1
|
Baldo F, Erkens RGA, Mizuta M, Rogani G, Lucioni F, Bracaglia C, Foell D, Gattorno M, Jelusic M, Anton J, Brogan P, Canna S, Chandrakasan S, Cron RQ, De Benedetti F, Grom A, Heshin-Bekenstein M, Horne A, Khubchandani R, Ozen S, Quartier P, Ravelli A, Shimizu M, Schulert G, Scott C, Sinha R, Ruperto N, Swart JF, Vastert S, Minoia F. Current treatment in macrophage activation syndrome worldwide: a systematic literature review to inform the METAPHOR project. Rheumatology (Oxford) 2025; 64:32-44. [PMID: 39058514 DOI: 10.1093/rheumatology/keae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE To assess current treatment in macrophage activation syndrome (MAS) worldwide and to highlight any areas of major heterogeneity of practice. METHODS A systematic literature search was performed in both EMBASE and PubMed databases. Paper screening was done by two independent teams based on agreed criteria. Data extraction was standardized following the PICO framework. A panel of experts assessed paper validity, using the Joanna Briggs Institute appraisal tools and category of evidence (CoE) according to EULAR procedure. RESULTS Fifty-seven papers were finally included (80% retrospective case-series), describing 1148 patients with MAS: 889 systemic juvenile idiopathic arthritis (sJIA), 137 systemic lupus erythematosus (SLE), 69 Kawasaki disease (KD) and 53 other rheumatological conditions. Fourteen and 11 studies specified data on MAS associated to SLE and KD, respectively. All papers mentioned glucocorticoids (GCs), mostly methylprednisolone and prednisolone (90%); dexamethasone was used in 7% of patients. Ciclosporin was reported in a wide range of patients according to different cohorts. Anakinra was used in 179 MAS patients, with a favourable outcome in 83% of sJIA-MAS. Etoposide was described by 11 studies, mainly as part of HLH-94/04 protocol. Emapalumab was the only medication tested in a clinical trial in 14 sJIA-MAS, with 93% of MAS remission. Ruxolitinib was the most reported Janus kinase inhibitor in MAS. CONCLUSION High-dose GCs together with IL-1 and IFNγ inhibitors have shown efficacy in MAS, especially in sJIA-associated MAS. However, the global level of evidence on MAS treatment, especially in other conditions, is still poor and requires standardized studies to be confirmed.
Collapse
Affiliation(s)
- Francesco Baldo
- Pediatric Immuno-Rheumatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- ASST Gaetano Pini, Milan, Italy
| | - Remco G A Erkens
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mao Mizuta
- Department of Pediatric Rheumatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Greta Rogani
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Federica Lucioni
- Pediatric Immuno-Rheumatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Bracaglia
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Dirk Foell
- University Hospital Muenster, Muenster, Germany
| | - Marco Gattorno
- Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marija Jelusic
- University Hospital Centre Zagreb, University School of Medicine, Zagreb, Croatia
| | - Jordi Anton
- Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Paul Brogan
- Great Ormond Street Hospital for Children, London, UK
- University College London Institute of Child Health, London, UK
| | - Scott Canna
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Randy Q Cron
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Alexei Grom
- Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Merav Heshin-Bekenstein
- Dana Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - AnnaCarin Horne
- Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | | | - Seza Ozen
- Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Pierre Quartier
- Université Paris-Cité, Paris, France
- RAISE Reference Centre, Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Paris, France
| | - Angelo Ravelli
- Direzione Scientifica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Masaki Shimizu
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | - Nicolino Ruperto
- Gaslini Trial Centre/Servizio Sperimentazioni Cliniche Pediatriche, PRINTO, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Joost F Swart
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sebastiaan Vastert
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Francesca Minoia
- Pediatric Immuno-Rheumatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
De Matteis A, Bindoli S, De Benedetti F, Carmona L, Fautrel B, Mitrovic S. Systemic juvenile idiopathic arthritis and adult-onset Still's disease are the same disease: evidence from systematic reviews and meta-analyses informing the 2023 EULAR/PReS recommendations for the diagnosis and management of Still's disease. Ann Rheum Dis 2024; 83:1748-1761. [PMID: 39317414 DOI: 10.1136/ard-2024-225853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/12/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES To analyse the similarity in clinical manifestations and laboratory findings between systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD). METHODS Three systematic reviews (SR) were performed. One included cohort studies comparing sJIA versus AOSD that described clinical and biological manifestations with at least 20 patients in each group (SR1). The second identified studies of biomarkers in both diseases and their diagnostic performance (SR2). The last focused on diagnostic biomarkers for macrophage activation syndrome (MAS, SR3). Medline (PubMed), Embase and Cochrane Library were systematically searched. The risk of bias was assessed with an adapted form of the Hoy scale for prevalence studies in SR1 and the Quality Assessment of Diagnostic Accuracy Studies-2 in SR2 and SR3. We performed meta-analyses of proportions for the qualitative descriptors. RESULTS Eight studies were included in SR1 (n=1010 participants), 33 in SR2 and 10 in SR3. The pooled prevalence of clinical manifestations did not differ between sJIA and AOSD, except for myalgia, sore throat and weight loss, which were more frequent in AOSD than sJIA because they are likely ascertained incompletely in sJIA, especially in young children. Except for AA amyloidosis, more frequent in sJIA than AOSD, the prevalence of complications did not differ, nor did the prevalence of biological findings. Ferritin, S100 proteins and interleukin-18 (IL-18) were the most frequently used diagnostic biomarkers, with similar diagnostic performance. For MAS diagnosis, novel biomarkers such as IL-18, C-X-C motif ligand 9, adenosine deaminase 2 activity and activated T cells seemed promising. CONCLUSION Our results argue for a continuum between sJIA and AOSD. PROSPERO REGISTRATION NUMBER CRD42022374240 and CRD42024534021.
Collapse
Affiliation(s)
- Arianna De Matteis
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Sara Bindoli
- Rheumatology Unit, Department of Medicine-DIMED, Università degli Studi di Padova, Padova, Italy
| | | | - Loreto Carmona
- Instituto de Salud Musculoesquelética (INMUSC), Madrid, Spain
| | - Bruno Fautrel
- Sorbonne University - Department of Rheumatology, Pitié-Salpêtrière Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- CRI-IMIDIATE Clinical Research Network and ERN Rita, CEREMAIA Reference Center, CEREMAIA, Paris, France
- Pierre Louis Institute of Epidemiology and Public Health, INSERM UMR-S 1136, Paris, France
| | - Stéphane Mitrovic
- Sorbonne University - Department of Rheumatology, Pitié-Salpêtrière Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- CRI-IMIDIATE Clinical Research Network and ERN Rita, CEREMAIA Reference Center, CEREMAIA, Paris, France
| |
Collapse
|
3
|
Yang Y, Peng H, Wang J, Li F. New insights into CAR T-cell hematological toxicities: manifestations, mechanisms, and effective management strategies. Exp Hematol Oncol 2024; 13:110. [PMID: 39521987 PMCID: PMC11549815 DOI: 10.1186/s40164-024-00573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a highly efficacious treatment modality demonstrated to enhance outcomes in patients afflicted with malignancies, particularly those enduring relapsed or refractory hematological malignancies. However, the escalating adoption of CAR T-cell therapy has unveiled several life-threatening toxicities, notably cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), infections, and hematological toxicities (HTs), thereby hindering the broad implementation of CAR T-cell therapy. HTs encompass a spectrum of adverse effects, including cytopenias, hemophagocytic lymphohistiocytosis (HLH), coagulopathies, and B-cell aplasia. While our comprehension of the underlying mechanisms governing CRS and ICANS is advancing, the intricate pathophysiology of HTs remains inadequately elucidated. Such knowledge gaps may precipitate suboptimal therapeutic decisions, potentially culminating in substantial medical resource depletion and detriment to patients' quality of life. In this comprehensive review, based on recent updated findings, we delineate various mechanisms contributing to HTs subsequent to CAR T-cell therapy, explicate manifestations of HTs, and proffer strategic interventions to mitigate this relevant clinical challenge.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, Jiangxi, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Nigrovic PA. Macrophage Activation Syndrome. Arthritis Rheumatol 2024. [PMID: 39491365 DOI: 10.1002/art.43052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Macrophage activation syndrome (MAS) is a state of immune hyperactivation that can result in life-threatening multisystem end-organ dysfunction. Often termed a "cytokine storm," MAS occurs among the rheumatic diseases most typically in Still's disease but also in systemic lupus erythematosus and Kawasaki disease. MAS can also accompany infection, malignancy, and inborn errors of immunity. This review provides a practical, evidence-based guide to the understanding, recognition, and management of MAS in children and adults, with a primary focus on MAS complicating Still's disease.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Boston Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Maeser A, Biernacka-Zielinska M, Smolewska E. A MASsive attack: a pediatric case of macrophage activation syndrome complicated by DIC as an onset of systemic juvenile idiopathic arthritis successfully treated with anakinra and review of the literature. Rheumatol Int 2024; 44:2607-2612. [PMID: 38502236 DOI: 10.1007/s00296-024-05570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Macrophage activation syndrome (MAS) is one of the most severe complications of systemic juvenile idiopathic arthritis (sJIA). Around 10% of patients with sJIA exhibit systemic symptoms accompanied by macrophage activation syndrome (MAS), but it may occur subclinically in another 30-40%. In this article, we present a case of a 3-year-old girl diagnosed with sever MAS as an onset of sJIA complicated by disseminated intravascular coagulation (DIC). First symptoms of sJIA were observed about 5 months before setting the diagnose, and it was resembling urticaria. A comprehensive allergological diagnostics were conducted, but no cause for the skin changes was identified. A few weeks before admission to the hospital, the girl was presented with a high fever. During the hospital stay, viral, bacterial, and fungal infections were ruled out. However, the findings indicated significantly elevated markers of inflammation (ferritin, CRP, ESR) in the conducted tests. Meanwhile, swelling of the feet and ankle joints was also observed. Based on Ravelli criteria, we set the diagnosis of MAS in a course of sJIA. We implemented treatment with steroid pulses, followed by cyclosporine; however, her clinical condition did not improve. Despite intensive treatment, skin petechiae were observed twice, and laboratory tests revealed a very high INR along with an extremely low level of fibrinogen. The patient required multiple plasma transfusions and clotting factor administrations. Due to the severe condition of the girl, we initiated biological treatment with anakinra, after which the child's condition gradually improved. In this case, we want to present how dynamic and life-threatening the course of MAS can be. In the discussion, we are also comparing our approach and the applied treatment with the currently available knowledge.
