1
|
Gibert C, Blaize M, Fekkar A. Fungal infection in patients treated with Bruton tyrosine kinase inhibitor-from epidemiology to clinical outcome: a systematic review. Clin Microbiol Infect 2025; 31:731-739. [PMID: 39742965 DOI: 10.1016/j.cmi.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The Bruton tyrosine kinase inhibitor (BTKi) has emerged as a key treatment for B-cell lymphomas. Despite its efficacy in the treatment of malignancies, numerous cases of invasive fungal infections (IFI) have been reported in patients receiving ibrutinib, a first-generation BTKi. Cases of invasive aspergillosis have also been reported with acalabrutinib and zanubrutinib. OBJECTIVES The objective of this study was to provide an overview of the pathogens involved, the time of onset of infections and factors influencing survival. METHODS Data sources: PubMed, Embase and Web of Science databases were used, and the results were reported according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. STUDY ELIGIBILITY CRITERIA Case reports, case series, clinical trials and cohort studies were included. PARTICIPANTS All reported cases of IFI in patients treated with BTKi were analysed. For case reports/case series, demographic, microbiological and outcome data were retrieved. Assessment of risk of bias: Given the significant heterogeneity in clinical trials/cohort studies, only epidemiological analysis was performed, without formal incidence analysis. Methods of data synthesis: Epidemiologic data were presented as descriptive statistics. RESULTS In total, 25 215 patients from 92 retrospective and prospective clinical trials/cohort studies and 211 patients from 115 case reports/case series were included. Among clinical trials/cohorts, 736 IFI were reported, including 234 candidiasis (31.8%), 227 aspergillosis (30.8%) and 124 Pneumocystis jirovecii pneumonia (PJP) (16.8%). Among the case reports/case series, 155 (73.5%) had chronic lymphocytic leukaemia, and 56 (26.5%) had other malignancies. The main IFI were aspergillosis (n = 107, 50.7%), cryptococcosis (n = 33, 15.6%), PJP (n = 26, 12.3%) and mucormycosis (n = 23, 10.9%). The median delay between the initiation of BTKi and IFI was 2.3, 4.0, 3.0 and 3.0 for aspergillosis, cryptococcosis, PJP and mucormycosis, respectively. The survival rate improved when BTKi was discontinued during infection. CONCLUSIONS Targeted therapies in lymphocytic malignancies raised new issues concerning infectious complications. Monitoring IFI in patients receiving second- and third-generation BTKi is crucial for improving the management of these manifestations.
Collapse
Affiliation(s)
- Charles Gibert
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Marion Blaize
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (CIMI)-Paris, Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Parasitologie-Mycologie, Hopital de La Pitie-Salpetriere, Paris, France
| | - Arnaud Fekkar
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (CIMI)-Paris, Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Parasitologie-Mycologie, Hopital de La Pitie-Salpetriere, Paris, France.
| |
Collapse
|
2
|
Liu J, Wang G, Shi M, Guo RY, Yuan C, Wang Y, Mehmood A, Zhang L, Li B. BTK and YKL-40 Levels and Their Association with Acute AQP4-IgG-Positive Neuromyelitis Optica Spectrum Disorder. Mol Neurobiol 2025; 62:4785-4801. [PMID: 39485631 DOI: 10.1007/s12035-024-04588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
This study investigated the potential correlation between BTK/YKL-40 levels and the severity of AQP4-IgG + NMOSD, aiming to identify biomarkers for disease monitoring and treatment assessment. Plasma YKL-40 expression was measured in 135 AQP4-IgG + NMOSD patients using ELISA. Patients were categorized into pre- and post-IVMP treatment acute phases, as well as during remission, with a healthy control group included. BTK and NF-κB mRNA levels in PBMCs were detected via q-PCR, and BTK/P-BTK protein expression was assessed using Western blotting. Disability was evaluated using the EDSS score, and clinical characteristics were evaluated alongside laboratory tests. Acute-phase NMOSD patients receiving pre-IVMP therapy presented significantly elevated plasma YKL-40 concentrations compared with those of post-treatment patients, patients in remission, and healthy controls. Additionally, these patients presented significantly higher levels of PBMC BTK mRNA, NF-κB mRNA, BTK, and P-BTK protein expression than remission patients and healthy controls. Plasma YKL-40 levels and PBMC BTK/P-BTK protein levels were positively correlated with EDSS scores. The plasma YKL-40 concentration significantly contributes to disease severity and serves as an independent risk factor for acute NMOSD. Elevated BTK, P-BTK, NF-κB, and YKL-40 levels were observed in acute-phase AQP4-IgG + NMOSD patients. These biomarkers are related to disease activity and may predict treatment efficacy. There is a connection among YKL-40, BTK, and P-BTK levels and disease severity, suggesting their potential involvement in the pathogenic mechanism of AQP4-IgG + NMOSD.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Gaoning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Yulin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China.
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
| |
Collapse
|
3
|
Gafarzadeh Z, Gaultier C, Salmasi S, Alchaikh Hassan R, Dasanu CA. Pulmonary Coccidioidomycosis Occurring in a Patient Treated With Acalabrutinib for Chronic Lymphocytic Leukemia. Cureus 2025; 17:e83026. [PMID: 40421329 PMCID: PMC12104961 DOI: 10.7759/cureus.83026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Acalabrutinib is a Bruton tyrosine kinase inhibitor (BTKi) approved for use in the treatment of chronic lymphocytic leukemia (CLL). Herein, we present a patient successfully treated with reduced-dose acalabrutinib for CLL, with pre-existing hypogammaglobulinemia-type immunoglobulin G (IgG) and immunoglobulin M (IgM). Twenty-four months into therapy, he developed a right upper lobe infiltrate due to pulmonary coccidioidomycosis; the Naranjo causality assessment score was 4 (probable). The patient received monthly intravenous IG (IVIG) infusions and antifungal therapy, with significant clinical improvement. Acalabrutinib was restarted, along with close clinical monitoring. The extent to which invasive fungal infections can be attributed to acalabrutinib alone is not always straightforward due to the presence of immune defects associated with CLL, endemic zip codes, and a prior exposure to ibrutinib. Physicians should remain vigilant in assessing and managing invasive fungal infections in these patients in order to optimize patient safety and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Gafarzadeh
- Internal Medicine, Eisenhower Medical Center, Rancho Mirage, USA
| | - Cyril Gaultier
- Infectious Disease, Eisenhower Medical Center, Rancho Mirage, USA
| | - Shiva Salmasi
- Internal Medicine, Eisenhower Medical Center, Rancho Mirage, USA
| | | | - Constantin A Dasanu
- Oncology and Hematology, Lucy Curci Cancer Center, Eisenhower Medical Center, Rancho Mirage, USA
| |
Collapse
|
4
|
Kordana N, Johnson A, Quinn K, Obar JJ, Cramer RA. Recent developments in Aspergillus fumigatus research: diversity, drugs, and disease. Microbiol Mol Biol Rev 2025; 89:e0001123. [PMID: 39927770 PMCID: PMC11948498 DOI: 10.1128/mmbr.00011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYAdvances in modern medical therapies for many previously intractable human diseases have improved patient outcomes. However, successful disease treatment outcomes are often prevented due to invasive fungal infections caused by the environmental mold Aspergillus fumigatus. As contemporary antifungal therapies have not experienced the same robust advances as other medical therapies, defining mechanisms of A. fumigatus disease initiation and progression remains a critical research priority. To this end, the World Health Organization recently identified A. fumigatus as a research priority human fungal pathogen and the Centers for Disease Control has highlighted the emergence of triazole-resistant A. fumigatus isolates. The expansion in the diversity of host populations susceptible to aspergillosis and the complex and dynamic A. fumigatus genotypic and phenotypic diversity call for a reinvigorated assessment of aspergillosis pathobiological and drug-susceptibility mechanisms. Here, we summarize recent advancements in the field and discuss challenges in our understanding of A. fumigatus heterogeneity and its pathogenesis in diverse host populations.
Collapse
Affiliation(s)
- Nicole Kordana
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Angus Johnson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine Quinn
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Leo IR, Kunold E, Audrey A, Tampere M, Eirich J, Lehtiö J, Jafari R. Functional proteoform group deconvolution reveals a broader spectrum of ibrutinib off-targets. Nat Commun 2025; 16:1948. [PMID: 40000607 PMCID: PMC11862126 DOI: 10.1038/s41467-024-54654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/13/2024] [Indexed: 02/27/2025] Open
Abstract
Proteome-wide profiling has revealed that targeted drugs can have complex protein interaction landscapes. However, it's a challenge to profile drug targets while systematically accounting for the dynamic protein variations that produce populations of multiple proteoforms. We address this problem by combining thermal proteome profiling (TPP) with functional proteoform group detection to refine the target landscape of ibrutinib. In addition to known targets, we implicate additional specific functional proteoform groups linking ibrutinib to mechanisms in immunomodulation and cellular processes like Golgi trafficking, endosomal trafficking, and glycosylation. Further, we identify variability in functional proteoform group profiles in a CLL cohort, linked to treatment status and ex vivo response and resistance. This offers deeper insights into the impacts of functional proteoform groups in a clinical treatment setting and suggests complex biological effects linked to off-target engagement. These results provide a framework for interpreting clinically observed off-target processes and adverse events, highlighting the importance of functional proteoform group-level deconvolution in understanding drug interactions and their functional impacts with potential applications in precision medicine.
Collapse
Affiliation(s)
- Isabelle Rose Leo
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Elena Kunold
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
- Evotec International GmbH, München, Germany
| | - Anastasia Audrey
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marianna Tampere
- Precision Cancer Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Rozbeh Jafari
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
6
|
Alsowaida YS, Alsolami A, Almangour TA, Abraham I. Infectious complications associated with immune and targeted anti-cancer therapies: a retrospective study of the FDA adverse events reporting system (FAERS). Expert Opin Drug Saf 2025:1-8. [PMID: 39885659 DOI: 10.1080/14740338.2025.2461199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Immune and targeted anti-cancer therapies are associated with an increased risk of infectious complications. The objectives of the present study were to evaluate the infectious complications associated with immune and targeted anti-cancer drugs. RESEARCH DESIGN AND METHODS This was a retrospective study for immune and targeted anti-cancer drugs submitted to the FDA Adverse Event Reporting System (FAERS) from 1996 to 20 March 2024. The primary outcome was the rate of infectious disease events, and the secondary outcomes were the incidence of febrile neutropenia (FN), all-cause mortality, and the top 10 infections in each class. RESULTS Our study included 14 drug classes comprising 44 drugs. The incidence of infectious complications was 14.31% (110,671/773,130). The highest incidence rate was reported with IL-6 inhibitors (30.89%), the highest incidence of FN was reported with Histone deacetylase inhibitors (8.43%), and the highest all-cause mortality was reported with BCR-ABL tyrosine kinase inhibitors (17.17%). CONCLUSION Immune and targeted anti-cancer therapies vary in the incidence of infectious complications. Pirtobrutinib, copanlisib, sirolimus, vorinostat, and tocilizumab were associated with high infectious complications (>30%) that warrant emphasis in the clinical guidelines. Thus, clinicians should vigilantly monitor patients undergoing immune and targeted therapies for infectious complications and use antimicrobial prophylaxes when indicated.
