1
|
Finan JM, Guo Y, Bartlett AQ, Reyer M, Hawthorne K, Haerr M, Halamish H, Lamikanra O, Calvert V, Chen C, Xia Z, Petricoin EF, Sears RC, Byrne KT, Brody JR. Pancreatic cancer-intrinsic HuR regulates the pro-tumorigenic properties of extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637077. [PMID: 39975239 PMCID: PMC11839136 DOI: 10.1101/2025.02.08.637077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumors contain chaotic vasculature that limits immune surveillance and promotes early events in the metastatic cascade. However, current antiangiogenic therapies have failed in PDAC, and thus, it remains important to uncover mechanisms by which cancer cells signal to endothelial cells to increase angiogenesis. Our lab has shown that the tumor-intrinsic RNA-binding protein HuR ( ELAVL1 ) plays an important role re-shaping the tumor microenvironment (TME) by regulating the stability and translation of cytokine encoding transcripts. Herein, we demonstrate that PDAC-intrinsic HuR influences endothelial cell function in the TME via extracellular vesicle (EV) signaling, an underexplored signaling axis in tumor progression. We found that HuR knockout (KO) tumors have impaired growth in an immunocompetent mouse model, and that administering purified wildtype (WT) EVs can increase tumor growth. Further, we observed that PDAC EVs contain HuR-dependent mRNA and protein cargoes relating to endothelial cell function and angiogenesis. Treatment of endothelial cells with HuR WT EVs strongly increased the expression of genes involved in barrier function and endothelial cell development, and directly increased their migratory and tube forming functions. In an immunocompetent orthotopic mouse model of PDAC, we showed that HuR increases endothelial cell presence and sprouting, while decreasing ICAM-1 expression. Importantly, we found utilizing a genetic EV reporter, that decreased ICAM-1 within WT tumors occurs in endothelial cells that have imported PDAC EVs, suggesting that this signaling axis is directly modulating endothelial cell behavior in vivo . Collectively, our data reveal a new role of HuR in EV signaling to endothelial cells, promoting angiogenesis while restricting endothelial cell leukocyte trafficking behavior.
Collapse
|
2
|
Haskell A, Pan S, Reese R, Powers A, Lopez MG, Lomeli S, Story C, Benton J, Blazier JC, Kaunas R, Gregory CA. Antisense mediated blockade of Dickkopf 1 attenuates tumor survival, metastases and bone damage in experimental osteosarcoma. Sci Rep 2025; 15:1878. [PMID: 39805917 PMCID: PMC11730318 DOI: 10.1038/s41598-024-84037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has been implicated in bone destruction, tumor survival and metastases during OS. We examined the role of Dkk-1 in OS disease progression and explored strategies for targeting its activity. Dkk-1 enhances OS survival by amplifying a non-canonical Wnt pathway that upregulates aldehyde dehydrogenase 1A1. Targeting of Dkk-1 transcription with a vivo morpholino (DkkMo) reduced OS survival and enhanced osteogenic activity of OS in vitro. DkkMo as a single agent slowed tumor expansion, increased tumor necrosis, inhibited metastases and preserved bone in a PDX model of OS. DkkMo also reduced the frequency of dividing tumor cells and reinitiated a regenerative osteogenic phenotype in tumors and stroma while reducing infiltration of inflammatory cells. These findings indicate that DkkMo has the potential to safely target osteosarcoma growth, survival, metastases and bone destruction.
Collapse
Affiliation(s)
- Andrew Haskell
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Simin Pan
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Robert Reese
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX, USA
| | - Anthony Powers
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX, USA
| | - Megan G Lopez
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Sebastian Lomeli
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Christopher Story
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Joshua Benton
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - J Chris Blazier
- Texas A&M Institute for Genome Sciences and Society, College Station, TX, USA
| | - Roland Kaunas
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX, USA
| | - Carl A Gregory
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA.
| |
Collapse
|
3
|
González-Fernández C, González P, Maqueda A, Pérez V, Rodríguez FJ. Enhancing motor functional recovery in spinal cord injury through pharmacological inhibition of Dickkopf-1 with BHQ880 antibody. Biomed Pharmacother 2024; 176:116792. [PMID: 38795645 DOI: 10.1016/j.biopha.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Mounting experimental evidence has underscored the remarkable role played by the Wnt family of proteins in the spinal cord functioning and therapeutic potential in spinal cord injury (SCI). We aim to provide a therapeutic prospect associated with the modulation of canonical Wnt signaling, examining the spatio-temporal expression pattern of Dickkopf-1 (Dkk1) and its neutralization after SCI. We employ an intraparenchymal injection of the clinically validated Dkk1-blocking antibody, BHQ880, to elucidate its effects in SCI. METHODS A rat model of contusion SCI was used. Histological analyses were performed, wherein Dkk1 protein was sought, and ELISA analyses were employed for Dkk1 detection in cerebrospinal fluid and serum. To ascertain the BHQ880 therapeutic effect, rats were subjected to SCI and then injected with the antibody in the lesion epicenter 24 hours post-injury (hpi). Subsequent evaluation of motor functional recovery extended up to 56 days post-injury (dpi). qRT-PCR and histological analyses were conducted. RESULTS We demonstrate the presence of Dkk1 in the healthy rat spinal cord, with pronounced alterations observed following injury, primarily concentrated in the epicenter regions. Notably, a significative upregulation of Dkk1 was detected at 24 hpi, peaking at 3 dpi and remaining elevated until 42 dpi. Moreover, we revealed that early administration of BHQ880 considerably improved motor functional recovery, promoted preservation of myelinated tissue, and reduced astroglial and microglia/macrophage reactivity. Furthermore, there was a decrease in the acute expression of different inflammatory genes. CONCLUSIONS Collectively, our findings highlight the therapeutic potential of BHQ880 treatment in the context of SCI.
Collapse
Affiliation(s)
- Carlos González-Fernández
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| | - Pau González
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Alfredo Maqueda
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Virginia Pérez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| |
Collapse
|
4
|
Sung EA, Song S, Park MH, Kelly L, Harada H, Chae WJ. Low-density lipoprotein receptor-related protein 6 ablation in macrophages differentially inhibits lung injury-mediated inflammation and metastasis. Biochem Biophys Res Commun 2024; 695:149441. [PMID: 38176174 DOI: 10.1016/j.bbrc.2023.149441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor protein for Wnt ligands. Yet, their role in immune cell regulation remains elusive. Here we demonstrated that genetic deletion of LRP6 in macrophages using LysM-cre Lrp6fl/fl (Lrp6MKO) mice showed differential inhibition of inflammation in the bleomycin (BLM)-induced lung injury model and B16F10 melanoma lung metastasis model. Lrp6MKO mice showed normal immune cell populations in the lung and circulating blood in homeostatic conditions. In the BLM-induced lung injury model, Lrp6MKO mice showed a decreased number of monocyte-derived alveolar macrophages, reduced collagen deposition and alpha-smooth muscle actin (αSMA) protein levels in the lung. In B16F10 lung metastasis model, Lrp6MKO mice reduced lung tumor foci. Monocytic and granulocytic-derived myeloid-derived suppressor cells (M-MDSCs and G-MDSCs) were increased in the lung. In G-MDSCs, hypoxia-inducible factor 1α (HIF1α)+ PDL1+ population was markedly decreased but not in M-MDSCs. Taken together, our results show that the role of LRP6 in macrophages is differential depending on the inflammation microenvironment in the lung.
Collapse
Affiliation(s)
- Eun-Ah Sung
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - SuJeong Song
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Min Hee Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Lucianna Kelly
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Hisashi Harada
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Phillips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Wook-Jin Chae
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Phillips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States.
| |
Collapse
|
5
|
Collignon A, Dion-Albert L, Ménard C, Coelho-Santos V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 2024; 21:2. [PMID: 38178239 PMCID: PMC10768274 DOI: 10.1186/s12987-023-00496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Proper cerebrovascular development and neurogliovascular unit assembly are essential for brain growth and function throughout life, ensuring the continuous supply of nutrients and oxygen. This involves crucial events during pre- and postnatal stages through key pathways, including vascular endothelial growth factor (VEGF) and Wnt signaling. These pathways are pivotal for brain vascular growth, expansion, and blood-brain barrier (BBB) maturation. Interestingly, during fetal and neonatal life, cerebrovascular formation coincides with the early peak activity of the hypothalamic-pituitary-gonadal axis, supporting the idea of sex hormonal influence on cerebrovascular development and barriergenesis.Sex hormonal dysregulation in early development has been implicated in neurodevelopmental disorders with highly sexually dimorphic features, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Both disorders show higher prevalence in men, with varying symptoms between sexes, with boys exhibiting more externalizing behaviors, such as aggressivity or hyperactivity, and girls displaying higher internalizing behaviors, including anxiety, depression, or attention disorders. Indeed, ASD and ADHD are linked to high prenatal testosterone exposure and reduced aromatase expression, potentially explaining sex differences in prevalence and symptomatology. In line with this, high estrogen levels seem to attenuate ADHD symptoms. At the cerebrovascular level, sex- and region-specific variations of cerebral blood flow perfusion have been reported in both conditions, indicating an impact of gonadal hormones on the brain vascular system, disrupting its ability to respond to neuronal demands.This review aims to provide an overview of the existing knowledge concerning the impact of sex hormones on cerebrovascular formation and maturation, as well as the onset of neurodevelopmental disorders. Here, we explore the concept of gonadal hormone interactions with brain vascular and BBB development to function, with a particular focus on the modulation of VEGF and Wnt signaling. We outline how these pathways may be involved in the underpinnings of ASD and ADHD. Outstanding questions and potential avenues for future research are highlighted, as uncovering sex-specific physiological and pathological aspects of brain vascular development might lead to innovative therapeutic approaches in the context of ASD, ADHD and beyond.
Collapse
Affiliation(s)
- Adeline Collignon
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Caroline Ménard
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Institute of Physiology, Coimbra, Portugal.
| |
Collapse
|
6
|
Sung EA, Park MH, Song S, Alanya H, Henegariu O, Liu J, Erson-Omay EZ, Sime PJ, Chae WJ. Thrombocyte-derived Dickkopf1 promotes macrophage polarization in the Bleomycin-induced lung injury model. Front Immunol 2023; 14:1247330. [PMID: 38162655 PMCID: PMC10757334 DOI: 10.3389/fimmu.2023.1247330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Immune responses are crucial to maintaining tissue homeostasis upon tissue injury. Upon various types of challenges, macrophages play a central role in regulating inflammation and tissue repair processes. While an immunomodulatory role of Wnt antagonist Dickkopf1 (DKK1) has been implicated, the role of Wnt antagonist DKK1 in regulating macrophage polarization in inflammation and the tissue repair process remains elusive. Here we found that DKK1 induces gene expression profiles to promote inflammation and tissue repair in macrophages. Importantly, DKK1 induced various genes, including inflammation and tissue repair, via JNK (c-jun N-terminal kinase) in macrophages. Furthermore, DKK1 potentiated IL-13-mediated macrophage polarization and activation. The co-inhibition of JNK and STAT6 markedly decreased gene expressions relevant to inflammation and fibrosis by DKK1 and IL-13. Interestingly, thrombocyte-specific deletion of DKK1 in mice reduced collagen deposition and decreased Arg1, CD206, HIF1α, and IL1β protein expressions in monocyte-derived alveolar macrophages in the acute sterile bleomycin (BLM)-induced lung injury model. These data suggested that thrombocytes communicate with macrophages via DKK1 to orchestrate inflammation and repair in this model. Taken together, our study demonstrates DKK1's role as an important regulatory ligand for macrophage polarization in the injury-induced inflammation and repair process in the lung.