Collapse
Affiliation(s)
- Anna Maeser
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland.
| | | | - Elzbieta Smolewska
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland
| |
Collapse
|
6
|
Beckett M, Spaner C, Goubran M, Wade J, Avina-Zubieta JA, Setiadi A, Tucker L, Shojania K, Au S, Mattman A, Lee AYY, Fajgenbaum DC, Chen LYC. CRP and sCD25 help distinguish between adult-onset Still's disease and HLH. Eur J Haematol 2024; 113:576-583. [PMID: 38984483 DOI: 10.1111/ejh.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Adult-onset Still's disease (AOSD) and secondary hemophagocytic lymphohistiocytosis (sHLH) are both hyperferritinemic cytokine storm syndromes that can be difficult to distinguish from each other in hospitalized patients. The objective of this study was to compare the inflammatory markers ferritin, D-dimer, C-reactive protein (CRP), and soluble CD25 (sCD25) in patients with AOSD and sHLH. These four markers were chosen as they are widely available and represent different aspects of inflammatory diseases: macrophage activation (ferritin); endothelialopathy (D-dimer); interleukin-1/interleukin-6/tumour necrosis factor elevation (CRP) and T cell activation (sCD25). METHODS This was a single-center retrospective study. Patients diagnosed by the Hematology service at Vancouver General Hospital for AOSD or sHLH from 2009 to 2023 were included. RESULTS There were 16 AOSD and 44 sHLH patients identified. Ferritin was lower in AOSD than HLH (median 11 360 μg/L vs. 29 020 μg/L, p = .01) while D-dimer was not significantly different (median 5310 mg/L FEU vs. 7000 mg/L FEU, p = .3). CRP was higher (median 168 mg/L vs. 71 mg/L, p <.01) and sCD25 was lower (median 2220 vs. 7280 U/mL, p = .004) in AOSD compared to HLH. The combined ROC curve using CRP >130 mg/L and sCD25< 3900 U/mL to distinguish AOSD from HLH had an area under the curve (AUC) of 0.94 (95% confidence interval 0.93-0.97) with sensitivity 91% and specificity 93%. CONCLUSIONS These findings suggest that simple, widely available laboratory tests such as CRP and sCD25 can help clinicians distinguish AOSD from HLH in acutely ill adults with extreme hyperferritinemia. Larger studies examining a wider range of clinically available inflammatory biomarkers in a more diverse set of cytokine storm syndromes are warranted.
Collapse
Affiliation(s)
- Madelaine Beckett
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Spaner
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mariam Goubran
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Wade
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Audi Setiadi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Division of Hematopathology, British Columbia Children's Hospital, Vancouver, Canada
| | - Lori Tucker
- Division of Pediatric Rheumatology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Kam Shojania
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Sheila Au
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Andre Mattman
- Division of Hematopathology, British Columbia Children's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Vancouver, Canada
| | - Agnes Y Y Lee
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - David C Fajgenbaum
- Center for Cytokine Storm Treatment & Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Luke Y C Chen
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Division of Hematology, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Mazzone RJ, Winsor NJ, Li LY, Barry KT, Ranger A, Goyal S, Meade JJ, Bruce J, Philpott DJ, Mogridge J, Girardin SE. NLRP1B allele 2 does not respond to Val-boro-Pro (VbP) in intestinal epithelial cells. Microbes Infect 2024; 26:105398. [PMID: 39047896 DOI: 10.1016/j.micinf.2024.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The intestinal mucosa must balance tolerance to commensal microbes and luminal antigens with rapid detection of enteric pathogens in order to maintain homeostasis. This balance is facilitated through the regulation of epithelial layer integrity by innate immune receptors. Certain NOD-like receptors (NLRs) expressed in intestinal epithelial cells, including NLRC4 and NLRP9B, form inflammasomes that protect against pathogens by activating caspase-1 to cause extrusion of infected cells. NLRP1B is a murine NLR encoded by five alleles of a highly polymorphic gene homologous to human NLRP1. NLRP1B forms inflammasomes in response to a variety of pathogens that cause intestinal infections, but it has almost exclusively been studied in immune cells and has not been characterized in cells of the intestinal epithelium. Here, we show that Nlrp1b allele 2 is expressed in ileal and colonic organoids derived for C57BL/6J mice, while the related gene Nlrp1a was not expressed. Nlrp1b was upregulated by interleukin-13 in organoids and by the protozoan Tritrichomonas muris in vivo, suggesting that NLRP1B may be involved in defense against enteric parasites. Surprisingly, while Val-boro-Pro (VbP) activated C57BL/6J-derived bone marrow-derived macrophages, which expressed both Nlrp1a and Nlrp1b, it did not activate intestinal organoids of the same genotype. We furthermore did not detect Nlrp1b in organoids derived from Balb/cJ mice, which express a different allele than the one expressed in C57BL/6J mice. Together, our results suggest that NLRP1B may have an allele-dependent function in murine IECs whose regulation is distinct from that of macrophages, and that the response to VbP might be exclusively driven by NLRP1A in C57BL/6J mice.
Collapse
Affiliation(s)
- Ryan J Mazzone
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Nathaniel J Winsor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Immunology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Lu Yi Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Kristian T Barry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Adrienne Ranger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Shawn Goyal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Justin J Meade
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Jessica Bruce
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Immunology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Dana J Philpott
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Immunology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Jeremy Mogridge
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Immunology, University of Toronto, Toronto M5S 1A8, Ontario, Canada.
| |
Collapse
|
8
|
Klein JA, Predeus AV, Greissl AR, Clark-Herrera MM, Cruz E, Cundiff JA, Haeberle AL, Howell M, Lele A, Robinson DJ, Westerman TL, Wrande M, Wright SJ, Green NM, Vallance BA, McClelland M, Mejia A, Goodman AG, Elfenbein JR, Knodler LA. Pathogenic diversification of the gut commensal Providencia alcalifaciens via acquisition of a second type III secretion system. Infect Immun 2024; 92:e0031424. [PMID: 39254346 PMCID: PMC11477908 DOI: 10.1128/iai.00314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Providencia alcalifaciens is a Gram-negative bacterium found in various water and land environments and organisms, including insects and mammals. Some P. alcalifaciens strains encode gene homologs of virulence factors found in pathogenic Enterobacterales members, such as Salmonella enterica serovar Typhimurium and Shigella flexneri. Whether these genes are pathogenic determinants in P. alcalifaciens is not known. In this study, we investigated P. alcalifaciens-host interactions at the cellular level, focusing on the role of two type III secretion systems (T3SS) belonging to the Inv-Mxi/Spa family. T3SS1b is widespread in Providencia spp. and encoded on the chromosome. A large plasmid that is present in a subset of P. alcalifaciens strains, primarily isolated from diarrheal patients, encodes for T3SS1a. We show that P. alcalifaciens 205/92 is internalized into eukaryotic cells, lyses its internalization vacuole, and proliferates in the cytosol. This triggers caspase-4-dependent inflammasome responses in gut epithelial cells. The requirement for the T3SS1a in entry, vacuole lysis, and cytosolic proliferation is host cell type-specific, playing a more prominent role in intestinal epithelial cells than in macrophages or insect cells. In a bovine ligated intestinal loop model, P. alcalifaciens colonizes the intestinal mucosa and induces mild epithelial damage with negligible fluid accumulation in a T3SS1a- and T3SS1b-independent manner. However, T3SS1b was required for the rapid killing of Drosophila melanogaster. We propose that the acquisition of two T3SS has allowed P. alcalifaciens to diversify its host range, from a highly virulent pathogen of insects to an opportunistic gastrointestinal pathogen of animals.
Collapse
Affiliation(s)
- Jessica A. Klein
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | | | - Aimee R. Greissl
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Mattie M. Clark-Herrera
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Eddy Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Maya Howell
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Aaditi Lele
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Donna J. Robinson
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Trina L. Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Marie Wrande
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Sarah J. Wright
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nicole M. Green
- Public Health Laboratory, Los Angeles County Department of Public Health, Downey, California, USA
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Andres Mejia
- Comparative Pathology Laboratory, Research Animal Resources and Compliance, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alan G. Goodman
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Johanna R. Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine at The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
9
|
Eiger DS, Curtis MR, Eisenberg S, Walker KH, Loscalzo J. Avoiding Rash Decisions. N Engl J Med 2024; 391:1238-1244. [PMID: 39589374 DOI: 10.1056/nejmcps2403674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Affiliation(s)
- Dylan S Eiger
- From the Department of Medicine, Brigham and Women's Hospital, Boston (D.S.E., M.R.C., S.E., K.H.W., J.L.)
| | - Monica R Curtis
- From the Department of Medicine, Brigham and Women's Hospital, Boston (D.S.E., M.R.C., S.E., K.H.W., J.L.)
| | - Staci Eisenberg
- From the Department of Medicine, Brigham and Women's Hospital, Boston (D.S.E., M.R.C., S.E., K.H.W., J.L.)
| | - Katherine H Walker
- From the Department of Medicine, Brigham and Women's Hospital, Boston (D.S.E., M.R.C., S.E., K.H.W., J.L.)
| | - Joseph Loscalzo
- From the Department of Medicine, Brigham and Women's Hospital, Boston (D.S.E., M.R.C., S.E., K.H.W., J.L.)
| |
Collapse
|
10
|
Kaneko S, Shimbo A, Irabu H, Mizuta M, Nakagishi Y, Iwata N, Yokoyama K, Yasumura J, Akamine K, Ueno K, Fujita S, Watanabe K, Watanabe S, Nishikawa H, Fujimura J, Mori M, Shimizu M. Serum interleukin-18 levels can improve the diagnostic performance of the PRINTO and ILAR criteria for systemic juvenile idiopathic arthritis. Cytokine 2024; 182:156719. [PMID: 39084066 DOI: 10.1016/j.cyto.2024.156719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE Recently, the Pediatric Rheumatology International Trials Organization (PRINTO) has proposed revisions to the current International League of Associations for Rheumatology (ILAR) criteria for systemic juvenile idiopathic arthritis (s-JIA). Interleukin (IL)-18 overproduction plays a significant role in the pathogenesis of s-JIA. This study aimed to evaluate the performance of the PRINTO criteria compared with the ILAR criteria and determine whether serum IL-18 levels improve their diagnostic performances. METHODS Overall, 90 patients with s-JIA and 27 patients with other febrile disease controls presenting with a prolonged fever of > 14 days and arthritis and/or erythematous rash were enrolled. The ILAR and PRINTO classification criteria were applied to all patients and examined with expert diagnoses. Enzyme-linked immunosorbent assay was used for measuring serum IL-18 levels. RESULTS The PRINTO criteria had higher sensitivity but lower specificity than the ILAR criteria (sensitivity: PRINTO 0.856, ILAR 0.533; specificity: PRINTO 0.259, ILAR 0.851). With the addition of serum IL-18 levels ≥ 4,800 pg/mL, the sensitivity of the ILAR criteria and specificity of the PRINTO criteria were improved to 1.000 and 1.000, respectively. PRINTO plus serum IL-18 levels ≥ 4,800 pg/mL showed the highest value in Youden's index (sensitivity - [1 - specificity]). CONCLUSION Serum IL-18 levels could improve the diagnostic performance of the PRINTO and ILAR criteria for s-JIA. The PRINTO criteria plus serum IL-18 levels ≥ 4,800 pg/mL could be the best diagnostic performance for s-JIA.