Collapse
Affiliation(s)
- Yazed S Alsowaida
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | - Thamer A Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ivo Abraham
- Department of Pharmacy Practice and Science, R Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
7
|
Chen S, Liu Y, Zhang Y, Guo X, Bai T, He K, Zhu Y, Lei Y, Du M, Wang X, Liu Q, Yan H. Bruton's tyrosine kinase inhibition suppresses pathological retinal angiogenesis. Br J Pharmacol 2024. [PMID: 39374939 DOI: 10.1111/bph.17344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND AND PURPOSE Pathological retinal angiogenesis is a typical manifestation of vision-threatening ocular diseases. Many patients exhibit poor response or resistance to anti-vascular endothelial growth factor (VEGF) agents. Bruton's tyrosine kinase (BTK) controls the proliferation and function of immune cells. Therefore, we examined the anti-inflammatory and anti-angiogenic effects of BTK inhibition on retinal angiogenesis. EXPERIMENTAL APPROACH Retinal neovascularisation and vascular leakage in oxygen-induced retinopathy in C57/BL6J mice were assessed by whole-mount retinal immunofluorescence. PLX5622 was used to deplete microglia and Rag1-knockout mice were used to test the contribution of lymphocytes to the effects of BTK inhibition. The cytokines, activation markers, inflammatory and immune-regulatory activities of retinal microglia/macrophages were detected using qRT-PCR and immunofluorescence. NLRP3 was detected by western blotting, and the effects of BTK inhibition on the co-culture of microglia and human retinal microvascular endothelial cells (HRMECs) were examined. KEY RESULTS BTK inhibition suppressed pathological angiogenesis and vascular leakage, and significantly reduced retinal inflammation, which involved microglia/macrophages but not lymphocytes. BTK inhibition increased anti-inflammatory factors and reduced pro-inflammatory cytokines that resulted from NLRP3 inflammasome activation. BTK inhibition suppressed the inflammatory activity of microglia/macrophages, and acted synergistically with anti-VEGF without retinal toxicity. Moreover, the supernatant of microglia incubated with BTK-inhibitor reduced the proliferation, tube formation and sprouting of HRMECs. CONCLUSION AND IMPLICATIONS BTK inhibition suppressed retinal neovascularisation and vascular leakage by modulating the inflammatory activity of microglia and macrophages. Our study suggests BTK inhibition as a novel and promising approach for alleviating pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yuming Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yutian Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Tinghui Bai
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| |
Collapse
|
8
|
Mauro FR, Frustaci AM, Visentin A, Vitale C, Bartoletti M, Oltolini C, Zappulo E, Mikulska M. Severe infections in patients with chronic lymphocytic leukemia included in trials investigating BTK and BCL2 inhibitors. Crit Rev Oncol Hematol 2024; 201:104408. [PMID: 38880368 DOI: 10.1016/j.critrevonc.2024.104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024] Open
Abstract
Bruton tyrosine kinase inhibitors (BTKi) and the BCL-2 inhibitor venetoclax have significantly improved the prognosis of patients with chronic lymphocytic leukemia (CLL). However, the incidence of severe infections in patients receiving these agents needs to be better understood. Our review aimed to provide an overview of grade ≥3 infections in patients with CLL who received BTKi and venetoclax-based therapy in prospective trials. Infection rates were influenced by the age of patients and the duration of follow-up. For treatment-naive (TN) patients receiving BTKi, infection rates ranged between 11.4 % and 27.4 % and were close to 30 % in relapsed/refractory (R/R) patients. TN and R/R patients receiving fixed-duration venetoclax-based treatments showed variable rates, with maximum values around 20 %. Opportunistic and fatal infections were uncommon. In conclusion, infections remain a concern in patients with CLL receiving targeted agents. A better definition of factors increasing infection vulnerability could help identify those patients who require infection prophylaxis.
Collapse
Affiliation(s)
- Francesca R Mauro
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| | | | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Italy
| | - Candida Vitale
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele Milan 20090, Italy; Infectious Disease Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Chiara Oltolini
- Clinic of Infectious Diseases, Vita-Salute University, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery University of Naples Federico II, Napoli, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL) University of Genoa, Italy; Infectious Diseases Unit IRCCS Ospedale Policlinico San Martino Genoa, Italy
| |
Collapse
|
9
|
Agudelo Higuita NI, Chastain DB, Scott B, Sahra S, Vargas Barahona L, Henao Cordero J, Lee ALH, Tuells J, Henao-Martínez AF. Risk of Invasive Fungal Infections in Patients With Chronic Lymphocytic Leukemia Treated With Bruton Tyrosine Kinase Inhibitors: A Case-Control Propensity Score-Matched Analysis. Open Forum Infect Dis 2024; 11:ofae115. [PMID: 38887474 PMCID: PMC11181183 DOI: 10.1093/ofid/ofae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/26/2024] [Indexed: 06/20/2024] Open
Abstract
Background Prior reports have suggested a possible increase in the frequency of invasive fungal infections (IFIs) with use of a Bruton tyrosine kinase inhibitor (BTKi) for treatment of chronic lymphoid malignancies such as chronic lymphocytic leukemia (CLL), but precise estimates are lacking. We aim to characterize the prevalence of IFIs among patients with CLL, for whom a BTKi is now the first-line recommended therapy. Methods We queried TriNetX, a global research network database, to identify adult patients with CLL using the International Classification of Diseases, Tenth Revision code (C91.1) and laboratory results. We performed a case-control propensity score-matched analysis to determine IFIs events by BTKi use. We adjusted for age, sex, ethnicity, and clinical risk factors associated with an increased risk of IFIs. Results Among 5358 matched patients with CLL, we found an incidence of 4.6% of IFIs in patients on a BTKi versus 3.5% among patients not on a BTKi at 5 years. Approximately 1% of patients with CLL developed an IFI while on a BTKi within this period. Our adjusted IFI event analysis found an elevated rate of Pneumocystis jirovecii pneumonia (PJP) (0.5% vs 0.3%, P = .02) and invasive candidiasis (3.5% vs 2.7%, P = .012) with the use of a BTKi. The number needed to harm for patients taking a BTKi was 120 and 358 for invasive candidiasis and PJP, respectively. Conclusions We found an adjusted elevated rate of PJP and invasive candidiasis with BTKi use. The rates are, however, low with a high number needed to harm. Additional studies stratifying other IFIs with specific BTKis are required to identify at-risk patients and preventive, cost-effective interventions.
Collapse
Affiliation(s)
- Nelson Iván Agudelo Higuita
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras
| | - Daniel B Chastain
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, Georgia, USA
| | - Brian Scott
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Syeda Sahra
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - José Henao Cordero
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alfred L H Lee
- Department of Microbiology, Prince of Wales Hospital, Hong Kong Special Administration Region, China
| | - Jose Tuells
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, San Vicente del Raspeig, Alicante, Spain
| | - Andrés F Henao-Martínez
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Tawfiq RK, Abeykoon JP, Kapoor P. Bruton Tyrosine Kinase Inhibition: an Effective Strategy to Manage Waldenström Macroglobulinemia. Curr Hematol Malig Rep 2024; 19:120-137. [PMID: 38536576 DOI: 10.1007/s11899-024-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE OF REVIEW The treatment of Waldenström macroglobulinemia (WM) has evolved over the past decade. With the seminal discoveries of MYD88 and CXCR warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) mutations in WM cells, our understanding of the disease biology and treatment has improved. The development of a new class of agents, Bruton tyrosine kinase inhibitors (BTKi), has substantially impacted the treatment paradigm of WM. Herein, we review the current and emerging BTKi and the evidence for their use in WM. RECENT FINDINGS Clinical trials have established the role of covalent BTKi in the treatment of WM. Their efficacy is compromised among patients who harbor CXCR4WHIM mutation or MYD88WT genotype. The development of BTKC481 mutation-mediated resistance to covalent BTKi may lead to disease refractoriness. Novel, non-covalent, next-generation BTKi are emerging, and preliminary results of the early phase clinical trials show promising activity in WM, even among patients refractory to a covalent BTKi. Covalent BTK inhibitors have demonstrated meaningful outcomes in treatment-naïve (TN) and relapsed refractory (R/R) WM, particularly among those harboring the MYD88L265P mutation. The next-generation BTKi demonstrate improved selectivity, resulting in a more favorable toxicity profile. In WM, BTKi are administered until progression or the development of intolerable toxicity. Consequently, the potential for acquired resistance, the emergence of cumulative toxicities, and treatment-related financial burden are critical challenges associated with the continuous therapy approach. By circumventing BTK C481 mutations that alter the binding site to covalent BTKi, the non-covalent BTKi serve as alternative agents in the event of acquired resistance. Head-to-head comparative trials with the conventional chemoimmunotherapies are lacking. The findings of the RAINBOW trial (NCT046152), comparing the dexamethasone, rituximab, and cyclophosphamide (DRC) regimen to the first-generation, ibrutinib are awaited, but more studies are needed to draw definitive conclusions on the comparative efficacy of chemoimmunotherapy and BTKi. Complete response is elusive with BTKi, and combination regimens to improve upon the efficacy and limit the treatment duration are also under evaluation in WM.
Collapse
Affiliation(s)
- Reema K Tawfiq
- Department of Hematology-Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Jithma P Abeykoon
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Prashant Kapoor
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Vargas-Blanco DA, Hepworth OW, Basham KJ, Simaku P, Crossen AJ, Timmer KD, Hopke A, Brown Harding H, Vandal SR, Jensen KN, Floyd DJ, Reedy JL, Reardon C, Mansour MK, Ward RA, Irimia D, Abramson JS, Vyas JM. BTK inhibitor-induced defects in human neutrophil effector activity against Aspergillus fumigatus are restored by TNF-α. JCI Insight 2024; 9:e176162. [PMID: 38713531 PMCID: PMC11383172 DOI: 10.1172/jci.insight.176162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Inhibition of Bruton's tyrosine kinase (BTK) through covalent modifications of its active site (e.g., ibrutinib [IBT]) is a preferred treatment for multiple B cell malignancies. However, IBT-treated patients are more susceptible to invasive fungal infections, although the mechanism is poorly understood. Neutrophils are the primary line of defense against these infections; therefore, we examined the effect of IBT on primary human neutrophil effector activity against Aspergillus fumigatus. IBT significantly impaired the ability of neutrophils to kill A. fumigatus and potently inhibited reactive oxygen species (ROS) production, chemotaxis, and phagocytosis. Importantly, exogenous TNF-α fully compensated for defects imposed by IBT and newer-generation BTK inhibitors and restored the ability of neutrophils to contain A. fumigatus hyphal growth. Blocking TNF-α did not affect ROS production in healthy neutrophils but prevented exogenous TNF-α from rescuing the phenotype of IBT-treated neutrophils. The restorative capacity of TNF-α was independent of transcription. Moreover, the addition of TNF-α immediately rescued ROS production in IBT-treated neutrophils, indicating that TNF-α worked through a BTK-independent signaling pathway. Finally, TNF-α restored effector activity of primary neutrophils from patients on IBT therapy. Altogether, our data indicate that TNF-α rescued the antifungal immunity block imposed by inhibition of BTK in primary human neutrophils.
Collapse
Affiliation(s)
- Diego A. Vargas-Blanco
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia W. Hepworth
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Kyle J. Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patricia Simaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Arianne J. Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kyle D. Timmer
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alex Hopke
- Harvard Medical School, Boston, Massachusetts, USA
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Steven R. Vandal
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kirstine N. Jensen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J. Floyd
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Reardon
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Irimia
- Harvard Medical School, Boston, Massachusetts, USA
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Jeremy S. Abramson
- Center for Lymphoma, Mass General Cancer Center, Boston, Massachusetts, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Malinis M, Abbo L, Vazquez JA, Ostrosky-Zeichner L. Community-acquired pneumonia: a US perspective on the guideline gap. J Antimicrob Chemother 2024; 79:959-961. [PMID: 38693426 PMCID: PMC11181858 DOI: 10.1093/jac/dkae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2024] [Indexed: 05/03/2024] Open
Abstract
Community-acquired pneumonia continues to be one of the most common causes of morbidity and mortality due to infectious disease. The aetiologies, clinical presentations, diagnostic modalities and therapeutic options are changing and outpacing the creation of management guidelines. This educational article summarizes a roundtable activity sponsored by an unrestricted educational grant by Paratek that included US experts discussing these changes and identifying gaps in the current guidelines.
