1
|
Zhao X, Zhang M, He J, Li X, Zhuang X. Emerging insights into ferroptosis in cholangiocarcinoma (Review). Oncol Lett 2024; 28:606. [PMID: 39483963 PMCID: PMC11526429 DOI: 10.3892/ol.2024.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 11/03/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that arises within the biliary system, which exhibits a progressively increasing incidence and a poor patient prognosis. A thorough understanding of the molecular pathogenesis that drives the progression of CCA is essential for the development of effective molecular target therapeutic approaches. Ferroptosis is driven by excessive iron accumulation and catalysis, lipid peroxidation and the failure of antioxidant defense systems. Key molecular targets of iron metabolism, lipid metabolism and antioxidant defense systems involve molecules such as transferrin receptor, ACSL4 and GPX4, respectively. Inhibitors of ferroptosis include ferrostatin-1, liproxstatin-1, vitamin E and coenzyme Q10. By contrast, compounds such as erastin, RSL3 and FIN56 have been identified as inducers of ferroptosis. Ferroptosis serves a notable role in the onset and progression of CCA. CCA cells exhibit high sensitivity to ferroptosis and aberrant iron metabolism in these cells increases oxidative stress and iron accumulation. The induction of ferroptosis markedly reduces the ability of CCA cells to proliferate and migrate. Certain ferroptosis agonists, such as RSL3 and erastin, cause lipid peroxide build up and GPX4 inhibition to induce ferroptosis in CCA cells. Current serological markers, such as CA-199, have low specificity and cause difficulties in the diagnosis of CCA. However, novel techniques, such as non-invasive liquid biopsy and assays for oxidative stress markers and double-cortin-like kinase 1, could improve diagnostic accuracy. CCA is primarily treated with surgery and chemotherapy. A close association between the progression of CCA with ferroptosis mechanisms and related regulatory pathways has been demonstrated. Therefore, it could be suggested that multi-targeted therapeutic approaches, such as ferroptosis inducers, iron chelating agents and novel modulators such as YL-939, may improve treatment efficacy. Iron death-related genes, such as GPX4, that are highly expressed in CCA and are associated with a poor prognosis for patients may represent potential prognostic markers for CCA. The present review focused on molecular targets such as p53 and ACSL4, the process of targeted medications in combination with PDT in CCA and the pathways of lipid peroxidation, the Xc-system and GSH-GPX4 in ferroptosis. The present review thus offered novel perspectives to improve the current understanding of CCA.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Miao Zhang
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Jing He
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xin Li
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xuewei Zhuang
- Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
2
|
Braniewska A, Skorzynski M, Sas Z, Dlugolecka M, Marszalek I, Kurpiel D, Bühler M, Strzemecki D, Magiera A, Bialasek M, Walczak J, Cheda L, Komorowski M, Weiss T, Czystowska-Kuzmicz M, Kwapiszewska K, Boffi A, Krol M, Rygiel TP. A novel process for transcellular hemoglobin transport from macrophages to cancer cells. Cell Commun Signal 2024; 22:570. [PMID: 39605056 PMCID: PMC11603754 DOI: 10.1186/s12964-024-01929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Hemoglobin (Hb) performs its physiological function within the erythrocyte. Extracellular Hb has prooxidative and proinflammatory properties and is therefore sequestered by haptoglobin and bound by the CD163 receptor on macrophages. In the present study, we demonstrate a novel process of Hb uptake by macrophages independent of haptoglobin and CD163. Unexpectedly, macrophages do not degrade the entire Hb, but instead transfer it to neighboring cells. We have shown that the phenomenon of Hb transfer from macrophages to other cells is mainly mediated by extracellular vesicles. In contrast to the canonical Hb degradation pathway by macrophages, Hb transfer has not been reported before. In addition, we have used the process of Hb transfer in anticancer therapy, where macrophages are loaded with a Hb-anticancer drug conjugate and act as cellular drug carriers. Both mouse and human macrophages loaded with Hb-monomethyl auristatin E (MMAE) effectively killed cancer cells when co-cultured in vitro.
Collapse
Affiliation(s)
- Agata Braniewska
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Skorzynski
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Dlugolecka
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Marcel Bühler
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Damian Strzemecki
- Cellis AG, Zurich, Switzerland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta Magiera
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Bialasek
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jaroslaw Walczak
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Cheda
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Michal Komorowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | | | | | - Alberto Boffi
- Cellis AG, Zurich, Switzerland
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center of Life Nano and Neuro Science, Italian Institute of Technology, Rome, Italy
| | - Magdalena Krol
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz P Rygiel
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
- Cellis AG, Zurich, Switzerland.
| |
Collapse
|
3
|
Beckett M, Spaner C, Goubran M, Wade J, Avina-Zubieta JA, Setiadi A, Tucker L, Shojania K, Au S, Mattman A, Lee AYY, Fajgenbaum DC, Chen LYC. CRP and sCD25 help distinguish between adult-onset Still's disease and HLH. Eur J Haematol 2024; 113:576-583. [PMID: 38984483 DOI: 10.1111/ejh.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Adult-onset Still's disease (AOSD) and secondary hemophagocytic lymphohistiocytosis (sHLH) are both hyperferritinemic cytokine storm syndromes that can be difficult to distinguish from each other in hospitalized patients. The objective of this study was to compare the inflammatory markers ferritin, D-dimer, C-reactive protein (CRP), and soluble CD25 (sCD25) in patients with AOSD and sHLH. These four markers were chosen as they are widely available and represent different aspects of inflammatory diseases: macrophage activation (ferritin); endothelialopathy (D-dimer); interleukin-1/interleukin-6/tumour necrosis factor elevation (CRP) and T cell activation (sCD25). METHODS This was a single-center retrospective study. Patients diagnosed by the Hematology service at Vancouver General Hospital for AOSD or sHLH from 2009 to 2023 were included. RESULTS There were 16 AOSD and 44 sHLH patients identified. Ferritin was lower in AOSD than HLH (median 11 360 μg/L vs. 29 020 μg/L, p = .01) while D-dimer was not significantly different (median 5310 mg/L FEU vs. 7000 mg/L FEU, p = .3). CRP was higher (median 168 mg/L vs. 71 mg/L, p <.01) and sCD25 was lower (median 2220 vs. 7280 U/mL, p = .004) in AOSD compared to HLH. The combined ROC curve using CRP >130 mg/L and sCD25< 3900 U/mL to distinguish AOSD from HLH had an area under the curve (AUC) of 0.94 (95% confidence interval 0.93-0.97) with sensitivity 91% and specificity 93%. CONCLUSIONS These findings suggest that simple, widely available laboratory tests such as CRP and sCD25 can help clinicians distinguish AOSD from HLH in acutely ill adults with extreme hyperferritinemia. Larger studies examining a wider range of clinically available inflammatory biomarkers in a more diverse set of cytokine storm syndromes are warranted.
Collapse
Affiliation(s)
- Madelaine Beckett
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Spaner
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mariam Goubran
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Wade
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Audi Setiadi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Division of Hematopathology, British Columbia Children's Hospital, Vancouver, Canada
| | - Lori Tucker
- Division of Pediatric Rheumatology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Kam Shojania
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Sheila Au
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Andre Mattman
- Division of Hematopathology, British Columbia Children's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Vancouver, Canada
| | - Agnes Y Y Lee
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - David C Fajgenbaum
- Center for Cytokine Storm Treatment & Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Luke Y C Chen
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Division of Hematology, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Iriarte-Gahete M, Tarancon-Diez L, Garrido-Rodríguez V, Leal M, Pacheco YM. Absolute and functional iron deficiency: Biomarkers, impact on immune system, and therapy. Blood Rev 2024; 68:101227. [PMID: 39142965 DOI: 10.1016/j.blre.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Iron is essential for numerous physiological processes and its deficiency often leads to anemia. Iron deficiency (ID) is a global problem, primarily affecting reproductive-age women and children, especially in developing countries. Diagnosis uses classical biomarkers like ferritin or transferrin saturation. Recent advancements include using soluble transferrin receptor (sTfR) or hepcidin for improved detection and classification of absolute and functional iron deficiencies, though mostly used in research. ID without anemia may present symptoms like asthenia and fatigue, even without relevant clinical consequences. ID impacts not only red-blood cells but also immune system cells, highlighting its importance in global health and immune-related comorbidities. Managing ID, requires addressing its cause and selecting appropriate iron supplementation. Various improved oral and intravenous products are available, but further research is needed to refine treatment strategies. This review updates on absolute and functional iron deficiencies, their relationships with the immune system and advancements in diagnosis and therapies.
Collapse
Affiliation(s)
- Marianela Iriarte-Gahete
- Immunology Service, Unit of Clinical Laboratories, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain
| | - Laura Tarancon-Diez
- Group of Infections in the Pediatric Population, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Vanesa Garrido-Rodríguez
- Immunology Service, Unit of Clinical Laboratories, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain
| | - Manuel Leal
- Internal Medicine Service, Viamed Santa Ángela de la Cruz Hospital, Seville, Spain
| | - Yolanda María Pacheco
- Immunology Service, Unit of Clinical Laboratories, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain; Universidad Loyola Andalucía, Facultad de Ciencias de la Salud, Campus Sevilla, 41704, Dos Hermanas, Sevilla, Spain.
| |
Collapse
|
5
|
Zangari M, Piccirilli F, Vaccari L, Radu C, Zacchi P, Bernareggi A, Leone S, Zabucchi G, Borelli V. Ferritin adsorption onto chrysotile asbestos fibers influences the protein secondary structure. Heliyon 2024; 10:e38966. [PMID: 39492902 PMCID: PMC11530830 DOI: 10.1016/j.heliyon.2024.e38966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Asbestos fiber exposure triggers chronic inflammation and cancer. Asbestos fibers can adsorb different types of proteins. The mechanism of this adsorption, not yet completely understood, has been studied in detail mainly with serum albumin and was shown to induce structural changes in the bound protein. The findings of these works regarded mainly the changes of the protein structure, independently of any relation with asbestos-related diseases. For the first time, we have focused our attention to the consequences of the interaction between asbestos fibers and ferritin, a protein involved in iron metabolism, which is strongly modified in asbestos-related diseases. Even if it is known that ferritin can be adsorbed by asbestos fibers, the results of this interaction for the ferritin secondary structure has not previously been studied. One consequence of asbestos-ferritin interaction, is the formation of the so-called ferruginous/asbestos bodies (ABs). In the AB-coating material, the secondary structure of ferritin is modified, and at present, it is unclear whether or not this modification is a direct consequence of the asbestos interaction. In the present study, chrysotile asbestos, more than other asbestos fiber types tested, was found to rapidly bind holo-ferritin, and the presence of iron seemed to play a key role in this process, since iron-free apo-ferritin was adsorbed at a lower level, and iron-saturated chrysotile lost its ferritin-adsorbing capacity. To directly study the details of ferritin adsorption on asbestos fibers, High Resolution Transmission Electron Microscopy (HR-TEM) was employed together with FTIR microspectroscopy and Infrared nanoscopy, which to the best of our knowledge, have not previously been used for this purpose. Chrysotile-bound apo-ferritin underwent a significant change in secondary structure, showing a shift from a prevalent α-helix to a β-sheet conformation. Conversely, the adsorbed holo-ferritin structure appeared to be only weakly modified. These findings add a new potential mechanism to the toxic activities of asbestos: the fibers can modify the structure, and very likely, the function of adsorbed proteins. This, in relation to ferritin, could be a key mechanism in cell iron homeostasis alteration, typically reported in asbestos-related diseases.
