1
|
Liu J, Ma J, Wen J, Zhou X. A Cell Cycle-Aware Network for Data Integration and Label Transferring of Single-Cell RNA-Seq and ATAC-Seq. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401815. [PMID: 38887194 PMCID: PMC11336957 DOI: 10.1002/advs.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Indexed: 06/20/2024]
Abstract
In recent years, the integration of single-cell multi-omics data has provided a more comprehensive understanding of cell functions and internal regulatory mechanisms from a non-single omics perspective, but it still suffers many challenges, such as omics-variance, sparsity, cell heterogeneity, and confounding factors. As it is known, the cell cycle is regarded as a confounder when analyzing other factors in single-cell RNA-seq data, but it is not clear how it will work on the integrated single-cell multi-omics data. Here, a cell cycle-aware network (CCAN) is developed to remove cell cycle effects from the integrated single-cell multi-omics data while keeping the cell type-specific variations. This is the first computational model to study the cell-cycle effects in the integration of single-cell multi-omics data. Validations on several benchmark datasets show the outstanding performance of CCAN in a variety of downstream analyses and applications, including removing cell cycle effects and batch effects of scRNA-seq datasets from different protocols, integrating paired and unpaired scRNA-seq and scATAC-seq data, accurately transferring cell type labels from scRNA-seq to scATAC-seq data, and characterizing the differentiation process from hematopoietic stem cells to different lineages in the integration of differentiation data.
Collapse
Affiliation(s)
- Jiajia Liu
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Jian Ma
- Department of Electronic Information and Computer EngineeringThe Engineering & Technical College of Chengdu University of TechnologyLeshanSichuan614000China
| | - Jianguo Wen
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Xiaobo Zhou
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
- McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTX77030USA
- School of DentistryThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| |
Collapse
|
2
|
Gu Y, Zhang X, Li H, Wang R, Jin C, Wang J, Jin Z, Lu J, Ling C, Shao F, Zhang J, Shi L. Novel subsets of peripheral immune cells associated with promoting stroke recovery in mice. CNS Neurosci Ther 2024; 30:e14518. [PMID: 37905680 PMCID: PMC11017448 DOI: 10.1111/cns.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
AIMS Peripheral immune cells infiltrating into the brain trigger neuroinflammation after an ischemic stroke. Partial immune cells reprogram their function for neural repair. Which immune cells promote ischemic brain recovery needs further identification. METHODS We performed single-cell transcriptomic profiling of CD45high immune cells isolated from the ischemic hemisphere at subacute (5 days) and chronic (14 days) stages after ischemic stroke. RESULTS A subset of phagocytic macrophages was associated with neuron projection regeneration and tissue remodeling. We also identified a unique type of T cells with highly expressed macrophage markers, including C1q, Apoe, Hexb, and Fcer1g, which showed high abilities in tissue remodeling, myelination regulation, wound healing, and anti-neuroinflammation. Moreover, natural killer cells decreased cytotoxicity and increased energy and metabolic function in the chronic stage after ischemic stroke. Two subgroups of neutrophils upregulated CCL signals to recruit peripheral immune cells and released CXCL2 to keep self-recruiting at the chronic stage. CONCLUSIONS We identified subsets of peripheral immune cells that may provide potential therapeutic targets for promoting poststroke recovery.
Collapse
Affiliation(s)
- Yichen Gu
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Xiaotao Zhang
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Huaming Li
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Rui Wang
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Chenghao Jin
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Junjie Wang
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Ziyang Jin
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Jianan Lu
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Chenhan Ling
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Fangjie Shao
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Jianmin Zhang
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
- Brain Research InstituteZhejiang UniversityHangzhouZhejiangChina
- Collaborative Innovation Center for Brain ScienceZhejiang UniversityHangzhouZhejiangChina
| | - Ligen Shi
- Department of NeurosurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
3
|
Katsumura KR, Liu P, Kim JA, Mehta C, Bresnick EH. Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program. Proc Natl Acad Sci U S A 2024; 121:e2317147121. [PMID: 38422019 PMCID: PMC10927522 DOI: 10.1073/pnas.2317147121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.
Collapse
Affiliation(s)
- Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Cancer Informatics Shared Resource, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Jeong-ah Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
4
|
Tang S, Cui X, Wang R, Li S, Li S, Huang X, Chen S. scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data. Nat Commun 2024; 15:1629. [PMID: 38388573 PMCID: PMC10884038 DOI: 10.1038/s41467-024-46045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Single-cell chromatin accessibility sequencing (scCAS) has emerged as a valuable tool for interrogating and elucidating epigenomic heterogeneity and gene regulation. However, scCAS data inherently suffers from limitations such as high sparsity and dimensionality, which pose significant challenges for downstream analyses. Although several methods are proposed to enhance scCAS data, there are still challenges and limitations that hinder the effectiveness of these methods. Here, we propose scCASE, a scCAS data enhancement method based on non-negative matrix factorization which incorporates an iteratively updating cell-to-cell similarity matrix. Through comprehensive experiments on multiple datasets, we demonstrate the advantages of scCASE over existing methods for scCAS data enhancement. The interpretable cell type-specific peaks identified by scCASE can provide valuable biological insights into cell subpopulations. Moreover, to leverage the large compendia of available omics data as a reference, we further expand scCASE to scCASER, which enables the incorporation of external reference data to improve enhancement performance.