Collapse
Affiliation(s)
- Maricar Malinis
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Lilian Abbo
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jose A Vazquez
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Luis Ostrosky-Zeichner
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
13
|
Desai JV, Zarakas MA, Wishart AL, Roschewski M, Aufiero MA, Donkò A, Wigerblad G, Shlezinger N, Plate M, James MR, Lim JK, Uzel G, Bergerson JR, Fuss I, Cramer RA, Franco LM, Clark ES, Khan WN, Yamanaka D, Chamilos G, El-Benna J, Kaplan MJ, Staudt LM, Leto TL, Holland SM, Wilson WH, Hohl TM, Lionakis MS. BTK drives neutrophil activation for sterilizing antifungal immunity. J Clin Invest 2024; 134:e176142. [PMID: 38696257 PMCID: PMC11178547 DOI: 10.1172/jci176142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
We describe a previously unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, patients who were treated with BTKi, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in patients who are susceptible.
Collapse
Affiliation(s)
- Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marissa A. Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Andrew L. Wishart
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Mariano A. Aufiero
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Agnes Donkò
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Gustaf Wigerblad
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Markus Plate
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gulbu Uzel
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Ivan Fuss
- Mucosal Immunity Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Luis M. Franco
- Functional Immunogenomics Section, NIAMS, NIH, Bethesda, Maryland, USA
| | - Emily S. Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Georgios Chamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Jamel El-Benna
- Centre de Recherche sur l’Inflammation, Laboratoire d’Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, Paris, France
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Thomas L. Leto
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Steven M. Holland
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
14
|
Allouchery M, Brunet K, Tomowiak C, Singier A, Pambrun E, Pariente A, Bezin J, Pérault-Pochat MC, Salvo F. Invasive fungal infection incidence and risk factors in patients receiving ibrutinib in real-life settings: A nationwide population-based cohort study. Mycoses 2024; 67:e13676. [PMID: 37984556 DOI: 10.1111/myc.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Data on the risk of invasive fungal infections (IFI) with ibrutinib treatment are scarce. OBJECTIVES This study aimed to determine IFI incidence and risk factors in ibrutinib-treated patients in real-life settings. METHODS We constituted a cohort of ibrutinib incident users in the French National Healthcare Database. All patients ≥18 years with a first dispensing of ibrutinib between 21 November 2014 and 31 December 2019 were included. Patients were followed from the cohort entry date until IFI, ibrutinib discontinuation, death, or 31 December 2020, whichever came first. The cumulative incidence function method was used to estimate the probability of IFI accounting for competing risk of death. A multivariate cause-specific Cox proportional hazards model was used to assess independent IFI risk factors. RESULTS Among 6937 ibrutinib-treated patients, 1-year IFI cumulative incidence was 1.3%, with invasive aspergillosis being the most frequent. Allogenic or autologous stem cell transplantation (ASCT) (hazard ratio [HR] 3.59, 95% confidence interval [1.74; 7.41]), previous anticancer treatment (HR 2.12, CI 95% [1.34; 3.35]) and chronic respiratory disease (HR 1.66, [1.03; 2.67]) were associated with higher risk of IFI. Besides neutropenia and corticosteroids, use of anti-CD20 agents was significantly more frequent in patients having experienced IFI (HR 3.68, [1.82; 7.45]). CONCLUSIONS In addition to patients with ASCT history, severe neutropenia or treated with corticosteroids, our findings support active surveillance of IFIs in those with chronic respiratory disease, previously treated, or treated with anti-CD20 agents in combination with ibrutinib. Further studies are needed to optimise IFI prophylaxis in these patient subgroups.
Collapse
Affiliation(s)
- Marion Allouchery
- Pharmacologie Clinique et Vigilances, CHU de Poitiers, Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France
- Univ. Bordeaux, INSERM, BPH, U1219, Team AHeaD, Bordeaux, France
| | - Kévin Brunet
- Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France
- INSERM U1070 PHAR2, Université de Poitiers, Poitiers, France
- Laboratoire de Parasitologie et Mycologie Médicale, CHU de Poitiers, Poitiers, France
| | - Cécile Tomowiak
- Onco-Hématologie et Thérapie Cellulaire, CHU de Poitiers, Poitiers, France
- INSERM CIC 1402, CHU de Poitiers, Poitiers, France
| | - Allison Singier
- Univ. Bordeaux, INSERM, BPH, U1219, Team AHeaD, Bordeaux, France
| | - Elodie Pambrun
- Univ. Bordeaux, INSERM, BPH, U1219, Team AHeaD, Bordeaux, France
| | - Antoine Pariente
- Univ. Bordeaux, INSERM, BPH, U1219, Team AHeaD, Bordeaux, France
| | - Julien Bezin
- Univ. Bordeaux, INSERM, BPH, U1219, Team AHeaD, Bordeaux, France
- CHU de Bordeaux, Pôle de Santé Publique, Service de Pharmacologie médicale, Bordeaux, France
| | - Marie-Christine Pérault-Pochat
- Pharmacologie Clinique et Vigilances, CHU de Poitiers, Poitiers, France
- Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM, UMR1084, Université de Poitiers, Poitiers, France
| | - Francesco Salvo
- Univ. Bordeaux, INSERM, BPH, U1219, Team AHeaD, Bordeaux, France
- CHU de Bordeaux, Pôle de Santé Publique, Service de Pharmacologie médicale, Bordeaux, France
| |
Collapse
|
15
|
Baucher L, Lemiale V, Joseph A, Wallet F, Pineton de Chambrun M, Ferré A, Lombardi R, Platon L, Contejean A, Fuseau C, Calvet L, Pène F, Kouatchet A, Mokart D, Azoulay E, Lafarge A. Severe infections requiring intensive care unit admission in patients receiving ibrutinib for hematological malignancies: a groupe de recherche respiratoire en réanimation onco-hématologique (GRRR-OH) study. Ann Intensive Care 2023; 13:123. [PMID: 38055081 DOI: 10.1186/s13613-023-01219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND In the last decade, Ibrutinib has become the standard of care in the treatment of several lymphoproliferative diseases such as chronic lymphocytic leukemia (CLL) and several non-Hodgkin lymphoma. Beyond Bruton tyrosine kinase inhibition, Ibrutinib shows broad immunomodulatory effects that may promote the occurrence of infectious complications, including opportunistic infections. The infectious burden has been shown to vary by disease status, neutropenia, and prior therapy but data focusing on severe infections requiring intensive care unit (ICU) admission remain scarce. We sought to investigate features and outcomes of severe infections in a multicenter cohort of 69 patients receiving ibrutinib admitted to 10 French intensive care units (ICU) from 1 January 2015 to 31 December 2020. RESULTS Median time from ibrutinib initiation was 6.6 [3-18] months. Invasive fungal infections (IFI) accounted for 19% (n = 13/69) of severe infections, including 9 (69%; n = 9/13) invasive aspergillosis, 3 (23%; n = 3/13) Pneumocystis pneumonia, and 1 (8%; n = 1/13) cryptococcosis. Most common organ injury was acute respiratory failure (ARF) (71%; n = 49/69) and 41% (n = 28/69) of patients required mechanical ventilation. Twenty (29%; n = 20/69) patients died in the ICU while day-90 mortality reached 55% (n = 35/64). In comparison with survivors, decedents displayed more severe organ dysfunctions (SOFA 7 [5-11] vs. 4 [3-7], p = 0.004) and were more likely to undergo mechanical ventilation (68% vs. 31%, p = 0.010). Sixty-three ibrutinib-treated patients were matched based on age and underlying malignancy with 63 controls receiving conventional chemotherapy from an historic cohort. Despite a higher median number of prior chemotherapy lines (2 [1-2] vs. 0 [0-2]; p < 0.001) and higher rates of fungal [21% vs. 8%, p = 0.001] and viral [17% vs. 5%, p = 0.027] infections in patients receiving ibrutinib, ICU (27% vs. 38%, p = 0.254) and day-90 mortality (52% vs. 48%, p = 0.785) were similar between the two groups. CONCLUSION In ibrutinib-treated patients, severe infections requiring ICU admission were associated with a dismal prognosis, mostly impacted by initial organ failures. Opportunistic agents should be systematically screened by ICU clinicians in this immunocompromised population.
Collapse
Affiliation(s)
- Louise Baucher
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
| | - Virginie Lemiale
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France
| | - Adrien Joseph
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France
| | - Florent Wallet
- Médecine Intensive Réanimation, Hospices Civils de Lyon, Lyon, France
| | - Marc Pineton de Chambrun
- Service de Médecine Intensive-Réanimation, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital de La Pitié-Salpêtrière, Paris, France
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institut de Cardiométabolisme Et Nutrition (ICAN), 75013, Paris, France
| | - Alexis Ferré
- Réanimation Médico-Chirurgicale, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Romain Lombardi
- Médecine Intensive Réanimation, Hôpital Pasteur, Nice, France
| | - Laura Platon
- Médecine Intensive Réanimation, Hôpital Lapeyronie, Montpellier, France
| | | | - Charline Fuseau
- Hématologie, Institut de Cancérologie (ICANS), Strasbourg, France
| | - Laure Calvet
- Médecine Intensive Réanimation, Hôpital Gabriel Montpied, Clermont-Ferrand, France
| | - Frédéric Pène
- Médecine Intensive Réanimation, Hôpital Cochin, Paris, France
| | | | - Djamel Mokart
- Anesthésie Réanimation, Institut Paoli Calmettes, Marseille, France
| | - Elie Azoulay
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France
| | - Antoine Lafarge
- Médecine Intensive Réanimation, Hôpital Saint Louis, AP-HP, Université Paris Cité, Paris, France
| |
Collapse
|
16
|
Palmucci JR, Messina JA, Tenor JL, Perfect JR. New anticancer therapeutics impact fungal pathobiology, infection dynamics, and outcome. PLoS Pathog 2023; 19:e1011845. [PMID: 38127685 PMCID: PMC10735005 DOI: 10.1371/journal.ppat.1011845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Julia R. Palmucci
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Julia A. Messina
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
17
|
Liu C, Yao K, Tian Q, Guo Y, Wang G, He P, Wang J, Wang J, Zhang Z, Li M. CXCR4-BTK axis mediate pyroptosis and lipid peroxidation in early brain injury after subarachnoid hemorrhage via NLRP3 inflammasome and NF-κB pathway. Redox Biol 2023; 68:102960. [PMID: 37979447 PMCID: PMC10694315 DOI: 10.1016/j.redox.2023.102960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4) is critical for homeostasis of the adaptive and innate immune system in some CNS diseases. Bruton's tyrosine kinase (BTK) is an essential kinase that regulates inflammation in immune cells through multiple signaling pathways. This study aims to explore the effect of CXCR4 and BTK on neuroinflammation in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Our results showed that the expression of CXCR4 and p-BTK increased significantly at 24 h after SAH in vivo and in vitro. Ibrutinib improved neurological impairment, BBB disruption, cerebral edema, lipid peroxidation, neuroinflammation and neuronal death at 24 h after SAH. Inhibition of BTK phosphorylation promoted the in vitro transition of hemin-treated proinflammatory microglia to the anti-inflammatory state, inhibited the p-P65 expression and microglial pyroptosis. NLRP3 deficiency can significantly reduce pyroptosis in SAH mice. Moreover, CXCR4 inhibition can suppress NLRP3-mediated pyroptosis, NF-κB activation and NOX2 expression in vitro, and ibrutinib can abolish CXCR4-aggravated BBB damage and pyroptosis in EBI after SAH. The levels of CXCR4 in CSF of SAH patients is significantly increased, and it is positively correlated with GSDMD and IL-1β levels, and have a moderate diagnostic value for outcome at 6-month follow-up. Our findings revealed the effect of CXCR4 and P-BTK on NLRP3-mediated pyroptosis and lipid peroxidation after SAH in vivo and in vitro, and the potential diagnostic role of CXCR4 in CSF of SAH patients. Inhibition of CXCR4-BTK axis can significantly attenuate NLRP3-mediated pyroptosis and lipid peroxidation by regulating NF-κB activation in EBI after SAH.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Kun Yao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, PR China
| | - Zhan Zhang
- Department of Rehabilitation Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| |
Collapse
|
18
|
Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther 2023; 8:262. [PMID: 37414756 PMCID: PMC10326056 DOI: 10.1038/s41392-023-01469-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
Since their invention in the early 2000s, tyrosine kinase inhibitors (TKIs) have gained prominence as the most effective pathway-directed anti-cancer agents. TKIs have shown significant utility in the treatment of multiple hematological malignancies and solid tumors, including chronic myelogenous leukemia, non-small cell lung cancers, gastrointestinal stromal tumors, and HER2-positive breast cancers. Given their widespread applications, an increasing frequency of TKI-induced adverse effects has been reported. Although TKIs are known to affect multiple organs in the body including the lungs, liver, gastrointestinal tract, kidneys, thyroid, blood, and skin, cardiac involvement accounts for some of the most serious complications. The most frequently reported cardiovascular side effects range from hypertension, atrial fibrillation, reduced cardiac function, and heart failure to sudden death. The potential mechanisms of these side effects are unclear, leading to critical knowledge gaps in the development of effective therapy and treatment guidelines. There are limited data to infer the best clinical approaches for the early detection and therapeutic modulation of TKI-induced side effects, and universal consensus regarding various management guidelines is yet to be reached. In this state-of-the-art review, we examine multiple pre-clinical and clinical studies and curate evidence on the pathophysiology, mechanisms, and clinical management of these adverse reactions. We expect that this review will provide researchers and allied healthcare providers with the most up-to-date information on the pathophysiology, natural history, risk stratification, and management of emerging TKI-induced side effects in cancer patients.