Collapse
Affiliation(s)
- Shuya Kaneko
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Asami Shimbo
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Irabu
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mao Mizuta
- Department of Pediatric Rheumatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Yasuo Nakagishi
- Department of Pediatric Rheumatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naomi Iwata
- Department of Immunology and Infectious Diseases, Aichi Children's Health and Medical Center, Obu, Japan
| | - Koji Yokoyama
- Department of Pediatrics, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Junko Yasumura
- Department of Pediatrics, JR Hiroshima Hospital, Hiroshima, Japan
| | - Keiji Akamine
- Department of Nephrology and Rheumatology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Kazuyuki Ueno
- Department of Pediatrics, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Shuhei Fujita
- Department of Pediatrics, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Kenichi Watanabe
- Department of Pediatrics, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Shojiro Watanabe
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroki Nishikawa
- Department of Pediatrics, Nara Prefecture General Medical Center, Nara, Japan
| | - Junya Fujimura
- Department of Pediatrics, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Masaaki Mori
- Department of Lifetime Clinical Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Shimizu
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
11
|
Zhao Y, Ou W, Wei A, Ma H, Zhang L, Lian H, Zhang Q, Wang D, Li Z, Zhang R, Wang T. Biomarkers in Pediatric Hemophagocytic Lymphohistiocytosis With Central Nervous System Involvement: A Cohort Study. J Pediatr Hematol Oncol 2024; 46:364-372. [PMID: 39145632 DOI: 10.1097/mph.0000000000002937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND The aim of this study was to analyze the clinical significance of cerebrospinal fluid (CSF) cytokines in hemophagocytic lymphohistiocytosis associated with central nervous system (CNS-HLH). METHODS CSF cytokine levels, including interferon (IFN)-γ, soluble CD25 (sCD25), interleukin (IL)-6, IL-10, IL-18, and CXCL9 were measured at disease onset and during the treatment. Five newly diagnosed patients with demyelination disease were enrolled for comparison. RESULTS Sixty-five samples from 36 patients (13 in the CNS group and 23 in the non-CNS group) were detected. Levels of CSF IFN-γ, sCD25, IL-10, IL-18, and CXCL9 in the CNS group were higher than those in the non-CNS group ( P =0.038, <0.001, <0.001, 0.005, and <0.001), and levels of CSF sCD25, IL-10, IL-18, and CXCL9 in the CNS group were higher than those in the demyelination group ( P =0.001, 0.008, 0.004, and 0.003). There was no significant difference in IL-6 levels among the 3 groups ( P =0.339). CSF IFN-γ, sCD25, IL-10, IL-18, and CXCL9 could assist in diagnosing CNS-HLH. The diagnostic efficiency of CSF sCD25, IL-10, and CXCL9 was better, with a cutoff value of 154.64, 1.655, and 19.54 pg/mL, respectively. The area under the curve was >0.9, with sensitivity and specificity >80%. Correlation analysis suggested that in the CNS group, IFN-γ levels in CSF and serum correlated positively ( R =0.459, P =0.007), while there was no correlation between CSF CXCL9 and serum IFN-γ ( P =0.915). CONCLUSIONS CSF IFN-γ, sCD25, IL-10, IL-18, and CXCL9 levels were significantly higher in HLH patients with CNS involvement than those without and could predict HLH patients with CNS involvement. CSF CXCL9 might be a more sensitive biomarker to CNS-HLH than IFN-γ, while CSF IL-6 does not seem to play a vital role.
Collapse
Affiliation(s)
- Yunze Zhao
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| | - Wenxin Ou
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| | - Ang Wei
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| | - Honghao Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| | - Liping Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| | - Hongyun Lian
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| | - Qing Zhang
- Hematologic Disease Laboratory, Beijing Pediatric Research Institute; Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R. China
| | - Dong Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| | - Zhigang Li
- Hematologic Disease Laboratory, Beijing Pediatric Research Institute; Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P.R. China
| | - Rui Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| | - Tianyou Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Disease in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| |
Collapse
|
12
|
Gallo PM, Kim J, McNerney KO, Diorio C, Foley C, Kagami L, Wagner K, Petrosa WL, Conlon H, Gollomp KL, Canna SW, Seif AE, Conrad MA, Kelsen JR, Romberg N, Bassiri H, Sullivan KE, Teachey DT, Paessler ME, Behrens EM, Lambert MP. Serum cytokine panels in pediatric clinical practice. J Allergy Clin Immunol 2024:S0091-6749(24)00977-1. [PMID: 39303891 DOI: 10.1016/j.jaci.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cytokines are soluble signaling proteins that regulate inflammation and coordinate immune responses. Serum cytokine panels are increasingly used in medical practice, yet our understanding of cytokines as biomarkers for disease remains limited. OBJECTIVE We sought to analyze real-world single-center use of a multiplexed cytokine panel, correlate its results with diagnosis and severity, and explore its use in pediatric practice. METHODS A multiplexed cytokine panel, able to return same-day results, was implemented in April 2020 at the Children's Hospital of Philadelphia (Philadelphia, Pa) and its performance was validated for clinical use. Coded patient data were collected using the REDCap database, and correlations between cytokine levels and outcomes of interest were analyzed retrospectively. RESULTS Cytokine levels correlate with acuity of care, with patients admitted to the pediatric intensive care unit having the highest cytokine values. Patients with familial hemophagocytic lymphohistiocytosis (fHLH) showed prominent peaks in IFN-γ, IL-10, and TNF, whereas patients with sepsis exhibited high IL-6 and IL-8 with relatively modest IFN-γ. Cytokine release syndrome (CRS) after chimeric antigen receptor T-cell therapy often demonstrated pan-panel positivity at peak levels, with a similar pattern as that of fHLH. A ratio of [IFN-γ] + [IL-10]/[IL-6] + [IL-8] levels was able to distinguish fHLH and CRS from severe sepsis. CONCLUSIONS Cytokine levels correlate with severity of illness and can help differentiate between syndromes that present similarly, including fHLH and CRS compared with sepsis. Cytokine panels can be used as biomarkers to inform diagnosis and management decisions, but significant work remains to dissect complex clinical patterns of disease.
Collapse
Affiliation(s)
- Paul M Gallo
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pa; Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa.
| | - Jihwan Kim
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pa; Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Kevin O McNerney
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Caroline Diorio
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Caelin Foley
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Laura Kagami
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Kristina Wagner
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Whitney L Petrosa
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Hana Conlon
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Kandace L Gollomp
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pa; Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Scott W Canna
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Alix E Seif
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Maire A Conrad
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Judith R Kelsen
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Neil Romberg
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Hamid Bassiri
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Infectious Disease, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Kathleen E Sullivan
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - David T Teachey
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Michele E Paessler
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Edward M Behrens
- Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Michele P Lambert
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pa; Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, Pa
| |
Collapse
|
13
|
Eigemann J, Janda A, Schuetz C, Lee-Kirsch MA, Schulz A, Hoenig M, Furlan I, Jacobsen EM, Zinngrebe J, Peters S, Drewes C, Siebert R, Rump EM, Führer M, Lorenz M, Pannicke U, Kölsch U, Debatin KM, von Bernuth H, Schwarz K, Felgentreff K. Non-Skewed X-inactivation Results in NF-κB Essential Modulator (NEMO) Δ-exon 5-autoinflammatory Syndrome (NEMO-NDAS) in a Female with Incontinentia Pigmenti. J Clin Immunol 2024; 45:1. [PMID: 39264518 PMCID: PMC11393190 DOI: 10.1007/s10875-024-01799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Genetic hypomorphic defects in X chromosomal IKBKG coding for the NF-κB essential modulator (NEMO) lead to ectodermal dysplasia and immunodeficiency in males and the skin disorder incontinentia pigmenti (IP) in females, respectively. NF-κB essential modulator (NEMO) Δ-exon 5-autoinflammatory syndrome (NEMO-NDAS) is a systemic autoinflammatory disease caused by alternative splicing and increased proportion of NEMO-Δex5. We investigated a female carrier presenting with IP and NEMO-NDAS due to non-skewed X-inactivation. METHODS IKBKG transcripts were quantified in peripheral blood mononuclear cells isolated from the patient, her mother, and healthy controls using RT-PCR and nanopore sequencing. Corresponding proteins were analyzed by western blotting and flow cytometry. Besides toll-like receptor (TLR) and tumor necrosis factor (TNF) signaling, the interferon signature, cytokine production and X-inactivation status were investigated. RESULTS IP and autoinflammation with recurrent fever, oral ulcers, hepatitis, and neutropenia, but no immunodeficiency was observed in a female patient. Besides moderately reduced NEMO signaling function, type I interferonopathy, and elevated IL-18 and CXCL10 were found. She and her mother both carried the heterozygous variant c.613 C > T p.(Gln205*) in exon 5 of IKBKG previously reported in NEMO-deficient patients. However, X-inactivation was skewed in the mother, but not in the patient. Alternative splicing led to increased ratios of NEMO-Dex5 over full-length protein in peripheral blood cell subsets causing autoinflammation. Clinical symptoms partially resolved under treatment with TNF inhibitors. CONCLUSION Non-skewed X-inactivation can lead to NEMO-NDAS in females with IP carrying hypomorphic IKBKG variants due to alternative splicing and increased proportions of NEMO-∆ex5.
Collapse
Affiliation(s)
- Jessica Eigemann
- Master's Program of Molecular Medicine, Medical Faculty of Ulm University, Ulm, Germany
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ales Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Manfred Hoenig
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Ingrid Furlan
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Sarah Peters
- Department of Clinical Chemistry, Ulm University Medical Center, Ulm, Germany
| | - Cosima Drewes
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Rump
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Horst von Bernuth
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Nember of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Klaus Schwarz
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany.
| |
Collapse
|
14
|
Carol HA, Mayer AS, Zhang MS, Dang V, Varghese J, Martinez Z, Schneider C, Baker JE, Tsoukas P, Behrens EM, Cron RQ, Diorio C, Henderson LA, Schulert G, Lee P, Kernan KF, Canna SW. Hyperferritinemia Screening to Aid Identification and Differentiation of Patients with Hyperinflammatory Disorders. J Clin Immunol 2024; 45:4. [PMID: 39264477 PMCID: PMC11393296 DOI: 10.1007/s10875-024-01797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
High ferritin is an important and sensitive biomarker for the various forms of hemophagocytic lymphohistiocytosis (HLH), a diverse and deadly group of cytokine storm syndromes. Early action to prevent immunopathology in HLH often includes empiric immunomodulation, which can complicate etiologic work-up and prevent collection of early/pre-treatment research samples. To address this, we instituted an alert system at UPMC Children's Hospital where serum ferritin > 1000 ng/mL triggered real-time chart review, assessment of whether the value reflected "inflammatory hyperferritnemia (IHF)", and biobanking of remnant samples from consenting IHF patients. We extracted relevant clinical data; periodically measured serum total IL-18, IL-18 binding protein (IL-18BP), and CXCL9; retrospectively classified patients by etiology into infectious, rheumatic, or immune dysregulation; and subjected a subgroup of samples to a 96-analyte biomarker screen. 180 patients were identified, 30.5% of which had IHF. Maximum ferritin levels were significantly higher in patients with IHF than with either hemoglobinopathy or transplant, and highly elevated total IL-18 levels were distinctive to patients with Stills Disease and/or Macrophage Activation Syndrome (MAS). Multi-analyte analysis showed elevation in proteins associated with cytotoxic lymphocytes in all IHF samples when compared to healthy controls and depression of proteins such as ANGPT1 and VEGFR2 in samples from hyperferritinemic sepsis patients relative to non-sepsis controls. This real-time IFH screen proved feasible and efficient, validated prior observations about the specificity of IL-18, enabled early sample collection from a complex population, suggested a unique vascular biomarker signature in hyperferritinemic sepsis, and expanded our understanding of IHF heterogeneity.