Collapse
Affiliation(s)
- Songming Tang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Xuejian Cui
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division of BNRIST, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Rongxiang Wang
- Department of Computer Science, University of Virginia, Charlottesville, VA, 22903, USA
| | - Sijie Li
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Siyu Li
- School of Statistics and Data Science, Nankai University, Tianjin, 300071, China
| | - Xin Huang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Shengquan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Liu J, Ma J, Wen J, Zhou X. A Cell Cycle-aware Network for Data Integration and Label Transferring of Single-cell RNA-seq and ATAC-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578213. [PMID: 38352302 PMCID: PMC10862874 DOI: 10.1101/2024.01.31.578213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, the integration of single-cell multi-omics data has provided a more comprehensive understanding of cell functions and internal regulatory mechanisms from a non-single omics perspective, but it still suffers many challenges, such as omics-variance, sparsity, cell heterogeneity and confounding factors. As we know, cell cycle is regarded as a confounder when analyzing other factors in single-cell RNA-seq data, but it's not clear how it will work on the integrated single-cell multi-omics data. Here, we developed a Cell Cycle-Aware Network (CCAN) to remove cell cycle effects from the integrated single-cell multi-omics data while keeping the cell type-specific variations. This is the first computational model to study the cell-cycle effects in the integration of single-cell multi-omics data. Validations on several benchmark datasets show the out-standing performance of CCAN in a variety of downstream analyses and applications, including removing cell cycle effects and batch effects of scRNA-seq datasets from different protocols, integrating paired and unpaired scRNA-seq and scATAC-seq data, accurately transferring cell type labels from scRNA-seq to scATAC-seq data, and characterizing the differentiation process from hematopoietic stem cells to different lineages in the integration of differentiation data.
Collapse
|
6
|
Bigot T, Gabinaud E, Hannouche L, Sbarra V, Andersen E, Bastelica D, Falaise C, Bernot D, Ibrahim-Kosta M, Morange PE, Loosveld M, Saultier P, Payet-Bornet D, Alessi MC, Potier D, Poggi M. Single-cell analysis of megakaryopoiesis in peripheral CD34 + cells: insights into ETV6-related thrombocytopenia. J Thromb Haemost 2023; 21:2528-2544. [PMID: 37085035 DOI: 10.1016/j.jtha.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Germline mutations in the ETV6 transcription factor gene are responsible for familial thrombocytopenia and leukemia predisposition syndrome. Although previous studies have shown that ETV6 plays an important role in megakaryocyte (MK) maturation and platelet formation, the mechanisms by which ETV6 dysfunction promotes thrombocytopenia remain unclear. OBJECTIVES To decipher the transcriptional mechanisms and gene regulatory network linking ETV6 germline mutations and thrombocytopenia. METHODS Presuming that ETV6 mutations result in selective effects at a particular cell stage, we applied single-cell RNA sequencing to understand gene expression changes during megakaryopoiesis in peripheral CD34+ cells from healthy controls and patients with ETV6-related thrombocytopenia. RESULTS Analysis of gene expression and regulon activity revealed distinct clusters partitioned into 7 major cell stages: hematopoietic stem/progenitor cells, common-myeloid progenitors (CMPs), MK-primed CMPs, granulocyte-monocyte progenitors, MK-erythroid progenitors (MEPs), progenitor MKs/mature MKs, and platelet-like particles. We observed a differentiation trajectory in which MEPs developed directly from hematopoietic stem/progenitor cells and bypassed the CMP stage. ETV6 deficiency led to the development of aberrant cells as early as the MEP stage, which intensified at the progenitor MK/mature MK stage, with a highly deregulated core "ribosome biogenesis" pathway. Indeed, increased translation levels have been documented in patient CD34+-derived MKs with overexpression of ribosomal protein S6 and phosphorylated ribosomal protein S6 in both CD34+-derived MKs and platelets. Treatment of patient MKs with the ribosomal biogenesis inhibitor CX-5461 resulted in an increase in platelet-like particles. CONCLUSION These findings provide novel insight into both megakaryopoiesis and the link among ETV6, translation, and platelet production.