Collapse
Affiliation(s)
- Martina Zangari
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- CERIC-ERIC, S.S. 14 - km 163,5, 34149, Basovizza, Trieste, Italy
| | - Federica Piccirilli
- Area Science Park, Padriciano 99, 34149, Trieste, Italy
- Elettra Sincrotrone Trieste, S.S. 14 - km 163,5, 34149, Basovizza, Trieste, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, S.S. 14 - km 163,5, 34149, Basovizza, Trieste, Italy
| | - Cristian Radu
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, jud. Ilfov, Romania
| | - Paola Zacchi
- Department of Life Science, University of Trieste, via via Valerio 28-28/1, 34127, Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Science, University of Trieste, via via Valerio 28-28/1, 34127, Trieste, Italy
| | - Sara Leone
- Fiber laboratory, Azienda Sanitaria Giiuliano Isontina (ASUGI), Trieste, Italy
| | - Giuliano Zabucchi
- Department of Life Science, University of Trieste, via via Valerio 28-28/1, 34127, Trieste, Italy
| | - Violetta Borelli
- Department of Life Science, University of Trieste, via via Valerio 28-28/1, 34127, Trieste, Italy
| |
Collapse
|
6
|
Prajapati M, Chiu L, Zhang JZ, Chong GS, DaSilva NA, Bartnikas TB. Bile from the hemojuvelin-deficient mouse model of iron excess is enriched in iron and ferritin. Metallomics 2024; 16:mfae043. [PMID: 39313333 PMCID: PMC11459263 DOI: 10.1093/mtomcs/mfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Iron is an essential nutrient but is toxic in excess. Iron deficiency is the most prevalent nutritional deficiency and typically linked to inadequate intake. Iron excess is also common and usually due to genetic defects that perturb expression of hepcidin, a hormone that inhibits dietary iron absorption. Our understanding of iron absorption far exceeds that of iron excretion, which is believed to contribute minimally to iron homeostasis. Prior to the discovery of hepcidin, multiple studies showed that excess iron undergoes biliary excretion. We recently reported that wild-type mice raised on an iron-rich diet have increased bile levels of iron and ferritin, a multi-subunit iron storage protein. Given that genetic defects leading to excessive iron absorption are much more common causes of iron excess than dietary loading, we set out to determine if an inherited form of iron excess known as hereditary hemochromatosis also results in bile iron loading. We employed mice deficient in hemojuvelin, a protein essential for hepcidin expression. Mutant mice developed bile iron and ferritin excess. While lysosomal exocytosis has been implicated in ferritin export into bile, knockdown of Tfeb, a regulator of lysosomal biogenesis and function, did not impact bile iron or ferritin levels. Bile proteomes differed between female and male mice for wild-type and hemojuvelin-deficient mice, suggesting sex and iron excess impact bile protein content. Overall, our findings support the notion that excess iron undergoes biliary excretion in genetically determined iron excess.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jared Z Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Grace S Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Nicholas A DaSilva
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
7
|
Lan W, Yang L, Tan X. Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases. Mol Cell Biochem 2024; 479:2523-2543. [PMID: 37880443 DOI: 10.1007/s11010-023-04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Ferroptosis is a newly identified form of programmed cell death that is connected to iron-dependent lipid peroxidization. It involves a variety of physiological processes involving iron metabolism, lipid metabolism, oxidative stress, and biosynthesis of nicotinamide adenine dinucleotide phosphate, glutathione, and coenzyme Q10. So far, it has been discovered to contribute to the pathological process of many diseases, such as myocardial infarction, acute kidney injury, atherosclerosis, and so on. Macrophages are innate immune system cells that regulate metabolism, phagocytize pathogens and dead cells, mediate inflammatory reactions, promote tissue repair, etc. Emerging evidence shows strong associations between macrophages and ferroptosis, which can provide us with a deeper comprehension of the pathological process of diseases and new targets for the treatments. In this review, we summarized the crosstalk between macrophages and ferroptosis and anatomized the application of this association in disease treatments, both non-neoplastic and neoplastic diseases. In addition, we have also addressed problems that remain to be investigated, in the hope of inspiring novel therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Wanxin Lan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Hou Q, Ouyang S, Xie Z, He Y, Deng Y, Guo J, Yu P, Tan X, Ma W, Li P, Yu J, Mo Q, Zhang Z, Chen D, Lin X, Liu Z, Chen X, Peng T, Li L, Xie W. Exosome is a Fancy Mobile Sower of Ferroptosis. J Cardiovasc Transl Res 2024; 17:1067-1082. [PMID: 38776048 DOI: 10.1007/s12265-024-10508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/01/2024] [Indexed: 10/29/2024]
Abstract
Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.
Collapse
Affiliation(s)
- Qin Hou
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yinling He
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiamin Guo
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qinger Mo
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
9
|
Zhang J, Fan M, Tang J, Lin X, Liu G, Wen C, Xu X. Possibility and challenge of plant-derived ferritin cages encapsulated polyphenols in the precise nutrition field. Int J Biol Macromol 2024; 275:133579. [PMID: 38964678 DOI: 10.1016/j.ijbiomac.2024.133579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Polyphenols have attracted extensive attention due to their rich functional activities, such as antioxidant, anti-inflammatory and anti-tumor. However, the low solubility and poor stability limit their bioavailability and functional activities. Plant-derived ferritin cages have a unique hollow cage structure that can embed polyphenols to improve their unfavorable properties. Therefore, it is essential to adequately elaborate and summarize plant-derived ferritin cages to maximize their potential benefits in nutritional interventions. This review focuses on the fundamental properties of plant-derived ferritin cages, including the preparation process, purification technology, identification methods, and structural and functional properties. The relevant research on ferritin cages in polyphenol delivery has been summarized, including the delivery of water/lipid soluble polyphenols, modification of ferritin cages, and the interaction between polyphenols and ferritin cages. The research progress, shortcomings and prospects of plant-derived ferritin cages in precise nutrition are introduced. In addition, the relevant research on ferritin in immune response and protein engineering is also discussed to provide the theoretical basis for applying plant-derived ferritin cages in many frontier fields.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Guangling College, Yangzhou University, Yangzhou 225000, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
10
|
Packer M, Anker SD, Butler J, Cleland JG, Kalra PR, Mentz RJ, Ponikowski P, Talha KM. Redefining Iron Deficiency in Patients With Chronic Heart Failure. Circulation 2024; 150:151-161. [PMID: 38733252 PMCID: PMC11224570 DOI: 10.1161/circulationaha.124.068883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
A serum ferritin level <15 to 20 μg/L historically identified patients who had absent bone marrow iron stores, but serum ferritin levels are distorted by the systemic inflammatory states seen in patients with chronic kidney disease or heart failure. As a result, nearly 25 years ago, the diagnostic ferritin threshold was increased 5- to 20-fold in patients with chronic kidney disease (ie, iron deficiency was identified if the serum ferritin level was <100 μg/L, regardless of transferrin saturation [TSAT], or 100 to 299 μg/L if TSAT was <20%). This guidance was motivated not by the findings of studies of total body or tissue iron depletion, but by a desire to encourage the use of iron supplements to potentiate the response to erythropoiesis-stimulating agents in patients with renal anemia. However, in patients with heart failure, this definition does not reliably identify patients with an absolute or functional iron-deficiency state, and it includes individuals with TSATs (≥20%) and serum ferritin levels in the normal range (20-100 mg/L) who are not iron deficient, have an excellent prognosis, and do not respond favorably to iron therapy. Furthermore, serum ferritin levels may be distorted by the use of both neprilysin and sodium-glucose cotransporter 2 inhibitors, both of which may act to mobilize endogenous iron stores. The most evidence-based and trial-tested definition of iron deficiency is the presence of hypoferremia, as reflected by as a TSAT <20%. These hypoferremic patients are generally iron deficient on bone marrow examination, and after intravenous iron therapy, they exhibit an improvement in exercise tolerance and functional capacity (when meaningfully impaired) and show the most marked reduction (ie, 20%-30%) in the risk of cardiovascular death or total heart failure hospitalizations. Therefore, we propose that the current ferritin-driven definition of iron deficiency in heart failure should be abandoned and that a definition based on hypoferremia (TSAT <20%) should be adopted.
Collapse
Affiliation(s)
- Milton Packer
- Baylor University Medical Center (M.P.), Dallas, TX
- Imperial College, London, UK (M.P.)
| | - Stefan D. Anker
- Department of Cardiology, German Heart Center Charité, Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research, partner site Berlin, Charité Universitätsmedizin, Berlin, Germany (S.D.A.)
| | - Javed Butler
- Baylor Scott and White Research Institute (J.B.), Dallas, TX
- Baylor University Medical Center (M.P.), Dallas, TX
- University of Mississippi Medical Center, Jackson (J.B., K.M.T.)
| | - John G.F. Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Health (J.G.F.C.), University of Glasgow, UK
| | - Paul R. Kalra
- College of Medical, Veterinary & Life Sciences (P.R.K.), University of Glasgow, UK
- Department of Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK (P.R.K.)