Collapse
Affiliation(s)
- Sunitha Shyam Sunder
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Division of Cardiovascular Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saraswati Pokharel
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
19
|
Haroun E, Agrawal K, Leibovitch J, Kassab J, Zoghbi M, Dutta D, Lim SH. Chronic graft-versus-host disease in pediatric patients: Differences and challenges. Blood Rev 2023; 60:101054. [PMID: 36805299 DOI: 10.1016/j.blre.2023.101054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Despite the use of high-resolution molecular techniques for tissue typing, chronic graft-versus-host disease (cGVHD) remains a major complication following allogeneic hematopoietic stem cell transplant. cGVHD adversely affects the life-expectancy and quality of life. The latter is particularly important and functionally relevant in pediatric patients who have a longer life-expectancy than adults. Current laboratory evidence suggests that there is not any difference in the pathophysiology of cGVHD between adults and pediatric patients. However, there are some clinical features and complications of the disease that are different in pediatric patients. There are also challenges in the development of new therapeutics for this group of patients. In this review, we will discuss the epidemiology, pathophysiology, clinical features and consequences of the disease, and highlight the differences between pediatric and adult patients. We will examine the current treatment options for pediatric patients with moderate to severe cGVHD and discuss the challenges facing therapeutic development for cGVHD in the pediatric population.
Collapse
Affiliation(s)
- Elio Haroun
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Kavita Agrawal
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Jennifer Leibovitch
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Joseph Kassab
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Marianne Zoghbi
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Dibyendu Dutta
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Seah H Lim
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America,; Sanofi Oncology, Cambridge, MA, United States of America.
| |
Collapse
|
20
|
Drummond RA. What fungal CNS infections can teach us about neuroimmunology and CNS-specific immunity. Semin Immunol 2023; 67:101751. [PMID: 36989541 DOI: 10.1016/j.smim.2023.101751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 03/29/2023]
Abstract
Immunity to fungal infections of the central nervous system (CNS) is one of the most poorly understood subjects within the field of medical mycology. Yet, the majority of deaths from invasive fungal infections are caused by brain-tropic fungi. In recent years, there have been several significant discoveries in the regulation of neuroinflammation and the role of the immune system in tissue homeostasis within the CNS. In this review, I highlight five important advances in the neuroimmunology field over the last decade and discuss how we should capitalise on these discoveries to better understand the pathogenesis of fungal CNS infections. In addition, the latest insights into fungal invasion tactics, microglia-astrocyte crosstalk and regulation of antifungal adaptive immune responses are summarised in the context of our contemporary understanding of CNS-specific immunity.
Collapse
|
21
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Pilmis B, Kherabi Y, Huriez P, Zahar JR, Mokart D. Infectious Complications of Targeted Therapies for Solid Cancers or Leukemias/Lymphomas. Cancers (Basel) 2023; 15:cancers15071989. [PMID: 37046650 PMCID: PMC10093532 DOI: 10.3390/cancers15071989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Infections are well known complications of some targeted drugs used to treat solid organ cancer and hematological malignancies. Furthermore, Individual patient risk factors are associated with underlying pathologies, concomitant immunosuppressive treatment, prior treatment and use of anti-infective prophylaxis. Immune-related adverse events (irAEs) are frequent among patients treated with new targeted drugs. Objectives: In this narrative review, we present the current state of knowledge concerning the infectious complications occurring in patients treated with immune checkpoint inhibitors (ICIs), Bruton’s tyrosine kinase (BTK) inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors, antiapoptotic protein BCL-2 inhibitors, Janus kinase inhibitors or CAR-T cell infusion. Sources: We searched for studies treating infectious complications of ICIs, BTK inhibitors, PI3K inhibitors, antiapoptotic protein BCL-2 inhibitors and CAR-T cell therapy. We included randomized, observational studies and case reports. Content: Immune-related adverse events (irAEs) are frequent among patients treated with new targeted drugs. Treatment of irAEs with corticosteroids and other immunosuppressive agents can lead to opportunistic infections. Bruton’s tyrosine kinase (BTK) inhibitors are associated with higher rate of infections, including invasive fungal infections. Implications: Infections, particularly fungal ones, are common in patients treated with BTK inhibitors even though most of the complications occurring among patients treated by ICIs or CART-cells infusion are associated with the treatment of side effects related to the use of these new treatments. The diagnosis of these infectious complications can be difficult and may require extensive investigations.
Collapse
Affiliation(s)
- Benoît Pilmis
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, 75014 Paris, France
- UMR 1319, Institut Micalis, Université Paris-Saclay, INRAeChâtenay Malabry, AgroParisTech, 92290 Chatenay Malabry, France
- Correspondence: ; Tel.: +33-1-44-12-78-20; Fax: +33-1-44-12-35-13
| | - Yousra Kherabi
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, 75014 Paris, France
| | - Pauline Huriez
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, 75014 Paris, France
| | - Jean-Ralph Zahar
- Infection Control Unit, AP-HP Hôpital Avicenne, Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - Djamel Mokart
- Medical Surgical Intensive Care Unit, Institut Paoli Calmettes, 13009 Marseille, France
| |
Collapse
|
23
|
Yasu T, Sakurai K, Hoshino M, Akazawa M. Oral azole antifungal prophylaxis in Japanese patients with chronic lymphocytic leukemia receiving ibrutinib: a nationwide cohort study. Leuk Lymphoma 2023; 64:730-733. [PMID: 36576099 DOI: 10.1080/10428194.2022.2161305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takeo Yasu
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Noshio, Tokyo, Japan
| | - Kotono Sakurai
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Noshio, Tokyo, Japan
| | - Makoto Hoshino
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Noshio, Tokyo, Japan
| | - Manabu Akazawa
- Department of Public Health and Epidemiology, Meiji Pharmaceutical University, Noshio, Tokyo, Japan
| |
Collapse
|
24
|
M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory therapy of atherosclerosis. J Control Release 2023; 353:1068-1083. [PMID: 36549391 DOI: 10.1016/j.jconrel.2022.12.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Atherosclerosis (AS), a leading cause of death worldwide, involves chronic macrophage inflammation from its initiation to the emergence of complications. Targeting plaque inflammation by re-polarizing pro-inflammatory M1 to anti-inflammatory M2 could therefore provide a promising strategy to treat AS, but currently available anti-inflammatory drugs limit clinical outcomes. In this study, we found that kaempferol (KPF) is capable of potential anti-inflammation as a novel drug candidate, which has been scarcely reported. Building upon these findings, we fabricated a macrophage-biomimetic KPF delivery platform, abbreviated as KPF@MM-NPs to potentiate therapeutic payloads, wherein the designed ROS-responsive Dextran-g-PBMEO NPs with π-π stacking were coated with macrophage membrane (MM) for effective target and accumulation in atherosclerotic lesions. Therapy of KPF@MM-NPs afforded significant decrease in proliferating macrophage inflammation while went with the reduction of key pro-inflammatory cytokines and re-polarization M1 to M2 phenotype, inducing excellent anti-AS responses in ApoE-/- mice after i.p. delivery. The mechanism of KPF@MM-NPs was further investigated and found it related to block the ROS/NF-κB signaling pathways. Together with as well demonstrated biosafety profiles, this proof-of-concept opens an instructive door for the study of KPF-mediated nanodrugs in treatment of AS based on biomimetic NPs.
Collapse
|
25
|
Paranasal sinus aspergillosis in a patient treated with tirabrutinib. Int J Hematol 2022; 116:645-646. [PMID: 36121607 DOI: 10.1007/s12185-022-03460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
26
|
Lovell AR, Jammal N, Bose P. Selecting the optimal BTK inhibitor therapy in CLL: rationale and practical considerations. Ther Adv Hematol 2022; 13:20406207221116577. [PMID: 35966045 PMCID: PMC9373150 DOI: 10.1177/20406207221116577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitors have dramatically changed the treatment of newly diagnosed and relapsed/refractory chronic lymphocytic leukemia (CLL). Ibrutinib, acalabrutinib, and zanubrutinib are Food and Drug Administration (FDA)-approved BTK inhibitors that have all demonstrated progression-free survival (PFS) benefit compared with chemoimmunotherapy. The efficacy of these agents compared to one another is under study; however, current data suggest they provide similar efficacy. Selectivity for BTK confers different adverse effect profiles, and longer follow-up and real-world use have characterized side effects over time. The choice of BTK inhibitor is largely patient-specific, and this review aims to highlight the differences among the agents and guide the choice of BTK inhibitor in clinical practice.
Collapse
Affiliation(s)
- Alexandra R. Lovell
- Division of Pharmacy, The University of Texas
MD Anderson Cancer Center, Houston, TX, USA
| | - Nadya Jammal
- Division of Pharmacy, The University of Texas
MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
27
|
Melville P, Mohammed F, RuiWen Kuo C, Bradley J, Preston G, Dempsey OJ. Nodules, nodes and non-functioning macrophages: A risk with ibrutinib therapy. J R Coll Physicians Edinb 2022; 52:46-47. [DOI: 10.1177/14782715221088973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We describe the case of a 70-year-old never smoker with chronic lymphocytic leukaemia, treated with single agent ibrutinib therapy. Chest imaging noted nodular change and mediastinal lymphadenopathy, which showed avid uptake on positron emission tomography and guided subsequent biopsies (bronchoscopy using endobronchial ultrasound, mediastinoscopy). Despite negative aspergillus blood immunology tests, he was found to have invasive aspergillosis, which is a known risk with ibrutinib therapy. He has since been successfully treated with antifungal therapy.