Collapse
Affiliation(s)
- Timothée Bigot
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Elisa Gabinaud
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | | | - Elisa Andersen
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | | | - Denis Bernot
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | | | - Marie Loosveld
- Aix-Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Paul Saultier
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | - Marie-Christine Alessi
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France; AP-HM, CHU Timone, CRPP, Marseille, France
| | | | - Marjorie Poggi
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France.
| |
Collapse
|
7
|
Cheong JG, Ravishankar A, Sharma S, Parkhurst CN, Grassmann SA, Wingert CK, Laurent P, Ma S, Paddock L, Miranda IC, Karakaslar EO, Nehar-Belaid D, Thibodeau A, Bale MJ, Kartha VK, Yee JK, Mays MY, Jiang C, Daman AW, Martinez de Paz A, Ahimovic D, Ramos V, Lercher A, Nielsen E, Alvarez-Mulett S, Zheng L, Earl A, Yallowitz A, Robbins L, LaFond E, Weidman KL, Racine-Brzostek S, Yang HS, Price DR, Leyre L, Rendeiro AF, Ravichandran H, Kim J, Borczuk AC, Rice CM, Jones RB, Schenck EJ, Kaner RJ, Chadburn A, Zhao Z, Pascual V, Elemento O, Schwartz RE, Buenrostro JD, Niec RE, Barrat FJ, Lief L, Sun JC, Ucar D, Josefowicz SZ. Epigenetic memory of coronavirus infection in innate immune cells and their progenitors. Cell 2023; 186:3882-3902.e24. [PMID: 37597510 PMCID: PMC10638861 DOI: 10.1016/j.cell.2023.07.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/21/2023]
Abstract
Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.
Collapse
Affiliation(s)
- Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Arjun Ravishankar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Siddhartha Sharma
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Simon A Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claire K Wingert
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paoline Laurent
- HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
| | - Sai Ma
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | - Lucinda Paddock
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Emin Onur Karakaslar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael J Bale
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vinay K Kartha
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | - Jim K Yee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Minh Y Mays
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chenyang Jiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew W Daman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexia Martinez de Paz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dughan Ahimovic
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Victor Ramos
- The Rockefeller University, New York, NY 10065, USA
| | | | - Erik Nielsen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Ling Zheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew Earl
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | - Alisha Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lexi Robbins
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Karissa L Weidman
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sabrina Racine-Brzostek
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - He S Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David R Price
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Louise Leyre
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - André F Rendeiro
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Junbum Kim
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Northwell Health, Greenvale, NY 11548, USA
| | | | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Edward J Schenck
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia Pascual
- Department of Pediatrics, Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jason D Buenrostro
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | - Rachel E Niec
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; The Rockefeller University, New York, NY 10065, USA
| | - Franck J Barrat
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA; HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsay Lief
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
8
|
Intrathymic dendritic cell-biased precursors promote human T cell lineage specification through IRF8-driven transmembrane TNF. Nat Immunol 2023; 24:474-486. [PMID: 36703005 DOI: 10.1038/s41590-022-01417-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
The cross-talk between thymocytes and thymic stromal cells is fundamental for T cell development. In humans, intrathymic development of dendritic cells (DCs) is evident but its physiological significance is unknown. Here we showed that DC-biased precursors depended on the expression of the transcription factor IRF8 to express the membrane-bound precursor form of the cytokine TNF (tmTNF) to promote differentiation of thymus seeding hematopoietic progenitors into T-lineage specified precursors through activation of the TNF receptor (TNFR)-2 instead of TNFR1. In vitro recapitulation of TNFR2 signaling by providing low-density tmTNF or a selective TNFR2 agonist enhanced the generation of human T cell precursors. Our study shows that, in addition to mediating thymocyte selection and maturation, DCs function as hematopoietic stromal support for the early stages of human T cell development and provide proof of concept that selective targeting of TNFR2 can enhance the in vitro generation of T cell precursors for clinical application.
Collapse
|
9
|
de Klerk JA, Beulens JWJ, Mei H, Bijkerk R, van Zonneveld AJ, Koivula RW, Elders PJM, 't Hart LM, Slieker RC. Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism: a Mendelian randomisation study. Diabetologia 2023; 66:1057-1070. [PMID: 36826505 PMCID: PMC10163084 DOI: 10.1007/s00125-023-05886-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to identify differentially expressed long non-coding RNAs (lncRNAs) and mRNAs in whole blood of people with type 2 diabetes across five different clusters: severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), mild diabetes (MD) and mild diabetes with high HDL-cholesterol (MDH). This was to increase our understanding of different molecular mechanisms underlying the five putative clusters of type 2 diabetes. METHODS Participants in the Hoorn Diabetes Care System (DCS) cohort were clustered based on age, BMI, HbA1c, C-peptide and HDL-cholesterol. Whole blood RNA-seq was used to identify differentially expressed lncRNAs and mRNAs in a cluster compared with all others. Differentially expressed genes were validated in the Innovative Medicines Initiative DIabetes REsearCh on patient straTification (IMI DIRECT) study. Expression quantitative trait loci (eQTLs) for differentially expressed RNAs were obtained from a publicly available dataset. To estimate the causal effects of RNAs on traits, a two-sample Mendelian randomisation analysis was performed using public genome-wide association study (GWAS) data. RESULTS Eleven lncRNAs and 175 mRNAs were differentially expressed in the MOD cluster, the lncRNA AL354696.2 was upregulated in the SIDD cluster and GPR15 mRNA was downregulated in the MDH cluster. mRNAs and lncRNAs that were differentially expressed in the MOD cluster were correlated among each other. Six lncRNAs and 120 mRNAs validated in the IMI DIRECT study. Using two-sample Mendelian randomisation, we found 52 mRNAs to have a causal effect on anthropometric traits (n=23) and lipid metabolism traits (n=10). GPR146 showed a causal effect on plasma HDL-cholesterol levels (p = 2×10-15), without evidence for reverse causality. CONCLUSIONS/INTERPRETATION Multiple lncRNAs and mRNAs were found to be differentially expressed among clusters and particularly in the MOD cluster. mRNAs in the MOD cluster showed a possible causal effect on anthropometric traits, lipid metabolism traits and blood cell fractions. Together, our results show that individuals in the MOD cluster show aberrant RNA expression of genes that have a suggested causal role on multiple diabetes-relevant traits.
