MM progression. Therapeutic induction of SPARC expression through combinations of the current MM drugs, repositioning of non-MM drugs, or novel drug discovery could pave the way to better control MM in clinically severe and drug-resistant patients.
Collapse
Affiliation(s)
- Nesreen Amer Ramadan Aly
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Samia Rizk
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Azza Aboul Enein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen El Desoukey
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hamdy Zawam
- Clinical Oncology and Nuclear Radiation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manzoor Ahmed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mohey Eldin El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- *Correspondence: Mohey Eldin El Shikh,
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
43
|
Yu M, Yu J, Zhang Y, Sun X, Sun R, Xia M, Li S, Cui X. A novel circRNA-miRNA-mRNA network revealed exosomal circ-ATP10A as a biomarker for multiple myeloma angiogenesis. Bioengineered 2022; 13:667-683. [PMID: 34852710 PMCID: PMC8805983 DOI: 10.1080/21655979.2021.2012553] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
The importance of angiogenesis in multiple myeloma (MM) is unquestionable; however, to date, the success of antiangiogenic therapies has been fairly limited. Exosomal circular RNAs (circRNAs) have been proven to be pivotal players in angiogenesis in various cancers. Nevertheless, their role in MM remains unknown. Therefore, we aimed to identify differentially expressed circRNAs in peripheral blood exosomes from MM patients and explore their diagnostic and prognostic values. We screened 2,052 circRNAs with significant differential expression between MM patients and healthy controls via high-throughput sequencing. qRT-PCR confirmed that the expression of circ-ATP10A was significantly increased in MM patients. The bioinformatics analyses suggested that circ-ATP10A can act as a microRNA (miRNA) sponge and regulate the expression of downstream vascular endothelial growth factor-B (VEGFB), hypoxia-inducible factor-1alpha (HIF1A), platelet-derived growth factor subunit A (PDGFA), and fibroblast growth factor (FGF). The immunohistochemical results indicated that the circ-ATP10A level was positively correlated with the protein levels of VEGFB and marrow microvessel density (MVD) in MM patients, and the receiver operating characteristic (ROC) curve, area under the ROC curve (AUC) and Kaplan-Meier survival curve analyses confirmed it as a prognostic biomarker. Collectively, our study indicates that exosomal circ-ATP10A is a valuable prognostic biomarker in MM and may promote MM angiogenesis by targeting hsa-miR-6758-3p/hsa-miR-3977/hsa-miR-6804-3p/hsa-miR-1266-3p/hsa-miR-3620-3p and modulating their downstream mRNAs, such as VEGFB, HIF1A, PDGF, and FGF.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Female
- Humans
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Multiple Myeloma/blood supply
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
Collapse
Affiliation(s)
- Manya Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yu
- Third Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yanyu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoqi Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Runjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengting Xia
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sumei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xing Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
44
|
Audil HY, Cook JM, Greipp PT, Kapoor P, Baughn LB, Dispenzieri A, Gertz MA, Buadi FK, Lacy MQ, Dingli D, Fonder AL, Hayman SR, Hobbs MA, Muchtar E, Siddiqui M, Gonsalves WI, Hwa YL, Leung N, Lin Y, Kourelis TV, Warsame R, Kyle RA, Ketterling RP, Rajkumar SV, Kumar SK. Prognostic significance of acquired 1q22 gain in multiple myeloma. Am J Hematol 2022; 97:52-59. [PMID: 34710241 DOI: 10.1002/ajh.26391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/08/2022]
Abstract
Gain of 1q22 at diagnosis portends poorer outcomes in multiple myeloma (MM), but the prognostic significance of acquired 1q22 gain is unknown. We identified 63 MM patients seen at Mayo Clinic from 1/2004 to 12/2019 without 1q22 gain at diagnosis who acquired it during follow up and compared them to 63 control patients who did not acquire 1q22 gain with similar follow up. We also compared outcomes in the acquired 1q22 gain group with outcomes in 126 patients with 1q22 gain present at diagnosis. The incidence of acquired 1q22 gain was 6.1% (median follow-up 6.8 years); median time to acquisition was 5.0 years (range: 0.7-11.5 years). Abnormalities on baseline fluorescence in situ hybridization (FISH) included trisomies (54%) and monosomy 13 (39%); 16 (25%) had high-risk (HR) translocations or del(17p). Median progression-free survival with front line therapy was 29.5 months in patients with acquired 1q22 gain, versus 31.4 months in control patients (p = .34) and 31.2 months in patients with de novo 1q22 gain (p = .04). Median overall survival (OS) from diagnosis was 10.9 years in patients with acquired 1q22 gain, versus 13.0 years in control patients (p = .03) and 6.3 years in patients with de novo 1q22 gain (p = .01). Presence of HR FISH at baseline increased risk of 1q22 gain acquisition. We demonstrate that acquisition of 1q22 gain is a significant molecular event in MM, associated with reduced OS. Among HR patients for whom this clonal evolution is determined, a risk-adapted approach and/or clinical trial should be considered.