Collapse
Affiliation(s)
- Eun-Ah Sung
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Min Hee Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - SuJeong Song
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Hasan Alanya
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Octavian Henegariu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Patricia J. Sime
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Wook-Jin Chae
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Phillips Oral Health Research Institute, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| |
Collapse
|
7
|
Wu Y, Jing Z, Deng D, Yan J, Liu M, Li L, Zuo Y, Wu W, Hu Q, Xie Y. Dkk-1-TNF-α crosstalk regulates MC3T3E1 pre-osteoblast proliferation and differentiation under mechanical stress through the ERK signaling pathway. Mol Cell Biochem 2023; 478:2191-2206. [PMID: 36640256 DOI: 10.1007/s11010-022-04645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The study aims to explore the role of the ERK signaling pathway in the crosstalk between Dkk-1 and TNF-α in MC3T3E1 pre-osteoblasts under cyclic tensile/compressive stress. A forced four-point bending system was used to apply cyclic uniaxial tensile/compressive strain (2000 μ, 0.5 Hz) to MC3T3E1 cells. Dkk-1 and TNF-α expression were upregulated in MC3T3E1 cells under compressive strain. Cell proliferation, the cell cycle, osteogenesis-related gene (Wnt5a, Runx2, Osterix) expression, β-catenin expression, and the p-ERK/ERK ratio were significantly enhanced, whereas apoptosis, the RANKL/OPG ratio, and TNF-α expression were significantly attenuated, by Dkk-1 silencing. Dkk-1 expression increased and the effects of Dkk-1 silencing were reversed when exogenous TNF-α was added. Mechanically, TNF-α crosstalked with Dkk-1 through ERK signaling in MC3T3E1 cells. ERK signaling blockade impaired Dkk-1-induced TNF-α expression and TNF-α-mediated Dkk-1 expression. Dkk-1 and TNF-α crosstalked, partially through ERK signaling, in MC3T3E1 cells under compressive/tensile strain, synergistically modulating various biological behaviors of the cells. These findings not only provide mechanical insight into the cellular events and molecular regulation of orthodontic tooth movement (OTM), but also aid the development of novel strategies to accelerate OTM.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Disi Deng
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jin Yan
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Wenbin Wu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, #39 Shierqiao Rd, Chengdu, 610072, People's Republic of China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
8
|
Sung EA, Park MH, Henegariu O, Sime PJ, Chae WJ. Dickkopf1 Promotes Pulmonary Fibrosis upon Bleomycin-Induced Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1130-1142. [PMID: 37263344 PMCID: PMC10477954 DOI: 10.1016/j.ajpath.2023.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Orchestration of inflammation and tissue repair processes is critical to maintaining homeostasis upon tissue injury. Tissue fibrosis is a pathological process characterized by aberrant accumulation of extracellular matrix proteins, such as collagen, upon injury. Dickkopf1 (DKK1) is a quintessential Wnt antagonist. The role of DKK1 in bleomycin (BLM)-induced lung injury and fibrosis model remains elusive. This study shows that BLM-induced lung injury markedly elevated DKK1 protein expressions in the lungs in mice, consistent with human pulmonary fibrosis patient lung tissues. The elevated DKK1 levels coincided with immune cell infiltration and collagen deposition. Notably, the reduced expression of DKK1 in Dkk1 hypomorphic doubleridge (Dkk1d/d) mice abrogated BLM-induced lung inflammation and fibrosis. Immune cell infiltration, collagen deposition, expression of profibrotic cytokine transforming growth factor β1 (TGF-β1), and extracellular matrix protein-producing myofibroblast marker α-smooth muscle actin (α-SMA) were reduced in Dkk1d/d mice. Consistent with these results, local DKK1 antibody administration after BLM-induced lung injury substantially decreased lung inflammation and fibrosis phenotypes. Taken together, these results demonstrate that DKK1 is a proinflammatory and profibrotic ligand that promotes inflammation and fibrosis upon BLM-induced lung injury, placing it as an attractive molecular target for dysregulated pulmonary inflammation and tissue repair.
Collapse
Affiliation(s)
- Eun-Ah Sung
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Min Hee Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Octavian Henegariu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Patricia J Sime
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Wook-Jin Chae
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
9
|
Liu GY, Colangelo LA, Ash SY, San Jose Estepar R, Jacobs DR, Thyagarajan B, Wells JM, Putman RK, Choi B, Stevenson CS, Carnethon M, Washko GR, Kalhan R. Computed tomography measure of lung injury and future interstitial features: the CARDIA Lung Study. ERJ Open Res 2023; 9:00004-2023. [PMID: 37313396 PMCID: PMC10259823 DOI: 10.1183/23120541.00004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/09/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Visually normal areas of the lung with high attenuation on computed tomography (CT) imaging, termed CT lung injury, may represent injured but not yet remodelled lung parenchyma. This prospective cohort study examined if CT lung injury is associated with future interstitial features on CT and restrictive spirometry abnormality among participants from the Coronary Artery Risk Development in Young Adults (CARDIA) study. Methods CARDIA is a population-based cohort study. CT scans obtained at two time points were assessed objectively for amount of lung tissue characterised as CT lung injury and interstitial features. Restrictive spirometry was defined as having a forced vital capacity (FVC) <80% predicted with forced expiratory volume in 1 s/FVC ratio >70%. Results Among 2213 participants, the median percentage of lung tissue characterised as CT lung injury at a mean age of 40 years was 3.4% (interquartile range 0.8-18.0%). After adjustment for covariates, a 10% higher amount of CT lung injury at mean age 40 years was associated with a 4.37% (95% CI 3.99-4.74%) higher amount of lung tissue characterised as interstitial features at mean age 50 years. Compared to those with the lowest quartile of CT lung injury at mean age 40 years, there were higher odds of incident restrictive spirometry at mean age 55 years in quartile 2 (OR 2.05, 95% CI 1.20-3.48), quartile 3 (OR 2.80, 95% CI 1.66-4.72) and quartile 4 (OR 3.77, 95% CI 2.24-6.33). Conclusions CT lung injury is an early objective measure that indicates risk of future lung impairment.
Collapse
Affiliation(s)
- Gabrielle Y. Liu
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Laura A. Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel Y. Ash
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Raul San Jose Estepar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - J. Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rachel K. Putman
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bina Choi
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Mercedes Carnethon
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - George R. Washko
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Bartlett B, Lee S, Ludewick HP, Siew T, Verma S, Waterer G, Corrales-Medina VF, Dwivedi G. A multiple comorbidities mouse lung infection model in ApoE‑deficient mice. Biomed Rep 2023; 18:21. [PMID: 36846615 PMCID: PMC9944256 DOI: 10.3892/br.2023.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/09/2022] [Indexed: 02/09/2023] Open
Abstract
Acute pneumonia is characterised by a period of intense inflammation. Inflammation is now considered to be a key step in atherosclerosis progression. In addition, pre-existing atherosclerotic inflammation is considered to play a role in pneumonia progression and risk. In the present study, a multiple comorbidities murine model was used to study respiratory and systemic inflammation that results from pneumonia in the setting of atherosclerosis. Firstly, a minimal infectious dose of Streptococcus pneumoniae (TIGR4 strain) to produce clinical pneumonia with a low mortality rate (20%) was established. C57Bl/6 ApoE -/- mice were fed a high-fat diet prior to administering intranasally 105 colony forming units of TIGR4 or phosphate-buffered saline (PBS). At days 2, 7 and 28 post inoculation (PI), the lungs of mice were imaged by magnetic resonance imaging (MRI) and positron emission tomography (PET). Mice were euthanised and investigated for changes in lung morphology and changes in systemic inflammation using ELISA, Luminex assay and real-time PCR. TIGR4-inoculated mice presented with varying degrees of lung infiltrate, pleural effusion and consolidation on MRI at all time points up to 28 days PI. Moreover, PET scans identified significantly higher FDG uptake in the lungs of TIGR4-inoculated mice up to 28 days PI. The majority (90%) TIGR4-inoculated mice developed pneumococcal-specific IgG antibody response at 28 days PI. Consistent with these observations, TIGR4-inoculated mice displayed significantly increased inflammatory gene expression [interleukin (IL)-1β and IL-6] in the lungs and significantly increased levels of circulating inflammatory protein (CCL3) at 7 and 28 days PI respectively. The mouse model developed by the authors presents a discovery tool to understand the link between inflammation related to acute infection such as pneumonia and increased risk of cardiovascular disease observed in humans.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia 6000, Australia
| | - Herbert P. Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- Heart and Lung Research Institute, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
| | - Teck Siew
- Department of Nuclear Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
- Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Shipra Verma
- Department of Nuclear Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
- Department of Geriatric Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| | - Grant Waterer
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
- Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Vicente F. Corrales-Medina
- Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| |
Collapse
|
11
|
Yang Z, Huang X, Zhang J, You K, Xiong Y, Fang J, Getachew A, Cheng Z, Yu X, Wang Y, Wu F, Wang N, Feng S, Lin X, Yang F, Chen Y, Wei H, Li YX. Hepatic DKK1-driven steatosis is CD36 dependent. Life Sci Alliance 2023; 6:e202201665. [PMID: 36410795 PMCID: PMC9679335 DOI: 10.26508/lsa.202201665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is prevalent worldwide; about 25% of NAFLD silently progress into steatohepatitis, in which some of them may develop into fibrosis, cirrhosis and liver failure. However, few drugs are available for NAFLD, partly because of an incomplete understanding of its pathogenic mechanisms. Here, using in vivo and in vitro gain- and loss-of-function approaches, we identified up-regulated DKK1 plays a pivotal role in high-fat diet-induced NAFLD and its progression. Mechanistic analysis reveals that DKK1 enhances the capacity of hepatocytes to uptake fatty acids through the ERK-PPARγ-CD36 axis. Moreover, DKK1 increased insulin resistance by activating the JNK signaling, which in turn exacerbates disorders of hepatic lipid metabolism. Our finding suggests that DKK1 may be a potential therapeutic and diagnosis candidate for NAFLD and metabolic disorder progression.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinping Huang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaye Zhang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Xiong
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ji Fang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Anteneh Getachew
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ziqi Cheng
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaorui Yu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yan Wang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feima Wu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ning Wang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shufen Feng
- Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianhua Lin
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yan Chen
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongcheng Wei
- Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yin-Xiong Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
12
|
Jaschke NP, Pählig S, Sinha A, Adolph TE, Colunga ML, Hofmann M, Wang A, Thiele S, Schwärzler J, Kleymann A, Gentzel M, Tilg H, Wielockx B, Hofbauer LC, Rauner M, Göbel A, Rachner TD. Dickkopf1 fuels inflammatory cytokine responses. Commun Biol 2022; 5:1391. [PMID: 36539532 PMCID: PMC9765382 DOI: 10.1038/s42003-022-04368-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Many human diseases, including cancer, share an inflammatory component but the molecular underpinnings remain incompletely understood. We report that physiological and pathological Dickkopf1 (DKK1) activity fuels inflammatory cytokine responses in cell models, mice and humans. DKK1 maintains the elevated inflammatory tone of cancer cells and is required for mounting cytokine responses following ligation of toll-like and cytokine receptors. DKK1-controlled inflammation derives from cell-autonomous mechanisms, which involve SOCS3-restricted, nuclear RelA (p65) activity. We translate these findings to humans by showing that genetic DKK1 variants are linked to elevated cytokine production across healthy populations. Finally, we find that genetic deletion of DKK1 but not pharmacological neutralization of soluble DKK1 ameliorates inflammation and disease trajectories in a mouse model of endotoxemia. Collectively, our study identifies a cell-autonomous function of DKK1 in the control of the inflammatory response, which is conserved between malignant and non-malignant cells. Additional studies are required to mechanistically dissect cellular DKK1 trafficking and signaling pathways.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Sophie Pählig
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Anupam Sinha
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Ledesma Colunga
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Maura Hofmann
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andrew Wang
- Department of Medicine (Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sylvia Thiele
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Kleymann
- Division of Rheumatology, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Marc Gentzel
- Molecular Analysis - Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andy Göbel
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Jaschke NP, Funk AM, Jonas S, Riffel RM, Sinha A, Wang A, Pählig S, Hofmann M, Altmann H, Von Bonin S, Koch T, Spieth P, Tausche K, Akgün K, Rauner M, Kronstein-Wiedemann R, Odendahl M, Tonn T, Göbel A, Hofbauer LC, Rachner TD. Circulating Dickkopf1 Parallels Metabolic Adaptations and Predicts Disease Trajectories in Patients With COVID-19. J Clin Endocrinol Metab 2022; 107:3370-3377. [PMID: 36071553 PMCID: PMC9494396 DOI: 10.1210/clinem/dgac514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT AND AIMS Coronavirus disease 19 (COVID-19) trajectories show high interindividual variability, ranging from asymptomatic manifestations to fatal outcomes, the latter of which may be fueled by immunometabolic maladaptation of the host. Reliable identification of patients who are at risk of severe disease remains challenging. We hypothesized that serum concentrations of Dickkopf1 (DKK1) indicate disease outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals. METHODS We recruited hospitalized patients with PCR-confirmed SARS-CoV-2 infection and included 80 individuals for whom blood samples from 2 independent time points were available. DKK1 serum concentrations were measured by ELISA in paired samples. Clinical data were extracted from patient charts and correlated with DKK1 levels. Publicly available datasets were screened for changes in cellular DKK1 expression on SARS-CoV-2 infection. Plasma metabolites were profiled by nuclear magnetic resonance spectroscopy in an unbiased fashion and correlated with DKK1 data. Kaplan-Meier and Cox regression analysis were used to investigate the prognostic value of DKK1 levels in the context of COVID-19. RESULTS We report that serum levels of DKK1 predict disease outcomes in patients with COVID-19. Circulating DKK1 concentrations are characterized by high interindividual variability and change as a function of time during SARS-CoV-2 infection, which is linked to platelet counts. We further find that the metabolic signature associated with SARS-CoV-2 infection resembles fasting metabolism and is mirrored by circulating DKK1 abundance. Patients with low DKK1 levels are twice as likely to die from COVID-19 than those with high levels, and DKK1 predicts mortality independent of markers of inflammation, renal function, and platelet numbers. CONCLUSION Our study suggests a potential clinical use of circulating DKK1 as a predictor of disease outcomes in patients with COVID-19. These results require validation in additional cohorts.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Correspondence to: Nikolai P. Jaschke MD, PhD, , Division of Endocrinology & Metabolic Bone Diseases, Department of Medicine III, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Alexander M Funk
- National Center for Tumor Diseases (NCT/UCC), Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sophie Jonas
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Romy M Riffel
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andrew Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sophie Pählig
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Maura Hofmann
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Heidi Altmann
- Department of Medicine I, Technische Universität Dresden, Dresden, Germany
| | - Simone Von Bonin
- Department of Medicine I, Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Dresden, Germany
| | - Peter Spieth
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Dresden, Germany
| | - Kristin Tausche
- Department of Medicine I, Technische Universität Dresden, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Romy Kronstein-Wiedemann
- Experimental Transfusion Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Marcus Odendahl
- Experimental Transfusion Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Andy Göbel
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Rao H, Song X, Lei J, Lu P, Zhao G, Kang X, Zhang D, Zhang T, Ren Y, Peng C, Li Y, Pei J, Cao Z. Ibrutinib Prevents Acute Lung Injury via Multi-Targeting BTK, FLT3 and EGFR in Mice. Int J Mol Sci 2022; 23:13478. [PMID: 36362264 PMCID: PMC9657648 DOI: 10.3390/ijms232113478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 09/12/2023] Open
Abstract
Ibrutinib has potential therapeutic or protective effects against viral- and bacterial-induced acute lung injury (ALI), likely by modulating the Bruton tyrosine kinase (BTK) signaling pathway. However, ibrutinib has multi-target effects. Moreover, immunity and inflammation targets in ALI treatment are poorly defined. We investigated whether the BTK-, FLT3-, and EGFR-related signaling pathways mediated the protective effects of ibrutinib on ALI. The intratracheal administration of poly I:C or LPS after ibrutinib administration in mice was performed by gavage. The pathological conditions of the lungs were assessed by micro-CT and HE staining. The levels of neutrophils, lymphocytes, and related inflammatory factors in the lungs were evaluated by ELISA, flow cytometry, immunohistochemistry, and immunofluorescence. Finally, the expression of proteins associated with the BTK-, FLT3-, and EGFR-related signaling pathways were evaluated by Western blotting. Ibrutinib (10 mg/kg) protected against poly I:C-induced (5 mg/kg) and LPS-induced (5 mg/kg) lung inflammation. The wet/dry weight ratio (W/D) and total proteins in the bronchoalveolar lavage fluid (BALF) were markedly reduced after ibrutinib (10 mg/kg) treatment, relative to the poly I:C- and LPS-treated groups. The levels of ALI indicators (NFκB, IL-1β, IL-6, TNF-α, IFN-γ, neutrophils, and lymphocytes) were significantly reduced after treatment. Accordingly, ibrutinib inhibited the poly I:C- and LPS-induced BTK-, FLT3-, and EGFR-related pathway activations. Ibrutinib inhibited poly I:C- and LPS-induced acute lung injury, and this may be due to its ability to suppress the BTK-, FLT3-, and EGFR-related signaling pathways. Therefore, ibrutinib is a potential protective agent for regulating immunity and inflammation in poly I:C- and LPS-induced ALI.
Collapse
Affiliation(s)
- Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaominting Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Duanna Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
15
|
Li YH, Wu MH, Lee WJ, Lee IT. A Synergistic Effect between Plasma Dickkopf-1 and Obstructive Coronary Artery Disease on the Prediction of Major Adverse Cardiac Events in Patients with Angina: An Observational Study. Biomolecules 2022; 12:1408. [PMID: 36291617 PMCID: PMC9599804 DOI: 10.3390/biom12101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
The canonical β-catenin-dependent wingless (Wnt) pathway is associated with endothelial function. We examined the effect of plasma dickkopf-1 (DKK-1), an inhibitor of the Wnt pathway, on the prediction of major adverse cardiac events (MACEs). We enrolled patients who had undergone selective coronary angiography for angina. DKK-1 levels were determined using plasma collected at the outpatient visit after fasting. MACEs served as the primary endpoint. All 470 enrolled patients were divided into four groups according to their median plasma DKK-1 levels and the presence of obstructive coronary artery disease (CAD). Forty-eight patients reached the primary endpoint during a median follow-up time of 4.8 years. Kaplan-Meier survival analysis indicated that the group with high DKK-1 and obstructive CAD had a significantly higher mortality rate than the other three groups (log-rank test p = 0.001). Compared with the low plasma DKK-1 without significant coronary obstruction group, the high DKK-1 with obstructive CAD group had a hazard ratio of 10.640 (95% confidence interval: 1.350-83.874) for MACEs, as determined by multivariable Cox proportional hazard regression analysis. In conclusion, we observed a synergistic effect between high plasma DKK-1 and obstructive CAD on the prediction of MACEs in patients with angina.
Collapse
Affiliation(s)
- Yu-Hsuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Min-Huan Wu
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taichung 407224, Taiwan
- Senior Life and Innovation Technology Center, Tunghai University, Taichung 407224, Taiwan
- Life Science Research Center, Tunghai University, Taichung 407224, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| |
Collapse
|
16
|
Cheng X, Liu D, Ren X, Nie Y, Zhao Y, Chen R, Wang H. The β-catenin/CBP signaling axis participates in sepsis-induced inflammatory lung injury. Exp Biol Med (Maywood) 2022; 247:1548-1557. [PMID: 35665630 PMCID: PMC9554161 DOI: 10.1177/15353702221097316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sepsis-induced inflammatory lung injury is a key factor causing failure of the lungs and other organs, as well as death, during sepsis. In the present study, a caecal ligation and puncture (CLP)-induced sepsis model was established to investigate the effect of β-catenin on sepsis-induced inflammatory lung injury and the corresponding underlying mechanisms. C57BL/6 mice were randomly divided into five groups, namely, the sham, CLP, β-catenin knockout (KO) + CLP, XAV-939 + CLP, and ICG-001 + CLP groups; the XAV-939 + CLP and ICG-001 + CLP groups were separately subjected to intraperitoneal injections of the β-catenin inhibitors XAV-939 and ICG-001 for 1 week preoperatively and 2 days postoperatively, respectively. Forty-eight hours after CLP, we measured β-catenin expression in lung tissues and evaluated mouse mortality, histopathological characteristics of hematoxylin and eosin (H&E)-stained lung tissues, serum cytokine (tumor necrosis factor [TNF]-α, interleukin [IL]-10, and IL-1β) levels, lung myeloperoxidase (MPO) activity, and the number of apoptotic cells in the lung tissues. Our results indicated that both the inhibition of β-catenin expression and blockage of β-catenin/CREB-binding protein (CBP) interactions by ICG-001 effectively decreased mouse mortality, alleviated pathological lung injury, and reduced the serum TNF-α, IL-10, and IL-1β levels, in addition to reducing the lung MPO activity and the number of apoptotic cells in lung tissues of the sepsis model mice. Therefore, it can be deduced that the β-catenin/CBP signaling axis participates in regulating sepsis-induced inflammatory lung injury.