Collapse
Affiliation(s)
- Juliette A de Klerk
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Joline W J Beulens
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Robert W Koivula
- Department of Clinical Sciences, Lund University, Genetic and Molecular Epidemiology, CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Petra J M Elders
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands.
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Jiang X, Zhang X, Jiang N, Sun Y, Li T, Zhang J, Shen Y, Cao J. The single-cell landscape of cystic echinococcosis in different stages provided insights into endothelial and immune cell heterogeneity. Front Immunol 2022; 13:1067338. [PMID: 36569953 PMCID: PMC9772464 DOI: 10.3389/fimmu.2022.1067338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Hydatid cysts and angiogenesis are the key characteristics of cystic echinococcosis, with immune cells and endothelial cells mediating essential roles in disease progression. Recent single-cell analysis studies demonstrated immune cell infiltration after Echinococcus granulosus infection, highlighting the diagnostic and therapeutic potential of targeting certain cell types in the lesion microenvironment. However, more detailed immune mechanisms during different periods of E. granulosus infection were not elucidated. Methods Herein, we characterized immune and endothelial cells from the liver samples of mice in different stages by single-cell RNA sequencing. Results We profiled the transcriptomes of 45,199 cells from the liver samples of mice at 1, 3, and 6 months after infection (two replicates) and uninfected wild-type mice. The cells were categorized into 26 clusters with four distinct cell types: natural killer (NK)/T cells, B cells, myeloid cells, and endothelial cells. An SPP1+ macrophage subset with immunosuppressive and pro-angiogenic functions was identified in the late infection stage. Single-cell regulatory network inference and clustering (SCENIC) analysis suggested that Cebpe, Runx3, and Rora were the key regulators of the SPP1+ macrophages. Cell communication analysis revealed that the SPP1+ macrophages interacted with endothelial cells and had pro-angiogenic functions. There was an obvious communicative relationship between SPP1+ macrophages and endothelial cells via Vegfa-Vegfr1/Vegfr2, and SPP1+ macrophages interacted with other immune cells via specific ligand-receptor pairs, which might have contributed to their immunosuppressive function. Discussion Our comprehensive exploration of the cystic echinococcosis ecosystem and the first discovery of SPP1+ macrophages with infection period specificity provide deeper insights into angiogenesis and the immune evasion mechanisms associated with later stages of infection.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Xiaofan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China,Department of Laboratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yeting Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Teng Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Jing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China,*Correspondence: Yujuan Shen, ; Jianping Cao,
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yujuan Shen, ; Jianping Cao,
| |
Collapse
|
11
|
Greenwood DL, Ramsey HE, Nguyen PTT, Patterson AR, Voss K, Bader JE, Sugiura A, Bacigalupa ZA, Schaefer S, Ye X, Dahunsi DO, Madden MZ, Wellen KE, Savona MR, Ferrell PB, Rathmell JC. Acly Deficiency Enhances Myelopoiesis through Acetyl Coenzyme A and Metabolic-Epigenetic Cross-Talk. Immunohorizons 2022; 6:837-850. [PMID: 36547387 PMCID: PMC9935084 DOI: 10.4049/immunohorizons.2200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Hematopoiesis integrates cytokine signaling, metabolism, and epigenetic modifications to regulate blood cell generation. These processes are linked, as metabolites provide essential substrates for epigenetic marks. In this study, we demonstrate that ATP citrate lyase (Acly), which metabolizes citrate to generate cytosolic acetyl-CoA and is of clinical interest, can regulate chromatin accessibility to limit myeloid differentiation. Acly was tested for a role in murine hematopoiesis by small-molecule inhibition or genetic deletion in lineage-depleted, c-Kit-enriched hematopoietic stem and progenitor cells from Mus musculus. Treatments increased the abundance of cell populations that expressed the myeloid integrin CD11b and other markers of myeloid differentiation. When single-cell RNA sequencing was performed, we found that Acly inhibitor-treated hematopoietic stem and progenitor cells exhibited greater gene expression signatures for macrophages and enrichment of these populations. Similarly, the single-cell assay for transposase-accessible chromatin sequencing showed increased chromatin accessibility at genes associated with myeloid differentiation, including CD11b, CD11c, and IRF8. Mechanistically, Acly deficiency altered chromatin accessibility and expression of multiple C/EBP family transcription factors known to regulate myeloid differentiation and cell metabolism, with increased Cebpe and decreased Cebpa and Cebpb. This effect of Acly deficiency was accompanied by altered mitochondrial metabolism with decreased mitochondrial polarization but increased mitochondrial content and production of reactive oxygen species. The bias to myeloid differentiation appeared due to insufficient generation of acetyl-CoA, as exogenous acetate to support alternate compensatory pathways to produce acetyl-CoA reversed this phenotype. Acly inhibition thus can promote myelopoiesis through deprivation of acetyl-CoA and altered histone acetylome to regulate C/EBP transcription factor family activity for myeloid differentiation.