Collapse
Affiliation(s)
- Peter Melville
- Department of Respiratory Medicine, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - Farheena Mohammed
- Department of Respiratory Medicine, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - Chris RuiWen Kuo
- Department of Respiratory Medicine, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - Jack Bradley
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - Gavin Preston
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - Owen J Dempsey
- Department of Respiratory Medicine, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| |
Collapse
|
28
|
Purvis GSD, Aranda‐Tavio H, Channon KM, Greaves DR. Bruton's TK regulates myeloid cell recruitment during acute inflammation. Br J Pharmacol 2022; 179:2754-2770. [PMID: 34897650 PMCID: PMC9361009 DOI: 10.1111/bph.15778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Bruton's TK (BTK) is a non-receptor kinase best known for its role in B lymphocyte development that is critical for proliferation and survival of leukaemic cells in B-cell malignancies. However, BTK is expressed in myeloid cells, particularly neutrophils, monocytes and macrophages where its inhibition has been reported to cause anti-inflammatory properties. EXPERIMENTAL APPROACH We explored the role of BTK on migration of myeloid cells (neutrophils, monocytes and macrophages), in vitro using chemotaxis assays and in vivo using zymosan-induced peritonitis as model systems. KEY RESULTS Using the zymosan-induced peritonitis model of sterile inflammation, we demonstrated that acute inhibition of BTK prior to zymosan challenge reduced phosphorylation of BTK in circulating neutrophils and monocytes. Moreover, pharmacological inhibition of BTK with ibrutinib specifically inhibited neutrophil and Ly6Chi monocytes, but not Ly6Clo monocyte recruitment to the peritoneum. X-linked immunodeficient (XID) mice, which have a point mutation in the Btk gene, had reduced neutrophil and monocyte recruitment to the peritoneum following zymosan challenge. Pharmacological or genetic inhibition of BTK signalling substantially reduced human monocyte and murine macrophage chemotaxis, to a range of clinically relevant chemoattractants (C5a and CCL2). We also demonstrated that inhibition of BTK in tissue resident macrophages significantly decreases chemokine secretion by reducing NF-κB activity and Akt signalling. CONCLUSION AND IMPLICATIONS Our work has identified a new role of BTK in regulating myeloid cell recruitment via two mechanisms, reducing monocyte/macrophages' ability to undergo chemotaxis and reducing chemokine secretion, via reduced NF-κB and Akt activity in tissue resident macrophages.
Collapse
Affiliation(s)
- Gareth S. D. Purvis
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
| | | | - Keith M. Channon
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Cardiovascular Medicine, Radcliffe Department of MedicineJohn Radcliffe HospitalOxfordUK
| | - David R. Greaves
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
| |
Collapse
|
29
|
BTK Inhibitors Impair Platelet-Mediated Antifungal Activity. Cells 2022; 11:cells11061003. [PMID: 35326454 PMCID: PMC8947638 DOI: 10.3390/cells11061003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, the introduction of new drugs targeting Bruton’s tyrosine kinase (BTK) has allowed dramatic improvement in the prognosis of patients with chronic lymphocytic leukemia (CLL) and other B-cell neoplasms. Although these small molecules were initially considered less immunosuppressive than chemoimmunotherapy, an increasing number of reports have described the occurrence of unexpected opportunistic fungal infections, in particular invasive aspergillosis (IA). BTK represents a crucial molecule in several signaling pathways depending on different immune receptors. Based on a variety of specific off-target effects on innate immunity, namely on neutrophils, monocytes, pulmonary macrophages, and nurse-like cells, ibrutinib has been proposed as a new host factor for the definition of probable invasive pulmonary mold disease. The role of platelets in the control of fungal growth, through granule-dependent mechanisms, was described in vitro almost two decades ago and is, so far, neglected by experts in the field of clinical management of IA. In the present study, we confirm the antifungal role of platelets, and we show, for the first time, that the exposure to BTK inhibitors impairs several immune functions of platelets in response to Aspergillus fumigatus, i.e., the ability to adhere to conidia, activation (as indicated by reduced expression of P-selectin), and direct killing activity. In conclusion, our experimental data suggest that antiplatelet effects of BTK inhibitors may contribute to an increased risk for IA in CLL patients.
Collapse
|
30
|
Ibrutinib in Refractory or Relapsing Primary Central Nervous System Lymphoma: A Systematic Review. Neurol Int 2022; 14:99-108. [PMID: 35076567 PMCID: PMC8788490 DOI: 10.3390/neurolint14010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 01/05/2023] Open
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is a rare variant of Non-Hodgkin Lymphoma (NHL) representing 1–2% of all NHL cases. PCNSL is defined as a lymphoma that occurs in the brain, spinal cord, leptomeninges, or eyes. Efforts to treat PCNSL by traditional chemotherapy and radiotherapy have generally been unsuccessful as a significant proportion of patients have frequent relapses or are refractory to treatment. The prognosis of patients with Refractory or Relapsed (R/R) PCNSL is abysmal. The optimal treatment for R/R PCNSL is poorly defined as there are only a limited number of studies in this setting. Several studies have recently shown that ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor, has promising results in the treatment of R/R PCNSL. However, these are preliminary studies with a limited sample size. In this systematic review, we explored and critically appraised the evidence about the efficacy of the novel agent ibrutinib in treating R/R PCNSL.
Collapse
|
31
|
van de Peppel RJ, van Grootveld R, Hendriks BJC, van Paassen J, Bernards S, Jolink H, Koopmans JG, von dem Borne PA, van der Beek MT, de Boer MGJ. Implementation of a clinical decision rule for selecting empiric treatment for invasive aspergillosis in a setting with high triazole resistance. Med Mycol 2021; 60:6433628. [PMID: 34878121 PMCID: PMC8653343 DOI: 10.1093/mmy/myab060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Indexed: 11/14/2022] Open
Abstract
World-wide, emerging triazole resistance increasingly complicates treatment of invasive aspergillosis (IA). In settings with substantial (>10%) prevalence of triazole resistance, empiric combination therapy with both a triazole and liposomal amphotericin B (LAmB) can be considered because of the low yields of susceptibility testing. To avoid toxicity while optimizing outcome, a strategy with monotherapy would be preferable. A newly designed treatment algorithm based on literature and expert consensus provided guidance for empiric monotherapy with either voriconazole or LAmB. Over a four and a half year period, all adult patients in our hospital treated for IA were included and patient data were collected. An independent committee reviewed the attributability of death to IA for each patient. Primary outcomes were 30- and 100-day crude mortality and attributable mortality. In total, 110 patients were treated according to the treatment algorithm. Fifty-six patients (51%) were initially treated with voriconazole and 54 patients (49%) with LAmB. Combined attributable and contributable mortality was 13% within 30 days and 20% within 100 days. Treatment switch to LAmB was made in 24/56 (43%) of patients who were initially treated with voriconazole. Combined contributable and attributable 100-day mortality in this subgroup was 21% and was not increased when compared with patients initially treated with LAmB (P = 0.38). By applying a comprehensive clinical decision algorithm, an antifungal-sparing regime was successfully introduced. Further research is warranted to explore antifungal treatment strategies that account for triazole-resistance. LAY SUMMARY Due to resistance of Aspergillus against triazoles, combination therapy with liposomal amphotericin B (LAmB) is applied more often as primary therapy against invasive aspergillosis. This study presents the results of a decision tool which differentiated between triazole or LAmB monotherapy.
Collapse
Affiliation(s)
- Robert J van de Peppel
- Department of Infectious Diseases, Leiden University Medical Center, 2333ZA Leiden, the Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Rebecca van Grootveld
- Department of Clinical Microbiology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Bart J C Hendriks
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Judith van Paassen
- Department of Intensive Care, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Sandra Bernards
- Department of Clinical Microbiology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Julia G Koopmans
- Department of Pulmonology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Peter A von dem Borne
- Department of Haematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Martha T van der Beek
- Department of Clinical Microbiology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Mark G J de Boer
- Department of Infectious Diseases, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| |
Collapse
|
32
|
McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton's tyrosine kinase in the immune system and disease. Immunology 2021; 164:722-736. [PMID: 34534359 PMCID: PMC8561098 DOI: 10.1111/imm.13416] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is a TEC kinase with a multifaceted role in B-cell biology and function, highlighted by its position as a critical component of the B-cell receptor signalling pathway. Due to its role as a therapeutic target in several haematological malignancies including chronic lymphocytic leukaemia, BTK has been gaining tremendous momentum in recent years. Within the immune system, BTK plays a part in numerous pathways and cells beyond B cells (i.e. T cells, macrophages). Not surprisingly, BTK has been elucidated to be a driving factor not only in lymphoproliferative disorders but also in autoimmune diseases and response to infection. To extort this role, BTK inhibitors such as ibrutinib have been developed to target BTK in other diseases. However, due to rising levels of resistance, the urgency to develop new inhibitors with alternative modes of targeting BTK is high. To meet this demand, an expanding list of BTK inhibitors is currently being trialled. In this review, we synopsize recent discoveries regarding BTK and its role within different immune cells and pathways. Additionally, we discuss the broad significance and relevance of BTK for various diseases ranging from haematology and rheumatology to the COVID-19 pandemic. Overall, BTK signalling and its targetable nature have emerged as immensely important for a wide range of clinical applications. The development of novel, more specific and less toxic BTK inhibitors could be revolutionary for a significant number of diseases with yet unmet treatment needs.
Collapse
Affiliation(s)
- Charlotte McDonald
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Charalampos Xanthopoulos
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Efterpi Kostareli
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
33
|
Ibrutinib protects T cells in patients with CLL from proliferation-induced senescence. J Transl Med 2021; 19:473. [PMID: 34809665 PMCID: PMC8609739 DOI: 10.1186/s12967-021-03136-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/01/2021] [Indexed: 01/13/2023] Open
Abstract
Background The development of Bruton’s tyrosine kinase inhibitors (BTKi) for the treatment of chronic lymphocytic leukaemia (CLL) has provided a highly effective and relatively non-toxic alternative to conventional chemotherapy. Some studies have shown that BTKi can also lead to improvements in T cell immunity in patients despite in vitro analyses suggesting an immunosuppressive effect of BTKi on T cell function. Methods In this study, we examined both the in vitro effect and long-term in vivo effect of two clinically available BTKi, ibrutinib and zanubrutinib. Additional in vitro assessments were undertaken for a third BTKi, acalabrutinib. Immune subset phenotyping, cytokine secretion, T cell degranulation and proliferation assays were performed on peripheral blood mononuclear cells isolated from untreated CLL patients, and CLL patients on long-term (> 12 months) BTKi treatment. Results Similar to prior studies we observed that long-term BTKi treatment normalises lymphocyte subset frequency and reduces PD-1 expression on T cells. We also observed that T cells from patients taken prior to BTKi therapy showed an abnormal hyper-proliferation pattern typical of senescent T cells, which was normalised by long-term BTKi treatment. Furthermore, BTKi therapy resulted in reduced expression of the T cell exhaustion markers PD-1, TIM3 and LAG3 in late generations of T cells undergoing proliferation. Conclusions Collectively, these findings indicate that there are critical differences between the in vitro effects of BTKi on T cell function and the effects derived from long-term BTKi exposure in vivo. Overall long-term exposure to BTKi, and particularly ibrutinib, resulted in improved T cell fitness in part due to suppressing the abnormal hyper-proliferation of CLL T cells and the associated development of T cell senescence. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03136-2.