Collapse
Affiliation(s)
- Xia Cheng
- Department of Pathology, Fourth Medical Center, General Hospital of Chinese People’s Liberation Army, Jinzhou Medical University, Beijing 100048, China
| | - Dandan Liu
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xinxin Ren
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - You Nie
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yibing Zhao
- Department of Oncology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ruyu Chen
- Department of Pathology, Fourth Medical Center, General Hospital of Chinese People’s Liberation Army, Jinzhou Medical University, Beijing 100048, China
| | - Hongwei Wang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China,Hongwei Wang.
| |
Collapse
|
17
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
18
|
Davenport P, Fan HH, Nolton E, Feldman HA, Lorenz V, Canas J, Acosta-Zaldívar M, Yakah W, Arthur C, Martin C, Stowell S, Koehler J, Mager D, Sola-Visner M. Platelet transfusions in a murine model of neonatal polymicrobial sepsis: Divergent effects on inflammation and mortality. Transfusion 2022; 62:1177-1187. [PMID: 35522536 PMCID: PMC11465244 DOI: 10.1111/trf.16895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Platelet transfusions (PTxs) are often given to septic preterm neonates at high platelet count thresholds in an attempt to reduce bleeding risk. However, the largest randomized controlled trial (RCT) of neonatal transfusion thresholds found higher mortality and/or major bleeding in infants transfused at higher thresholds. Using a murine model, we investigated the effects of adult PTx on neonatal sepsis-induced mortality, systemic inflammation, and platelet consumption. STUDY DESIGN AND METHODS Polymicrobial sepsis was induced via intraperitoneal injection of cecal slurry preparations (CS1, 2, 3) into P10 pups. Two hours after infection, pups were transfused with washed adult Green Flourescent Protein (GFP+) platelets or control. Weights, platelet counts, and GFP% were measured before 4 and 24 h post-infection. At 24 h, blood was collected for quantification of plasma cytokines. RESULTS The CS batches varied in 24 h mortality (11%, 73%, and 30% in CS1, 2, and 3, respectively), due to differences in bacterial composition. PTx had differential effects on sepsis-induced mortality and systemic inflammatory cytokines, increasing both in mice infected with CS1 (low mortality) and decreasing both in mice infected with CS2 and 3. In a mathematical model of platelet kinetics, the consumption of transfused adult platelets was higher than that of endogenous neonatal platelets, regardless of CS batch. DISCUSSION Our findings support the hypothesis that transfused adult platelets are consumed faster than endogenous neonatal platelets in sepsis and demonstrate that PTx can enhance or attenuate neonatal inflammation and mortality in a model of murine polymicrobial sepsis, depending on the composition of the inoculum and/or the severity of sepsis.
Collapse
Affiliation(s)
- Patricia Davenport
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Hsuan-Hao Fan
- Department of Pharmaceutical Sciences, University of Buffalo, State University of New York, Buffalo, NY
| | - Emily Nolton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Henry A. Feldman
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA
| | - Viola Lorenz
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jorge Canas
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | | | - William Yakah
- Harvard Medical School, Boston, MA
- Division of Neonatology, Beth Israel Medical Center, Boston, MA
| | - Connie Arthur
- Harvard Medical School, Boston, MA
- Transfusion Medicine, Brigham and Women Hospital, Boston, MA
| | - Camilia Martin
- Harvard Medical School, Boston, MA
- Division of Neonatology, Beth Israel Medical Center, Boston, MA
| | - Sean Stowell
- Harvard Medical School, Boston, MA
- Transfusion Medicine, Brigham and Women Hospital, Boston, MA
| | - Julia Koehler
- Harvard Medical School, Boston, MA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA
| | - Donald Mager
- Department of Pharmaceutical Sciences, University of Buffalo, State University of New York, Buffalo, NY
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Park MH, Shin JH, Bothwell AL, Chae WJ. Dickkopf proteins in pathological inflammatory diseases. J Leukoc Biol 2022; 111:893-901. [PMID: 34890067 PMCID: PMC9889104 DOI: 10.1002/jlb.3ri0721-385r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
The human body encounters various challenges. Tissue repair and regeneration processes are augmented after tissue injury to reinstate tissue homeostasis. The Wnt pathway plays a crucial role in tissue repair since it induces target genes required for cell proliferation and differentiation. Since tissue injury causes inflammatory immune responses, it has become increasingly clear that the Wnt ligands can function as immunomodulators while critical for tissue homeostasis. The Wnt pathway and Wnt ligands have been studied extensively in cancer biology and developmental biology. While the Wnt ligands are being studied actively, how the Wnt antagonists and their regulatory mechanisms can modulate immune responses during chronic pathological inflammation remain elusive. This review summarizes DKK family proteins as immunomodulators, aiming to provide an overarching picture for tissue injury and repair. To this end, we first review the Wnt pathway components and DKK family proteins. Next, we will review DKK family proteins (DKK1, 2, and 3) as a new class of immunomodulatory protein in cancer and other chronic inflammatory diseases. Taken together, DKK family proteins and their immunomodulatory functions in chronic inflammatory disorders provide novel insights to understand immune diseases and make them attractive molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Min Hee Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
| | - Jae Hun Shin
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
| | - Alfred L.M. Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
| | - Wook-Jin Chae
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
| |
Collapse
|
20
|
Pan S, Cesarek M, Godoy C, Co CM, Schindler C, Padilla K, Haskell A, Barreda H, Story C, Poole R, Dabney A, Gregory CA. Morpholino-driven blockade of Dkk-1 in osteosarcoma inhibits bone damage and tumour expansion by multiple mechanisms. Br J Cancer 2022; 127:43-55. [PMID: 35277659 PMCID: PMC9276700 DOI: 10.1038/s41416-022-01764-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Osteosarcoma (OS) is the most common primary bone malignancy. Chemotherapy plays an essential role in OS treatment, potentially doubling 5-year event-free survival if tumour necrosis can be stimulated. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) enhances OS survival in part through upregulation of aldehyde-dehydrogenase-1A1 which neutralises reactive oxygen species originating from nutritional stress and chemotherapeutic challenge.
Methods
A vivo morpholino (DkkMo) was employed to block the expression of Dkk-1 in OS cells. Cell mitosis, gene expression and bone destruction were measured in vitro and in vivo in the presence and absence of doxorubicin (DRB).
Results
DkkMo reduced the expression of Dkk-1 and Aldh1a1, reduced expansion of OS tumours, preserved bone volume and architecture and stimulated tumour necrosis. This was observed in the presence or absence of DRB.
Conclusion
These results indicate that administration of DkkMo with or without chemotherapeutics can substantially improve OS outcome with respect to tumour expansion and osteolytic corruption of bone in experimental OS model.
Collapse
|
21
|
Dai L, Xu D, Wan C, Liu L, Wen F. DKK1 Positively Correlates with Lung Function in COPD Patients and Reduces Airway Inflammation. Int J Chron Obstruct Pulmon Dis 2022; 17:93-100. [PMID: 35027825 PMCID: PMC8749044 DOI: 10.2147/copd.s341249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose WNT/β-catenin signal pathway is a potential hope for lung tissue repair. We investigated the levels of Dickkopf‐1 (DKK1), an endogenous inhibitor of WNT/β-catenin signal pathway, in chronic obstructive pulmonary disease (COPD) patients and airway inflammation. Patients and Methods Collected the demographic and clinical characteristics of 36 healthy controls, 25 stable COPD patients and 10 acute exacerbation of COPD (AECOPD) patients, then performed pulmonary function and detected serum DKK1 levels. After over-expression of DKK1, detect the levels of DDK1, lipoprotein-related protein 6 (LRP6) and inflammatory factors in bronchial epithelial cells stimulated with cigarette smoke extract (CSE). Results Serum DKK1 were reduced in stable COPD patients compared to healthy controls (3866.72 ± 775.33 pg/mL vs 5317.61 ± 1317.20 pg/mL, p<0.0001), but there was no significant difference between stable and acutely exacerbated patients (3866.72 ± 775.33 pg/mL vs 3482.10 ± 841.25 pg/mL, p>0.05). DKK1 was positively correlated with FEV1 (r = 0.570, p<0.0001), FEV1/FVC (rho = 0.590, p<0.0001), FEV1/Pre (r = 0.517, p<0.0001). Multiple linear regression analysis also suggested that FEV1 levels were higher with increasing DKK1. In vitro, elevated IL-6, IL-8, TNF-α and decreased DKK1, LRP6 were found in Beas-2B cells after CSE treatments, and increased LRP6 and decreased inflammatory factors were found after overexpression of DKK1. Andrographolide restored the CSE-induced decrease in DKK1 and increase in IL-6 and IL-8. Conclusion DKK1 levels were decreased in COPD patients and positively correlated with lung function, overexpression of DKK1 and andrographolide attenuated airway cell inflammation, both suggesting a potential role in pathophysiology and providing a disease-specific biomarker pattern.
Collapse
Affiliation(s)
- Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chun Wan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
22
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 1007] [Impact Index Per Article: 335.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
23
|
Yang Z, Wang M, Ren Y, Li L, Cao L, Zhang W, Lv K, Sun Z, Nie S. Inhibition of Wnt10b/β-catenin signaling alleviates pulmonary fibrogenesis induced by paraquat in vivo and in vitro. Life Sci 2021; 286:120027. [PMID: 34627778 DOI: 10.1016/j.lfs.2021.120027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/04/2023]
Abstract
Pulmonary fibrosis (PF) caused by paraquat remains a critical issue, and the molecular mechanisms are still unclear. Epithelial-mesenchymal transition (EMT) is regarded as a hallmark of PF, conferring alveolar epithelial cells partial mesenchymal characteristics, facilitating migration, expressing excessive extracellular matrix components, and participating in lung parenchyma remodeling and stiffening. Aberration of Wnt signaling has been identified in EMT and PF, and Wnt protein family consists of 19 ligands. The relationship of the specific Wnt ligands and fibrogenesis induced by PQ was not well defined. In current study, PQ-induced lung fibrosis rat model and EMT cell model were utilized to investigate the underlying molecular mechanisms both in vivo and in vitro. The results demonstrated that canonical Wnt/β-catenin signaling was highly activated and Wnt10b was the most affected. Additionally, suppression of Wnt10b by RNA interference could reverse EMT in vitro and detain the process of PF in vivo. These data establish Wnt10b as the key regulator of EMT and lung fibrogenesis, and suggest the potential of targeted interference against Wnt10b as a promising therapeutic strategy for lung fibrosis.