Collapse
Affiliation(s)
- Hadiyah Y Audil
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joselle M Cook
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Prashant Kapoor
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Linda B Baughn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Morie A Gertz
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Francis K Buadi
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Martha Q Lacy
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - David Dingli
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Amie L Fonder
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Suzanne R Hayman
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Miriam A Hobbs
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eli Muchtar
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Yi Lisa Hwa
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nelson Leung
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yi Lin
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Rahma Warsame
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert A Kyle
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Shaji K Kumar
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
45
|
Jirabanditsakul C, Dakeng S, Kunacheewa C, U-Pratya Y, Owattanapanich W. Comparison of Clinical Characteristics and Genetic Aberrations of Plasma Cell Disorders in Thailand Population. Technol Cancer Res Treat 2022; 21:15330338221111228. [PMID: 35770320 PMCID: PMC9252016 DOI: 10.1177/15330338221111228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma is an incurable malignancy of plasma cells resulting from impaired terminal B cell development. Almost all patients with multiple myeloma eventually have a relapse. Many studies have demonstrated the importance of the various genomic mutations that characterize multiple myeloma as a complex heterogeneous disease. In recent years, next-generation sequencing has been used to identify the genomic mutation landscape and clonal heterogeneity of multiple myeloma. This is the first study, a prospective observational study, to identify somatic mutations in plasma cell disorders in the Thai population using targeted next-generation sequencing. Twenty-seven patients with plasma cell disorders were enrolled comprising 17 cases of newly diagnosed multiple myeloma, 5 cases of relapsed/refractory multiple myeloma, and 5 cases of other plasma cell disorders. The pathogenic mutations were found in 17 of 27 patients. Seventy percent of those who had a mutation (12/17 patients) habored a single mutation, whereas the others had more than one mutation. Fifteen pathogenic mutation genes were identified: ATM, BRAF, CYLD, DIS3, DNMT3A, FBXW7, FLT3, GNA13, IRF4, KMT2A, NRAS, SAMHD1, TENT5C, TP53, and TRAF3. Most have previously been reported to be involved in the RAS/MAPK pathway, the nuclear factor kappa B pathway, the DNA-repair pathway, the CRBN pathway, tumor suppressor gene mutation, or an epigenetic mutation. However, the current study also identified mutations that had not been reported to be related to myeloma: GNA13 and FBXW7. Therefore, a deep understanding of molecular genomics would inevitably improve the clinical management of plasma cell disorder patients, and the increased knowledge would ultimately result in better outcomes for the patients.
Collapse
Affiliation(s)
- Chutirat Jirabanditsakul
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sumana Dakeng
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chutima Kunacheewa
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowalak U-Pratya
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
46
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
47
|
Musto P, Engelhardt M, Caers J, Bolli N, Kaiser M, Van de Donk N, Terpos E, Broijl A, De Larrea CF, Gay F, Goldschmidt H, Hajek R, Vangsted AJ, Zamagni E, Zweegman S, Cavo M, Dimopoulos M, Einsele H, Ludwig H, Barosi G, Boccadoro M, Mateos MV, Sonneveld P, Miguel JS. 2021 European Myeloma Network review and consensus statement on smoldering multiple myeloma: how to distinguish (and manage) Dr. Jekyll and Mr. Hyde. Haematologica 2021; 106:2799-2812. [PMID: 34261295 PMCID: PMC8561280 DOI: 10.3324/haematol.2021.278519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
According to the updated International Myeloma Working Group criteria, smoldering multiple myeloma (SMM) is an asymptomatic plasma cell disorder characterized by an M-component >3 g/dL, bone marrow plasma cell infiltration >10% and <60%, and absence of any myeloma-defining event. Active multiple myeloma is preceded by SMM, with a median time to progression of approximately 5 years. Cases of SMM range from the extremes of "monoclonal gammopathy of undetermined significance-like", in which patients never progress during their lifetimes, to "early multiple myeloma", in which transformation into symptomatic disease, based on genomic evolution, may be rapid and devastating. Such a "split personality" makes the prognosis and management of individual patients challenging, particularly with regard to the identification and possible early treatment of high-risk SMM. Outside of clinical trials, the conventional approach to SMM generally remains close observation until progression to active multiple myeloma. However, two prospective, randomized trials have recently demonstrated a significant clinical benefit in terms of time to progression, and of overall survival in one of the two studies, for some patients with higher-risk SMM treated with lenalidomide ± dexamethasone, raising the question of whether such an approach should be considered a new standard of care. In this paper, experts from the European Myeloma Network describe current biological and clinical knowledge on SMM, focusing on novel insights into its molecular pathogenesis, new prognostic scoring systems proposed to identify SMM patients at higher risk of early transformation, and updated results of completed or ongoing clinical trials. Finally, some practical recommendations for the real-life management of these patients, based on Delphi consensus methodology, are provided.