Collapse
Affiliation(s)
- Dalton L. Greenwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Haley E. Ramsey
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Phuong T. T. Nguyen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrew R. Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jackie E. Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Samuel Schaefer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Debolanle O. Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kathryn E. Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael R. Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - P. Brent Ferrell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
12
|
Lee LM, Christodoulou EG, Shyamsunder P, Chen BJ, Lee KL, Fung TK, So CWE, Wong GC, Petretto E, Rackham OJL, Tiong Ong S. A novel network pharmacology approach for leukaemia differentiation therapy using Mogrify ®. Oncogene 2022; 41:5160-5175. [PMID: 36271030 DOI: 10.1038/s41388-022-02505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukaemia (AML) is a rapidly fatal blood cancer that is characterised by the accumulation of immature myeloid cells in the blood and bone marrow as a result of blocked differentiation. Methods which identify master transcriptional regulators of AML subtype-specific leukaemia cell states and their combinations could be critical for discovering novel differentiation-inducing therapies. In this proof-of-concept study, we demonstrate a novel utility of the Mogrify® algorithm in identifying combinations of transcription factors (TFs) and drugs, which recapitulate granulocytic differentiation of the NB4 acute promyelocytic leukaemia (APL) cell line, using two different approaches. In the first approach, Connectivity Map (CMAP) analysis of these TFs and their target networks outperformed standard approaches, retrieving ATRA as the top hit. We identify dimaprit and mebendazole as a drug combination which induces myeloid differentiation. In the second approach, we show that genetic manipulation of specific Mogrify®-identified TFs (MYC and IRF1) leads to co-operative induction of APL differentiation, as does pharmacological targeting of these TFs using currently available compounds. We also show that loss of IRF1 blunts ATRA-mediated differentiation, and that MYC represses IRF1 expression through recruitment of PML-RARα, the driver fusion oncoprotein in APL, to the IRF1 promoter. Finally, we demonstrate that these drug combinations can also induce differentiation of primary patient-derived APL cells, and highlight the potential of targeting MYC and IRF1 in high-risk APL. Thus, these results suggest that Mogrify® could be used for drug discovery or repositioning in leukaemia differentiation therapy for other subtypes of leukaemia or cancers.
Collapse
MESH Headings
- Humans
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
- Network Pharmacology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Cell Differentiation/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Lin Ming Lee
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Eleni G Christodoulou
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Pavithra Shyamsunder
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Bei Jun Chen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Kian Leong Lee
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Tsz Kan Fung
- Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Chi Wai Eric So
- Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Gee Chuan Wong
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
- MRC London Institute of Medical Sciences (LMC), Imperial College London, Faculty of Medicine, London, UK.
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China.
| | - Owen J L Rackham
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - S Tiong Ong
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Haematology, Singapore General Hospital, Singapore, Singapore.
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore.