Collapse
Affiliation(s)
- Hallie A Carol
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adam S Mayer
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael S Zhang
- Division of Pediatric Allergy/Immunology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vinh Dang
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- RK Mellon Institute for Pediatric Research & Pediatric Rheumatology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jemy Varghese
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Zachary Martinez
- Division of Pediatric Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Corinne Schneider
- RK Mellon Institute for Pediatric Research & Pediatric Rheumatology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joy Elizabeth Baker
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul Tsoukas
- Division of Pediatric Rheumatology, Hospital for Sick Children, Toronto, ON, Canada
| | - Edward M Behrens
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Randy Q Cron
- Division of Pediatric Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caroline Diorio
- Division of Pediatric Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Grant Schulert
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pui Lee
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Kate F Kernan
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott W Canna
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
- RK Mellon Institute for Pediatric Research & Pediatric Rheumatology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
15
|
Correia Marques M, Ombrello MJ, Schulert GS. New discoveries in the genetics and genomics of systemic juvenile idiopathic arthritis. Expert Rev Clin Immunol 2024; 20:1053-1064. [PMID: 38641907 PMCID: PMC11303111 DOI: 10.1080/1744666x.2024.2345868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory condition with onset in childhood. It is sporadic, but elements of its stereotypical innate immune responses are likely genetically encoded by both common variants with small effect sizes and rare variants with larger effects. AREAS COVERED Genomic investigations have defined the unique genetic architecture of sJIA. Identification of the class II HLA locus as the strongest sJIA risk factor for the first time brought attention to T lymphocytes and adaptive immune mechanisms in sJIA. The importance of the human leukocyte antigen (HLA) locus was reinforced by recognition that HLA-DRB1*15 alleles are strongly associated with development of drug reactions and sJIA-associated lung disease (sJIA-LD). At the IL1RN locus, genetic variation relates to both risk of sJIA and may also predict non-response to anakinra. Finally, rare genetic variants may have critical roles in disease complications, such as homozygous LACC1 mutations in families with an sJIA-like illness, and hemophagocytic lymphohistiocytosis (HLH) gene variants in some children with macrophage activation syndrome (MAS). EXPERT OPINION Genetic and genomic analysis of sJIA holds great promise for both basic discovery of the course and complications of sJIA, and may help guide personalized medicine and therapeutic decision-making.
Collapse
Affiliation(s)
- Mariana Correia Marques
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
16
|
Mertz P, Hentgen V, Boursier G, Elhani I, Calas L, Delon J, Georgin-Lavialle S. [Autoinflammatory diseases associated with IL-18]. Rev Med Interne 2024:S0248-8663(24)00736-7. [PMID: 39155178 DOI: 10.1016/j.revmed.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Autoinflammatory diseases (AIDs) are conditions characterized by dysfunction of innate immunity, causing systemic inflammation and various clinical symptoms. The field of AIDs has expanded due to improved comprehension of pathophysiological mechanisms and advancements in genomics techniques. A new emerging category of AIDs is characterized by a significant increase in interleukin 18 (IL-18), a pro-inflammatory cytokine synthesized in macrophages and activated by caspase 1 via various inflammasomes. IL-18 plays a role in the regulation of innate and adaptive immunity. IL-18 is involved in various functions, such as the proliferation, survival, and differentiation of immune cells, tissue infiltration of immune cells, polarization of immune responses, and production of other pro-inflammatory cytokines. This review analyzes the literature on IL-18 regarding its functions and its implications in the diagnosis and treatment of AIDs. IL-18-associated AIDs comprise Still's disease and diseases associated with mutations in NLRC4, XIAP, CDC42, and PSTPIP1, as well as IL-18BP deficiencies. With the exception of PSTPIP1-associated diseases, these conditions all carry a risk of macrophagic activation syndrome. Measuring IL-18 levels in serum can aid in the diagnosis, prognosis, and monitoring of these diseases. Therapies targeting IL-18 and its signaling pathways are currently under investigation.
Collapse
Affiliation(s)
- Philippe Mertz
- Sorbonne université, hôpital Tenon, DMU3ID, APHP, ERN RITA, Paris, France; Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France; Centre hospitalier de Versailles, 78150 le Chesnay, France; Institut Cochin, Inserm, CNRS, université Paris Cité, F-75014 Paris, France
| | - Véronique Hentgen
- Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France; Centre hospitalier de Versailles, 78150 le Chesnay, France
| | - Guilaine Boursier
- Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France; Service de génétique moléculaire et cytogénomique, laboratoire de référence des maladies rares et auto-inflammatoires, IRMB, Inserm, CHU de Montpellier, université de Montpellier, Montpellier, France
| | - Ines Elhani
- Sorbonne université, hôpital Tenon, DMU3ID, APHP, ERN RITA, Paris, France; Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France
| | - Laure Calas
- Laboratoire de biochimie et hormonologie, hôpital Tenon, APHP, Sorbonne université, 4, rue de la Chine, 75020 Paris, France; Inserm, UMRS 1155 UPMC, hôpital Tenon, Sorbonne université, Paris, France
| | - Jerome Delon
- Institut Cochin, Inserm, CNRS, université Paris Cité, F-75014 Paris, France
| | - Sophie Georgin-Lavialle
- Sorbonne université, hôpital Tenon, DMU3ID, APHP, ERN RITA, Paris, France; Centre de référence des maladies auto-inflammatoires et de l'amylose inflammatoire (CEREMAIA), Paris, France.
| |
Collapse
|
17
|
Gleeson TA, Kaiser C, Lawrence CB, Brough D, Allan SM, Green JP. The NLRP3 inflammasome is essential for IL-18 production in a murine model of macrophage activation syndrome. Dis Model Mech 2024; 17:dmm050762. [PMID: 38775430 PMCID: PMC11317095 DOI: 10.1242/dmm.050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin-18 (IL-18) and interferon gamma (IFNγ). Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-oligonucleotide-induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome or the downstream caspase-1 prevented MAS-mediated upregulation of IL-18 in the plasma but, interestingly, did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore blockade of IL-1 receptor with its antagonist IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that, during the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18 - a key cytokine in clinical cases of MAS - but was not a driving factor in the pathogenesis of CpG-induced MAS.
Collapse
Affiliation(s)
- Tara A. Gleeson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | | | - Catherine B. Lawrence
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Stuart M. Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Jack P. Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
18
|
Jiang L, Lunding LP, Webber WS, Beckmann K, Azam T, Falkesgaard Højen J, Amo-Aparicio J, Dinarello A, Nguyen TT, Pessara U, Parera D, Orlicky DJ, Fischer S, Wegmann M, Dinarello CA, Li S. An antibody to IL-1 receptor 7 protects mice from LPS-induced tissue and systemic inflammation. Front Immunol 2024; 15:1427100. [PMID: 38983847 PMCID: PMC11231367 DOI: 10.3389/fimmu.2024.1427100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.
Collapse
Affiliation(s)
- Liqiong Jiang
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Lars P. Lunding
- Division of Lung Immunology, Priority Area of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - William S. Webber
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | | | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Jesper Falkesgaard Højen
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesus Amo-Aparicio
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Alberto Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Tom T. Nguyen
- Mucosal Inflammation Program and Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - Ulrich Pessara
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - Daniel Parera
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - David J. Orlicky
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Stephan Fischer
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Suzhao Li
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
19
|
Carol HA, Mayer AS, Zhang MS, Dang V, Varghese J, Martinez Z, Schneider C, Baker JE, Tsoukas P, Behrens EM, Cron RQ, Diorio C, Henderson LA, Schulert G, Lee P, Kernan KF, Canna SW. Hyperferritinemia screening to aid identification and differentiation of patients with hyperinflammatory disorders. RESEARCH SQUARE 2024:rs.3.rs-4523502. [PMID: 38978562 PMCID: PMC11230465 DOI: 10.21203/rs.3.rs-4523502/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
High ferritin is an important and sensitive biomarker for hemophagocytic lymphohistiocytosis (HLH), a diverse and deadly group of cytokine storm syndromes. Early action to prevent immunopathology in HLH often includes empiric immunomodulation, which can complicate etiologic work-up and prevent collection of early/pre-treatment research samples. To address this, we instituted an alert system where serum ferritin > 1000ng/mL triggered real-time chart review, assessment of whether the value reflected "inflammatory hyperferritnemia (IHF)", and biobanking of remnant samples from consenting IHF patients. We extracted relevant clinical data; periodically measured serum total IL-18, IL-18 binding protein (IL-18BP), and CXCL9; retrospectively classified patients by etiology into infectious, rheumatic, or immune dysregulation; and subjected a subgroup of samples to a 96-analyte biomarker screen. 180 patients were identified, 30.5% of which had IHF. Maximum ferritin levels were significantly higher in patients with IHF than with either hemoglobinopathy or transplant, and highly elevated total IL-18 levels were distinctive to patients with Stills Disease and/or Macrophage Activation Syndrome (MAS). Multi-analyte analysis showed elevation in proteins associated with cytotoxic lymphocytes in all IHF samples when compared to healthy controls and depression of proteins such as ANGPT1 and VEGFR2 in samples from hyperferritinemic sepsis patients relative to non-sepsis controls. This single-center, real-time IFH screen proved feasible and efficient, validated prior observations about the specificity of IL-18, enabled early sample collection from a complex population, suggested a unique vascular biomarker signature in hyperferritinemic sepsis, and expanded our understanding of IHF heterogeneity.