Collapse
Affiliation(s)
- Pellegrino Musto
- "Aldo Moro" University School of Medicine, Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, Bari.
| | - Monika Engelhardt
- Department of Medicine I, Medical Center - University of Freiburg, Freiburg, Faculty of Medicine, University of Freiburg
| | - Jo Caers
- Department of Clinical Hematology, CHU of Liège, Liège, Belgium; Laboratory of Hematology, GIGA-I3, University of Liège, Liège
| | - Niccolo' Bolli
- Division of Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy; Department of Oncology and Onco-Hematology, University of Milan, Milano
| | - Martin Kaiser
- The Institute of Cancer Research, Division of Molecular Pathology, London, UK; The Royal Marsden Hospital, Department of Haematology, London
| | - Niels Van de Donk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam
| | - Evangelos Terpos
- Stem Cell Transplantation Unit, Plasma Cell Dyscrasias Unit, Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens
| | - Annemiek Broijl
- Erasmus MC Cancer Institute and Erasmus University of Rotterdam, Rotterdam
| | - Carlos Fernández De Larrea
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino
| | - Hartmut Goldschmidt
- University Hospital Heidelberg Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg
| | - Roman Hajek
- Department of Hemato-oncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | - Elena Zamagni
- Seràgnoli Institute of Hematology, Bologna University School of Medicine, Bologna
| | - Sonja Zweegman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam
| | - Michele Cavo
- Seràgnoli Institute of Hematology, Bologna University School of Medicine, Bologna
| | - Meletios Dimopoulos
- National and Kapodistrian University of Athens, School of Medicine, Department of Clinical Therapeutics, Athens
| | - Hermann Einsele
- University Hospital Würzburg, Internal Medicine II, Würzburg
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, 1st Department of Medicine, Center for Oncology, Hematology and Palliative Care, Wilhelminenspital, Vienna
| | | | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino
| | | | - Pieter Sonneveld
- Erasmus MC Cancer Institute and Erasmus University of Rotterdam, Rotterdam
| | | |
Collapse
|
48
|
Hemmatian H, Conrad S, Furesi G, Mletzko K, Krug J, Faila AV, Kuhlmann JD, Rauner M, Busse B, Jähn-Rickert K. Reorganization of the osteocyte lacuno-canalicular network characteristics in tumor sites of an immunocompetent murine model of osteotropic cancers. Bone 2021; 152:116074. [PMID: 34174502 DOI: 10.1016/j.bone.2021.116074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
Mechanosensitive osteocytes are central regulators of bone resorption and formation. However, during the formation of bone metastases, which arise as consequences of breast and prostate cancer and skew homeostatic bone remodeling to favor osteolytic, osteosclerotic or mixed lesions, only a paucity of data exists on tumor-associated osteocyte interaction. Herein, we used a suite of high-resolution imaging and histological techniques to evaluate the effect of osteotropic cancer on cortical bone microarchitecture. Confocal imaging highlighted a direct contact between tumor cells residing in the bone marrow and osteocytes. High-resolution microcomputed tomography revealed a 10-12% larger osteocyte lacuna volume in the presence of tumor cells at day 21 after intratibial injection of EO771-Luc breast and RM1-Luc prostate cancer cells. The 3D representative of the spatial distribution of cortical bone microporosity showed i) a regional accumulation of vascular canals and large lacunae with low connectivity in osteosclerotic regions of interest and ii) an absence of vascular canals and large lacunae in osteolytic regions. These findings pinpoint the relationship between the presence of tumor cells in the bone marrow microenvironment and osteocyte lacunar characteristics and cortical bone blood vessel structure.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Stefanie Conrad
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Giulia Furesi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Kathrin Mletzko
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Antonio Virgilio Faila
- Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany; Forum Medical Technology Health Hamburg (FMTHH), Hamburg, Germany.