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
14
|
Pingul BY, Huang H, Chen Q, Alikarami F, Zhang Z, Qi J, Bernt KM, Berger SL, Cao Z, Shi J. Dissection of the MEF2D-IRF8 transcriptional circuit dependency in acute myeloid leukemia. iScience 2022; 25:105139. [PMID: 36193052 PMCID: PMC9526175 DOI: 10.1016/j.isci.2022.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/05/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
Transcriptional dysregulation is a prominent feature in leukemia. Here, we systematically surveyed transcription factor (TF) vulnerabilities in leukemia and uncovered TF clusters that exhibit context-specific vulnerabilities within and between different subtypes of leukemia. Among these TF clusters, we demonstrated that acute myeloid leukemia (AML) with high IRF8 expression was addicted to MEF2D. MEF2D and IRF8 form an autoregulatory loop via direct binding to mutual enhancer elements. One important function of this circuit in AML is to sustain PU.1/MEIS1 co-regulated transcriptional outputs via stabilizing PU.1’s chromatin occupancy. We illustrated that AML could acquire dependency on this circuit through various oncogenic mechanisms that results in the activation of their enhancers. In addition to forming a circuit, MEF2D and IRF8 can also separately regulate gene expression, and dual perturbation of these two TFs leads to a more robust inhibition of AML proliferation. Collectively, our results revealed a TF circuit essential for AML survival. MEF2D is a context-specific vulnerability in IRF8hi AML MEF2D and IRF8 form a transcriptional circuit via binding to each other’s enhancers MEF2D-IRF8 circuit supports PU.1’s chromatin occupancy and transcriptional output MEF2D and IRF8 can regulate separate gene expression programs alongside the circuit
Collapse
|
15
|
Wang J, Wang A, Tian K, Hua X, Zhang B, Zheng Y, Kong X, Li W, Xu L, Wang J, Li Z, Liu Y, Zhou Y. A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the abundance of intermediate progenitors. Cell Discov 2022; 8:74. [PMID: 35915089 PMCID: PMC9343459 DOI: 10.1038/s41421-022-00421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
β-catenin-dependent canonical Wnt signaling plays a plethora of roles in neocortex (Ncx) development, but its function in regulating the abundance of intermediate progenitors (IPs) is elusive. Here we identified neCtnnb1, an evolutionarily conserved cis-regulatory element with typical enhancer features in developing Ncx. neCtnnb1 locates 55 kilobase upstream of and spatially close to the promoter of Ctnnb1, the gene encoding β-catenin. CRISPR/Cas9-mediated activation or interference of the neCtnnb1 locus enhanced or inhibited transcription of Ctnnb1. neCtnnb1 drove transcription predominantly in the subventricular zone of developing Ncx. Knock-out of neCtnnb1 in mice resulted in compromised expression of Ctnnb1 and the Wnt reporter in developing Ncx. Importantly, knock-out of neCtnnb1 lead to reduced production and transit-amplification of IPs, which subsequently generated fewer upper-layer Ncx projection neurons (PNs). In contrast, enhancing the canonical Wnt signaling by stabilizing β-catenin in neCtnnb1-active cells promoted the production of IPs and upper-layer Ncx PNs. ASH2L was identified as the key trans-acting factor that associates with neCtnnb1 and Ctnnb1’s promoter to maintain Ctnnb1’s transcription in both mouse and human Ncx progenitors. These findings advance understanding of transcriptional regulation of Ctnnb1, and provide insights into mechanisms underlying Ncx expansion during development.
Collapse
Affiliation(s)
- Junbao Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Andi Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Kuan Tian
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Hua
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Yue Zheng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiangfei Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Wei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lichao Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Neurology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Ying Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Long K, Li X, Su D, Zeng S, Li H, Zhang Y, Zhang B, Yang W, Li P, Li X, Wang X, Tang Q, Lu L, Jin L, Ma J, Li M. Exploring high-resolution chromatin interaction changes and functional enhancers of myogenic marker genes during myogenic differentiation. J Biol Chem 2022; 298:102149. [PMID: 35787372 PMCID: PMC9352921 DOI: 10.1016/j.jbc.2022.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Skeletal muscle differentiation (myogenesis) is a complex and highly coordinated biological process regulated by a series of myogenic marker genes. Chromatin interactions between gene's promoters and their enhancers have an important role in transcriptional control. However, the high-resolution chromatin interactions of myogenic genes and their functional enhancers during myogenesis remain largely unclear. Here, we used circularized chromosome conformation capture coupled with next generation sequencing (4C-seq) to investigate eight myogenic marker genes in C2C12 myoblasts (C2C12-MBs) and C2C12 myotubes (C2C12-MTs). We revealed dynamic chromatin interactions of these marker genes during differentiation and identified 163 and 314 significant interaction sites (SISs) in C2C12-MBs and C2C12-MTs, respectively. The interacting genes of SISs in C2C12-MTs were mainly involved in muscle development, and histone modifications of the SISs changed during differentiation. Through functional genomic screening, we also identified 25 and 41 putative active enhancers in C2C12-MBs and C2C12-MTs, respectively. Using luciferase reporter assays for putative enhancers of Myog and Myh3, we identified eight activating enhancers. Furthermore, dCas9-KRAB epigenome editing and RNA-Seq revealed a role for Myog enhancers in the regulation of Myog expression and myogenic differentiation in the native genomic context. Taken together, this study lays the groundwork for understanding 3D chromatin interaction changes of myogenic genes during myogenesis and provides insights that contribute to our understanding of the role of enhancers in regulating myogenesis.