Collapse
Affiliation(s)
- Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, PR China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Liang Li
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Kongbo Lv
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, PR China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, PR China.
| |
Collapse
|
24
|
Surmiak M, Kosałka‐Węgiel J, Polański S, Sanak M. Endothelial cells response to neutrophil-derived extracellular vesicles miRNAs in anti-PR3 positive vasculitis. Clin Exp Immunol 2021; 204:267-282. [PMID: 33527387 PMCID: PMC8062988 DOI: 10.1111/cei.13581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
In vasculitis disorders, inflammation affects blood vessels. Granulomatosis with polyangiitis (GPA) is a chronic systemic vasculitis distinguished by the presence of anti-proteinase-3 autoantibodies (anti-PR3). In this study we analyzed the molecular signature of human umbilical endothelial cells (HUVECs) in response to neutrophil-derived extracellular vesicles (EVs). EVs were obtained from anti-PR3-activated neutrophils, purified and characterized by flow cytometry, nanoparticle tracking and miRNA screening. HUVECs were stimulated with EVs and miRNA/mRNA expression was measured. Cell culture media proteins were identified by antibody microarrays and selected cytokines were measured. Comparison of differentially expressed miRNAs/mRNAs between non-stimulated and EV-stimulated HUVECs revealed two regulatory patterns. Significant up-regulation of 14 mRNA transcripts (including CXCL8, DKK1, IL1RL1, ANGPT-2, THBS1 and VCAM-1) was accompanied by 11 miRNAs silencing (including miR-661, miR-664a-3p, miR-377-3p, miR-30d-5p). Significant down-regulation was observed for nine mRNA transcripts (including FASLG, CASP8, STAT3, GATA3, IRAK1 and IL6) and accompanied by up-regulation of 10 miRNAs (including miR-223-3p, miR-142-3p, miR-211-5p). Stimulated HUVECs released IL-8, Dickkopf-related protein 1 (DKK-1), soluble interleukin (IL)-1 like receptor-1 (ST2), growth differentiation factor 15 (GDF-15), angiopoietin-2, endoglin, thrombospondin-1 and vascular adhesion molecule-1 (VCAM-1). Moreover, transfection of HUVECs with mimics of highly expressed in EVs miR-223-3p or miR-142-3p, stimulated production of IL-8, ST2 and endoglin. Cytokines released by HUVECs were also elevated in blood of patients with GPA. The most increased were IL-8, DKK-1, ST2, angiopoietin-2 and IL-33. In-vitro stimulation of HUVECs by neutrophil-derived EVs recapitulates contribution of endothelium in autoimmune vasculitis. Proinflammatory phenotype of released cytokines corresponds with the regulatory network of miRNAs/mRNAs comprising both EVs miRNA and endothelial cell transcripts.
Collapse
Affiliation(s)
- M. Surmiak
- Department of Internal MedicineJagiellonian University Medical CollegeKrakówPoland
| | - J. Kosałka‐Węgiel
- Department of Internal MedicineJagiellonian University Medical CollegeKrakówPoland
| | - S. Polański
- Department of Biochemical and Molecular DiagnosticsUniversity HospitalKrakówPoland
| | - M. Sanak
- Department of Internal MedicineJagiellonian University Medical CollegeKrakówPoland
| |
Collapse
|
25
|
Lehmann J, Thiele S, Baschant U, Rachner TD, Niehrs C, Hofbauer LC, Rauner M. Mice lacking DKK1 in T cells exhibit high bone mass and are protected from estrogen-deficiency-induced bone loss. iScience 2021; 24:102224. [PMID: 33748710 PMCID: PMC7961106 DOI: 10.1016/j.isci.2021.102224] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/16/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
The Wnt inhibitor Dickkopf-1 (DKK1) is a negative regulator of bone formation and bone mass and is dysregulated in various bone diseases. How DKK1 contributes to postmenopausal osteoporosis, however, remains poorly understood. Here, we show that mice lacking DKK1 in T cells are protected from ovariectomy-induced bone loss. Ovariectomy activated CD4+ and CD8+ T cells and increased their production of DKK1. Co-culture of activated T cells with osteoblasts inhibited Wnt signaling in osteoblasts, leading to impaired differentiation. Importantly, DKK1 expression in T cells also controlled physiological bone remodeling. T-cell-deficient Dkk1 knock-out mice had a higher bone mass with an increased bone formation rate and decreased numbers of osteoclasts compared with controls, a phenotype that was rescued by adoptive transfer of wild-type T cells. Thus, these findings highlight that T cells control bone remodeling in health and disease via their expression of DKK1.
Collapse
Affiliation(s)
- Juliane Lehmann
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Psaila AM, Vohralik EJ, Quinlan KGR. Shades of white: new insights into tissue-resident leukocyte heterogeneity. FEBS J 2021; 289:308-318. [PMID: 33513286 DOI: 10.1111/febs.15737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Populations of white blood cells (leukocytes) have been found in tissues and organs across the body, in states of both health and disease. The role leukocytes play within these tissues is often highly contested. For many leukocytes, there are studies outlining pro-inflammatory destructive functions, while other studies provide clear evidence of anti-inflammatory homeostatic activities of leukocytes within the same tissue. We discuss how this functional dissonance can be explained by leukocyte heterogeneity. Although cell morphology and surface receptor profiles are excellent methods to segregate cell types, the true degree of leukocyte heterogeneity that exists can only be appreciated by studying the variable and dynamic gene expression profile. Unbiased single-cell RNA sequencing profiling of tissue-resident leukocytes is transforming the way we understand leukocytes across health and disease. Recent investigations into adipose tissue-resident leukocytes have revealed unprecedented levels of heterogeneity among populations of macrophages. We use this example to pose emerging questions regarding tissue-resident leukocytes and review what is currently known (and unknown) about the diversity of tissue-resident leukocytes within different organs.
Collapse
Affiliation(s)
- Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
27
|
Feibi Recipe Reduced Pulmonary Fibrosis Induced by Bleomycin in Mice by Regulating BRP39/IL-17 and TGF β1/Smad3 Signal Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5814658. [PMID: 33101446 PMCID: PMC7576352 DOI: 10.1155/2020/5814658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/17/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
Fibrotic remodeling has become the result of many lung diseases, and these disorders can be categorized with known as well as unknown etiologies. Idiopathic pulmonary fibrosis is the most fatal disease among the unknown etiology. TGFβ1/Smad3 signal pathway plays an important role in lung fibrosis and epithelial regeneration. This study investigated the effects and mechanism of Feibi Recipe (FBR) on pulmonary fibrosis. In this experiment, C57BL/6 mice were used and bleomycin was used to induce the lung injury. Meanwhile, the study showed a significant reduction in pathological response and mediators of inflammation and fibrosis such as IL-6, ICAM-1, IL-13, IL-17, BRP-39, TGFβ1, Smad3, and Smad7 were identified. Collectively, the FBR appears to attenuate the lung injury and the modeling of fibrosis in mice.
Collapse
|
28
|
Al-Dujaili AH, Mousa RF, Al-Hakeim HK, Maes M. High Mobility Group Protein 1 and Dickkopf-Related Protein 1 in Schizophrenia and Treatment-Resistant Schizophrenia: Associations With Interleukin-6, Symptom Domains, and Neurocognitive Impairments. Schizophr Bull 2020; 47:530-541. [PMID: 32971537 PMCID: PMC7965081 DOI: 10.1093/schbul/sbaa136] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) and treatment-resistant schizophrenia (TRS) are associated with aberrations in immune-inflammatory pathways. Increased high mobility group protein 1 (HMGB1), an inflammatory mediator, and Dickkopf-related protein (DKK1), a Wnt/β-catenin signaling antagonist, affect the blood-brain barrier and induce neurotoxic effects and neurocognitive deficits. AIM The present study aims to examine HMGB1 and DDK1 in nonresponders to treatments (NRTT) with antipsychotics (n = 60), partial RTT (PRTT, n = 55), and healthy controls (n = 43) in relation to established markers of SCZ, including interleukin (IL)-6, IL-10, and CCL11 (eotaxin), and to delineate whether these proteins are associated with the SCZ symptom subdomains and neurocognitive impairments. RESULTS HMGB1, DKK1, IL-6, and CCL11 were significantly higher in SCZ patients than in controls. DKK1 and IL-6 were significantly higher in NRTT than in PRTT and controls, while IL-10 was higher in NRTT than in controls. Binary logistic regression analysis showed that SCZ was best predicted by increased DDK1 and HMGB1, while NRTT (vs PRTT) was best predicted by increased IL-6 and CCL11 levels. A large part of the variance in psychosis, hostility, excitation, mannerism, and negative (PHEMN) symptoms and formal thought disorders was explained by HMGB1, IL-6, and CCL11, while most neurocognitive functions were predicted by HMGB1, DDK1, and CCL11. CONCLUSIONS The neurotoxic effects of HMGB1, DKK1, IL-6, and CCL11 including the effects on the blood-brain barrier and the Wnt/β-catenin signaling pathway may cause impairments in executive functions and working, episodic, and semantic memory and explain, in part, PHEMN symptoms and a nonresponse to treatment with antipsychotic drugs.
Collapse
Affiliation(s)
| | - Rana Fadhil Mousa
- Faculty of Veterinary Medicine, University of Kerbala, Kerbala, Iraq
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
- To whom correspondence should be addressed; IMPACT Strategic Research Center, Barwon Health, School of Medicine, Deakin University, PO Box 281, Geelong, VIC3220, Australia; tel: 0066-930466001, e-mail:
| |
Collapse
|
29
|
Yan J, Wang A, Cao J, Chen L. Apelin/APJ system: an emerging therapeutic target for respiratory diseases. Cell Mol Life Sci 2020; 77:2919-2930. [PMID: 32128601 PMCID: PMC11105096 DOI: 10.1007/s00018-020-03461-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Apelin is an endogenous ligand of G protein-coupled receptor APJ. It is extensively expressed in many tissues such as heart, liver, and kidney, especially in lung tissue. A growing body of evidence suggests that apelin/APJ system is closely related to the development of respiratory diseases. Therefore, in this review, we focus on the role of apelin/APJ system in respiratory diseases, including pulmonary arterial hypertension (PAH), pulmonary embolism (PE), acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), obstructive sleep apnoea syndrome (OSAS), non-small cell lung cancer (NSCLC), pulmonary edema, asthma, and chronic obstructive pulmonary diseases. In detail, apelin/APJ system attenuates PAH by activating AMPK-KLF2-eNOS-NO signaling and miR424/503-FGF axis. Also, apelin protects against ALI/ARDS by reducing mitochondrial ROS-triggered oxidative damage, mitochondria apoptosis, and inflammatory responses induced by the activation of NF-κB and NLRP3 inflammasome. Apelin/APJ system also prevents the occurrence of pulmonary edema via activating AKT-NOS3-NO pathway. Moreover, apelin/APJ system accelerates NSCLC cells' proliferation and migration via triggering ERK1/2-cyclin D1 and PAK1-cofilin signaling, respectively. Additionally, apelin/APJ system may act as a predictor in the development of OSAS and PE. Considering the pleiotropic actions of apelin/APJ system, targeting apelin/APJ system may be a potent therapeutic avenue for respiratory diseases.