- Faculty of Science and Health, University of Portsmouth, UK (P.R.K.)
| | - Robert J. Mentz
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.M.)
- Duke Clinical Research Institute, Durham, NC (R.J.M.)
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Poland (P.P.)
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland (P.P.)
| | - Khawaja M. Talha
- University of Mississippi Medical Center, Jackson (J.B., K.M.T.)
| |
Collapse
|
11
|
Le Y, Liu Q, Yang Y, Wu J. The emerging role of nuclear receptor coactivator 4 in health and disease: a novel bridge between iron metabolism and immunity. Cell Death Discov 2024; 10:312. [PMID: 38961066 PMCID: PMC11222541 DOI: 10.1038/s41420-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) has recently been recognized as a selective cargo receptor of ferritinophagy participating in ferroptosis. However, NCOA4 is also a coactivator that modulates the transcriptional activity of many vital nuclear receptors. Recent novel studies have documented the role of NCOA4 in healthy and pathogenic conditions via its modulation of iron- and non-iron-dependent metabolic pathways. NCOA4 exhibits non-ferritinophagic and iron-independent features such as promoting tumorigenesis and erythropoiesis, immunomodulation, regulating autophagy, and participating in DNA replication and mitosis. Full-length human-NCOA4 is composed of 614 amino acids, of which the N-terminal (1-237) contains nuclear-receptor-binding domains, while the C-terminal (238-614) principally contains a ferritin-binding domain. The exploration of the protein structure of NCOA4 suggests that NCOA4 possesses additional significant and complex functions based on its structural domains. Intriguingly, another three isoforms of NCOA4 that are produced by alternative splicing have been identified, which may also display disparate activities in physiological and pathological processes. Thus, NCOA4 has become an important bridge that encompasses interactions between immunity and metabolism. In this review, we outline the latest advances in the important regulating mechanisms underlying NCOA4 actions in health and disease conditions, providing insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yue Le
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qinjie Liu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Jie Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
- Research Center of Surgery, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210021, China.
| |
Collapse
|
12
|
Li J, Feng Y, Li Y, He P, Zhou Q, Tian Y, Yao R, Yao Y. Ferritinophagy: A novel insight into the double-edged sword in ferritinophagy-ferroptosis axis and human diseases. Cell Prolif 2024; 57:e13621. [PMID: 38389491 PMCID: PMC11216947 DOI: 10.1111/cpr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Nuclear receptor coactive 4 (NCOA4), which functions as a selective cargo receptor, is a critical regulator of the particularly autophagic degradation of ferritin, a process known as ferritinophagy. Mechanistically, NCOA4-mediated ferritinophagy performs an increasingly vital role in the maintenance of intracellular iron homeostasis by promoting ferritin transport and iron release as needed. Ferritinophagy is not only involved in iron-dependent responses but also in the pathogenesis and progression of various human diseases, including metabolism-related, neurodegenerative, cardiovascular and infectious diseases. Therefore, ferritinophagy is of great importance in maintaining cell viability and function and represents a potential therapeutic target. Recent studies indicated that ferritinophagy regulates the signalling pathway associated with ferroptosis, a newly discovered type of cell death characterised by iron-dependent lipid peroxidation. Although accumulating evidence clearly demonstrates the importance of the interplay between dysfunction in iron metabolism and ferroptosis, a deeper understanding of the double-edged sword effect of ferritinophagy in ferroptosis has remained elusive. Details of the mechanisms underlying the ferritinophagy-ferroptosis axis in regulating relevant human diseases remain to be elucidated. In this review, we discuss the latest research findings regarding the mechanisms that regulate the biological function of NCOA4-mediated ferritinophagy and its contribution to the pathophysiology of ferroptosis. The important role of the ferritinophagy-ferroptosis axis in human diseases will be discussed in detail, highlighting the great potential of targeting ferritinophagy in the treatment of diseases.
Collapse
Affiliation(s)
- Jing‐Yan Li
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yan‐Hua Feng
- Department of OrthopedicsHebei Provincial Chidren's HospitalShijiazhuangChina
| | - Yu‐Xuan Li
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Peng‐Yi He
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Qi‐Yuan Zhou
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ying‐Ping Tian
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ren‐Qi Yao
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Yong‐Ming Yao
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| |
Collapse
|
13
|
Feng Z, Luan M, Zhu W, Xing Y, Ma X, Wang Y, Jia Y. Targeted ferritinophagy in gastrointestinal cancer: from molecular mechanisms to implications. Arch Toxicol 2024; 98:2007-2018. [PMID: 38602537 DOI: 10.1007/s00204-024-03745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.
Collapse
Affiliation(s)
- Zhaotian Feng
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yanfei Jia
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
14
|
Li Q, Peng G, Liu H, Wang L, Lu R, Li L. Molecular mechanisms of secretory autophagy and its potential role in diseases. Life Sci 2024; 347:122653. [PMID: 38663839 DOI: 10.1016/j.lfs.2024.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.
Collapse
Affiliation(s)
- Qin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Guolong Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Liwen Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
15
|
Nyvlt P, Schuster FS, Ihlow J, Heeren P, Spies C, Hiesgen J, Schenk T, von Brünneck AC, Westermann J, Brunkhorst FM, La Rosée P, Janka G, Lachmann C, Lachmann G. Value of hemophagocytosis in the diagnosis of hemophagocytic lymphohistiocytosis in critically ill patients. Eur J Haematol 2024; 112:917-926. [PMID: 38368850 DOI: 10.1111/ejh.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Ferritin is an established biomarker in the diagnosis of secondary hemophagocytic lymphohistiocytosis (HLH), which is diagnosed by the HLH-2004 criteria. Among these criteria, detection of hemophagocytosis through invasive procedures may delay early life saving treatment. Our aim was to investigate the value of hemophagocytosis in diagnosing HLH in critically ill patients. METHODS In this secondary analysis of a retrospective observational study, we included all patients aged ≥18 years and admitted to any adult ICU at Charité-Universitätsmedizin Berlin between January 2006 and August 2018, who had hyperferritinemia (≥500 μg/L) and underwent bone marrow biopsy during their ICU course. RESULTS Two hundred fifty-two patients were included, of whom 31 (12.3%) showed hemophagocytosis. In multivariable logistic regression analysis, maximum ferritin was independently associated with hemophagocytosis. By removing hemophagocytosis from HLH-2004 criteria and HScore, prediction accuracy for HLH diagnosis was only marginally decreased compared to the original scores. CONCLUSIONS Our results strengthen the diagnostic value of ferritin and underline the importance of considering HLH diagnosis in patients with high ferritin but only four fulfilled HLH-2004 criteria, when hemophagocytosis was not assessed or not detectable. Proof of hemophagocytosis is not required for a reliable HLH diagnosis.
Collapse
Affiliation(s)
- Peter Nyvlt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM, CVK), Berlin, Germany
| | - Friederike S Schuster
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM, CVK), Berlin, Germany
| | - Jana Ihlow
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Heeren
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM, CVK), Berlin, Germany
| | - Claudia Spies
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM, CVK), Berlin, Germany
| | - Josephine Hiesgen
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM, CVK), Berlin, Germany
| | - Thomas Schenk
- Department of Hematology and Oncology, Universitätsklinikum Jena, Jena, Germany
| | - Ann-Christin von Brünneck
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany
| | - Jörg Westermann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - Frank M Brunkhorst
- Center for Clinical Studies, Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Jena, Jena, Germany
| | - Paul La Rosée
- Klinik für Innere Medizin II, Schwarzwald-Baar-Klinikum, Villingen-Schwenningen, Germany
| | - Gritta Janka
- Clinic of Pediatric Hematology and Oncology, University Medical Center Eppendorf, Hamburg, Germany
| | - Cornelia Lachmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM, CVK), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gunnar Lachmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM, CVK), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Yu R, Hang Y, Tsai HI, Wang D, Zhu H. Iron metabolism: backfire of cancer cell stemness and therapeutic modalities. Cancer Cell Int 2024; 24:157. [PMID: 38704599 PMCID: PMC11070091 DOI: 10.1186/s12935-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Cancer stem cells (CSCs), with their ability of self-renewal, unlimited proliferation, and multi-directional differentiation, contribute to tumorigenesis, metastasis, recurrence, and resistance to conventional therapy and immunotherapy. Eliminating CSCs has long been thought to prevent tumorigenesis. Although known to negatively impact tumor prognosis, research revealed the unexpected role of iron metabolism as a key regulator of CSCs. This review explores recent advances in iron metabolism in CSCs, conventional cancer therapies targeting iron biochemistry, therapeutic resistance in these cells, and potential treatment options that could overcome them. These findings provide important insights into therapeutic modalities against intractable cancers.
Collapse
Affiliation(s)
- Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Yinhui Hang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
19
|
Wu J, Li Z, Wu Y, Cui N. The crosstalk between exosomes and ferroptosis: a review. Cell Death Discov 2024; 10:170. [PMID: 38594265 PMCID: PMC11004161 DOI: 10.1038/s41420-024-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Exosomes are a subtype of extracellular vesicles composed of bioactive molecules, including nucleic acids, proteins, and lipids. Exosomes are generated by the fusion of intracellular multivesicular bodies (MVBs) with the cell membrane and subsequently released into the extracellular space to participate in intercellular communication and diverse biological processes within target cells. As a crucial mediator, exosomes have been implicated in regulating ferroptosis-an iron-dependent programmed cell death characterized by lipid peroxide accumulation induced by reactive oxygen species. The involvement of exosomes in iron, lipid, and amino acid metabolism contributes to their regulatory role in specific mechanisms underlying how exosomes modulate ferroptosis, which remains incompletely understood, and some related studies are still preliminary. Therefore, targeting the regulation of ferroptosis by exosomes holds promise for future clinical treatment strategies across various diseases. This review aims to provide insights into the pathophysiology and mechanisms governing the interaction between exosomes and ferroptosis and their implications in disease development and treatment to serve as a reference for further research.