Collapse
|
34
|
Zhu S, Jung J, Victor E, Arceo J, Gokhale S, Xie P. Clinical Trials of the BTK Inhibitors Ibrutinib and Acalabrutinib in Human Diseases Beyond B Cell Malignancies. Front Oncol 2021; 11:737943. [PMID: 34778053 PMCID: PMC8585514 DOI: 10.3389/fonc.2021.737943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
The BTK inhibitors ibrutinib and acalabrutinib are FDA-approved drugs for the treatment of B cell malignances. Both drugs have demonstrated clinical efficacy and safety profiles superior to chemoimmunotherapy regimens in patients with chronic lymphocytic leukemia. Mounting preclinical and clinical evidence indicates that both ibrutinib and acalabrutinib are versatile and have direct effects on many immune cell subsets as well as other cell types beyond B cells. The versatility and immunomodulatory effects of both drugs have been exploited to expand their therapeutic potential in a wide variety of human diseases. Over 470 clinical trials are currently registered at ClinicalTrials.gov to test the efficacy of ibrutinib or acalabrutinib not only in almost every type of B cell malignancies, but also in hematological malignancies of myeloid cells and T cells, solid tumors, chronic graft versus host disease (cGHVD), autoimmune diseases, allergy and COVID-19 (http:www.clinicaltrials.gov). In this review, we present brief discussions of the clinical trials and relevant key preclinical evidence of ibrutinib and acalabrutinib as monotherapies or as part of combination therapies for the treatment of human diseases beyond B cell malignancies. Adding to the proven efficacy of ibrutinib for cGVHD, preliminary results of clinical trials have shown promising efficacy of ibrutinib or acalabrutinib for certain T cell malignancies, allergies and severe COVID-19. However, both BTK inhibitors have no or limited efficacy for refractory or recurrent solid tumors. These clinical data together with additional pending results from ongoing trials will provide valuable information to guide the design and improvement of future trials, including optimization of combination regimens and dosing sequences as well as better patient stratification and more efficient delivery strategies. Such information will further advance the precise implementation of BTK inhibitors into the clinical toolbox for the treatment of different human diseases.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Johann Arceo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
35
|
Ruppert AS, Booth AM, Ding W, Bartlett NL, Brander DM, Coutre S, Brown JR, Nattam S, Larson RA, Erba H, Litzow M, Owen C, Kuzma CS, Abramson JS, Little RF, Smith SE, Stone RM, Byrd JC, Mandrekar SJ, Woyach JA. Adverse event burden in older patients with CLL receiving bendamustine plus rituximab or ibrutinib regimens: Alliance A041202. Leukemia 2021; 35:2854-2861. [PMID: 34274940 PMCID: PMC8744070 DOI: 10.1038/s41375-021-01342-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
Ibrutinib has superior progression-free survival compared with bendamustine plus rituximab (BR) in older CLL patients, however, differences in treatment duration, six monthly BR cycles versus continuous ibrutinib, complicate adverse event (AE) comparisons. We introduce the AE burden score (AEsc) to compare AEs, calculated for each patient by summing over products of reporting period length and grade for each all-cause grade 1-4 AE and dividing by the length of time over which AEs are assessed. A total of 176 patients received BR and 361 ibrutinib alone or with six cycles of rituximab. At 38 months median follow-up, 64% remained on ibrutinib. Median AEsc was higher with BR versus ibrutinib in the first six cycles (7.2 versus 4.9, p < 0.0001). Within ibrutinib arms, median AEsc decreased significantly to 3.7 after six cycles (p < 0.0001). 10% and 14% of BR and ibrutinib patients discontinued treatment for AEs. In ibrutinib arms, cumulative incidence of grade 3 or higher atrial fibrillation, hypertension, and infection (AEs of clinical interest) at 12 months was 4.5%, 17.5%, and 12.8%, respectively, and increased more slowly thereafter to 7.7%, 25.4%, and 20.5% at 36 months. Analytical tools including the AEsc and cumulative incidence of AEs can help to better characterize AE burden over time. ClinicalTrials.gov identifier: NCT01886872.
Collapse
Affiliation(s)
- Amy S Ruppert
- Division of Hematology, The Ohio State University, Columbus, OH, USA.
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA.
| | - Allison M Booth
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Steven Coutre
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Richard A Larson
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Harry Erba
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | | | - Carolyn Owen
- University of Calgary, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Charles S Kuzma
- First Health of the Carolinas Cancer Center, Pinehurst, NC, USA
| | | | - Richard F Little
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, MD, USA
| | | | | | - John C Byrd
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | | | - Jennifer A Woyach
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
36
|
Future Directions for Clinical Respiratory Fungal Research. Mycopathologia 2021; 186:685-696. [PMID: 34590208 PMCID: PMC8536595 DOI: 10.1007/s11046-021-00579-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
There has been a growing appreciation of the importance of respiratory fungal diseases in recent years, with better understanding of their prevalence as well as their global distribution. In step with the greater awareness of these complex infections, we are currently poised to make major advances in the characterization and treatment of these fungal diseases, which in itself is largely a consequence of post-genomic technologies which have enabled rational drug development and a path towards personalized medicines. These advances are set against a backdrop of globalization and anthropogenic change, which have impacted the world-wide distribution of fungi and antifungal resistance, as well as our built environment. The current revolution in immunomodulatory therapies has led to a rapidly evolving population at-risk for respiratory fungal disease. Whilst challenges are considerable, perhaps the tools we now have to manage these infections are up to this challenge. There has been a welcome acceleration of the antifungal pipeline in recent years, with a number of new drug classes in clinical or pre-clinical development, as well as new focus on inhaled antifungal drug delivery. The "post-genomic" revolution has opened up metagenomic diagnostic approaches spanning host immunogenetics to the fungal mycobiome that have allowed better characterization of respiratory fungal disease endotypes. When these advances are considered together the key challenge is clear: to develop a personalized medicine framework to enable a rational therapeutic approach.
Collapse
|
37
|
Liu C, Yu C, Yang Y, Huang J, Yu X, Duan M, Wang L, Wang J. Development of a novel reporter gene assay to evaluate antibody-dependent cellular phagocytosis for anti-CD20 therapeutic antibodies. Int Immunopharmacol 2021; 100:108112. [PMID: 34521023 DOI: 10.1016/j.intimp.2021.108112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
More than 100 monoclonal antibodies (mAbs) have been approved by FDA. The mechanism of action (MoA) involves in neutralization of a specific target via the Fab region and Fc effector functions through Fc region, while the latter include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). ADCP has been recognized one of the most important MoAs, especially for anti-cancer mAbs in recent years. However, traditional bioassays measuring ADCP always introduced primary macrophages and flow cytometry, which are difficult to handle and highly variable. In this study, we engineered a monoclonal Jurkat/NFAT/CD32a-FcεRIγ effector cell line that stably expresses CD32a-FcεRIγ chimeric receptor and NFAT-controlled luciferase. The corresponding mAb could bind with the membrane antigens on the target cells with its Fab fragment and CD32a-FcεRIγ on the effector cells with its Fc fragment, leading to the crosslinking of CD32a-FcεRIγ and the resultant expression of subsequent NFAT-controlled luciferase, which represents the bioactivity of ADCP based on the MoA of the mAb. With rituximab as the model mAb, Raji cells as the target cells, and Jurkat/NFAT/CD32a-FcεRIγ cells as the effector cells, we adopted the strategy of Design of Experiment (DoE) to optimize the bioassay. Then we fully validated the established bioassay according to ICH-Q2(R1), which proved the good assay performance characteristics of the bioassay, including specificity, accuracy, precision, linearity, stability and robustness. This RGA can be applied to evaluate the -ADCP bioactivity for anti-CD20 mAbs in lot release, stability testing as well as biosimilar comparability. The engineered cells may also potentially be used to evaluate the ADCP bioactivity of mAbs with other targets.
Collapse
Affiliation(s)
- Chunyu Liu
- Division of Monoclonal Antibody Products, National Institu-tes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102629, China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institu-tes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102629, China
| | - Yalan Yang
- Division of Monoclonal Antibody Products, National Institu-tes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102629, China
| | - Jing Huang
- Division of Monoclonal Antibody Products, National Institu-tes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102629, China
| | - Xiaojuan Yu
- Division of Monoclonal Antibody Products, National Institu-tes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102629, China
| | - Maoqin Duan
- Division of Monoclonal Antibody Products, National Institu-tes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102629, China
| | - Lang Wang
- Division of Monoclonal Antibody Products, National Institu-tes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102629, China.
| | - Junzhi Wang
- Division of Monoclonal Antibody Products, National Institu-tes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102629, China
| |
Collapse
|
38
|
Cerebral aspergillosis and facial acneiform lesions following initiation of ibrutinib in a patient with chronic lymphocytic leukemia. IDCases 2021; 26:e01263. [PMID: 34504767 PMCID: PMC8416634 DOI: 10.1016/j.idcr.2021.e01263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
A case of a 67-year-old male with CLL, presented with prolonged pancytopenia after his first cycle of fludarabine, cyclophosphamide, and rituximab (FCR) chemotherapy. He was then treated with ibrutinib oral monotherapy. Shortly after ibrutinib treatment initiation, he developed a brain abscess and pulmonary disease as a part of an invasive aspergillosis. The patient improved after brain abscess drainage and the anti-fungal therapy voriconazole. Upon resuming ibrutinib four months after his hospitalization, he developed extensive acneiform facial lesions. This case is the first to report on the development of two separate complications in one patient related to ibrutinib, namely, Aspergillus infection, and severe acneiform skin lesions.
Collapse
|
39
|
Zhu S, Gokhale S, Jung J, Spirollari E, Tsai J, Arceo J, Wu BW, Victor E, Xie P. Multifaceted Immunomodulatory Effects of the BTK Inhibitors Ibrutinib and Acalabrutinib on Different Immune Cell Subsets - Beyond B Lymphocytes. Front Cell Dev Biol 2021; 9:727531. [PMID: 34485307 PMCID: PMC8414982 DOI: 10.3389/fcell.2021.727531] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
The clinical success of the two BTK inhibitors, ibrutinib and acalabrutinib, represents a major breakthrough in the treatment of chronic lymphocytic leukemia (CLL) and has also revolutionized the treatment options for other B cell malignancies. Increasing evidence indicates that in addition to their direct effects on B lymphocytes, both BTK inhibitors also directly impact the homeostasis, phenotype and function of many other cell subsets of the immune system, which contribute to their high efficacy as well as adverse effects observed in CLL patients. In this review, we attempt to provide an overview on the overlapping and differential effects of ibrutinib and acalabrutinib on specific receptor signaling pathways in different immune cell subsets other than B cells, including T cells, NK cells, monocytes, macrophages, granulocytes, myeloid-derived suppressor cells, dendritic cells, osteoclasts, mast cells and platelets. The shared and distinct effects of ibrutinib versus acalabrutinib are mediated through BTK-dependent and BTK-independent mechanisms, respectively. Such immunomodulatory effects of the two drugs have fueled myriad explorations of their repurposing opportunities for the treatment of a wide variety of other human diseases involving immune dysregulation.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Eris Spirollari
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Jemmie Tsai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Johann Arceo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Ben Wang Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
40
|
Cho HJ, Baek DW, Kim J, Lee JM, Moon JH, Sohn SK. Keeping a balance in chronic lymphocytic leukemia (CLL) patients taking ibrutinib: ibrutinib-associated adverse events and their management based on drug interactions. Expert Rev Hematol 2021; 14:819-830. [PMID: 34375536 DOI: 10.1080/17474086.2021.1967139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Ibrutinib is a highly effective drug for patients with chronic lymphocytic leukemia (CLL), and is well tolerated even by older patients and those unfit to receive conventional immuno-chemotherapy. AREAS COVERED The occurrence of adverse events was revealed as a major cause of ibrutinib failure in the real-world. Ibrutinib-induced lymphocytosis carries the risk of an untimely interruption of therapy because it may be misinterpreted as disease progression. In addition, drug interactions can worsen ibrutinib-associated toxicities by increasing the plasma concentration of ibrutinib. In this review, we present a case of major hemorrhage and atrial fibrillation (AF) during ibrutinib use and summarize the adverse events associated with ibrutinib. Furthermore, the practical management of ibrutinib-associated toxicities was covered with reference to a drug interaction mechanism. EXPERT OPINION Clinicians should examine the prescribed drugs prior to ibrutinib initiation and carefully monitor toxicities while taking ibrutinib. A reduced dose of ibrutinib with the concurrent use of CYP3A inhibitors such as antifungal agents could be an attractive strategy to reduce toxicities and may confer financial benefits. Reducing unexpected toxicities is as significant as achieving treatment response in the era of life-long therapy with ibrutinib in patients with CLL.