Collapse
Affiliation(s)
- Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaokai Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Duo Su
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Sha Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengkuan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Biwei Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenying Yang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi'nan Gynecology Hospital Co, Ltd, Chengdu, Sichuan, China
| | - Xuemin Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
17
|
Long K, Su D, Li X, Li H, Zeng S, Zhang Y, Zhong Z, Lin Y, Li X, Lu L, Jin L, Ma J, Tang Q, Li M. Identification of enhancers responsible for the coordinated expression of myosin heavy chain isoforms in skeletal muscle. BMC Genomics 2022; 23:519. [PMID: 35842589 PMCID: PMC9288694 DOI: 10.1186/s12864-022-08737-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Skeletal muscles consist of fibers of differing contractility and metabolic properties, which are primarily determined by the content of myosin heavy chain (MYH) isoforms (MYH7, MYH2, MYH1, and MYH4). The regulation of Myh genes transcription depends on three-dimensional chromatin conformation interaction, but the mechanistic details remain to be determined. Results In this study, we characterized the interaction profiles of Myh genes using 4C-seq (circular chromosome conformation capture coupled to high-throughput sequencing). The interaction profile of Myh genes changed between fast quadriceps and slow soleus muscles. Combining chromatin immunoprecipitation-sequencing (ChIP-seq) and transposase accessible chromatin with high-throughput sequencing (ATAC-seq), we found that a 38 kb intergenic region interacting simultaneously with fast Myh genes promoters controlled the coordinated expression of fast Myh genes. We also identified four active enhancers of Myh7, and revealed that binding of MYOG and MYOD increased the activity of Myh7 enhancers. Conclusions This study provides new insight into the chromatin interactions that regulate Myh genes expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08737-9.
Collapse
Affiliation(s)
- Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Duo Su
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaokai Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hengkuan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sha Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhining Zhong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuemin Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Lu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Theilgaard-Mönch K, Pundhir S, Reckzeh K, Su J, Tapia M, Furtwängler B, Jendholm J, Jakobsen JS, Hasemann MS, Knudsen KJ, Cowland JB, Fossum A, Schoof E, Schuster MB, Porse BT. Transcription factor-driven coordination of cell cycle exit and lineage-specification in vivo during granulocytic differentiation : In memoriam Professor Niels Borregaard. Nat Commun 2022; 13:3595. [PMID: 35739121 PMCID: PMC9225994 DOI: 10.1038/s41467-022-31332-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Differentiation of multipotent stem cells into mature cells is fundamental for development and homeostasis of mammalian tissues, and requires the coordinated induction of lineage-specific transcriptional programs and cell cycle withdrawal. To understand the underlying regulatory mechanisms of this fundamental process, we investigated how the tissue-specific transcription factors, CEBPA and CEBPE, coordinate cell cycle exit and lineage-specification in vivo during granulocytic differentiation. We demonstrate that CEBPA promotes lineage-specification by launching an enhancer-primed differentiation program and direct activation of CEBPE expression. Subsequently, CEBPE confers promoter-driven cell cycle exit by sequential repression of MYC target gene expression at the G1/S transition and E2F-meditated G2/M gene expression, as well as by the up-regulation of Cdk1/2/4 inhibitors. Following cell cycle exit, CEBPE unleashes the CEBPA-primed differentiation program to generate mature granulocytes. These findings highlight how tissue-specific transcription factors coordinate cell cycle exit with differentiation through the use of distinct gene regulatory elements.
Collapse
Affiliation(s)
- Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark.
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Reckzeh
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jinyu Su
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Tapia
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin Furtwängler
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus Schou Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Sigurd Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Jermiin Knudsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jack Bernard Cowland
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Anna Fossum
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Morbid Obesity in Women Is Associated with an Altered Intestinal Expression of Genes Related to Cancer Risk and Immune, Defensive, and Antimicrobial Response. Biomedicines 2022; 10:biomedicines10051024. [PMID: 35625760 PMCID: PMC9138355 DOI: 10.3390/biomedicines10051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Little is known about the relation between morbid obesity and duodenal transcriptomic changes. We aimed to identify intestinal genes that may be associated with the development of obesity regardless of the degree of insulin resistance (IR) of patients. Material and Methods: Duodenal samples were assessed by microarray in three groups of women: non-obese women and women with morbid obesity with low and high IR. Results: We identified differentially expressed genes (DEGs) associated with morbid obesity, regardless of IR degree, related to digestion and lipid metabolism, defense response and inflammatory processes, maintenance of the gastrointestinal epithelium, wound healing and homeostasis, and the development of gastrointestinal cancer. However, other DEGs depended on the IR degree. We mainly found an upregulation of genes involved in the response to external organisms, hypoxia, and wound healing functions in women with morbid obesity and low IR. Conclusions: Regardless of the degree of IR, morbid obesity is associated with an altered expression of genes related to intestinal defenses, antimicrobial and immune responses, and gastrointestinal cancer. Our data also suggest a deficient duodenal immune and antimicrobial response in women with high IR.