Collapse
Affiliation(s)
- Jiao Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyu Li
- Department of Internal Medicine, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ning Cui
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Li S, Huang P, Lai F, Zhang T, Guan J, Wan H, He Y. Mechanisms of Ferritinophagy and Ferroptosis in Diseases. Mol Neurobiol 2024; 61:1605-1626. [PMID: 37736794 DOI: 10.1007/s12035-023-03640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
The discovery of the role of autophagy, particularly the selective form like ferritinophagy, in promoting cells to undergo ferroptosis has inspired us to investigate functional connections between diseases and cell death. Ferroptosis is a novel model of procedural cell death characterized by the accumulation of iron-dependent reactive oxygen species (ROS), mitochondrial dysfunction, and neuroinflammatory response. Based on ferroptosis, the study of ferritinophagy is particularly important. In recent years, extensive research has elucidated the role of ferroptosis and ferritinophagy in neurological diseases and anemia, suggesting their potential as therapeutic targets. Besides, the global emergence and rapid transmission of COVID-19, which is caused by SARS-CoV-2, represents a considerable risk to public health worldwide. The potential involvement of ferroptosis in the pathophysiology of brain injury associated with COVID-19 is still unclear. This review summarizes the pathophysiological changes of ferroptosis and ferritinophagy in neurological diseases, anemia, and COVID-19, and hypothesizes that ferritinophagy may be a potential mechanism of ferroptosis. Advancements in these fields will enhance our comprehension of methods to prevent and address neurological disorders, anemia, and COVID-19.
Collapse
Affiliation(s)
- Siqi Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feifan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaqi Guan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
21
|
Yu Y, Lu D, Zhang Z, Tao L. Association of soluble transferrin receptor/log ferritin index with all-cause and cause-specific mortality: National Health and Nutrition Examination Survey. Front Nutr 2024; 11:1275522. [PMID: 38476599 PMCID: PMC10927731 DOI: 10.3389/fnut.2024.1275522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Background Soluble transferrin receptor (sTfR)/log ferritin index (sTfR Index) can be used to assess the entire spectrum of iron status, and is valuable in evaluating iron status in population studies. There is still a lack of evidence on the association between sTfR index and all-cause mortality. Object To explore the association between sTfR index and all-cause mortality, as well as mortality due to cardiovascular disease (CVD) and cancer. Method Data were from the National Health and Nutrition Examination Survey (NHANES) between 2003 to 2020. Participants aged 16 years and older who had complete data of serum ferritin and sTfR were included. Pregnant individuals or those with ineligible data on death or follow-up were excluded from the analysis. Baseline sTfR index was calculated by baseline sTfR/log (ferritin) and classified as three tertile. We performed the Cox proportional hazard regression to assess the association of sTfR index (both continuous and categorical scale) with all-cause and cause-specific mortality and further assess the non-linear relationship between sTfR index and the outcomes with restricted cubic spline. Result In this study, 11,525 participants, a total of 231 (2.0%) all-cause deaths occurred during a median follow-up of 51 months. The risk of all-cause mortality, CVD-related mortality, and cancer-related mortality was higher in participants with highest tertile of sTfR index. After confounding factors adjustment, participants with highest tertile of sTfR index were associated with an increased risk of all-cause mortality (HR: 1.71, 95% CI: 1.14-2.57) as compared with lowest tertile. Additionally, sTfR index per SD increment was associated with a 25% increasing risk of all-cause mortality (HR: 1.25, 95% CI: 1.08-1.45, p = 0.003) and a 38% cancer-related mortality (HR: 1.38, 95% CI: 1.07-1.77, p = 0.018). These associations remained robust after adjusting for the serum ferritin as well as in various subgroups stratified by age, sex, smoking statue, hypertension, diabetes, and CVD. Spline analysis showed that there is approximately linear relationship between sTfR index with all-cause mortality (p for non-linear = 0.481). Moreover, ferritin was not a predictor of all-cause death after adjustment for confounding factors. Significance This cohort study demonstrated a significant association between sTfR index increment and an increased risk of all-cause and cancer-related mortality, independent of ferritin levels.
Collapse
Affiliation(s)
- Yan Yu
- Guangzhou Baiyunshan Hospital, Guangzhou, China
| | - Dongying Lu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lili Tao
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Lemaire B, Frias MA, Golaz O, Magnin JL, Viette V, Vuilleumier N, Waldvogel Abramowski S. Ferritin: A Biomarker Requiring Caution in Clinical Decision. Diagnostics (Basel) 2024; 14:386. [PMID: 38396425 PMCID: PMC10887646 DOI: 10.3390/diagnostics14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVES To determine the ferritin inter-assay differences between three "Conformité Européenne" (CE) marked tests, the impact on reference intervals (RI), and the proportion of individuals with iron deficiency (ID), we used plasma and serum from healthy blood donors (HBD) recruited in three different Switzerland regions. DESIGN AND METHODS Heparinized plasma and serum from HBD were obtained from three different transfusion centers in Switzerland (Fribourg, Geneva, and Neuchatel). One hundred forty samples were recruited per center and per matrix, with a gender ratio of 50%, for a total of 420 HBD samples available per matrix. On both matrices, ferritin concentrations were quantified by three different laboratories using electrochemiluminescence (ECL), latex immunoturbidimetric assay (LIA), and luminescent oxygen channeling immunoassay (LOCI) assays, respectively. The degree of agreement between matrices and between the three sites/methods was assessed by Passing-Bablok and we evaluated the proportion of individuals deemed to have ID per method. RESULTS Overall, no difference between serum and heparinized plasma ferritin values was observed according to Passing-Bablok analyses (proportional bias range: 1.0-3.0%; maximum constant bias: 1.84 µg/L). Significant median ferritin differences (p < 0.001 according to Kruskal-Wallis test) were observed between the three methods (i.e., 83.6 µg/L, 103.5 µg/L, and 62.1 µg/L for ECL, LIA, and LOCI in heparinized plasma, respectively), with proportional bias varying significantly between ±16% and ±32% on serum and from ±14% to ±35% on plasma with no sign of gender-related differences. Affecting the lower end of RI, the proportion of ID per method substantially varied between 4.76% (20/420) for ECL, 2.86% (12/420) for LIA, and 9.05% (38/420) for LOCI. CONCLUSIONS Serum and heparinized plasma are exchangeable for ferritin assessment. However, the order of magnitude of ferritin differences across methods and HBD recruitment sites could lead to diagnostic errors if uniform RI were considered. Challenging the recently proposed use of uniform ferritin thresholds, our results highlight the importance of method- and region-specific RI for ferritin due to insufficient inter-assay harmonization. Failing to do so significantly impacts ID diagnosis.
Collapse
Affiliation(s)
- Baptiste Lemaire
- Diagnostic Department, Geneva University Hospitals, 1205 Geneva, Switzerland
- Medicine Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Miguel A. Frias
- Diagnostic Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Olivier Golaz
- Diagnostic Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Jean-Luc Magnin
- Central Laboratory, HFR-Fribourg, 1700 Fribourg, Switzerland
| | | | - Nicolas Vuilleumier
- Diagnostic Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Sophie Waldvogel Abramowski
- Diagnostic Department, Geneva University Hospitals, 1205 Geneva, Switzerland
- Medicine Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
23
|
Lu B, Guo S, Zhao J, Wang X, Zhou B. Adipose knockout of H-ferritin improves energy metabolism in mice. Mol Metab 2024; 80:101871. [PMID: 38184276 PMCID: PMC10803945 DOI: 10.1016/j.molmet.2024.101871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Ferritin, the principal iron storage protein, is essential to iron homeostasis. How iron homeostasis affects the adipose tissue is not well understood. We investigated the role of ferritin heavy chain in adipocytes in energy metabolism. METHODS We generated adipocyte-specific ferritin heavy chain (Fth, also known as Fth1) knockout mice, herein referred to as FthAKO. These mice were analyzed for iron homeostasis, oxidative stress, mitochondrial biogenesis and activity, adaptive thermogenesis, insulin sensitivity, and metabolic measurements. Mouse embryonic fibroblasts and primary mouse adipocytes were used for in vitro experiments. RESULTS In FthAKO mice, the adipose iron homeostasis was disrupted, accompanied by elevated expression of adipokines, dramatically induced heme oxygenase 1(Hmox1) expression, and a notable decrease in the mitochondrial ROS level. Cytosolic ROS elevation in the adipose tissue of FthAKO mice was very mild, and we only observed this in the brown adipose tissue (BAT) but not in the white adipose tissue (WAT). FthAKO mice presented an altered metabolic profile and showed increased insulin sensitivity, glucose tolerance, and improved adaptive thermogenesis. Interestingly, loss of ferritin resulted in enhanced mitochondrial respiration capacity and a preference for lipid metabolism. CONCLUSIONS These findings indicate that ferritin in adipocytes is indispensable to intracellular iron homeostasis and regulates systemic lipid and glucose metabolism.
Collapse
Affiliation(s)
- Binyu Lu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shanshan Guo
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jialin Zhao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoting Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bing Zhou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
24
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
25
|
Fan W, Xu Z, Zhang J, Guan M, Zheng Y, Wang Y, Wu H, Su W, Li P. Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155256. [PMID: 38181527 DOI: 10.1016/j.phymed.2023.155256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alveolar macrophages are one of the momentous regulators in pulmonary inflammatory responses, which can secrete extracellular vesicles (EVs) packing miRNAs. Ferroptosis, an iron-dependent cell death, is associated with cigarette smoke-induced lung injury, and EVs have been reported to regulate ferroptosis by transporting intracellular iron. However, the regulatory mechanism of alveolar macrophage-derived EVs has not been clearly illuminated in smoking-related pulmonary ferroptosis. Despite the known anti-ferroptosis effects of naringenin in lung injury, whether naringenin controls EVs-mediated ferroptosis has not yet been explored. PURPOSE We explore the effects of EVs from cigarette smoke-stimulated alveolar macrophages in lung epithelial ferroptosis, and elucidate the EV miRNA-mediated pharmacological mechanism of naringenin. STUDY DESIGN AND METHODS Differential and ultracentrifugation were conducted to extract EVs from different alveolar macrophages treatment groups in vitro. Both intratracheal instilled mice and treated epithelial cells were used to investigate the roles of EVs from alveolar macrophages involved in ferroptosis. Small RNA sequencing analysis was performed to distinguish altered miRNAs in EVs. The ferroptotic effects of EV miRNAs were examined by applying dual-Luciferase reporter assay and miRNA inhibitor transfection experiment. RESULTS Here, we firstly reported that EVs from cigarette smoke extract-induced alveolar macrophages (CSE-EVs) provoked pulmonary epithelial ferroptosis. The ferroptosis inhibitor ferrostatin-1 treatment reversed these changes in vitro. Moreover, EVs from naringenin and CSE co-treated alveolar macrophages (CSE+Naringenin-EVs) markedly attenuated the lung epithelial ferroptosis compared with CSE-EVs. Notably, we identified miR-23a-3p as the most dramatically changed miRNA among Normal-EVs, CSE-EVs, and CSE+Naringenin-EVs. Further experimental investigation showed that ACSL4, a pro-ferroptotic gene leading to lipid peroxidation, was negatively regulated by miR-23a-3p. The inhibition of miR-23a-3p diminished the efficacy of CSE+Naringenin-EVs. CONCLUSION Our findings firstly provided evidence that naringenin elevated the EV miR-23a-3p level from CSE-induced alveolar macrophages, thereby inhibiting the mouse lung epithelial ferroptosis via targeting ACSL4, and further complemented the mechanism of cigarette-induced lung injury and the protection of naringenin in a paracrine manner. The administration of miR-23a-3p-enriched EVs has the potential to ameliorate pulmonary ferroptosis.