Collapse
Affiliation(s)
- Jialong Yan
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China
| | - Aiping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan, People's Republic of China
| | - Jiangang Cao
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan, People's Republic of China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
30
|
Wang Y, Negri S, Li Z, Xu J, Hsu CY, Peault B, Broderick K, James AW. Anti-DKK1 Enhances the Early Osteogenic Differentiation of Human Adipose-Derived Stem/Stromal Cells. Stem Cells Dev 2020; 29:1007-1015. [PMID: 32460636 DOI: 10.1089/scd.2020.0070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adipose-derived stem/stromal cells (ASCs) have been previously used for bone repair. However, significant cell heterogeneity exists within the ASC population, which has the potential to result in unreliable bone tissue formation and/or low efficacy. Although the use of cell sorting to lower cell heterogeneity is one method to improve bone formation, this is a technically sophisticated and costly process. In this study, we tried to find a simpler and more deployable solution-blocking antiosteogenic molecule Dickkopf-1 (DKK1) to improve osteogenic differentiation. Human adipose-derived stem cells were derived from = 5 samples of human lipoaspirate. In vitro, anti-DKK1 treatment, but not anti-sclerostin (SOST), promoted ASC osteogenic differentiation, assessed by alizarin red staining and real-time polymerase chain reaction (qPCR). Increased canonical Wnt signaling was confirmed after anti-DKK1 treatment. Expression levels of DKK1 peaked during early osteogenic differentiation (day 3). Concordantly, anti-DKK1 supplemented early (day 3 or before), but not later (day 7) during osteogenic differentiation positively regulated osteoblast formation. Finally, anti-DKK1 led to increased transcript abundance of the Wnt inhibitor SOST, potentially representing a compensatory cellular mechanism. In sum, DKK1 represents a targetable "molecular brake" on the osteogenic differentiation of human ASC. Moreover, release of this brake by neutralizing anti-DKK1 antibody treatment at least partially rescues the poor bone-forming efficacy of ASC.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Stefano Negri
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhao Li
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Ching-Yun Hsu
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Pittsburgh, Pennsylvania, USA.,Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron W James
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Waubert de Puiseau M, Sciesielski LK, Meyer O, Liu ZJ, Badur CA, Schönfeld H, Tauber R, Pruß A, Sola-Visner MC, Dame C. Pooling, room temperature, and extended storage time increase the release of adult-specific biologic response modifiers in platelet concentrates: a hidden transfusion risk for neonates? Transfusion 2020; 60:1828-1836. [PMID: 32339309 DOI: 10.1111/trf.15827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Adult donor platelets (PLTs) are frequently transfused to prevent or stop bleeding in neonates with thrombocytopenia. There is evidence for PLT transfusion-related morbidity and mortality, leading to the hypothesis on immunomodulatory effects of transfusing adult PLTs into neonates. Candidate factors are biologic response modifiers (BRMs) that are expressed at higher rates in adult than in neonatal PLTs. This study investigated whether storage conditions or preparation methods impact on the release of those differentially expressed BRMs. STUDY DESIGN AND METHODS Pooled PLT concentrates (PCs) and apheresis PCs (APCs) were stored under agitation for up to 7 days at room temperature (RT) or at 2 to 8°C. The BRMs CCL5/RANTES, TGFβ1, TSP1, and DKK1 were measured in PCs' supernatant, lysate, and corresponding plasma. PLT function was assessed by light transmission aggregometry. RESULTS Concerning the preparation method, higher concentrations of DKK1 were found in pooled PCs compared to APCs. In supernatants, the concentrations of CCL5, TGFβ1, TSP1, and DKK1 significantly increased, both over standard (≤4 days) and over extended storage times (7 days). Each of the four BRMs showed an up to twofold increase in concentration after storage at RT compared to cold storage (CS). There was no difference in the aggregation capacity. CONCLUSION This analysis shows that the release of adult-specific BRMs during storage is lowest in short- and CS APCs. Our study points to strategies for reducing the exposure of sick neonates to BRMs that can be specifically associated to PLT transfusion-related morbidity.
Collapse
Affiliation(s)
| | - Lina K Sciesielski
- Klinik für Neonatologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Meyer
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston/MA, USA
| | | | - Helge Schönfeld
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité - Universitätsmedizin Berlin, and Labor Berlin Charité Vivantes GmbH, Berlin
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité - Universitätsmedizin Berlin, and Labor Berlin Charité Vivantes GmbH, Berlin
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martha C Sola-Visner
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston/MA, USA
| | - Christof Dame
- Klinik für Neonatologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Chen B, Xia R. Pro‐inflammatory effects after platelet transfusion: a review. Vox Sang 2020; 115:349-357. [PMID: 32293034 DOI: 10.1111/vox.12879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Bin‐Zhen Chen
- Department of Transfusion Medicine Huashan Hospital Fudan University Shanghai China
| | - Rong Xia
- Department of Transfusion Medicine Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
33
|
Jaschke N, Hofbauer LC, Göbel A, Rachner TD. Evolving functions of Dickkopf-1 in cancer and immunity. Cancer Lett 2020; 482:1-7. [PMID: 32251706 DOI: 10.1016/j.canlet.2020.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
Dickkopf-1 (DKK-1) is a well-established inhibitor of canonical Wnt-signaling that critically participates in the regulation of bone formation and has been implicated in the development and progression of bone metastases. While the skeleton was originally considered the sole site of DKK-1 synthesis, it has now become clear that the molecule is also highly expressed in T-cells, platelets and multiple cancer cells. In the past years, several new functions of DKK-1 in angiogenesis, cancer cell biology, immune homeostasis and inflammation have been revealed. These novel insights have paved the way for clinical trials investigating the efficacy of anti-DKK-1 antibodies in a variety of different malignancies, most of which are currently still ongoing. In this review, we discuss the evolution and recent advances in DKK-1 research and highlight clinical implications of the available knowledge on the molecule, especially in cancer. Finally, we emphasize outstanding questions and provide an outlook on potential future studies that will aid in further improving our understanding of the pleiotropic roles of DKK-1 in health and disease.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Austria
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andy Göbel
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
34
|
Goes P, Dutra C, Lösser L, Hofbauer LC, Rauner M, Thiele S. Loss of Dkk-1 in Osteocytes Mitigates Alveolar Bone Loss in Mice With Periodontitis. Front Immunol 2019; 10:2924. [PMID: 31921182 PMCID: PMC6914827 DOI: 10.3389/fimmu.2019.02924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Periodontitis is a highly prevalent infection-triggered inflammatory disease that results in bone loss. Inflammation causes bone resorption by osteoclasts, and also by suppression of bone formation via increase of Dickkopf-1 (Dkk-1), an inhibitor of Wnt signaling. Here, we tested the hypothesis that osteocytic Dkk-1 is a key factor in the pathogenesis of periodontitis-induced alveolar bone loss (ABL). Methods: Twelve-week-old female mice with a constitutive deletion of Dkk-1 specifically in osteocytes (Dkk-1fl/fl;Dmp1:Cre) were subjected to experimental periodontitis (EP). Cre-negative littermates served as controls. EP was induced by placing a ligature around the upper 2nd left molar, the contralateral side was used as control. Mice were killed after 11 days and maxillae removed for micro-CT and histological analyses. The mRNA expression of Dkk-1, Runx2, Osteocalcin, OPG, RANKL, RANKL/OPG ratio, LEF-1, and TCF-7 were assessed in maxillae, while mRNA expressions of TNF and IL-1 were evaluated on gingiva using real-time PCR. Blood samples were collected for Dkk-1, CTX, and P1NP measurement by ELISA. Results: The deletion of Dkk-1 in osteocytes prevented ABL in mice with EP, compared to Cre-negative control mice with EP. Micro-CT analysis showed a significant reduction of bone loss (−28.5%) in EP Dkk-1fl/fl;Dmp1:Cre-positive mice compared to their littermate controls. These mice showed a greater alveolar bone volume, bone mineral density, trabecular number, and trabecular thickness after EP when compared to the Cre-negative controls. The local expression in maxillae as well as the serum levels of Dkk-1 were reduced in Dkk-1fl/fl;Dmp1:Cre-positive mice with EP. The transgenic mice submitted to EP showed increase of P1NP and reduction of CTX-I serum levels, and increase of TCF-7 expression. Histological analysis displayed less inflammatory infiltrates, a reduction of TNF and IL-1 expressions in the gingiva and fewer osteoclasts in Cre-positive animals with EP. Moreover, in mice with EP, the osteocytic deletion of Dkk-1 enhanced bone formation due to increased expressions of Runx2 and Osteocalcin and decreased expression of RANKL in maxillae. Conclusion: In summary, Dkk-1 derived from osteocytes plays a crucial role in ABL in periodontitis.
Collapse
Affiliation(s)
- Paula Goes
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III & Center for Healthy Aging, Technical University, Dresden, Germany.,Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Caio Dutra
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III & Center for Healthy Aging, Technical University, Dresden, Germany.,Post-graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Lennart Lösser
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III & Center for Healthy Aging, Technical University, Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III & Center for Healthy Aging, Technical University, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III & Center for Healthy Aging, Technical University, Dresden, Germany
| | - Sylvia Thiele
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III & Center for Healthy Aging, Technical University, Dresden, Germany
| |
Collapse
|
35
|
Cosin-Roger J, Ortiz-Masià MD, Barrachina MD. Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity. Front Immunol 2019; 10:2297. [PMID: 31608072 PMCID: PMC6769121 DOI: 10.3389/fimmu.2019.02297] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Wnt signaling pathway is a conserved pathway involved in important cellular processes such as the control of embryonic development, cellular polarity, cellular migration, and cell proliferation. In addition to playing a central role during embryogenesis, this pathway is also an essential part of adult homeostasis. Indeed, it controls the proliferation of epithelial cells in different organs such as intestine, lung, and kidney, and guarantees the maintenance of the mucosa in physiological conditions. The origin of this molecular pathway is the binding between Wnt ligands (belonging to a family of 19 different homologous secreted glycoproteins) and their specific membrane receptors, from the Frizzled receptor family. This specific interaction triggers the activation of the signaling cascade, which in turn activates or suppresses the expression of different genes in order to change the behavior of the cell. On the other hand, alterations of this pathway have been described in pathological conditions such as inflammation, fibrosis, and cancer. In recent years, macrophages-among other cell types-have emerged as a potential source of Wnt ligands. Due to their high plasticity, macrophages, which are central to the innate immune response, are capable of adopting different phenotypes depending on their microenvironment. In the past, two different phenotypes were described: a proinflammatory phenotype-M1 macrophages-and an anti-inflammatory phenotype-M2 macrophages-and a selective expression of Wnt ligands has been associated with said phenotypes. However, nowadays it is assumed that macrophages in vivo move through a continual spectrum of functional phenotypes. In both physiological and pathological (inflammation, fibrosis and cancer) conditions, the accumulation and polarization of macrophages conditions the future of the tissue, facilitating various scenarios, such as resolution of inflammation, activation of fibrosis, and cancer development due to the modulation of the Wnt signaling pathway, in autocrine and paracrine manner. In this work, we provide an overview of studies that have explored the role of macrophages and how they act as a source of Wnt ligands and as mediators of mucosal integrity.