Collapse
Affiliation(s)
- Hallie A Carol
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia
| | - Adam S Mayer
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia
| | - Michael S Zhang
- Division of Pediatric Allergy/Immunology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh
| | - Vinh Dang
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia
| | - Jemy Varghese
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia
| | - Zachary Martinez
- Division of Pediatric Oncology, The Children's Hospital of Philadelphia
| | - Corinne Schneider
- RK Mellon Institute for Pediatric Research & Pediatric Rheumatology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh
| | - Joy Elizabeth Baker
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center
| | - Paul Tsoukas
- Division of Pediatric Rheumatology, Hospital for Sick Children,Toronto, ON
| | - Edward M Behrens
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia
| | - Randy Q Cron
- Division of Pediatric Rheumatology, The University of Alabama at Birmingham
| | - Caroline Diorio
- Division of Pediatric Oncology, The Children's Hospital of Philadelphia
| | | | - Grant Schulert
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center
| | - Pui Lee
- Division of Immunology, Boston Children's Hospital
| | - Kate F Kernan
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh
| | - Scott W Canna
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia
| |
Collapse
|
20
|
Klein JA, Predeus AV, Greissl AR, Clark-Herrera MM, Cruz E, Cundiff JA, Haeberle AL, Howell M, Lele A, Robinson DJ, Westerman TL, Wrande M, Wright SJ, Green NM, Vallance BA, McClelland M, Mejia A, Goodman AG, Elfenbein JR, Knodler LA. Pathogenic diversification of the gut commensal Providencia alcalifaciens via acquisition of a second type III secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.595826. [PMID: 38895369 PMCID: PMC11185699 DOI: 10.1101/2024.06.07.595826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Providencia alcalifaciens is a Gram-negative bacterium found in a wide variety of water and land environments and organisms. It has been isolated as part of the gut microbiome of animals and insects, as well as from stool samples of patients with diarrhea. Specific P. alcalifaciens strains encode gene homologs of virulence factors found in other pathogenic members of the same Enterobacterales order, such as Salmonella enterica serovar Typhimurium and Shigella flexneri. Whether these genes are also pathogenic determinants in P. alcalifaciens is not known. Here we have used P. alcalifaciens 205/92, a clinical isolate, with in vitro and in vivo infection models to investigate P. alcalifaciens -host interactions at the cellular level. Our particular focus was the role of two type III secretion systems (T3SS) belonging to the Inv-Mxi/Spa family. T3SS 1b is widespread in Providencia spp. and encoded on the chromosome. T3SS 1a is encoded on a large plasmid that is present in a subset of P. alcalifaciens strains, which are primarily isolates from diarrheal patients. Using a combination of electron and fluorescence microscopy and gentamicin protection assays we show that P. alcalifaciens 205/92 is internalized into eukaryotic cells, rapidly lyses its internalization vacuole and proliferates in the cytosol. This triggers caspase-4 dependent inflammasome responses in gut epithelial cells. The requirement for the T3SS 1a in entry, vacuole lysis and cytosolic proliferation is host-cell type specific, playing a more prominent role in human intestinal epithelial cells as compared to macrophages. In a bovine ligated intestinal loop model, P. alcalifaciens colonizes the intestinal mucosa, inducing mild epithelial damage with negligible fluid accumulation. No overt role for T3SS 1a or T3SS 1b was seen in the calf infection model. However, T3SS 1b was required for the rapid killing of Drosophila melanogaster . We propose that the acquisition of two T3SS by horizontal gene transfer has allowed P. alcalifaciens to diversify its host range, from a highly virulent pathogen of insects to an opportunistic gastrointestinal pathogen of animals.
Collapse
|
21
|
Wang F. Interleukin‑18 binding protein: Biological properties and roles in human and animal immune regulation (Review). Biomed Rep 2024; 20:87. [PMID: 38665423 PMCID: PMC11040224 DOI: 10.3892/br.2024.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/11/2024] [Indexed: 04/28/2024] Open
Abstract
IL-18 binding protein (IL-18BP) is a natural regulatory molecule of the proinflammatory cytokine IL-18. It can regulate activity of IL-18 by high affinity binding. The present review aimed to highlight developments, characteristics and functions of IL-18BP. IL-18BP serves biological and anti-pathological roles in treating disease. In humans, it modulates progression of a number of chronic diseases, such as adult-onset Still's disease. The present review summarizes molecular structure, role of IL-18BP in disease and interaction with other proteins in important pathological processes.
Collapse
Affiliation(s)
- Fengxue Wang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Disease at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, P.R. China
| |
Collapse
|
22
|
Huang S, Liu Y, Yan W, Zhang T, Wang P, Zhu M, Zhang X, Zhou P, Fan Z, Yu H. Single center clinical analysis of macrophage activation syndrome complicating juvenile rheumatic diseases. Pediatr Rheumatol Online J 2024; 22:58. [PMID: 38783316 PMCID: PMC11112803 DOI: 10.1186/s12969-024-00991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Macrophage activation syndrome (MAS), an example of secondary hemophagocytic lymphohistiocytosis, is a potentially fatal complication of rheumatic diseases. We aimed to study the clinical and laboratory characteristics, treatment schemes, and outcomes of different rheumatic disorders associated with MAS in children. Early warning indicators of MAS have also been investigated to enable clinicians to make a prompt and accurate diagnosis. METHODS Fifty-five patients with rheumatic diseases complicated by MAS were enrolled between January 2017 and December 2022. Clinical and laboratory data were collected before disease onset, at diagnosis, and after treatment with MAS, and data were compared between patients with systemic juvenile idiopathic arthritis (sJIA), Kawasaki disease (KD), and systemic lupus erythematosus (SLE). A random forest model was established to show the importance score of each variable with a significant difference. RESULTS Most (81.8%) instances of MAS occurred during the initial diagnosis of the underlying disease. Compared to the active stage of sJIA, the platelet count, erythrocyte sedimentation rate, and fibrinogen level in sJIA-MAS were significantly decreased, whereas ferritin, ferritin/erythrocyte sedimentation rate, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and D-dimer levels were significantly increased. Ferritin level, ferritin/erythrocyte sedimentation rate, and platelet count had the greatest predictive value for sJIA-MAS. The level of IL-18 in the sJIA-MAS group was significantly higher than in the active sJIA group, whereas IL-6 levels were significantly lower. Most patients with MAS were treated with methylprednisolone pulse combined with cyclosporine, and no deaths occurred. CONCLUSIONS Thrombocytopenia, ferritin levels, the ferritin/erythrocyte sedimentation rate, and elevated aspartate aminotransferase levels can predict the occurrence of MAS in patients with sJIA. Additionally, our analysis indicates that IL-18 plays an important role in the pathogenesis of MAS in sJIA-MAS.
Collapse
Affiliation(s)
- Shuoyin Huang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yingying Liu
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Wu Yan
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tonghao Zhang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Panpan Wang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Meifang Zhu
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaohua Zhang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Peng Zhou
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhidan Fan
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Haiguo Yu
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
23
|
Dong Y, Wang T, Wu H. Heterogeneity of macrophage activation syndrome and treatment progression. Front Immunol 2024; 15:1389710. [PMID: 38736876 PMCID: PMC11082376 DOI: 10.3389/fimmu.2024.1389710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a rare complication of autoimmune inflammatory rheumatic diseases (AIIRD) characterized by a progressive and life-threatening condition with features including cytokine storm and hemophagocytosis. Predisposing factors are typically associated with microbial infections, genetic factors (distinct from typical genetically related hemophagocytic lymphohistiocytosis (HLH)), and inappropriate immune system overactivation. Clinical features include unremitting fever, generalized rash, hepatosplenomegaly, lymphadenopathy, anemia, worsening liver function, and neurological involvement. MAS can occur in various AIIRDs, including but not limited to systemic juvenile idiopathic arthritis (sJIA), adult-onset Still's disease (AOSD), systemic lupus erythematosus (SLE), Kawasaki disease (KD), juvenile dermatomyositis (JDM), rheumatoid arthritis (RA), and Sjögren's syndrome (SS), etc. Although progress has been made in understanding the pathogenesis and treatment of MAS, it is important to recognize the differences between different diseases and the various treatment options available. This article summarizes the cell types and cytokines involved in MAS-related diseases, the heterogeneity, and treatment options, while also comparing it to genetically related HLH.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Albeituni S. Editorial: Towards a better understanding of hemophagocytic lymphohistiocytosis. Front Immunol 2024; 15:1385487. [PMID: 38655261 PMCID: PMC11036123 DOI: 10.3389/fimmu.2024.1385487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Sabrin Albeituni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
25
|
Varsha KK, Yang X, Cannon AS, Zhong Y, Nagarkatti M, Nagarkatti P. Identification of miRNAs that target Fcγ receptor-mediated phagocytosis during macrophage activation syndrome. Front Immunol 2024; 15:1355315. [PMID: 38558807 PMCID: PMC10981272 DOI: 10.3389/fimmu.2024.1355315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
26
|
Nguyen TTT, Kim YT, Jeong G, Jin M. Immunopathology of and potential therapeutics for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome: a translational perspective. Exp Mol Med 2024; 56:559-569. [PMID: 38448692 PMCID: PMC10984945 DOI: 10.1038/s12276-024-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (sHLH/MAS) is a life-threatening immune disorder triggered by rheumatic disease, infections, malignancies, or medications. Characterized by the presence of hemophagocytic macrophages and a fulminant cytokine storm, sHLH/MAS leads to hyperferritinemia and multiorgan failure and rapidly progresses to death. The high mortality rate and the lack of specific treatments necessitate the development of a new drug. However, the complex and largely unknown immunopathologic mechanisms of sHLH/MAS, which involve dysfunction of various immune cells, diverse etiologies, and different clinical contexts make this effort challenging. This review introduces the terminology, diagnosis, and clinical features of sHLH/MAS. From a translational perspective, this review focuses on the immunopathological mechanisms linked to various etiologies, emphasizing potential drug targets, including key molecules and signaling pathways. We also discuss immunomodulatory biologics, existing drugs under clinical evaluation, and novel therapies in clinical trials. This systematic review aims to provide insights and highlight opportunities for the development of novel sHLH/MAS therapeutics.
Collapse
Affiliation(s)
- Tram T T Nguyen
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Yoon Tae Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Geunyeol Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
27
|
Gleeson TA, Kaiser C, Lawrence CB, Brough D, Allan SM, Green JP. The NLRP3 inflammasome is essential for IL-18 production in a murine model of macrophage activation syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582284. [PMID: 38464243 PMCID: PMC10925192 DOI: 10.1101/2024.02.27.582284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin (IL)-18 and interferon (IFN)-γ. Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-DNA induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome, or downstream caspase-1, prevented MAS-mediated upregulation of plasma IL-18 but interestingly did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore IL-1 receptor blockade with IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that in the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18, a key cytokine in clinical cases of MAS, but was not a driving factor in the pathogenesis of CpG-induced MAS.
Collapse
Affiliation(s)
- Tara A Gleeson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | | | - Catherine B Lawrence
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Walton ZE, Frigault MJ, Maus MV. Current and emerging pharmacotherapies for cytokine release syndrome, neurotoxicity, and hemophagocytic lymphohistiocytosis-like syndrome due to CAR T cell therapy. Expert Opin Pharmacother 2024; 25:263-279. [PMID: 38588525 DOI: 10.1080/14656566.2024.2340738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of multiple hematologic malignancies. Engineered cellular therapies now offer similar hope to transform the management of solid tumors and autoimmune diseases. However, toxicities can be serious and often require hospitalization. AREAS COVERED We review the two chief toxicities of CAR T therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and the rarer immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. We discuss treatment paradigms and promising future pharmacologic strategies. Literature and therapies reviewed were identified by PubMed search, cited references therein, and review of registered trials. EXPERT OPINION Management of CRS and ICANS has improved, aided by consensus definitions and guidelines that facilitate recognition and timely intervention. Further data will define optimal timing of tocilizumab and corticosteroids, current foundations of management. Pathophysiologic understanding has inspired off-label use of IL-1 receptor antagonism, IFNγ and IL-6 neutralizing antibodies, and janus kinase inhibitors, with data emerging from ongoing clinical trials. Further strategies to reduce toxicities include novel pharmacologic targets and safety features engineered into CAR T cells themselves. As these potentially curative therapies are used earlier in oncologic therapy and even in non-oncologic indications, effective accessible strategies to manage toxicities are critical.