Collapse
Affiliation(s)
- Weiyang Fan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziyan Xu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiashuo Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minyi Guan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuying Zheng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
26
|
Zhu X, Shen A, Li N, Feng S, Tang T, Zhang Y, Jing J, Zhong X, Xie L, Huang S, Liu B, Lv L. Identification of stable reference genes for relative quantification of long RNA expression in urinary extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e136. [PMID: 38938675 PMCID: PMC11080903 DOI: 10.1002/jex2.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 06/29/2024]
Abstract
Urinary extracellular vesicles (uEVs) are rich in valuable biomolecule information which are increasingly recognized as potential biomarkers for various diseases. uEV long RNAs are among the critical cargos capable of providing unique transcriptome information of the source cells. However, consensus regarding ideal reference genes for relative long RNAs quantification in uEVs is not available as of date. Here we explored stable reference genes through profiling the long RNA expression by RNA-seq following unsupervised analysis and validation studies. Candidate reference genes were identified using four algorithms: NormFinder, GeNorm, BestKeeper and the Delta Ct method, followed by validation. RNA profile showed uEVs contained abundant long RNAs information and the core transcriptome was related to cellular structures, especially ribosome which functions mainly as translation, protein and RNA binding molecules. Analysis of RNA-seq data identified RPL18A, RPL11, RPL27, RACK1, RPSA, RPL41, H1-2, RPL4, GAPDH, RPS27A as candidate reference genes. RT-qPCR validation revealed that RPL41, RPSA and RPL18A were reliable reference genes for long RNA quantification in uEVs from patients with diabetes mellitus (DM), diabetic nephropathy (DN), IgA nephropathy (IgAN) and prostate cancer (PCA). Interestingly, RPL41 also outperformed traditional reference genes in renal tissues of DN and IgAN, as well as in plasma EVs of several types of cancers. The stable reference genes identified in this study may facilitate development of uEVs as novel biomarkers and increase the accuracy and comparability of biomarker studies.
Collapse
Affiliation(s)
- Xiao‐Xiao Zhu
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - An‐Ran Shen
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Ning Li
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Song‐Tao Feng
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Tao‐Tao Tang
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Yue Zhang
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Jing Jing
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Xin Zhong
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Li‐Jun Xie
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Sheng‐Lin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Bi‐Cheng Liu
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| | - Lin‐Li Lv
- Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina
| |
Collapse
|
27
|
Fonseca Ó, Ramos AS, Gomes LTS, Gomes MS, Moreira AC. New Perspectives on Circulating Ferritin: Its Role in Health and Disease. Molecules 2023; 28:7707. [PMID: 38067440 PMCID: PMC10708148 DOI: 10.3390/molecules28237707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The diagnosis of iron disturbances usually includes the evaluation of serum parameters. Serum iron is assumed to be entirely bound to transferrin, and transferrin saturation-the ratio between the serum iron concentration and serum transferrin-usually reflects iron availability. Additionally, serum ferritin is commonly used as a surrogate of tissue iron levels. Low serum ferritin values are interpreted as a sign of iron deficiency, and high values are the main indicator of pathological iron overload. However, in situations of inflammation, serum ferritin levels may be very high, independently of tissue iron levels. This presents a particularly puzzling challenge for the clinician evaluating the overall iron status of the patient in the presence of an inflammatory condition. The increase in serum ferritin during inflammation is one of the enigmas regarding iron metabolism. Neither the origin, the mechanism of release, nor the effects of serum ferritin are known. The use of serum ferritin as a biomarker of disease has been rising, and it has become increasingly diverse, but whether or not it contributes to controlling the disease or host pathology, and how it would do it, are important, open questions. These will be discussed here, where we spotlight circulating ferritin and revise the recent clinical and preclinical data regarding its role in health and disease.
Collapse
Affiliation(s)
- Óscar Fonseca
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
| | - Ana S. Ramos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
- FCUP—Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Leonor T. S. Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
- FCUP—Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C. Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (Ó.F.); (A.S.R.); (L.T.S.G.); (M.S.G.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
28
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
29
|
Yu X, Xiao Z, Xie J, Xu H. Ferritin Is Secreted from Primary Cultured Astrocyte in Response to Iron Treatment via TRPML1-Mediated Exocytosis. Cells 2023; 12:2519. [PMID: 37947597 PMCID: PMC10650167 DOI: 10.3390/cells12212519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Impaired iron homeostasis has been proven to be one of the critical contributors to the pathology of Parkinson's disease (PD). Ferritin is considered an intracellular protein responsible for storing cytosolic iron. Recent studies have found that ferritin can be secreted from cells independent of the classical endoplasmic reticulum-Golgi system. However, the precise mechanisms underlying the secretion of ferritin in the brain were not elucidated. In the present study, we demonstrated that the primary cultured astrocytes do have the ability to secrete ferritin, which is enhanced by iron treatment. Increased ferritin secretion was accompanied by increased protein expression of ferritin response to iron stimulation. Further study showed that iron-induced expression and secretion of ferritin could be inhibited by CQ or 3-MA pretreatment. In addition, the knockdown of transient receptor potential mucolipin 1 (TRPML1) antagonized iron-induced ferritin secretion, accompanied by further increased intracellular protein levels of ferritin. Further study demonstrated that ferritin colocalized with LAMP1 in iron-treated astrocytes. On the contrary, ras-associated protein 27a (Rab27a) knockdown further enhanced iron-induced ferritin secretion and decreased intracellular protein levels of ferritin. Furthermore, we also showed that the secretory autophagy protein tripartite motif containing 16 (TRIM16) and sec22b decreased in iron-treated astrocytes. These results suggested that astrocytes might secrete ferritin via TRPML1-mediated exocytosis. This provides new evidence for the mechanisms underlying the secretion of ferritin in primary cultured astrocytes under a high iron environment.
Collapse
Affiliation(s)
- Xiaoqi Yu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zhixin Xiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| |
Collapse
|
30
|
Abstract
Iron accumulation in the CNS occurs in many neurological disorders. It can contribute to neuropathology as iron is a redox-active metal that can generate free radicals. The reasons for the iron buildup in these conditions are varied and depend on which aspects of iron influx, efflux, or sequestration that help maintain iron homeostasis are dysregulated. Iron was shown recently to induce cell death and damage via lipid peroxidation under conditions in which there is deficient glutathione-dependent antioxidant defense. This form of cell death is called ferroptosis. Iron chelation has had limited success in the treatment of neurological disease. There is therefore much interest in ferroptosis as it potentially offers new drugs that could be more effective in reducing iron-mediated lipid peroxidation within the lipid-rich environment of the CNS. In this review, we focus on the molecular mechanisms that induce ferroptosis. We also address how iron enters and leaves the CNS, as well as the evidence for ferroptosis in several neurological disorders. Finally, we highlight biomarkers of ferroptosis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Priya Jhelum
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
31
|
Chen ZT, Pan CZ, Ruan XL, Lei LP, Lin SM, Wang YZ, Zhao ZH. Evaluation of ferritin and TfR level in plasma neural-derived exosomes as potential markers of Parkinson's disease. Front Aging Neurosci 2023; 15:1216905. [PMID: 37794977 PMCID: PMC10546046 DOI: 10.3389/fnagi.2023.1216905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Early diagnosis of Parkinson's disease (PD) remains challenging. It has been suggested that abnormal brain iron metabolism leads to excessive iron accumulation in PD, although the mechanism of iron deposition is not yet fully understood. Ferritin and transferrin receptor (TfR) are involved in iron metabolism, and the exosome pathway is one mechanism by which ferritin is transported and regulated. While the blood of healthy animals contains a plentiful supply of TfR-positive exosomes, no studies have examined ferritin and TfR in plasma neural-derived exosomes. Methods Plasma exosomes were obtained from 43 patients with PD and 34 healthy controls. Neural-derived exosomes were isolated with anti-human L1CAM antibody immunoabsorption. Transmission electron microscopy and western blotting were used to identify the exosomes. ELISAs were used to quantify ferritin and TfR levels in plasma neural-derived exosomes of patients with PD and controls. Receivers operating characteristic (ROC) curves were applied to map the diagnostic accuracy of ferritin and TfR. Independent predictors of the disease were identified using logistic regression models. Results Neural-derived exosomes exhibited the typical exosomal morphology and expressed the specific exosome marker CD63. Ferritin and TfR levels in plasma neural-derived exosomes were significantly higher in patients with PD than controls (406.46 ± 241.86 vs. 245.62 ± 165.47 ng/μg, P = 0.001 and 1728.94 ± 766.71 vs. 1153.92 ± 539.30 ng/μg, P < 0.001, respectively). There were significant positive correlations between ferritin and TfR levels in plasma neural-derived exosomes in control group, PD group and all the individuals (rs = 0.744, 0.700, and 0.752, respectively). The level of TfR was independently associated with the disease (adjusted odds ratio 1.002; 95% CI 1.000-1.003). ROC performances of ferritin, TfR, and their combination were moderate (0.730, 0.812, and 0.808, respectively). However, no relationship was found between the biomarkers and disease progression. Conclusion It is hypothesized that ferritin and TfR in plasma neural-derived exosomes may be potential biomarkers for PD, and that they may participate in the mechanism of excessive iron deposition in PD.