Collapse
Affiliation(s)
| | - Mª Dolores Ortiz-Masià
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Mª Dolores Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
36
|
Abstract
Clinical and preclinical studies over the past 3 decades have uncovered a multitude of signaling pathways involved in the initiation and progression of atherosclerosis. From these studies, signaling by proteins of the Wnt family has recently emerged as an important player in the development of atherosclerosis. Wnt signaling is characterized by a large number of ligands, receptors, and coreceptors and can be regulated at many different levels. Among Wnt modulators, the evolutionary conserved Dkk (Dickkopf) proteins, and especially Dkk-1, the founding member of the family, are the best characterized. The role of Dkks in the pathophysiology of the arterial wall is only partially understood, but their involvement in atherosclerosis is becoming increasingly evident. This review introduces recent key findings on Dkk proteins and their functions in atherosclerosis and discusses the potential importance of modulating Dkk signaling as part of a novel, improved strategy for preventing and treating atherosclerosis-related diseases.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Roberta Baetta
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Cristina Banfi
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| |
Collapse
|
37
|
Chae WJ, Bothwell ALM. Dickkopf1: An immunomodulatory ligand and Wnt antagonist in pathological inflammation. Differentiation 2019; 108:33-39. [PMID: 31221431 DOI: 10.1016/j.diff.2019.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
The Wnt signaling pathway plays essential roles in tissue or organ homeostasis by regulating cell proliferation and differentiation. Upon tissue or organ injury, inflammation is coupled with tissue repair and regeneration process. The canonical Wnt signaling transduction pathway is crucial for cell proliferation, cell differentiation, and tissue regeneration. Dickkopf1 (DKK1) is a quintessential Wnt antagonist that inhibits the Wnt-mediated tissue repair process. Recent studies reported increased levels of DKK1 in many diseases such as cancer, infection, and musculoskeletal diseases. In many cases, the role of DKK1 has been identified as a pro-inflammatory ligand and the expression levels are associated with poor disease outcomes. A variety of cell types including platelets, endothelial cells, and cancer cells secrete DKK1 upon stimuli. This puts DKK1 in a unique place to view immune responses from multicellular interactions in tissue injury and repair process. In this review, we discuss recent efforts to address the underlying mechanism regarding the pro-inflammatory role of DKK1 in cancer, bone diseases, and other inflammatory diseases.
Collapse
Affiliation(s)
- Wook-Jin Chae
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 Marshall Street, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA, 23298, USA.
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
38
|
Stem/Progenitor Cells in Cardiopulmonary Health, Disease, and Treatment. Stem Cells Int 2019; 2019:9861403. [PMID: 30723508 PMCID: PMC6339702 DOI: 10.1155/2019/9861403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
|
39
|
Qiao S, Zhang H, Zha X, Niu W, Liang J, Pang G, Tang Y, Liu T, Zhao H, Wang Y, Bai H. Endogenous IL-17A mediated neutrophil infiltration by promoting chemokines expression during chlamydial lung infection. Microb Pathog 2019; 129:106-111. [PMID: 30703475 DOI: 10.1016/j.micpath.2019.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
Abstract
Chlamydia is an obligate intracellular bacteria, which can infect cervix, urethra, conjunctiva, joints, lungs and so on. Neutrophils are important in host protection against microbial invasion during the early phase of infection. Here, to investigate the mechanism of IL-17A in recruiting neutrophils during Chlamydia muridarum (Cm) lung infection, we introduced IL-17A antibodies and IL-17-/- mice to confirm the effect of IL-17A on influencing neutrophil attractants expressions. From the analysis of the data, we found that showed that Cm infection could upregulate the expression of neutrophil-related chemokines such as KC, MIP-2 and IL-6, as well as adhesion molecules including ICAM-1 and VCAM-1. With blocking endogenous IL-17A, the upregulated MIP-2 and IL-6 were decreased, which induced less neutrophil recruitment in lung. Comparing to WT mice, IL-17-/- mice showed decreased infiltration of neutrophils in lung during the early phase of Cm infection, which were accordant with decreased chemokines, such as KC, MIP-2 and IL-6 expression. Whereas, the expression of adhesion molecules including ICAM and VCAM-1 in lungs were significantly increased in IL-17-/- mice comparing to WT mice during Cm lung infection. The results demonstrated that IL-17A influenced neutrophil infiltration by affecting expression of chemokines and adhesion molecules during the early phase of chlamydial lung infection.
Collapse
Affiliation(s)
- Sai Qiao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Hong Zhang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Xiaoyu Zha
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Wenhao Niu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Juyou Liang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Gaoju Pang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Yingying Tang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Tengli Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Huili Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Yue Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China
| | - Hong Bai
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, PR China.
| |
Collapse
|
40
|
Wang Y, Bao DJ, Xu B, Cheng CD, Dong YF, Wei XP, Niu CS. Neuroprotection mediated by the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. Neural Regen Res 2019; 14:1013-1024. [PMID: 30762013 PMCID: PMC6404485 DOI: 10.4103/1673-5374.250620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Wnt/Frizzled signaling pathway participates in many inflammation-linked diseases. However, the inflammatory response mediated by the Wnt/Frizzled signaling pathway in experimental subarachnoid hemorrhage has not been thoroughly investigated. Consequently, in this study, we examined the potential role of the Wnt/Frizzled signaling pathway in early brain injury in rat models of subarachnoid hemorrhage. Simultaneously, possible neuroprotective mechanisms were also investigated. Experimental subarachnoid hemorrhage rat models were induced by injecting autologous blood into the prechiasmatic cistern. Experiment 1 was designed to examine expression of the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. In total, 42 adult rats were divided into sham (injection of equivalent volume of saline), 6-, 12-, 24-, 48-, 72-hour, and 1-week subarachnoid hemorrhage groups. Experiment 2 was designed to examine neuroprotective mechanisms of the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. Rats were treated with recombinant human Wnt1 (rhwnt1), small interfering Wnt1 (siwnt1) RNA, and monoclonal antibody of Frizzled1 (anti-Frizzled1) at 48 hours after subarachnoid hemorrhage. Expression levels of Wnt1, Frizzled1, β-catenin, peroxisome proliferator-activated receptor-γ, CD36, and active nuclear factor-κB were examined by western blot assay and immunofluorescence staining. Microglia type conversion and inflammatory cytokine levels in brain tissue were examined by immunofluorescence staining and enzyme-linked immunosorbent assay. Our results show that compared with the sham group, expression levels of Wnt1, Frizzled1, and β-catenin were low and reduced to a minimum at 48 hours, gradually returning to baseline at 1 week after subarachnoid hemorrhage. rhwnt1 treatment markedly increased Wnt1 expression and alleviated subarachnoid hemorrhage-induced early brain injury (within 72 hours), including cortical cell apoptosis, brain edema, and neurobehavioral deficits, accompanied by increasing protein levels of β-catenin, CD36, and peroxisome proliferator-activated receptor-γ and decreasing protein levels of nuclear factor-κB. Of note, rhwnt1 promoted M2-type microglia conversion and inhibited release of inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α). In contrast, siwnt1 RNA and anti-Frizzled1 treatment both resulted in an opposite effect. In conclusion, the Wnt/Frizzled1 signaling pathway may participate in subarachnoid hemorrhage-induced early brain injury via inhibiting the inflammatory response, including regulating microglia type conversion and decreasing inflammatory cytokine release. The study was approved by the Animal Ethics Committee of Anhui Medical University and First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (approval No. LLSC-20180202) in May 2017.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - De-Jun Bao
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Bin Xu
- Anhui Medical University Auhui Province Medical Genetic Center, Hefei, Anhui Province, China
| | - Chuan-Dong Cheng
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yong-Fei Dong
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xiang-Pin Wei
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chao-Shi Niu
- Department of Neurosurgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui Province, China
| |
Collapse
|
41
|
Pontremoli M, Brioschi M, Baetta R, Ghilardi S, Banfi C. Identification of DKK-1 as a novel mediator of statin effects in human endothelial cells. Sci Rep 2018; 8:16671. [PMID: 30420710 PMCID: PMC6232108 DOI: 10.1038/s41598-018-35119-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
This study shows that DKK-1, a member of the Dickkopf family and a regulator of the Wnt pathways, represents a novel target of statins which, through the inhibition of HMG-CoA reductase and of non-steroidal isoprenoid intermediates, exert extra-beneficial effect in preventing atherosclerosis beyond their effect on the lipid profile. We found that atorvastatin downregulates DKK-1 protein (−88.3 ± 4.1%) and mRNA expression (−90 ± 4.2%) through the inhibition of Cdc42, Rho and Rac geranylgeranylated proteins. Further, a combined approach based on the integration of label-free quantitative mass spectrometry based-proteomics and gene silencing allowed us to demonstrate that DKK-1 itself mediates, at least in part, statin effects on human endothelial cells. Indeed, DKK-1 is responsible for the regulation of the 21% of the statin-modulated proteins, which include, among others, clusterin/apoJ, plasminogen activator inhibitor type 1 (PAI-1), myristoylated alanine-rich C-kinase substrate (MARCKS), and pentraxin 3 (PTX3). The Gene Ontology enrichment annotation revealed that DKK-1 is also a potential mediator of the extracellular matrix organization, platelet activation and response to wounding processes induced by statin. Finally, we found that plasma level of DKK-1 from cholesterol-fed rabbits treated with atorvastatin (2.5 mg/kg/day for 8 weeks) was lower (−42 ± 23%) than that of control animals. Thus, DKK-1 is not only a target of statin but it directly regulates the expression of molecules involved in a plethora of biological functions, thus expanding its role, which has been so far restricted mainly to cancer.
Collapse
|
42
|
Megakaryocyte Contribution to Bone Marrow Fibrosis: many Arrows in the Quiver. Mediterr J Hematol Infect Dis 2018; 10:e2018068. [PMID: 30416700 PMCID: PMC6223581 DOI: 10.4084/mjhid.2018.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
In Primary Myelofibrosis (PMF), megakaryocyte dysplasia/hyperplasia determines the release of inflammatory cytokines that, in turn, stimulate stromal cells and induce bone marrow fibrosis. The pathogenic mechanism and the cells responsible for progression to bone marrow fibrosis in PMF are not completely understood. This review article aims to provide an overview of the crucial role of megakaryocytes in myelofibrosis by discussing the role and the altered secretion of megakaryocyte-derived soluble factors, enzymes and extracellular matrices that are known to induce bone marrow fibrosis.
Collapse
|
43
|
|
44
|
Giudice V, Biancotto A, Wu Z, Cheung F, Candia J, Fantoni G, Kajigaya S, Rios O, Townsley D, Feng X, Young NS. Aptamer-based proteomics of serum and plasma in acquired aplastic anemia. Exp Hematol 2018; 68:38-50. [PMID: 30312735 DOI: 10.1016/j.exphem.2018.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 11/25/2022]
Abstract
Single-stranded oligonucleotides containing deoxyuridine are aptamers (SOMAmers) that can bind proteins with high specificity and affinity and slow dissociation rates. SOMAscan, an aptamer-based proteomic technology, allows measurement of more than 1,300 proteins simultaneously for the identification of new disease biomarkers. The aim of the present study was to identify new serum and plasma protein markers for diagnosis of acquired aplastic anemia (AA) and response to immunosuppressive therapies (IST). SOMAscan was used to screen 1,141 serum proteins in 28 AA patients before and after therapy and 1,317 plasma proteins in seven SAA patients treated with standard IST and a thrombopoietin receptor agonist. From our analysis, 19 serum and 28 plasma proteins were identified as possible candidate diagnostic and prognostic markers. A custom immunobead-based multiplex assay with five selected serum proteins (BMP-10, CCL17, DKK1, HGF, and SELL) was used for validation in a verification set (n = 65) of samples obtained before and after IST and in a blinded validation cohort at baseline (n = 16). After technical validation, four biomarkers were employed to predict diagnosis (accuracy, 88%) and long-term response to IST (accuracy, 79%). In conclusion, SOMAscan is a powerful tool for the identification of new biomarkers. We propose further larger studies to validate new candidate serum and plasma diagnostic and prognostic markers of AA.