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg.
| |
Collapse
|
49
|
Sabol HM, Ferrari AJ, Adhikari M, Amorim T, McAndrews K, Anderson J, Vigolo M, Lehal R, Cregor M, Khan S, Cuevas PL, Helms JA, Kurihara N, Srinivasan V, Ebetino FH, Boeckman RK, Roodman GD, Bellido T, Delgado-Calle J. Targeting Notch Inhibitors to the Myeloma Bone Marrow Niche Decreases Tumor Growth and Bone Destruction without Gut Toxicity. Cancer Res 2021; 81:5102-5114. [PMID: 34348968 PMCID: PMC8488008 DOI: 10.1158/0008-5472.can-21-0524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
Systemic inhibition of Notch with γ-secretase inhibitors (GSI) decreases multiple myeloma tumor growth, but the clinical use of GSI is limited due to its severe gastrointestinal toxicity. In this study, we generated a GSI Notch inhibitor specifically directed to the bone (BT-GSI). BT-GSI administration decreased Notch target gene expression in the bone marrow, but it did not alter Notch signaling in intestinal tissue or induce gut toxicity. In mice with established human or murine multiple myeloma, treatment with BT-GSI decreased tumor burden and prevented the progression of multiple myeloma-induced osteolytic disease by inhibiting bone resorption more effectively than unconjugated GSI at equimolar doses. These findings show that BT-GSI has dual anti-myeloma and anti-resorptive properties, supporting the therapeutic approach of bone-targeted Notch inhibition for the treatment of multiple myeloma and associated bone disease. SIGNIFICANCE: Development of a bone-targeted Notch inhibitor reduces multiple myeloma growth and mitigates cancer-induced bone destruction without inducing the gastrointestinal toxicity typically associated with inhibition of Notch.
Collapse
Affiliation(s)
- Hayley M Sabol
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Adam J Ferrari
- Department of Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tânia Amorim
- Department of Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kevin McAndrews
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Judith Anderson
- Department of Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Meloney Cregor
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sharmin Khan
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Pedro L Cuevas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, California
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, California
| | - Noriyoshi Kurihara
- Department of Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, New York
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, New York
- Biovinc LLC, Pasadena, California
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, New York
| | - G David Roodman
- Department of Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush VA Medical Center, Indianapolis, Indiana
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- John L. McClellan Memorial Veterans', Hospital, Little Rock, Arkansas
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
50
|
Song S, Fan G, Li Q, Su Q, Zhang X, Xue X, Wang Z, Qian C, Jin Z, Li B, Zhuang W. IDH2 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in multiple myeloma. Oncogene 2021; 40:5393-5402. [PMID: 34274946 DOI: 10.1038/s41388-021-01939-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Epigenetic alterations have been previously shown to contribute to multiple myeloma (MM) pathogenesis via DNA methylations and histone modifications. RNA methylation, a novel epigenetic modification, is required for cancer cell survival, and targeting this pathway has been proposed as a new therapeutic strategy. The extent to the N6-methyladenosine (m6A)-regulatory pathway functions in MM remains unknown. Here, we show that an imbalance of RNA methylation may underlies the tumorigenesis of MM. Mechanistically, isocitrate dehydrogenase 2 (IDH2) is highly expressed in CD138+ cells from MM and its levels appear a progressive increase in the progression of plasma cell dyscrasias. Downregulation of IDH2 increases global m6A RNA levels and reduces myeloma cell growth in vitro, decreases the burden of disease and prolongs overall survival in vivo. IDH2 regulates RNA methylation by activating the RNA demethylase FTO, which is an α-KG-dependent dioxygenase. Furthermore, IDH2-mediated FTO activation decreases the m6A level on WNT7B transcripts, then increases WNT7B expression and thus activated Wnt signaling pathway. Moreover, survival analysis indicates that the elevated expression of IDH2 predicts a poor prognosis. Higher expression of FTO is related to higher International Staging System (ISS) stage and higher Revised-ISS (R-ISS) stage of MM. Collectively, our studies reveal that IDH2 regulates global m6A RNA modification in MM via targeting RNA demethylases FTO. The imbalance of m6A methylation activates the Wnt signaling pathway by enhancing the WNT7B expression, and thus promoting tumorigenesis and progression of MM. IDH2 might be used as a therapeutic target and a possible prognostic factor for MM.
Collapse
Affiliation(s)
- Sha Song
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Gao Fan
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Su
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofeng Xue
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Wang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chen'ao Qian
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhou Jin
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|