Collapse
Affiliation(s)
- Zhi-ting Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chu-zhui Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xing-lin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Li-ping Lei
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Sheng-mei Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yin-zhou Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Zhen-Hua Zhao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
32
|
Yanatori I, Kishi F, Toyokuni S. New iron export pathways acting via holo-ferritin secretion. Arch Biochem Biophys 2023; 746:109737. [PMID: 37683905 DOI: 10.1016/j.abb.2023.109737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Ferritin is a spherical nanocage protein for iron storage, composed of 24 light- or heavy-polypeptide chain subunits. A single ferritin molecule can carry up to 4500 iron atoms in its core, which plays an important role in suppressing intracellular iron toxicity. Serum ferritin levels are used as a marker for the total amount of iron stored in the body. Most serum ferritin is iron-free (apo-ferritin) and it is unclear how ferritin is released from cells. Ferritin is secreted into serum via extracellular vesicles (EVs) or the secretory autophagy pathway but not via the classical endoplasmic reticulum (ER)-to-Golgi secretion pathway. We recently discovered that the level of tetraspanin CD63, a common EV marker, is post-transcriptionally regulated by the intracellular iron level and both CD63 and ferritin expression is induced by iron loading. Ferritin is incorporated into CD63(+)-EVs through the ferritin-specific autophagy adapter molecule, NCOA4, and then secreted from cells. EV production differs drastically depending on cell type and physiological conditions. Extracellular matrix detached cells express pentaspanin prominin 2 and prominin 2(+)-EVs secrete ferritin independently of NCOA4 trafficking. Ferritin is tightly bound to iron in EVs and functions as an iron-carrier protein in the extracellular environment. Cells can suppress ferroptosis by secreting holo-ferritin, which reduces intracellular iron concentration. However, this exposes the neighboring cells receiving the secreted holo-ferritin to a large excess of iron. This results in cellular toxicity through increased generation of reactive oxygen species (ROS). Here we review the machinery by which ferritin is incorporated into EVs and its role as an intercellular communication molecule.
Collapse
Affiliation(s)
- Izumi Yanatori
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Fumio Kishi
- Kenjinkai Healthcare Corporation, Yamaguchi, 757-0001, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
33
|
Zhang JB, Jia X, Cao Q, Chen YT, Tong J, Lu GD, Li DJ, Han T, Zhuang CL, Wang P. Ferroptosis-Regulated Cell Death as a Therapeutic Strategy for Neurodegenerative Diseases: Current Status and Future Prospects. ACS Chem Neurosci 2023; 14:2995-3012. [PMID: 37579022 DOI: 10.1021/acschemneuro.3c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis is increasingly being recognized as a key element in the pathogenesis of diverse diseases. Recent studies have highlighted the intricate links between iron metabolism and neurodegenerative disorders. Emerging evidence suggests that iron homeostasis, oxidative stress, and neuroinflammation all contribute to the regulation of both ferroptosis and neuronal health. However, the precise molecular mechanisms underlying the involvement of ferroptosis in the pathological processes of neurodegeneration and its impact on neuronal dysfunction remain incompletely understood. In our Review, we provide a comprehensive analysis and summary of the potential molecular mechanisms underlying ferroptosis in neurodegenerative diseases, aiming to elucidate the disease progression of neurodegeneration. Additionally, we discuss potential therapeutic agents that modulate ferroptosis with the goal of identifying novel drug molecules for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jia-Bao Zhang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chao Yang Hospital, Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Qi Cao
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Yi-Ting Chen
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guo-Dong Lu
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Han
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chun-Lin Zhuang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
34
|
Xie Y, Zhou Y, Wang J, Du L, Ren Y, Liu F. Ferroptosis, autophagy, tumor and immunity. Heliyon 2023; 9:e19799. [PMID: 37810047 PMCID: PMC10559173 DOI: 10.1016/j.heliyon.2023.e19799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Ferroptosis was first proposed in 2012, a new form of cell death. Autophagy plays a crucial role in cell clearance and maintaining homeostasis. Autophagy is involved in the initial step of ferroptosis under the action of histone elements such as NCOA4, RAB7A, and BECN1. Ferroptosis and autophagy are involved in tumor progression, treatment, and drug resistance in the tumor microenvironment. In this review, we described the mechanisms of ferroptosis, autophagy, and tumor and immunotherapy, respectively, and emphasized the relationship between autophagy-related ferroptosis and tumor.
Collapse
Affiliation(s)
| | | | - Jiale Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lijuan Du
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yuanyuan Ren
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
35
|
Pandya Shesh B, Slagle-Webb B, Shenoy G, Khristov V, Zacharia BE, Connor JR. Uptake of H-ferritin by Glioblastoma stem cells and its impact on their invasion capacity. J Cancer Res Clin Oncol 2023; 149:9691-9703. [PMID: 37237166 PMCID: PMC11628165 DOI: 10.1007/s00432-023-04864-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Iron acquisition is key to maintaining cell survival and function. Cancer cells in general are considered to have an insatiable iron need. Iron delivery via the transferrin/transferrin receptor pathway has been the canonical iron uptake mechanism. Recently, however, our laboratory and others have explored the ability of ferritin, particularly the H-subunit, to deliver iron to a variety of cell types. Here, we investigate whether Glioblastoma (GBM) initiating cells (GICs), a small population of stem-like cells, are known for their iron addiction and invasive nature acquire exogenous ferritin, as a source of iron. We further assess the functional impact of ferritin uptake on the invasion capacity of the GICs. METHODS To establish that H-ferritin can bind to human GBM, tissue-binding assays were performed on samples collected at the time of surgery. To interrogate the functional consequences of H-ferritin uptake, we utilized two patient-derived GIC lines. We further describe H-ferritin's impact on GIC invasion capacity using a 3D invasion assay. RESULTS H-ferritin bound to human GBM tissue at the amount of binding was influenced by sex. GIC lines showed uptake of H-ferritin protein via transferrin receptor. FTH1 uptake correlated with a significant decrease in the invasion capacity of the cells. H-ferritin uptake was associated with a significant decrease in the invasion-related protein Rap1A. CONCLUSION These findings indicate that extracellular H-ferritin participates in iron acquisition to GBMs and patient-derived GICs. The functional significance of the increased iron delivery by H-ferritin is a decreased invasion capacity of GICs potentially via reduction of Rap1A protein levels.
Collapse
Affiliation(s)
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Vladimir Khristov
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
36
|
Wang X, Tan X, Zhang J, Wu J, Shi H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun Signal 2023; 21:200. [PMID: 37580745 PMCID: PMC10424420 DOI: 10.1186/s12964-023-01170-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/20/2023] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis, a newform of programmed cell death, driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes and is extremely dependent on iron ions, which is differs characteristics from traditional cell death has attracted greater attention. Based on the curiosity of this new form of regulated cell death, there has a tremendous progress in the field of mechanistic understanding of ferroptosis recent years. Ferroptosis is closely associated with the development of many diseases and involved in many diseases related signaling pathways. Not only a variety of oncoproteins and tumor suppressors can regulate ferroptosis, but multiple oncogenic signaling pathways can also have a regulatory effect on ferroptosis. Ferroptosis results in the accumulation of large amounts of lipid peroxides thus involving the onset of oxidative stress and energy stress responses. The MAPK pathway plays a critical role in oxidative stress and AMPK acts as a sensor of cellular energy and is involved in the regulation of the energy stress response. Moreover, activation of AMPK can induce the occurrence of autophagy-dependent ferroptosis and p53-activated ferroptosis. In recent years, there have been new advances in the study of molecular mechanisms related to the regulation of ferroptosis by both pathways. In this review, we will summarize the molecular mechanisms by which the MAPK-AMPK signaling pathway regulates ferroptosis. Meanwhile, we sorted out the mysterious relationship between MAPK and AMPK, described the crosstalk among ferroptosis and MAPK-AMPK signaling pathways, and summarized the relevant ferroptosis inducers targeting this regulatory network. This will provide a new field for future research on ferroptosis mechanisms and provide a new vision for cancer treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Jinping Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Jiaping Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hongjuan Shi
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
37
|
Monfrini E, Pelucchi S, Hollmén M, Viitala M, Mariani R, Bertola F, Majore S, Di Fonzo A, Piperno A. A form of inherited hyperferritinemia associated with bi-allelic pathogenic variants of STAB1. Am J Hum Genet 2023; 110:1436-1443. [PMID: 37490907 PMCID: PMC10432174 DOI: 10.1016/j.ajhg.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
Hyperferritinemia is a frequent finding in several conditions, both genetic and acquired. We previously studied eleven healthy subjects from eight different families presenting with unexplained hyperferritinemia. Their findings suggested the existence of an autosomal-recessive disorder. We carried out whole-exome sequencing to detect the genetic cause of hyperferritinemia. Immunohistochemistry and flow cytometry assays were performed on liver biopsies and monocyte-macrophages to confirm the pathogenic role of the identified candidate variants. Through a combined approach of whole-exome sequencing and homozygosity mapping, we found bi-allelic STAB1 variants in ten subjects from seven families. STAB1 encodes the multifunctional scavenger receptor stabilin-1. Immunohistochemistry and flow cytometry analyses showed absent or markedly reduced stabilin-1 in liver samples, monocytes, and monocyte-derived macrophages. Our findings show a strong association between otherwise unexplained hyperferritinemia and bi-allelic STAB1 mutations suggesting the existence of another genetic cause of hyperferritinemia without iron overload and an unexpected function of stabilin-1 in ferritin metabolism.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy; Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milano, Italy
| | - Sara Pelucchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES flagship, University of Turku, Turku, Finland
| | - Miro Viitala
- MediCity Research Laboratory and InFLAMES flagship, University of Turku, Turku, Finland
| | - Raffaella Mariani
- Centre for Rare Disease - Disorders of Iron Metabolism, Fondazione IRCCS, San Gerardo dei Tintori, European Reference Network - EuroBloodNet, Monza, Italy
| | - Francesca Bertola
- Cytogenetics and Medical Genetics, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - Silvia Majore
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Roma, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milano, Italy
| | - Alberto Piperno
- Centre for Rare Disease - Disorders of Iron Metabolism, Fondazione IRCCS, San Gerardo dei Tintori, European Reference Network - EuroBloodNet, Monza, Italy; Centro Ricerca Tettamanti, Monza, Italy.