Collapse
Affiliation(s)
- Zandra E Walton
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Division of Rheumatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Nigrovic PA, de Benedetti F, Kimura Y, Lovell DJ, Vastert SJ. The 4th NextGen Therapies for SJIA and MAS: part 1 the elephant in the room: diagnostic/classification criteria for systemic juvenile idiopathic arthritis and adult-onset still's disease. Pediatr Rheumatol Online J 2024; 21:114. [PMID: 38183114 PMCID: PMC10768075 DOI: 10.1186/s12969-023-00864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Currently, the criteria used to classify patients with SJIA are different from those used for AOSD. However, it has been recognized that the existing terms are too narrow, subdividing the Still's population unnecessarily between pediatric-onset and adult-onset disease and excluding an appreciable group of children in whom overt arthritis is delayed or absent. Government regulators and insurers rely upon the guidance of subject experts to provide disease definitions, and when these definitions are flawed, to provide new and better ones. The classification session at the NextGen 2022 conference helped to serve this purpose, establishing the need for a revised definitional system that transcends the fault lines that remain in existing definitions.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Karp 10210, One Blackfan Circle, Boston, MA, 02115, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
| | | | - Yukiko Kimura
- Division of Pediatric Rheumatology, Joseph M. Sanzari Children's Hospital, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Daniel J Lovell
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Sebastiaan J Vastert
- Department of Pediatric Rheumatology & Immunology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
30
|
Canna SW, De Benedetti F. The 4 th NextGen therapies of SJIA and MAS, part 4: it is time for IL-18 based trials in systemic juvenile idiopathic arthritis? Pediatr Rheumatol Online J 2024; 21:79. [PMID: 38183056 PMCID: PMC10768079 DOI: 10.1186/s12969-023-00867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Since IL-18 has recently emerged as a biomarker associated with refractory disease course in SJIA, the focus of the discussion was the feasibility of the biomarker-driven drug development to SJIA. Overall, there was broad agreement on the conclusion that IL-18 is a uniquely specific biomarker for many of the subsets of SJIA most in need of new therapies, and it may define a class of diseases mediated by IL-18 excess. The consensus was that leveraging IL-18 remains our most promising "lead" for use in refractory SJIA as it may mechanistically explain the disease pathophysiology and lead to more targeted therapies.
Collapse
Affiliation(s)
- Scott W Canna
- Rheumatology & Immune Dysregulation, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | |
Collapse
|
31
|
Behrens EM, de Benedetti F. Anti-Interferon-γ Therapy for Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:573-582. [PMID: 39117840 DOI: 10.1007/978-3-031-59815-9_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A vast body of evidence provides support to a central role of exaggerated production of interferon-γ (IFN-γ) in causing hypercytokinemia and signs and symptoms of hemophagocytic lymphohistiocytosis (HLH). In this chapter, we will describe briefly the roles of IFN-γ in innate and adaptive immunity and in host defense, summarize results from animal models of primary HLH and secondary HLH with particular emphasis on targeted therapeutic approaches, review data on biomarkers associated with activation of the IFN-γ pathway, and discuss initial efficacy and safety results of IFN-γ neutralization in humans.
Collapse
Affiliation(s)
- Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
32
|
Batu ED, Ozen S. Other Immunomodulatory Treatment for Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:601-609. [PMID: 39117842 DOI: 10.1007/978-3-031-59815-9_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytokine storm syndromes (CSS) include different entities such as macrophage activation syndrome, primary and secondary hemophagocytic lymphohistiocytosis (HLH), and multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19. An effective management strategy is critical in CSS. While biologics have become an essential part of CSS treatment, hematopoietic stem cell transplantation (HSCT) has changed the fate of primary HLH patients. This chapter will focus on the available alternative immunomodulatory therapies in CSS, which include corticosteroids, cyclosporine A, intravenous immunoglobulin, interleukin 18 binding protein, therapeutic plasmapheresis, HSCT, and mesenchymal stromal cell-based therapies.
Collapse
Affiliation(s)
- Ezgi Deniz Batu
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
33
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
34
|
Khanna K, Yan H, Mehra M, Rohatgi N, Mbalaviele G, Mellins ED, Faccio R. Tmem178 Negatively Regulates IL-1β Production Through Inhibition of the NLRP3 Inflammasome. Arthritis Rheumatol 2024; 76:107-118. [PMID: 37534578 PMCID: PMC11421209 DOI: 10.1002/art.42666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Inflammasomes modulate the release of bioactive interleukin (IL)-1β. Excessive IL-1β levels are detected in patients with systemic juvenile idiopathic arthritis (sJIA) and cytokine storm syndrome (CSS) with mutated and unmutated inflammasome components, raising questions on the mechanisms of IL-1β regulation in these disorders. METHODS To investigate how the NLRP3 inflammasome is modulated in sJIA, we focused on Transmembrane protein 178 (Tmem178), a negative regulator of calcium levels in macrophages, and measured IL-1β and caspase-1 activation in wild-type (WT) and Tmem178-/- macrophages after calcium chelators, silencing of Stim1, a component of store-operated calcium entry (SOCE), or by expressing a Tmem178 mutant lacking the Stromal Interaction Molecule 1 (Stim1) binding site. Mitochondrial function in both genotypes was assessed by measuring oxidative respiration, mitochondrial reactive oxygen species (mtROS), and mitochondrial damage. CSS development was analyzed in Perforin-/- /Tmem178-/- mice infected with lymphocytic choriomeningitis virus (LCMV) in which inflammasome or IL-1β signaling was pharmacologically inhibited. Human TMEM178 and IL1B transcripts were analyzed in data sets of whole blood and peripheral blood monocytes from healthy controls and patients with active sJIA. RESULTS TMEM178 levels are reduced in whole blood and monocytes from patients with sJIA while IL1B levels are increased. Accordingly, Tmem178-/- macrophages produce elevated IL-1β compared with WT cells. The elevated intracellular calcium levels after SOCE activation in Tmem178-/- macrophages induce mitochondrial damage, release mtROS, and ultimately promote NLRP3 inflammasome activation. In vivo, inhibition of inflammasome or IL-1β neutralization prolongs Tmem178-/- mouse survival in LCMV-induced CSS. CONCLUSION Down-regulation of TMEM178 levels may represent a marker of disease activity and help identify patients who could benefit from inflammasome targeting.
Collapse
Affiliation(s)
- Kunjan Khanna
- Department of Orthopedics, Washington University in St Louis, MO, USA
- These authors contributed equally
| | - Hui Yan
- Department of Orthopedics, Washington University in St Louis, MO, USA
- Current address: Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Ministry of Agriculture and Rural Affairs and Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- These authors contributed equally
| | - Muneshwar Mehra
- Department of Neuroscience, Washington University in St Louis, MO, USA
| | - Nidhi Rohatgi
- Department of Pathology and Immunology, Washington University in St Louis, MO, USA
| | | | | | - Roberta Faccio
- Department of Orthopedics, Washington University in St Louis, MO, USA
- Shriners Hospital for Children, St Louis, MO, USA
| |
Collapse
|
35
|
Brisse E, Verweyen EL, De Visscher A, Kessel C, Wouters CH, Matthys P. Murine Models of Secondary Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:497-522. [PMID: 39117836 DOI: 10.1007/978-3-031-59815-9_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) comprises a broad spectrum of life-threatening cytokine storm syndromes, classified into primary (genetic) or secondary (acquired) HLH. The latter occurs in a variety of medical conditions, including infections, malignancies, autoimmune and autoinflammatory diseases, acquired immunodeficiency, and metabolic disorders. Despite recent advances in the field, the pathogenesis of secondary HLH remains incompletely understood. Considering the heterogeneity of triggering factors and underlying diseases in secondary HLH, a large diversity of animal models has been developed to explore pivotal disease mechanisms. To date, over 20 animal models have been described that each recapitulates certain aspects of secondary HLH. This review provides a comprehensive overview of the existing models, highlighting relevant findings, discussing the involvement of different cell types and cytokines in disease development and progression, and considering points of interest toward future therapeutic strategies.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Emely L Verweyen
- Translational Inflammation Research, Department of Pediatric Rheumatology & Immunology, WWU Medical Center (UKM), Muenster, Germany
| | - Amber De Visscher
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Christoph Kessel
- Translational Inflammation Research, Department of Pediatric Rheumatology & Immunology, WWU Medical Center (UKM), Muenster, Germany
| | - Carine H Wouters
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
- Pediatric Rheumatology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Canna SW. Autoinflammatory Contributors to Cytokine Storm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:385-397. [PMID: 39117828 DOI: 10.1007/978-3-031-59815-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytokine Storm is a complex and heterogeneous state of life-threatening systemic inflammation and immunopathology. Autoinflammation is a mechanistic category of immune dysregulation wherein immunopathology originates due to poor regulation of innate immunity. The growing family of monogenic Systemic Autoinflammatory Diseases (SAIDs) has been a wellspring for pathogenic insights and proof-of-principle targeted therapeutic interventions. There is surprisingly little overlap between SAID and Cytokine Storm Syndromes, and there is a great deal to be inferred from those SAID that do, and do not, consistently lead to Cytokine Storm. This chapter will summarize how illustrations of the autoinflammatory paradigm have advanced the understanding of human inflammation, including the role of autoinflammation in familial HLH. Next, it will draw from monogenic SAID, both those with strong associations with cytokine storm and those without, to illustrate how the cytokine IL-18 links innate immune dysregulation and cytokine storm.
Collapse
Affiliation(s)
- Scott W Canna
- Perelman School of Medicine, University of Pennsylvania, Pediatric Rheumatology and Immune Dysregulation, The Childrens Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Cron RQ. IL-1 Family Blockade in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:553-563. [PMID: 39117838 DOI: 10.1007/978-3-031-59815-9_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Interleukin-1 is a prototypic proinflammatory cytokine that is elevated in cytokine storm syndromes (CSSs), such as secondary hemophagocytic lymphohistiocytosis (sHLH) and macrophage activation syndrome (MAS). IL-1 has many pleotropic and redundant roles in both innate and adaptive immune responses. Blockade of IL-1 with recombinant human interleukin-1 receptor antagonist has shown efficacy in treating CSS. Recently, an IL-1 family member, IL-18, has been demonstrated to be contributory to CSS in autoinflammatory conditions, such as in inflammasomopathies (e.g., NLRC4 mutations). Anecdotally, recombinant IL-18 binding protein can be of benefit in treating IL-18-driven CSS. Lastly, another IL-1 family member, IL-33, has been postulated to contribute to CSS in an animal model of disease. Targeting of IL-1 and related cytokines holds promise in treating a variety of CSS.