Collapse
Affiliation(s)
- Valentina Giudice
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Angélique Biancotto
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Foo Cheung
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Julián Candia
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Giovanna Fantoni
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Olga Rios
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Danielle Townsley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
45
|
Chae WJ, Bothwell ALM. Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol 2018; 39:830-847. [PMID: 30213499 DOI: 10.1016/j.it.2018.08.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
Cell differentiation, proliferation, and death are vital for immune homeostasis. Wnt signaling plays essential roles in processes across species. The roles of Wnt signaling proteins and Wnt ligands have been studied in the past, but the context-dependent mechanisms and functions of these pathways in immune responses remain unclear. Recent findings regarding the role of Wnt ligands and Wnt signaling in immune cells and their immunomodulatory mechanisms suggest that Wnt ligands and signaling are significant in regulating immune responses. We introduce recent key findings and future perspectives on Wnt ligands and their signaling pathways in immune cells as well as the immunological roles and functions of Wnt antagonists.
Collapse
Affiliation(s)
- Wook-Jin Chae
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA.
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
46
|
Beckert H, Meyer-Martin H, Buhl R, Taube C, Reuter S. The Canonical but Not the Noncanonical Wnt Pathway Inhibits the Development of Allergic Airway Disease. THE JOURNAL OF IMMUNOLOGY 2018; 201:1855-1864. [PMID: 30135183 DOI: 10.4049/jimmunol.1800554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022]
Abstract
Asthma is a syndrome with multifactorial causes, resulting in a variety of different phenotypes. Current treatment options are not curative and are sometimes ineffective in certain disease phenotypes. Therefore, novel therapeutic approaches are required. Recent findings have shown that activation of the canonical Wnt signaling pathway suppresses the development of allergic airway disease. In contrast, the effect of the noncanonical Wnt signaling pathway activation on allergic airway disease is not well described. The aim of this study was to validate the therapeutic effectiveness of Wnt-1-driven canonical Wnt signaling compared with Wnt-5a-driven noncanonical signaling in murine models. In vitro, both ligands were capable of attenuating allergen-specific T cell activation in a dendritic cell-dependent manner. In addition, the therapeutic effects of Wnt ligands were assessed in two different models of allergic airway disease. Application of Wnt-1 resulted in suppression of airway inflammation as well as airway hyperresponsiveness and mucus production. In contrast, administration of Wnt-5a was less effective in reducing airway inflammation or goblet cell metaplasia. These results suggest an immune modulating function for canonical as well as noncanonical Wnt signaling, but canonical Wnt pathway activation appears to be more effective in suppressing allergic airway disease than noncanonical Wnt activation.
Collapse
Affiliation(s)
- Hendrik Beckert
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, North Rhine-Westphalia 45239, Germany; and
| | - Helen Meyer-Martin
- Department of Pulmonary Medicine, III. Medical Clinic, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Roland Buhl
- Department of Pulmonary Medicine, III. Medical Clinic, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, North Rhine-Westphalia 45239, Germany; and
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, North Rhine-Westphalia 45239, Germany; and
| |
Collapse
|
47
|
Han X, Wu YC, Meng M, Sun QS, Gao SM, Sun H. Linarin prevents LPS‑induced acute lung injury by suppressing oxidative stress and inflammation via inhibition of TXNIP/NLRP3 and NF‑κB pathways. Int J Mol Med 2018; 42:1460-1472. [PMID: 29845284 PMCID: PMC6089707 DOI: 10.3892/ijmm.2018.3710] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/09/2018] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of morbidity and mortality for critically ill patients, and linarin (LR) may be a potential treatment for ALI as it reportedly has antioxidant, anti-inflammatory and apoptotic-regulating activity. In the present study, the authors report that saline and LR (12.5, 25 and 50 mg/kg) were applied to male C57BL/6 mice via gavage. Then, mice were intratracheally injected with either saline or lipopolysaccharide (LPS). LR-pretreatment attenuated LPS-induced ALI and platelet activation and reduced CD41 expression levels and neutrophil platelet aggregates. Additionally, LPS-triggered pulmonary myeloperoxidase activity and neutrophil infiltration in lung tissues, and this was eliminated by LR dose-dependently. Furthermore, LPS-induced oxidative stress and pro-inflammatory cytokine release were downregulated by LR by inhibiting thioredoxin-interacting protein and nuclear factor-κB signaling pathways, including their downstream and upstream signals, such as xanthine oxidase, NLR family WHAT, pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), caspase-1, IκB kinase-α (IKK-α) and IκBα. Moreover, in LPS-induced mice, the mitogen-activated protein kinase pathway was inactivated by LR. In vitro, LR reduced LPS-induced inflammation and oxidative stress, which was linked to reduction of ROS. In conclusion, LR pretreatment may be protective against LPS-induced ALI.
Collapse
Affiliation(s)
- Xiang Han
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yi-Chen Wu
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Min Meng
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Qing-Song Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Su-Min Gao
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hong Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
48
|
Xie Y, Zhang H, Liu S, Chen G, He S, Li Z, Wang L. Mast Cell Activation Protects Cornea by Promoting Neutrophil Infiltration via Stimulating ICAM-1 and Vascular Dilation in Fungal Keratitis. Sci Rep 2018; 8:8365. [PMID: 29849098 PMCID: PMC5976763 DOI: 10.1038/s41598-018-26798-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/18/2018] [Indexed: 01/22/2023] Open
Abstract
The role of mast cells (MCs) in fungal infection is largely unknown. This study was to explore a protective role and mechanism of MCs in fungal keratitis. Experimental fungal keratitis (FK) mouse model was developed. Mice untreated (UT) or receiving corneal wound without fungal infection (Mock) were used as controls. Large number of connective tissue MCs was found in normal mice. MC activation with degranulation was largely observed, and the percentage of degranulated/total cells was high in FK. Dilated limbal vasculature with increased permeability, as well as largely infiltrated neutrophils with stimulated ICAM-1 protein levels were observed in corneas of FK mice, when compared with Mock and UT mice. Interestingly, pretreatment with cromolyn sodium (Block) significantly blocked MC degranulation, dramatically suppressed vascular dilation and permeability, and markedly reduced neutrophil infiltration with lower ICAM-1 levels in FK mice at 6-24 hours. Furthermore, the Block mice manifested prolonged disease course, increased pathological damage, and vigorous fungus growth, with much higher corneal perforation rate than FK mice at 72 h. These findings reveal a novel phenomenon that MCs play a vital role in protecting cornea against fungal infection through degranulation that promotes neutrophil infiltration via stimulating ICAM-1 production and limbal vascular dilation and permeability.
Collapse
Affiliation(s)
- Yanting Xie
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Hongmin Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Susu Liu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Guoming Chen
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Siyu He
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China
| | - Liya Wang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Department of Ophthalmology, Zhengzhou, 450003, People's Republic of China.
| |
Collapse
|
49
|
Wang F, Zhang W, Wang C, Fang X, Cheng H, Liu S, Chen XL. Inhibitor of Tec kinase, LFM-A13, decreases pro-inflammatory mediators production in LPS-stimulated RAW264.7 macrophages via NF-κB pathway. Oncotarget 2018; 8:34099-34110. [PMID: 28415764 PMCID: PMC5470954 DOI: 10.18632/oncotarget.16212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Tec kinase, a prototypical member of the Tec tyrosine kinases family, was shown to mainly govern lymphocyte proliferation. In the present study, we investigated the role of Tec kinase in acute inflammatory response in lipopolysaccharide (LPS) challenge. First, we demonstrate that Tec kinase activity was observed in RAW264.7 macrophages exposed to LPS. Tec and phosphorylated Tec expression were upregulated in a dose- and time-dependent manner after LPS stimulation. LPS increased monocyte chemotactic protein (MCP)-1 secretion and intercellular adhesion molecule (ICAM)-1 expression, and increasing mRNA expression was consistently observed. LPS also induced IκBα phoshporylaytion and its degradation, increased NF-κB p65 phoshporylaytion and translocation to nuclei in RAW264.7 cells. Pretreatment with LFM-A13 decreased LPS-induced cytokines and chemokines production and mRNA levels, blocked NF-κB transactivation. These effects of LPS were also prevented by Tec-siRNA. Additionally, LFM-A13 or Tec-siRNA obviously inhibited LPS-induced TGFβ-activated kinase 1(TAK1) phosphorylation. Taken together, our results suggest that Tec kinase involves in acute inflammation process in LPS-stimulated RAW264.7 cells, at least mediated by activating TAK1/ NF-κB signal pathway.
Collapse
Affiliation(s)
- Fei Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Wei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Chao Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xu Fang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Hao Cheng
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Sheng Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
50
|
Wang W, Yan X, Lin Y, Ge H, Tan Q. Wnt7a promotes wound healing by regulation of angiogenesis and inflammation: Issues on diabetes and obesity. J Dermatol Sci 2018; 91:S0923-1811(18)30103-8. [PMID: 29853224 DOI: 10.1016/j.jdermsci.2018.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/04/2018] [Accepted: 02/12/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Diabetic skin heals wounds poorly. Though obesity is the common risk factor of diabetes mellitus, few studies have investigated its effects on wound healing. OBJECTIVES This study aimed to evaluate the morphology and possible mechanism of human umbilical vein endothelial cells (HUVEC-C) in response to different levels of glucose and palmitic acid, and explore the role of Wnt7a in wound healing. METHODS The functional changes of HUVEC-C and mRNA expression of Wnt signaling were determined by analyzing cell viability, migration, tube formation and rt-PCR in gradients of glucose and palmitic acid. Recombinant Wnt7a protein was injected around wounds made on streptozotocin (STZ) -induced diabetic rats with (HF) or without (DM) high-fat diet. Angiogenesis and inflammatory statement were mainly analyzed by immunohistochemistry, ELISA, cytometry and Western blotting. RESULTS The expression of Wnt7a significantly decreased in high Glc/PA cultured cells or DM and HF wounded rats. Impaired wound healing was also observed in DM and HF groups. The healing rate significantly accelerated after localized injection with Wnt7a at d10. Moreover, the expression of CD31, eNOS phosphorylation and NO were increased; the reduction of local neutrophils influx, ICAM-1 and IL-6/8 expression levels were obvious especially in diabetic with obesity rats at d10 after Wnt7a treatment. CONCLUSION This study indicates the potential role of Wnt7a, which is beneficial for regeneration of damaged vessels, moderation of inflammatory statement in diabetic wound healing with or without obesity, thus demonstrating its possible utility as a topical administration to promote healing rate.
Collapse
Affiliation(s)
- Wei Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Huaqiang Ge
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|