| |
Collapse
|
38
|
Yanatori I, Nishina S, Kishi F, Hino K. Newly uncovered biochemical and functional aspects of ferritin. FASEB J 2023; 37:e23095. [PMID: 37440196 DOI: 10.1096/fj.202300918r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Iron homeostasis is strictly regulated at both the systemic and cellular levels by complex mechanisms because of its indispensability and toxicity. Among the various iron-regulatory proteins, ferritin is the earliest discovered regulator of iron metabolism and is a molecule that safely retains excess intracellular iron in the cores of its shells. Two types of ferritin, cytosolic ferritin and mitochondrial ferritin (FTMT), have been identified in a range of organisms from plants to humans. FTMT was identified approximately 60 years after the discovery of cytosolic ferritin. Cytosolic ferritin expression is regulated in an iron-responsive manner. Recently, the molecular mechanisms of iron-dependent degradation of cytosolic ferritin or its secretion into serum have been clarified. FTMT, which shares a high degree of sequence homology with cytosolic ferritin, has distinct functions and is regulated in different ways from cytosolic ferritin. Although knowledge of the physiological role of FTMT is still incomplete, recent studies have shed light on the function and regulation of FTMT. The accumulating biological evidence of both ferritins has made it possible to deepen our knowledge about iron metabolism and its significance in diseases. In this review, we discuss the biological properties of both ferritins, focusing on their newly uncovered behaviors.
Collapse
Affiliation(s)
- Izumi Yanatori
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sohji Nishina
- Department of Gastroenterology, Kawasaki Medical School, Kurashiki, Japan
| | - Fumio Kishi
- Kenjinkai Healthcare Corporation, Sanyo-Onoda, Japan
| | - Keisuke Hino
- Department of Gastroenterology, Kawasaki Medical School, Kurashiki, Japan
- Digestive Disease Center, Shunan Memorial Hospital, Kudamatsu, Japan
| |
Collapse
|
39
|
Crescenzi E, Leonardi A, Pacifico F. Iron Metabolism in Cancer and Senescence: A Cellular Perspective. BIOLOGY 2023; 12:989. [PMID: 37508419 PMCID: PMC10376531 DOI: 10.3390/biology12070989] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Iron participates in a number of biological processes and plays a crucial role in cellular homeostasis. Alterations in iron metabolism are considered hallmarks of cancer and drivers of aggressive behaviors, such as uncontrolled proliferation, resistance to apoptosis, enhanced metastatic ability, increased cell plasticity and stemness. Furthermore, a dysregulated iron metabolism has been associated with the development of an adverse tumor microenvironment. Alterations in iron metabolism have been described in cellular senescence and in aging. For instance, iron has been shown to accumulate in aged tissues and in age-related diseases. Furthermore, in vitro studies demonstrate increases in iron content in both replicative and stress-induced senescent cells. However, the role, the mechanisms of regulation and dysregulation and the effects of iron metabolism on senescence remain significantly less characterized. In this review, we first provide an overview of iron metabolism and iron regulatory proteins. Then, we summarize alterations in iron homeostasis in cancer and senescence from a cellular point of view.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
40
|
Shesh BP, Connor JR. A novel view of ferritin in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188917. [PMID: 37209958 PMCID: PMC10330744 DOI: 10.1016/j.bbcan.2023.188917] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.
Collapse
Affiliation(s)
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
41
|
Wang H, Wang ZL, Zhang S, Kong DJ, Yang RN, Cao L, Wang JX, Yoshida S, Song ZL, Liu T, Fan SL, Ren JS, Li JH, Shen ZY, Zheng H. Metronomic capecitabine inhibits liver transplant rejection in rats by triggering recipients’ T cell ferroptosis. World J Gastroenterol 2023; 29:3084-3102. [PMID: 37346150 PMCID: PMC10280797 DOI: 10.3748/wjg.v29.i20.3084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/19/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Capecitabine (CAP) is a classic antimetabolic drug and has shown potential antirejection effects after liver transplantation (LT) in clinical studies. Our previous study showed that metronomic CAP can cause the programmed death of T cells by inducing oxidative stress in healthy mice. Ferroptosis, a newly defined non-apoptotic cell death that occurs in response to iron overload and lethal levels of lipid peroxidation, is an important mechanism by which CAP induces cell death. Therefore, ferroptosis may also play an important role in CAP-induced T cell death and play an immunosuppressive role in acute rejection after trans-plantation.
AIM To investigate the functions and underlying mechanisms of antirejection effects of metronomic CAP.
METHODS A rat LT model of acute rejection was established, and the effect of metronomic CAP on splenic hematopoietic function and acute graft rejection was evaluated 7 d after LT. In vitro, primary CD3+ T cells were sorted from rat spleens and human peripheral blood, and co-cultured with or without 5-fluorouracil (5-FU) (active agent of CAP). The levels of ferroptosis-related proteins, ferrous ion concentration, and oxidative stress-related indicators were observed. The changes in mito-chondrial structure were observed using electron microscopy.
RESULTS With no significant myelotoxicity, metronomic CAP alleviated graft injury (Banff score 9 vs 7.333, P < 0.001), prolonged the survival time of the recipient rats (11.5 d vs 16 d, P < 0.01), and reduced the infiltration rate of CD3+ T cells in peripheral blood (6.859 vs 3.735, P < 0.001), liver graft (7.459 vs 3.432, P < 0.001), and spleen (26.92 vs 12.9, P < 0.001), thereby inhibiting acute rejection after LT. In vitro, 5-FU, an end product of CAP metabolism, induced the degradation of the ferritin heavy chain by upregulating nuclear receptor coactivator 4, which caused the accumulation of ferrous ions. It also inhibited nuclear erythroid 2 p45-related factor 2, heme oxygenase-1, and glutathione peroxidase 4, eventually leading to oxidative damage and ferroptosis of T cells.
CONCLUSION Metronomic CAP can suppress acute allograft rejection in rats by triggering CD3+ T cell ferroptosis, which makes it an effective immunosuppressive agent after LT.
Collapse
Affiliation(s)
- Hao Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin 300190, China
| | - Zheng-Lu Wang
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300190, China
| | - Sai Zhang
- School of Medicine, Nankai University, Tianjin 300190, China
| | - De-Jun Kong
- School of Medicine, Nankai University, Tianjin 300190, China
| | - Rui-Ning Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin 300190, China
| | - Lei Cao
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jian-Xi Wang
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sei Yoshida
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
| | - Zhuo-Lun Song
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
| | - Tao Liu
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300071, China
| | - Shun-Li Fan
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
| | - Jia-Shu Ren
- The First Central Clinical School, Tianjin Medical University, Tianjin 300190, China
| | - Jiang-Hong Li
- The First Central Clinical School, Tianjin Medical University, Tianjin 300190, China
| | - Zhong-Yang Shen
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300190, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300071, China
| | - Hong Zheng
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300190, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300071, China
| |
Collapse
|
42
|
Xu Z, Wang Y, Sun M, Zhou Y, Cao J, Zhang H, Xuan X, Zhou J. Proteomic analysis of extracellular vesicles from tick hemolymph and uptake of extracellular vesicles by salivary glands and ovary cells. Parasit Vectors 2023; 16:125. [PMID: 37046327 PMCID: PMC10100430 DOI: 10.1186/s13071-023-05753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that are important mediators of intercellular communication. Arthropods transport nutrients, signaling molecules, waste and immune factors to all areas of the body via the hemolymph. Little is known about tick hemolymph EVs. METHODS Hemolymph was collected from partially fed Rhipicephalus haemaphysaloides and Hyalomma asiaticum ticks by making an incision with a sterile scalpel in the middle (between the femur and metatarsus) of the first pair of legs, which is known as leg amputation. EVs were isolated from hemolymph by differential centrifugation and characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Proteins extracted from the hemolymph EVs were analyzed by 4D label-free proteomics. The EVs were also examined by western blot and immuno-electron microscopy analysis. Intracellular incorporation of PHK26-labeled EVs was tested by adding labeled EVs to tick salivary glands and ovaries, followed by fluorescence microscopy. RESULTS In this study, 149 and 273 proteins were identified by 4D label-free proteomics in R. haemaphysaloides and H. asiaticum hemolymph EVs, respectively. TEM and NTA revealed that the sizes of the hemolymph EVs from R. haemaphysaloides and H. asiaticum were 133 and 138 nm, respectively. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses of identified proteins revealed pathways related to binding, catalytic and transporter activity, translation, transport and catabolism, signal transduction and cellular community. The key EV marker proteins RhCD9, RhTSG101, Rh14-3-3 and RhGAPDH were identified using proteomics and western blot. The presence of RhFerritin-2 in tick hemolymph EVs was confirmed by western blot and immuno-electron microscopy. We demonstrated that PKH26-labeled hemolymph EVs are internalized by tick salivary glands and ovary cells in vitro. CONCLUSIONS The results suggest that tick EVs are secreted into, and circulated by, the hemolymph. EVs may play roles in the regulation of tick development, metabolism and reproduction.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Meng Sun
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
43
|
Abstract
Iron overload remains a lethal complication of β-thalassemia and other anemias caused by ineffective erythropoiesis. This review discusses the pathogenetic mechanisms of iron overload in thalassemia, at organismal, cellular, and molecular levels.
Collapse
Affiliation(s)
- Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA.