Collapse
|
39
|
Vastert SJ, Canny SP, Canna SW, Schneider R, Mellins ED. Cytokine Storm Syndrome Associated with Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:323-353. [PMID: 39117825 DOI: 10.1007/978-3-031-59815-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cytokine storm syndrome (CSS) associated with systemic juvenile idiopathic arthritis (sJIA) has widely been referred to as macrophage activation syndrome (MAS). In this chapter, we use the term sJIA-associated CSS (sJIA-CSS) when referring to this syndrome and use the term MAS when referencing publications that specifically report on sJIA-associated MAS.
Collapse
Affiliation(s)
- Sebastiaan J Vastert
- Department of Paediatric Rheumatology & Immunology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan P Canny
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Scott W Canna
- Department of Pediatrics and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rayfel Schneider
- Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth D Mellins
- Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
40
|
Landy E, Carol H, Ring A, Canna S. Biological and clinical roles of IL-18 in inflammatory diseases. Nat Rev Rheumatol 2024; 20:33-47. [PMID: 38081945 DOI: 10.1038/s41584-023-01053-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Several new discoveries have revived interest in the pathogenic potential and possible clinical roles of IL-18. IL-18 is an IL-1 family cytokine with potent ability to induce IFNγ production. However, basic investigations and now clinical observations suggest a more complex picture. Unique aspects of IL-18 biology at the levels of transcription, activation, secretion, neutralization, receptor distribution and signalling help to explain its pleiotropic roles in mucosal and systemic inflammation. Blood biomarker studies reveal a cytokine for which profound elevation, associated with detectable 'free IL-18', defines a group of autoinflammatory diseases in which IL-18 dysregulation can be a primary driving feature, the so-called 'IL-18opathies'. This impressive specificity might accelerate diagnoses and identify patients amenable to therapeutic IL-18 blockade. Pathogenically, human and animal studies identify a preferential activation of CD8+ T cells over other IL-18-responsive lymphocytes. IL-18 agonist treatments that leverage the site of production or subversion of endogenous IL-18 inhibition show promise in augmenting immune responses to cancer. Thus, the unique aspects of IL-18 biology are finally beginning to have clinical impact in precision diagnostics, disease monitoring and targeted treatment of inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Emily Landy
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hallie Carol
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron Ring
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Scott Canna
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Tsoukas P, Yeung RSM. Kawasaki Disease-Associated Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:365-383. [PMID: 39117827 DOI: 10.1007/978-3-031-59815-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Kawasaki disease (KD) is a hyperinflammatory syndrome manifesting as an acute systemic vasculitis characterized by fever, nonsuppurative conjunctival injection, rash, oral mucositis, extremity changes, and cervical lymphadenopathy. KD predominantly affects young children and shares clinical features and immunobiology with other hyperinflammation syndromes including systemic juvenile idiopathic arthritis (sJIA) and multisystem inflammatory syndrome in children (MIS-C). Cytokine storm syndrome (CSS) is an acute complication in ~2% of KD patients; however, the incidence is likely underestimated as many clinical and laboratory features of both diseases overlap. CSS should be entertained when a child with KD is unresponsive to IVIG therapy with recalcitrant fever. Early recognition and prompt institution of immunomodulatory treatment can substantially reduce the mortality and morbidity of CSS in KD. Given the known pathogenetic role of IL-1β in both syndromes, the early use of IL-1 blockers in refractory KD with CSS deserves consideration.
Collapse
Affiliation(s)
- Paul Tsoukas
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rae S M Yeung
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
42
|
Paudel D, Nair DVT, Tian S, Hao F, Goand UK, Joseph G, Prodes E, Chai Z, Robert CE, Chassaing B, Patterson AD, Singh V. Dietary fiber guar gum-induced shift in gut microbiota metabolism and intestinal immune activity enhances susceptibility to colonic inflammation. Gut Microbes 2024; 16:2341457. [PMID: 38630030 PMCID: PMC11028019 DOI: 10.1080/19490976.2024.2341457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
With an increasing interest in dietary fibers (DFs) to promote intestinal health and the growth of beneficial gut bacteria, there is a continued rise in the incorporation of refined DFs in processed foods. It is still unclear how refined fibers, such as guar gum, affect the gut microbiota activity and pathogenesis of inflammatory bowel disease (IBD). Our study elucidated the effect and underlying mechanisms of guar gum, a fermentable DF (FDF) commonly present in a wide range of processed foods, on colitis development. We report that guar gum containing diet (GuD) increased the susceptibility to colonic inflammation. Specifically, GuD-fed group exhibited severe colitis upon dextran sulfate sodium (DSS) administration, as evidenced by reduced body weight, diarrhea, rectal bleeding, and shortening of colon length compared to cellulose-fed control mice. Elevated levels of pro-inflammatory markers in both serum [serum amyloid A (SAA), lipocalin 2 (Lcn2)] and colon (Lcn2) and extensive disruption of colonic architecture further affirmed that GuD-fed group exhibited more severe colitis than control group upon DSS intervention. Amelioration of colitis in GuD-fed group pre-treated with antibiotics suggest a vital role of intestinal microbiota in GuD-mediated exacerbation of intestinal inflammation. Gut microbiota composition and metabolite analysis in fecal and cecal contents, respectively, revealed that guar gum primarily enriches Actinobacteriota, specifically Bifidobacterium. Guar gum also altered multiple genera belonging to phyla Bacteroidota and Firmicutes. Such shift in gut microbiota composition favored luminal accumulation of intermediary metabolites succinate and lactate in the GuD-fed mice. Colonic IL-18 and tight junction markers were also decreased in the GuD-fed group. Importantly, GuD-fed mice pre-treated with recombinant IL-18 displayed attenuated colitis. Collectively, unfavorable changes in gut microbiota activity leading to luminal accumulation of lactate and succinate, reduced colonic IL-18, and compromised gut barrier function following guar gum feeding contributed to increased colitis susceptibility.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V. T. Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eleni Prodes
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhi Chai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chloé E.M. Robert
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
43
|
Zoref-Lorenz A. Inpatient recognition and management of HLH. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:259-266. [PMID: 38066887 PMCID: PMC10727013 DOI: 10.1182/hematology.2023000509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is one of the life-threatening emergencies that a hematologist may be called upon to diagnose and manage. It is a hyperinflammatory process that develops in patients with genetic abnormalities, hematologic malignancies, chronic inflammatory states, or infections. The main clinical challenges are recognizing HLH, determining whether the immune response is aberrant or appropriate, and deciding upon therapy. Patients may present with fever, central nervous system symptoms, cytopenias, or elevated liver enzymes. Recognizing HLH is challenging because its features overlap with numerous systemic disorders, thus requiring a high level of suspicion and timely investigations to confirm the diagnosis and detect the underlying trigger. Once HLH is diagnosed, careful consideration of immunosuppressive therapy's potential benefit versus harm is necessary. Such therapy can sometimes be tailored to the underlying trigger. In the acute setting, the competing pressures of completing a thorough diagnostic process (including evaluation for the presence of lymphoma and infection) and the need for expedited treatment must be balanced. During the management of an HLH patient, continuous vigilance for the presence of as-yet unrecognized disease triggers, monitoring response, and identifying emerging complications is critical. This review will discuss the recognition and management of HLH in the inpatient setting.
Collapse
Affiliation(s)
- Adi Zoref-Lorenz
- Hematology Institute, Meir Medical Center, Kfar Saba, Israel
- Division of Immunobiology, Cincinnati Children's Medical Center, Cincinnati, OH
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
44
|
Kumar A, Cournoyer E, Naymagon L. Inflamed-HLH, MAS, or something else? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:31-36. [PMID: 38066877 PMCID: PMC10727005 DOI: 10.1182/hematology.2023000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of excessive and maladaptive inflammation. Primary HLH is most frequently encountered in young children, and, without timely recognition and therapy, can lead to multiorgan failure and death. It is most often diagnosed using the HLH-2004 criteria and by identifying pathological mutations. However, the HLH-2004 criteria are not specific for HLH, and patients can easily fulfill these diagnostic criteria in other proinflammatory states in which HLH-therapy would not be indicated, including hematologic malignancies, infections, and rheumatologic disease. Therefore, great care must be taken to ensure that the specific disease associated with features of HLH is accurately recognized, as consequences of improper treatment can be catastrophic. We propose a diagnostic pathway for patients for whom HLH is on the differential (visual abstract). Importantly, in situations in which the initial diagnostic workup is equivocal or unrevealing, reevaluation for occult malignancy, infection, or rheumatologic disease would be prudent, as occult presentations may be missed on primary evaluation. Temporizing medications can be used in critically ill patients while awaiting secondary evaluation. By using this framework, clinicians will be able to more reliably discern primary HLH from other pro-inflammatory states and thus provide timely, appropriate disease-specific therapy.