Collapse
Affiliation(s)
- Hee Jeong Cho
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Dong Won Baek
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Juhyung Kim
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Min Lee
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Joon Ho Moon
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sang Kyun Sohn
- Department of Hematology/Oncology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
41
|
Holowka T, Cheung H, Malinis M, Gan G, Deng Y, Perreault S, Isufi I, Azar MM. Incidence and associated risk factors for invasive fungal infections and other serious infections in patients on ibrutinib. J Infect Chemother 2021; 27:1700-1705. [PMID: 34389223 DOI: 10.1016/j.jiac.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ibrutinib is a small molecule tyrosine kinase inhibitor that blocks the activity of B cells and other immune effectors and is used in a variety of hematologic malignancies. There have been numerous reports of increased frequency of serious infections including invasive fungal infections (IFI) in patients on ibrutinib. METHODS Demographic and clinical features of all patients receiving ibrutinib at a single tertiary care center were collected from electronic medical records. Univariate and multivariate statistical analyses were performed to find out the factors associated with infection. RESULTS A total of 244 patients received ibrutinib for hematologic malignancies, of which 44 (18.0%) experienced ≥ 1 serious infection including 5 (2.0%) with IFI (1 pulmonary cryptococcosis, 4 pulmonary aspergillosis), 39 (16.0%) with bacterial infections and 8 (3.3%) with viral infections. Ten patients (4.1%) experienced multiple infections or co-infections while on ibrutinib and 10 (4.1%) expired or were transferred to hospice as a result of infection. In multivariate analysis risk factors that were less common in uninfected versus infected patients included advanced age (73 years vs. 77 years), Eastern Cooperative Oncologic Grade (ECOG) performance score ≥ 2 (6.5% vs. 31.8%) and concurrent use of steroids (4.5% vs. 20.5%) or other cytotoxic agents (0% vs. 4.6%). CONCLUSIONS There was a high rate of serious infection but relatively few IFI in patients receiving ibrutinib. Most patients who developed serious infections while on ibrutinib had additional predisposing risk factors including concurrent use of steroids or other cytotoxic agents, advanced age and frailty.
Collapse
Affiliation(s)
- Thomas Holowka
- Department of Internal Medicine, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
| | - Harry Cheung
- Yale School of Medicine, 367 Cedar St, New Haven, CT, 06510, USA.
| | - Maricar Malinis
- Section of Infectious Disease, Department of Internal Medicine, Yale School of Medicine, USA.
| | - Geliang Gan
- Yale Center for Analytical Science, Yale School of Public Health, PO Box 208034, New Haven, CT, 06520, USA.
| | - Yanhong Deng
- Yale Center for Analytical Science, Yale School of Public Health, PO Box 208034, New Haven, CT, 06520, USA.
| | - Sarah Perreault
- Department of Pharmacy, Yale New Haven Health, 20 York St, New Haven, CT, 06510, USA.
| | - Iris Isufi
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
| | - Marwan M Azar
- Section of Infectious Disease, Department of Internal Medicine, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
| |
Collapse
|
42
|
Wang L, Sun Y, Liu X, Li H, Lu C, Yang R, Yang C, Li B. SY-1530, a highly selective BTK inhibitor, effectively treats B-cell malignancies by blocking B-cell activation. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0291. [PMID: 34264564 PMCID: PMC9334755 DOI: 10.20892/j.issn.2095-3941.2020.0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE B-cell antigen receptor (BCR) signaling is required to maintain the physiological functions of normal B cells and plays an important pathogenic role in B-cell malignancies. Bruton tyrosine kinase (BTK), a critical mediator of BCR signaling, is an attractive target for the treatment of B-cell malignancies. This study aimed to identify a highly potent and selective BTK inhibitor. METHODS Homogeneous time-resolved fluorescence assays were used to screen BTK inhibitors. Typhoon fluorescence imaging and Western blot analysis were used to confirm the effects of SY-1530 on the BCR signaling pathway. Additionally, the anti-tumor activities of SY-1530 were evaluated in TMD8 xenografts and spontaneous canine B-cell lymphoma. RESULTS We found a novel irreversible and non-competitive inhibitor of BTK, SY-1530, which provided dose-dependent and time-dependent inhibition. SY-1530 selectively bound to BTK rather than inducible T-cell kinase; consequently, it did not significantly affect T-cell receptor signaling and caused limited off-target effects. SY-1530 blocked the BCR signaling pathway through down-regulation of BTK activity, thus leading to impaired phosphorylation of BTK and its downstream kinases. Moreover, SY-1530 induced apoptosis in a caspase-dependent manner and efficaciously inhibited tumor growth in mouse xenograft models of B-cell malignancy (P < 0.001). SY-1530 also induced positive clinical responses in spontaneous canine B-cell lymphoma. CONCLUSIONS SY-1530 is an irreversible and selective BTK inhibitor that shows inhibitory effects on B-cell malignancies by blocking the BCR signaling pathway. Therefore, it may be a promising therapeutic approach for the treatment of B-cell malignancies.
Collapse
Affiliation(s)
- Liao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yinghui Sun
- Shouyao Holdings Co., Ltd, Beijing 100195, China
| | - Xijie Liu
- Shouyao Holdings Co., Ltd, Beijing 100195, China
| | - Hongjuan Li
- Shouyao Holdings Co., Ltd, Beijing 100195, China
| | - Chang Lu
- Shouyao Holdings Co., Ltd, Beijing 100195, China
| | - Ronghui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chuanzhen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
43
|
Palma M, Mulder TA, Österborg A. BTK Inhibitors in Chronic Lymphocytic Leukemia: Biological Activity and Immune Effects. Front Immunol 2021; 12:686768. [PMID: 34276674 PMCID: PMC8282344 DOI: 10.3389/fimmu.2021.686768] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Bruton´s tyrosine kinase (BTK) inhibitor (BTKi)s block the B-cell receptor (BCR) signaling cascade by binding to the BTK enzyme preventing the proliferation and survival of malignant and normal B cells. During the past decade, the clinical use of BTKis for the treatment of B-cell malignancies has exponentially grown, changing the treatment landscape for chronic lymphocytic leukemia (CLL) in particular. At present, three different covalent BTKis, ibrutinib, acalabrutinib and zanubrutinib, are FDA-approved and many new inhibitors are under development. Despite having remarkable selectivity for BTK, the first-in-class BTKi ibrutinib can also bind, with various affinities, to other kinases. The combined inhibition of BTK (“on-target” effect) and other kinases (“off-target” effect) can have additive or synergistic anti-tumor effects but also induce undesired side effects which might be treatment-limiting. Such “off-target” effects are expected to be more limited for second-generation BTKis. Moreover, the blockade of BCR signaling also indirectly affects the tumor microenvironment in CLL. Treatment with BTKis potentially impacts on both innate and adaptive immunity. Whether this affects infection susceptibility and vaccination efficacy requires further investigation. Here, we summarize the available knowledge on the impact of BTKis on the immune system and discuss the possible clinical implications. Indeed, a deeper knowledge on this topic could guide clinicians in the management and prevention of infections in patients with CLL treated with BTKis.
Collapse
Affiliation(s)
- Marzia Palma
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Tom A Mulder
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Mauro FR, Giannarelli D, Visentin A, Reda G, Sportoletti P, Frustaci AM, Chiarenza A, Ciolli S, Vitale C, Laurenti L, De Paoli L, Murru R, Gentile M, Rigolin GM, Levato L, Giordano A, Del Poeta G, Stelitano C, Ielo C, Noto A, Guarente V, Molica S, Coscia M, Tedeschi A, Gaidano G, Cuneo A, Foà R, Martelli M, Girmenia C, Gentile G, Trentin L. Prognostic Impact and Risk Factors of Infections in Patients with Chronic Lymphocytic Leukemia Treated with Ibrutinib. Cancers (Basel) 2021; 13:3240. [PMID: 34209515 PMCID: PMC8269042 DOI: 10.3390/cancers13133240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/16/2022] Open
Abstract
Ibrutinib represents extraordinary progress in the treatment of chronic lymphocytic leukemia (CLL). However, treatment-related adverse events limit the benefit of this agent. This observational, multicenter study focused on the incidence, risk factors, and prognostic impact of infections in 494 patients with CLL treated with an ibrutinib-based treatment. Ibrutinib was given to 89 (18%) previously untreated patients (combined with rituximab, 24) and 405 (82%) relapsed/refractory patients. Pneumonia (PN), grade ≥3 non-opportunistic infections (NOI), and opportunistic infections (OI) were recorded in 32% of patients with an overall incidence rate per 100 person-year of 15.3% (PN, 10%; NOI, 3.3%; OI, 2%). Infections were the reason for the permanent discontinuation of ibrutinib in 9% of patients. Patients who experienced pneumonia or a severe infection showed a significantly inferior survival than those who were infection-free (p < 0.0001). A scoring system based on the three factors associated with a significant and independent impact on infections-PN or severe infection in the year before starting ibrutinib, chronic obstructive pulmonary disease, ≥2 prior treatments-identified patients with a two- to threefold increase in the rate of infections. In conclusion, the results of this study highlight the adverse impact of infectious events on the outcomes of CLL patients treated with ibrutinib.
Collapse
Affiliation(s)
- Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, 00161 Rome, Italy; (C.I.); (R.F.); (M.M.); (C.G.); (G.G.)
| | - Diana Giannarelli
- Biostatistic Unit, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy;
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (L.T.)
| | - Gianluigi Reda
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.R.); (A.N.)
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine, University of Perugia, 06129 Perugia, Italy; (P.S.); (V.G.)
| | - Anna Maria Frustaci
- Deptartment of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (A.M.F.); (A.T.)
| | | | | | - Candida Vitale
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino and Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.V.); (M.C.)
| | - Luca Laurenti
- Institute of Haematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Lorenzo De Paoli
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy; (L.D.P.); (G.G.)
| | - Roberta Murru
- Haematology and Stem Cell Transplantation Unit, Ospedale Oncologico A. Businco, AO Brotzu, 09134 Cagliari, Italy;
| | - Massimo Gentile
- Hematology Unit, Hematology and Oncology Department, 87100 Cosenza, Italy;
| | - Gian Matteo Rigolin
- Hematology, Department of Medical Sciences, St. Anna University Hospital, 44124 Ferrara, Italy; (G.M.R.); (A.C.)
| | - Luciano Levato
- Haematology Unit, A. Pugliese Hospital, Azienda Ospedaliera Pugliese Ciaccio, 88100 Catanzaro, Italy; (L.L.); (S.M.)
| | - Annamaria Giordano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy;
| | - Giovanni Del Poeta
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy;
| | - Caterina Stelitano
- Division of Hematology, Azienda Ospedaliera Bianchi-Melacrino-Morelli, 89124 Reggio Calabria, Italy;
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, 00161 Rome, Italy; (C.I.); (R.F.); (M.M.); (C.G.); (G.G.)
| | - Alessandro Noto
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.R.); (A.N.)
| | - Valerio Guarente
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine, University of Perugia, 06129 Perugia, Italy; (P.S.); (V.G.)
| | - Stefano Molica
- Haematology Unit, A. Pugliese Hospital, Azienda Ospedaliera Pugliese Ciaccio, 88100 Catanzaro, Italy; (L.L.); (S.M.)
| | - Marta Coscia
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino and Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.V.); (M.C.)
| | - Alessandra Tedeschi
- Deptartment of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (A.M.F.); (A.T.)