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
| |
Collapse
|
44
|
Chen H, Tang Y. Iron-loaded extracellular vesicles: angel or demon? Free Radic Res 2023; 57:61-68. [PMID: 36927327 DOI: 10.1080/10715762.2023.2191813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Extracellular vesicles (EVs) are identified as a non-classical way to mediate iron efflux except ferroportin. Interestingly, recent studies indicated that EVs pathway is a novel way involved in iron efflux. Mitochondria-derived vesicles (MDVs) are the potential mediator to load mitochondrial iron into EVs. Additionally, iron-replete cells resist excess iron-induced damage by secreting iron-loaded EVs, and the uptake of these EVs induces oxidative damage in the recipient cell. Importantly, iron-loaded EVs play a key role in aberrant iron distribution, which drives the progress of diseases like nonalcoholic fatty liver disease (NAFLD) and neurodegenerative diseases. Herein, we summarize extant research on intracellular iron export with an emphasis on EVs and put our eyes on the relationship between iron-loaded EVs with both parent and target cells. Iron-loaded EVs will be an important avenue for later research on their vital role in iron redistribution.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
46
|
Hereditary Hyperferritinemia. Int J Mol Sci 2023; 24:ijms24032560. [PMID: 36768886 PMCID: PMC9917042 DOI: 10.3390/ijms24032560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Ferritin is a ubiquitous protein that is present in most tissues as a cytosolic protein. The major and common role of ferritin is to bind Fe2+, oxidize it and sequester it in a safe form in the cell, and to release iron according to cellular needs. Ferritin is also present at a considerably low proportion in normal mammalian sera and is relatively iron poor compared to tissues. Serum ferritin might provide a useful and convenient method of assessing the status of iron storage, and its measurement has become a routine laboratory test. However, many additional factors, including inflammation, infection, metabolic abnormalities, and malignancy-all of which may elevate serum ferritin-complicate interpretation of this value. Despite this long history of clinical use, fundamental aspects of the biology of serum ferritin are still unclear. According to the high number of factors involved in regulation of ferritin synthesis, secretion, and uptake, and in its central role in iron metabolism, hyperferritinemia is a relatively common finding in clinical practice and is found in a large spectrum of conditions, both genetic and acquired, associated or not with iron overload. The diagnostic strategy to reveal the cause of hyperferritinemia includes family and personal medical history, biochemical and genetic tests, and evaluation of liver iron by direct or indirect methods. This review is focused on the forms of inherited hyperferritinemia with or without iron overload presenting with normal transferrin saturation, as well as a step-by-step approach to distinguish these forms to the acquired forms, common and rare, of isolated hyperferritinemia.
Collapse
|
47
|
Palsa K, Connor JR, Flanagan J, Hines EA. H-ferritin in sows' colostrum- and milk-derived extracellular vesicles: a novel iron delivery concept. J Anim Sci 2023; 101:skad013. [PMID: 36629252 PMCID: PMC9910394 DOI: 10.1093/jas/skad013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Iron deficiency anemia is a significant problem in piglets, as they are born with insufficient iron stores for supporting their rapid body growth. Further, sows' milk contains inadequate iron levels for meeting the demands of piglet rapid growth in the pre-wean stage. The forms of iron present in the milk are essential to understanding bioavailability and potential routes for supplementing iron to mitigate iron deficiency anemia in piglets. Recently, our studies showed that H-ferritin (FTH1) is involved in iron transport to different tissues and can be used as an oral iron supplement to correct iron deficiency in rats and monkeys. In this study, we investigate the FTH1 levels in colostrum and milk in Yorkshires-crossbred sows (n = 27) and collected samples at the 1st, 15th, and 28th days of lactation to measure FTH1. Colostrum and milk were found to have FTH1, but there is no significant difference between the different days of lactation. FTH1 has been observed to be enriched in extracellular vesicles (EVs) of other species, and therefore examined the EVs in the samples. Colostrum-derived EVs were enriched with L-ferritin compared to FTH1, while in milk-derived EVs, only FTH1 was detected (P = 0.04). In milk-derived EVs, FTH1 was significantly higher (P = 0.021; P = 006) than FTH1 in colostrum-derived EVs. Furthermore, FTH1 levels of milk-derived EVs were significantly higher (P = 0.0002; P = 0004) than whole milk and colostrum FTH1. These results indicate that FTH1 is enriched in the milk-derived EVs and suggest that EVs play a predominant role in the FTH1 delivery mechanism for the piglet. The extent to which FTH1 in EVs accounts for the overall iron delivery mechanism in piglets is yet to be determined.
Collapse
Affiliation(s)
- Kondaiah Palsa
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - John Flanagan
- Department of Biochemistry and Molecular biology, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth A Hines
- Department of Animal Science, College of Agricultural Sciences, Penn State University, University Park, PA, USA
| |
Collapse
|
48
|
Fisher AL, Wang CY, Xu Y, Joachim K, Xiao X, Phillips S, Moschetta GA, Alfaro-Magallanes VM, Babitt JL. Functional role of endothelial transferrin receptor 1 in iron sensing and homeostasis. Am J Hematol 2022; 97:1548-1559. [PMID: 36069607 PMCID: PMC9662186 DOI: 10.1002/ajh.26716] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023]
Abstract
Systemic iron homeostasis is regulated by the hepatic hormone hepcidin to balance meeting iron requirements while limiting toxicity from iron excess. Iron-mediated induction of bone morphogenetic protein (BMP) 6 is a central mechanism for regulating hepcidin production. Liver endothelial cells (LECs) are the main source of endogenous BMP6, but how they sense iron to modulate BMP6 transcription and thereby hepcidin is uncertain. Here, we investigate the role of endothelial cell transferrin receptor 1 (TFR1) in iron uptake, BMP6 regulation, and systemic iron homeostasis using primary LEC cultures and endothelial Tfrc (encoding TFR1) knockout mice. We show that intracellular iron regulates Bmp6 expression in a cell-autonomous manner, and TFR1 mediates iron uptake and Bmp6 expression by holo-transferrin in primary LEC cultures. In addition, endothelial Tfrc knockout mice exhibit altered iron homeostasis compared with littermate controls when fed a limited iron diet, as evidenced by increased liver iron and inappropriately low Bmp6 and hepcidin expression relative to liver iron. However, endothelial Tfrc knockout mice have a similar iron phenotype compared to littermate controls when fed an iron-rich standard diet. Finally, ferritin and non-transferrin bound iron (NTBI) are additional sources of iron that mediate Bmp6 induction in primary LEC cultures via TFR1-independent mechanisms. Together, our data demonstrate a minor functional role for endothelial cell TFR1 in iron uptake, BMP6 regulation, and hepatocyte hepcidin regulation under iron limiting conditions, and suggest that ferritin and/or NTBI uptake by other transporters have a dominant role when iron availability is high.
Collapse
Affiliation(s)
- Allison L Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chia-yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kole Joachim
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gillian A Moschetta
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Victor M Alfaro-Magallanes
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jodie L Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Yi S, Wang L, Wang H, Ho MS, Zhang S. Pathogenesis of α-Synuclein in Parkinson's Disease: From a Neuron-Glia Crosstalk Perspective. Int J Mol Sci 2022; 23:14753. [PMID: 36499080 PMCID: PMC9739123 DOI: 10.3390/ijms232314753] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. The classical behavioral defects of PD patients involve motor symptoms such as bradykinesia, tremor, and rigidity, as well as non-motor symptoms such as anosmia, depression, and cognitive impairment. Pathologically, the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the accumulation of α-synuclein (α-syn)-composed Lewy bodies (LBs) and Lewy neurites (LNs) are key hallmarks. Glia are more than mere bystanders that simply support neurons, they actively contribute to almost every aspect of neuronal development and function; glial dysregulation has been implicated in a series of neurodegenerative diseases including PD. Importantly, amounting evidence has added glial activation and neuroinflammation as new features of PD onset and progression. Thus, gaining a better understanding of glia, especially neuron-glia crosstalk, will not only provide insight into brain physiology events but also advance our knowledge of PD pathologies. This review addresses the current understanding of α-syn pathogenesis in PD, with a focus on neuron-glia crosstalk. Particularly, the transmission of α-syn between neurons and glia, α-syn-induced glial activation, and feedbacks of glial activation on DA neuron degeneration are thoroughly discussed. In addition, α-syn aggregation, iron deposition, and glial activation in regulating DA neuron ferroptosis in PD are covered. Lastly, we summarize the preclinical and clinical therapies, especially targeting glia, in PD treatments.
Collapse
Affiliation(s)
| | | | | | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
50
|
Bi D, Lin J, Luo X, Lin L, Tang X, Luo X, Lu Y, Huang X. Biochemical characteristics of patients with imported malaria. Front Cell Infect Microbiol 2022; 12:1008430. [DOI: 10.3389/fcimb.2022.1008430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
ObjectivesThis study aimed to investigate the clinical and biochemical profiles of patients with imported malaria infection between 1 January 2011 and 30 April 2022 and admitted to the Fourth People’s Hospital of Nanning.MethodsThis cohort study enrolled 170 patients with conformed imported malaria infection. The clinical and biochemical profiles of these participants were analyzed with malaria parasite clearance, and signs and symptoms related to malaria disappearance were defined as the primary outcome. A multivariable logistic regression model was used to evaluate the odds ratios (ORs) with 95% confidence intervals (CIs) for cerebral malaria. The Cox model was used to estimate the hazard ratios (HRs) with 95% CIs for parasite clearance.ResultsAdenosine deaminase and parasitemia were found to be independent risk factors for severe malaria in patients with imported malaria (OR = 1.0088, 95% CI: 1.0010–1.0167, p = 0.0272 and OR = 2.0700, 95% CI: 1.2584–3.4050, p = 0.0042, respectively). A 0.5–standard deviation (SD) increase of variation for urea (HR = 0.6714, 95% CI: 0.4911–0.9180), a 0.5-SD increase of variation for creatinine (HR = 0.4566, 95% CI: 0.2762–0.7548), a 0.25-SD increase of variation for albumin (HR = 0.4947, 95% CI: 0.3197–0.7653), a 0.25-SD increase of variation for hydroxybutyrate dehydrogenase (HR = 0.6129, 95% CI: 0.3995–0.9402), and a 1.0-SD increase of variation for ferritin (HR = 0.5887, 95% CI: 0.3799–0.9125) were associated with a higher risk for increased parasite clearance duration than a low-level change.ConclusionsAspartate aminotransferase, urea, creatinine, albumin, hydroxybutyrate dehydrogenase, and ferritin are useful biochemical indicators in routine clinical practice to evaluate prognosis for imported malaria.
Collapse
|