Collapse
Affiliation(s)
- Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eily Cournoyer
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Leonard Naymagon
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
45
|
Shim J, Park S, Venkateswaran S, Kumar D, Prince C, Parihar V, Maples L, Waller EK, Kugathasan S, Briones M, Lee M, Henry CJ, Prahalad S, Chandrakasan S. Early B-cell development and B-cell maturation are impaired in patients with active hemophagocytic lymphohistiocytosis. Blood 2023; 142:1972-1984. [PMID: 37624902 PMCID: PMC10731577 DOI: 10.1182/blood.2023020426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is characterized by hyperinflammation and multiorgan dysfunction. Infections, including the reactivation of viruses, contribute to significant disease mortality in HLH. Although T-cell and natural killer cell-driven immune activation and dysregulation are well described, limited data exist on the status of B-cell compartment and humoral immune function in HLH. We noted marked suppression of early B-cell development in patients with active HLH. In vitro B-cell differentiation studies after exposure to HLH-defining cytokines, such as interferon gamma (IFN-γ) and tumor necrosis factor, recapitulated B-cell development arrest. Messenger RNA sequencing of human CD34+ cells exposed to IFN-γ demonstrated changes in genes and pathways affecting B-cell development and maturation. In addition, patients with active HLH exhibited a marked decrease in class-switched memory B (CSMB) cells and a decrease in bone marrow plasmablast/plasma cell compartments. The decrease in CSMB cells was associated with a decrease in circulating T follicular helper (cTfh) cells. Finally, lymph node and spleen evaluation in a patient with HLH revealed absent germinal center formation and hemophagocytosis with associated lymphopenia. Reassuringly, the frequency of CSMB and cTfh improved with the control of T-cell activation. Taken together, in patients with active HLH, these changes in B cells may affect the humoral immune response; however, further immune studies are needed to determine its clinical significance.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sunita Park
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Deepak Kumar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Chengyu Prince
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Vaunita Parihar
- Cancer Tissue and Pathology Shared Resource Core, Emory University School of Medicine, Atlanta, GA
| | - Larkin Maples
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Michael Briones
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Miyoung Lee
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Curtis J. Henry
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sampath Prahalad
- Division of Pediatric Rheumatology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
46
|
Jang YS, Lee K, Park M, Joo Park J, Choi GM, Kim C, Dehkohneh SB, Chi S, Han J, Song MY, Han YH, Cha SH, Goo Kang S. Albumin-binding recombinant human IL-18BP ameliorates macrophage activation syndrome and atopic dermatitis via direct IL-18 inactivation. Cytokine 2023; 172:156413. [PMID: 37918054 DOI: 10.1016/j.cyto.2023.156413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Given the clinical success of cytokine blockade in managing diverse inflammatory human conditions, this approach could be exploited for numerous refractory or uncontrolled inflammatory conditions by identifying novel targets for functional blockade. Interleukin (IL)-18, a pro-inflammatory cytokine, is relatively underestimated as a therapeutic target, despite accumulated evidence indicating the unique roles of IL-18 in acute and chronic inflammatory conditions, such as macrophage activation syndrome. Herein, we designed a new form of IL-18 blockade, i.e., APB-R3, a long-acting recombinant human IL-18BP linked to human albumin-binding Fab fragment, SL335, for extending half-life. We then explored the pharmacokinetics and pharmacodynamics of APB-R3. In addition to an extended serum half-life, APB-R3 alleviates liver inflammation and splenomegaly in a model of the macrophage activation syndrome induced in IL-18BP knockout mice. Moreover, APB-R3 substantially controlled skin inflammation in a model of atopic dermatitis. Thus, we report APB-R3 as a new potent IL-18 blocking agent that could be applied to treat IL-18-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Young-Saeng Jang
- Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungsun Lee
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mihyun Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin Joo Park
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ga Min Choi
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chohee Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Shima Barati Dehkohneh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Susan Chi
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jaekyu Han
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Moo Young Song
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Hoon Cha
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
47
|
Eeckhout E, Asaoka T, Van Gorp H, Demon D, Girard-Guyonvarc’h C, Andries V, Vereecke L, Gabay C, Lamkanfi M, van Loo G, Wullaert A. The autoinflammation-associated NLRC4 V341A mutation increases microbiota-independent IL-18 production but does not recapitulate human autoinflammatory symptoms in mice. Front Immunol 2023; 14:1272639. [PMID: 38090573 PMCID: PMC10713841 DOI: 10.3389/fimmu.2023.1272639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Background Autoinflammation with infantile enterocolitis (AIFEC) is an often fatal disease caused by gain-of-function mutations in the NLRC4 inflammasome. This inflammasomopathy is characterized by macrophage activation syndrome (MAS)-like episodes as well as neonatal-onset enterocolitis. Although elevated IL-18 levels were suggested to take part in driving AIFEC pathology, the triggers for IL-18 production and its ensuing pathogenic effects in these patients are incompletely understood. Methods Here, we developed and characterized a novel genetic mouse model expressing a murine version of the AIFEC-associated NLRC4V341A mutation from its endogenous Nlrc4 genomic locus. Results NLRC4V341A expression in mice recapitulated increased circulating IL-18 levels as observed in AIFEC patients. Housing NLRC4V341A-expressing mice in germfree (GF) conditions showed that these systemic IL-18 levels were independent of the microbiota, and unmasked an additional IL-18-inducing effect of NLRC4V341A expression in the intestines. Remarkably, elevated IL-18 levels did not provoke detectable intestinal pathologies in NLRC4V341A-expressing mice, even not upon genetically ablating IL-18 binding protein (IL-18BP), which is an endogenous IL-18 inhibitor that has been used therapeutically in AIFEC. In addition, NLRC4V341A expression did not alter susceptibility to the NLRC4-activating gastrointestinal pathogens Salmonella Typhimurium and Citrobacter rodentium. Conclusion As observed in AIFEC patients, mice expressing a murine NLRC4V341A mutant show elevated systemic IL-18 levels, suggesting that the molecular mechanisms by which this NLRC4V341A mutant induces excessive IL-18 production are conserved between humans and mice. However, while our GF and infection experiments argue against a role for commensal or pathogenic bacteria, identifying the triggers and mechanisms that synergize with IL-18 to drive NLRC4V341A-associated pathologies will require further research in this NLRC4V341A mouse model.
Collapse
Affiliation(s)
- Elien Eeckhout
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Tomoko Asaoka
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Hanne Van Gorp
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Dieter Demon
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Charlotte Girard-Guyonvarc’h
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, Department of Pathology and Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Vanessa Andries
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Lars Vereecke
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, Department of Pathology and Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Laboratory of Proteinscience, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
48
|
Landy E, Varghese J, Dang V, Szymczak-Workman A, Kane LP, Canna SW. Complementary HLH susceptibility factors converge on CD8 T-cell hyperactivation. Blood Adv 2023; 7:6949-6963. [PMID: 37738167 PMCID: PMC10690564 DOI: 10.1182/bloodadvances.2023010502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes. Familial HLH is caused by genetic impairment of granule-mediated cytotoxicity (eg, perforin deficiency). MAS is linked to excess activity of the inflammasome-activated cytokine interleukin-18 (IL-18). Though individually tolerated, mice with dual susceptibility (Prf1⁻/⁻Il18tg; DS) succumb to spontaneous, lethal hyperinflammation. We hypothesized that understanding how these susceptibility factors synergize would uncover key pathomechanisms in the activation, function, and persistence of hyperactivated CD8 T cells. In IL-18 transgenic (Il18tg) mice, IL-18 effects on CD8 T cells drove MAS after a viral (lymphocytic choriomeningitis virus), but not innate (toll like receptor 9), trigger. In vitro, CD8 T cells also required T-cell receptor (TCR) stimulation to fully respond to IL-18. IL-18 induced but perforin deficiency impaired immunoregulatory restimulation-induced cell death (RICD). Paralleling hyperinflammation, DS mice displayed massive postthymic oligoclonal CD8 T-cell hyperactivation in their spleens, livers, and bone marrow as early as 3 weeks. These cells increased proliferation and interferon gamma production, which contrasted with increased expression of receptors and transcription factors associated with exhaustion. Broad-spectrum antibiotics and antiretrovirals failed to ameliorate the disease. Attempting to genetically "fix" TCR antigen-specificity instead demonstrated the persistence of spontaneous HLH and hyperactivation, chiefly on T cells that had evaded TCR fixation. Thus, drivers of HLH may preferentially act on CD8 T cells: IL-18 amplifies activation and demand for RICD, whereas perforin supplies critical immunoregulation. Together, these factors promote a terminal CD8 T-cell activation state, combining features of exhaustion and effector function. Therefore, susceptibility to hyperinflammation may converge on a unique, unrelenting, and antigen-dependent state of CD8 T-cell hyperactivation.
Collapse
Affiliation(s)
- Emily Landy
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jemy Varghese
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Vinh Dang
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott W. Canna
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
49
|
Huang Z, Brodeur KE, Chen L, Du, Wobma H, Hsu EE, Liu M, Chang JC, Chang MH, Chou J, Day-Lewis M, Dedeoglu F, Halyabar O, Lederer JA, Li T, Lo MS, Lu M, Meidan E, Newburger JW, Randolph AG, Son MB, Sundel RP, Taylor ML, Wu H, Zhou Q, Canna SW, Wei K, Henderson LA, Nigrovic PA, Lee PY. Type I interferon signature and cycling lymphocytes in macrophage activation syndrome. J Clin Invest 2023; 133:e165616. [PMID: 37751296 PMCID: PMC10645381 DOI: 10.1172/jci165616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUNDMacrophage activation syndrome (MAS) is a life-threatening complication of Still's disease (SD) characterized by overt immune cell activation and cytokine storm. We aimed to further understand the immunologic landscape of SD and MAS.METHODWe profiled PBMCs from people in a healthy control group and patients with SD with or without MAS using bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq). We validated and expanded the findings by mass cytometry, flow cytometry, and in vitro studies.RESULTSBulk RNA-Seq of PBMCs from patients with SD-associated MAS revealed strong expression of genes associated with type I interferon (IFN-I) signaling and cell proliferation, in addition to the expected IFN-γ signal, compared with people in the healthy control group and patients with SD without MAS. scRNA-Seq analysis of more than 65,000 total PBMCs confirmed IFN-I and IFN-γ signatures and localized the cell proliferation signature to cycling CD38+HLA-DR+ cells within CD4+ T cell, CD8+ T cell, and NK cell populations. CD38+HLA-DR+ lymphocytes exhibited prominent IFN-γ production, glycolysis, and mTOR signaling. Cell-cell interaction modeling suggested a network linking CD38+HLA-DR+ lymphocytes with monocytes through IFN-γ signaling. Notably, the expansion of CD38+HLA-DR+ lymphocytes in MAS was greater than in other systemic inflammatory conditions in children. In vitro stimulation of PBMCs demonstrated that IFN-I and IL-15 - both elevated in MAS patients - synergistically augmented the generation of CD38+HLA-DR+ lymphocytes, while Janus kinase inhibition mitigated this response.CONCLUSIONMAS associated with SD is characterized by overproduction of IFN-I, which may act in synergy with IL-15 to generate CD38+HLA-DR+ cycling lymphocytes that produce IFN-γ.
Collapse
Affiliation(s)
- Zhengping Huang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Kailey E. Brodeur
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liang Chen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Du
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Evan E. Hsu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meng Liu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Joyce C. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret H. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan Day-Lewis
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James A. Lederer
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Mindy S. Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meiping Lu
- Department of Rheumatology, Immunology and Allergy, Zhejiang University School of Medicine, Hangzhou, China
| | - Esra Meidan
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Beth Son
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert P. Sundel
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria L. Taylor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Scott W. Canna
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Towe C, Grom AA, Schulert GS. Diagnosis and Management of the Systemic Juvenile Idiopathic Arthritis Patient with Emerging Lung Disease. Paediatr Drugs 2023; 25:649-658. [PMID: 37787872 DOI: 10.1007/s40272-023-00593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Chronic lung disease in children with systemic juvenile idiopathic arthritis (SJIA-LD) is an emerging and potentially life-threatening disease complication. Despite recent descriptions of its clinical spectrum, preliminary immunologic characterization, and proposed hypotheses regaarding etiology, optimal approaches to diagnosis and management remain unclear. Here, we review the current clinical understanding of SJIA-LD, including the potential role of biologic therapy in disease pathogenesis, as well as the possibility of drug reactions with eosinophilia and systemic symptoms (DRESS). We discuss approaches to evaluation of children with suspected SJIA-LD, including a proposed algorithm to risk-stratify all SJIA patients for screening to detect LD early. We review potential pharmacologic and non-pharmacologic treatment approaches that have been reported for SJIA-LD or utilized in interstitial lung diseases associated with other rheumatic diseases. This includes lymphocyte-targeting therapies, JAK inhibitors, and emerging therapies against IL-18 and IFNγ. Finally, we consider urgent unmet needs in this area including in basic discovery of disease mechanisms and clinical research to improve disease detection and patient outcomes.
Collapse
Affiliation(s)
- Christopher Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexei A Grom
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 4010, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 4010, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|