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy; (L.D.P.); (G.G.)
| | - Antonio Cuneo
- Hematology, Department of Medical Sciences, St. Anna University Hospital, 44124 Ferrara, Italy; (G.M.R.); (A.C.)
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, 00161 Rome, Italy; (C.I.); (R.F.); (M.M.); (C.G.); (G.G.)
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, 00161 Rome, Italy; (C.I.); (R.F.); (M.M.); (C.G.); (G.G.)
| | - Corrado Girmenia
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, 00161 Rome, Italy; (C.I.); (R.F.); (M.M.); (C.G.); (G.G.)
| | - Giuseppe Gentile
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, 00161 Rome, Italy; (C.I.); (R.F.); (M.M.); (C.G.); (G.G.)
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (L.T.)
| |
Collapse
|
45
|
Belliere J, Casemayou A, Colliou E, El Hachem H, Kounde C, Piedrafita A, Feuillet G, Schanstra JP, Faguer S. Ibrutinib does not prevent kidney fibrosis following acute and chronic injury. Sci Rep 2021; 11:11985. [PMID: 34099830 PMCID: PMC8184891 DOI: 10.1038/s41598-021-91491-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Abstract
Recent studies suggested that ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor, developed for the treatment of chronic lymphocytic leukemia, may prevent NLRP3 inflammasome activation in macrophages, IL-1β secretion and subsequent development of inflammation and organ fibrosis. The role of NLRP3 has been underlined in the various causes of acute kidney injury (AKI), a pathology characterized by high morbimortality and risk of transition toward chronic kidney disease (CKD). We therefore hypothesized that the BTK-inhibitor ibrutinib could be a candidate drug for AKI treatment. Here, we observed in both an AKI model (glycerol-induced rhabdomyolysis) and a model of rapidly progressive kidney fibrosis (unilateral ureteral obstruction), that ibrutinib did not prevent inflammatory cell recruitment in the kidney and fibrosis. Moreover, ibrutinib pre-exposure led to high mortality rate owing to severer rhabdomyolysis and AKI. In vitro, ibrutinib potentiated or had no effect on the secretion of IL-1β by monocytes exposed to uromodulin or myoglobin, two danger-associated molecule patterns proteins involved in the AKI to CKD transition. According to these results, ibrutinib should not be considered a candidate drug for patients developing AKI.
Collapse
Affiliation(s)
- Julie Belliere
- UMR 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires, Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier-Toulouse 3, Toulouse, France
- Département de Néphrologie Et Transplantation D'organes, Centre de Référence Des Maladies Rénales Rares, INSERM U1048 (I2MC, équipe 12), Centre Hospitalier Universitaire de Toulouse, 1, avenue du Pr Jean Poulhes, 31059, Toulouse, France
| | - Audrey Casemayou
- UMR 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires, Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- Département de Néphrologie Et Transplantation D'organes, Centre de Référence Des Maladies Rénales Rares, INSERM U1048 (I2MC, équipe 12), Centre Hospitalier Universitaire de Toulouse, 1, avenue du Pr Jean Poulhes, 31059, Toulouse, France
| | - Eloïse Colliou
- UMR 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires, Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier-Toulouse 3, Toulouse, France
- Département de Néphrologie Et Transplantation D'organes, Centre de Référence Des Maladies Rénales Rares, INSERM U1048 (I2MC, équipe 12), Centre Hospitalier Universitaire de Toulouse, 1, avenue du Pr Jean Poulhes, 31059, Toulouse, France
| | - Hélène El Hachem
- UMR 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires, Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier-Toulouse 3, Toulouse, France
- Département de Néphrologie Et Transplantation D'organes, Centre de Référence Des Maladies Rénales Rares, INSERM U1048 (I2MC, équipe 12), Centre Hospitalier Universitaire de Toulouse, 1, avenue du Pr Jean Poulhes, 31059, Toulouse, France
| | - Clément Kounde
- UMR 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires, Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier-Toulouse 3, Toulouse, France
- Département de Néphrologie Et Transplantation D'organes, Centre de Référence Des Maladies Rénales Rares, INSERM U1048 (I2MC, équipe 12), Centre Hospitalier Universitaire de Toulouse, 1, avenue du Pr Jean Poulhes, 31059, Toulouse, France
| | - Alexis Piedrafita
- UMR 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires, Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier-Toulouse 3, Toulouse, France
- Département de Néphrologie Et Transplantation D'organes, Centre de Référence Des Maladies Rénales Rares, INSERM U1048 (I2MC, équipe 12), Centre Hospitalier Universitaire de Toulouse, 1, avenue du Pr Jean Poulhes, 31059, Toulouse, France
| | - Guylène Feuillet
- UMR 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires, Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier-Toulouse 3, Toulouse, France
| | - Joost P Schanstra
- UMR 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires, Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier-Toulouse 3, Toulouse, France
| | - Stanislas Faguer
- UMR 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires, Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France.
- Université Paul Sabatier-Toulouse 3, Toulouse, France.
- Département de Néphrologie Et Transplantation D'organes, Centre de Référence Des Maladies Rénales Rares, INSERM U1048 (I2MC, équipe 12), Centre Hospitalier Universitaire de Toulouse, 1, avenue du Pr Jean Poulhes, 31059, Toulouse, France.
| |
Collapse
|
46
|
Abstract
Complex processes mediate immunity to fungal infections. Responses vary depending on the organism, morphogenic state, and infection site. Innate immune effectors such as epithelia, phagocytes, and soluble molecules detect pathogens, kill fungi, release cytokines, and prime the adaptive response. Adaptive responses to mucocutaneous or invasive disease are markedly different but intersect at certain pathways (molecules required for IL-23 and IL-12 signaling). Many of these pathways have been elucidated from the study of inborn errors of immunity. This review explores the general aspects of antifungal immunity and delves into the mechanisms that mediate protection from frequently encountered fungi.
Collapse
Affiliation(s)
- Oscar A Fernández-García
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, 14080 Tlalpan, Mexico City, Mexico
| | - Jennifer M Cuellar-Rodríguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, 10 Center Drive, Building 10CRC 3-3264, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW In recent years, we have witnessed a remarkable surge in the clinical development of effective biological and cellular therapies for the treatment of neoplastic and autoimmune disorders. The present review summarizes our understanding of the pathogen-specific infection risk associated with the use of such therapies. RECENT FINDINGS A variety of biologics, in the form of either monoclonal antibodies (Mabs) or small molecule kinase inhibitors (Nibs), are continuously introduced in the clinic for the management of autoimmune and malignant diseases. In addition, cellular therapies such as the infusion of chimeric antigen receptor (CAR) T-cells are becoming increasingly available for patients with treatment-refractory lymphoid malignancies. Some of these biological and cellular interventions exert direct or indirect adverse effects on the induction of protective immune responses against various pathogens, resulting in heightened infection susceptibility. SUMMARY The introduction of biological and cellular therapies for the treatment of malignant and autoimmune diseases has been associated with increased infection susceptiblity, which varies greatly depending on the specific immunomodulatory therapy, the infecting pathogen and the recipient patient population. A high index of clinical suspicion and efforts aiming at early diagnosis, targeted vaccination or prophylaxis, and prompt initiation of antimicrobial treatment should help improve infection outcomes.
Collapse
|
48
|
Current and emerging therapies for primary central nervous system lymphoma. Biomark Res 2021; 9:32. [PMID: 33957995 PMCID: PMC8101140 DOI: 10.1186/s40364-021-00282-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
Primary central nervous system (CNS) lymphoma (PCNSL) is a rare type of extranodal lymphoma exclusively involving the CNS at the onset, with diffuse large B-cell lymphoma (DLBCL) as the most common histological subtype. As PCNSL is a malignancy arising in an immune-privileged site, suboptimal delivery of systemic agents into tumor tissues results in poorer outcomes in PCNSL than in non-CNS DLBCLs. Commonly used regimens for PCNSL include high-dose methotrexate-based chemotherapy with rituximab for induction therapy and intensive chemotherapy followed by autologous hematopoietic stem cell transplantation or whole-brain radiotherapy for consolidation therapy. Targeted agents against the B-cell receptor signaling pathway, microenvironment immunomodulation and blood-brain barrier (BBB) permeabilization appear to be promising in treating refractory/relapsed patients. Chimeric antigen receptor-T cells (CAR-T cells) have been shown to penetrate the BBB as a potential tool to manipulate this disease entity while controlling CAR-T cell-related encephalopathy syndrome. Future approaches may stratify patients according to age, performance status, molecular biomarkers and cellular bioinformation. This review summarizes the current therapies and emerging agents in clinical development for PCNSL treatment.
Collapse
|
49
|
Dunne MR, Wagener J, Loeffler J, Doherty DG, Rogers TR. Unconventional T cells - New players in antifungal immunity. Clin Immunol 2021; 227:108734. [PMID: 33895356 DOI: 10.1016/j.clim.2021.108734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
Life-threatening invasive fungal diseases (IFD) are increasing in incidence, especially in immunocompromised patients and successful resolution of IFD requires a variety of different immune cells. With the limited repertoire of available antifungal drugs there is a need for more effective therapeutic strategies. This review interrogates the evidence on the human immune response to the main pathogens driving IFD, with a focus on the role of unconventional lymphocytes e.g. natural killer (NK) cells, gamma/delta (γδ) T cells, mucosal associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILC). Recent discoveries and new insights into the roles of these novel lymphocyte groups in antifungal immunity will be discussed, and we will explore how an improved understanding of antifungal action by lymphocytes can inform efforts to improve antifungal treatment options.
Collapse
Affiliation(s)
- Margaret R Dunne
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland; Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.
| | - Johannes Wagener
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| |
Collapse
|
50
|
Good L, Benner B, Carson WE. Bruton's tyrosine kinase: an emerging targeted therapy in myeloid cells within the tumor microenvironment. Cancer Immunol Immunother 2021; 70:2439-2451. [PMID: 33818636 PMCID: PMC8019691 DOI: 10.1007/s00262-021-02908-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor kinase belonging to the Tec family of kinases. The role of BTK in B cell receptor signaling is well defined and is known to play a key role in the proliferation and survival of malignant B cells. Moreover, BTK has been found to be expressed in cells of the myeloid lineage. BTK has been shown to contribute to a variety of cellular pathways in myeloid cells including signaling in the NLRP3 inflammasome, receptor activation of nuclear factor-κβ and inflammation, chemokine receptor activation affecting migration, and phagocytosis. Myeloid cells are crucial components of the tumor microenvironment and suppressive myeloid cells contribute to cancer progression, highlighting a potential role for BTK inhibition in the treatment of malignancy. The increased interest in BTK inhibition in cancer has resulted in many preclinical studies that are testing the efficacy of using single-agent BTK inhibitors. Moreover, the ability of tumor cells to develop resistance to single-agent checkpoint inhibitors has resulted in clinical studies utilizing BTK inhibitors in combination with these agents to improve clinical responses. Furthermore, BTK regulates the immune response in microbial and viral infections through B cells and myeloid cells such as monocytes and macrophages. In this review, we describe the role that BTK plays in supporting suppressive myeloid cells, including myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM), while also discussing the anticancer effects of BTK inhibition and briefly describe the role of BTK signaling and BTK inhibition in microbial and viral infections.
Collapse
Affiliation(s)
- Logan Good
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - William E Carson
- Department of Surgery, Division of Surgical Oncology, Tzagournis Medical Research Facility, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|