Collapse
|
20
|
Wang Y, Xie X, Zhang C, Su M, Gao S, Wang J, Lu C, Lin Q, Lin J, Matucci-Cerinic M, Furst DE, Zhang G. Rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome shared megakaryocyte expansion in peripheral blood. Ann Rheum Dis 2022; 81:379-385. [PMID: 34462261 PMCID: PMC8862024 DOI: 10.1136/annrheumdis-2021-220066] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/15/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share many clinical manifestations and serological features. The aim of this study was to identify the common transcriptional profiling and composition of immune cells in peripheral blood in these autoimmune diseases (ADs). METHODS We analysed bulk RNA-seq data for enrichment of biological processes, transcription factors (TFs) and deconvolution-based immune cell types from peripheral blood mononuclear cells (PBMCs) in 119 treatment-naive patients (41 RA, 38 pSS, 28 SLE and 12 polyautoimmunity) and 20 healthy controls. The single-cell RNA-seq (scRNA-seq) and flow cytometry had been performed to further define the immune cell subsets on PBMCs. RESULTS Similar transcriptional profiles and common gene expression signatures associated with nucleosome assembly and haemostasis were identified across RA, SLE, pSS and polyautoimmunity. Distinct TF ensembles and gene regulatory network were mainly enriched in haematopoiesis. The upregulated cell-lineage-specific TFs PBX1, GATA1, TAL1 and GFI1B demonstrated a strong gene expression signature of megakaryocyte (MK) expansion. Gene expression-based cell type enrichment revealed elevated MK composition, specifically, CD41b+CD42b+ and CD41b+CD61+ MKs were expanded, further confirmed by flow cytometry in these ADs. In scRNA-seq data, MKs were defined by TFs PBX1/GATA1/TAL1 and pre-T-cell antigen receptor gene, PTCRA. Cellular heterogeneity and a distinct immune subpopulation with functional enrichment of antigen presentation were observed in MKs. CONCLUSIONS The identification of MK expansion provided new insights into the peripheral immune cell atlas across RA, SLE, pSS and polyautoimmunity. Aberrant regulation of the MK expansion might contribute to the pathogenesis of these ADs.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, China
| | - Xuezhen Xie
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, China
| | - Chengpeng Zhang
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Miaotong Su
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Sini Gao
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Jing Wang
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Changhao Lu
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Qisheng Lin
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, China
| | - Jianqun Lin
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, China
| | | | - Daniel E Furst
- Rheumatology, University of California Los Angeles, Los Angeles, California, USA
| | - Guohong Zhang
- Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
21
|
CCAAT/Enhancer-Binding Protein ε 27 Antagonism of GATA-1 Transcriptional Activity in the Eosinophil Is Mediated by a Unique N-Terminal Repression Domain, Is Independent of Sumoylation and Does Not Require DNA Binding. Int J Mol Sci 2021; 22:ijms222312689. [PMID: 34884493 PMCID: PMC8657826 DOI: 10.3390/ijms222312689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
CCAAT/enhancer binding protein epsilon (C/EBPε) is required for eosinophil differentiation, lineage-specific gene transcription, and expression of C/EBPε32 and shorter 27kD and 14kD isoforms is developmentally regulated during this process. We previously defined the 27kD isoform (C/EBPε27) as an antagonist of GATA-1 transactivation of the eosinophil's major basic protein-1 (MBP1) P2-promoter, showing C/EBPε27 and GATA-1 physically interact. In the current study, we used a Tat-C/EBPε27 fusion protein for cell/nuclear transduction of an eosinophil myelocyte cell line to demonstrate that C/EBPε27 is a potent repressor of MBP1 transcription. We performed structure-function analyses of C/EBPε27 mapping its repressor domains, comparing it to C/EBPε32 and C/EBPε14, using GATA-1 co-transactivation of the MBP1-P2 promoter. Results show C/EBPε27 repression of GATA-1 is mediated by its unique 68aa N-terminus combined with previously identified RDI domain. This repressor activity does not require, but is enhanced by, DNA binding via the basic region of C/EBPε27 but independent of sumoylation of the RDI core "VKEEP" sumoylation site. These findings identify the N-terminus of C/EBPε27 as the minimum repressor domain required for antagonism of GATA-1 in the eosinophil. C/EBPε27 repression of GATA-1 occurs via a combination of both C/EBPε27-GATA-1 protein-protein interaction and C/EBPε27 binding to a C/EBP site in the MBP1 promoter. The C/EBPε27 isoform may serve to titrate and/or turn off eosinophil granule protein genes like MBP1 during eosinophil differentiation, as these genes are ultimately silenced in the mature cell. Understanding the functionality of C/EBPε27 in eosinophil development may prove promising in developing therapeutics that reduce eosinophil proliferation in allergic diseases.
Collapse
|
22
|
Transcription factor MEF2D is required for the maintenance of MLL-rearranged acute myeloid leukemia. Blood Adv 2021; 5:4727-4740. [PMID: 34597364 PMCID: PMC8759131 DOI: 10.1182/bloodadvances.2021004469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
MEF2D is highly expressed in MLL-rearranged AML and required for leukemia development in vitro and in vivo. MEF2D suppresses CEBPE-mediated myeloid differentiation in AML.
Acute myeloid leukemia (AML) with MLL-rearrangement (MLL-r) comprises ∼10% of all AML cases and portends poor outcomes. Much remains uncovered on how MLL-r AML drives leukemia development while preventing cells from normal myeloid differentiation. Here, we identified that transcription factor MEF2D is a super-enhancer-associated, highly expressed gene in MLL-r AML. Knockout of MEF2D profoundly impaired leukemia growth, induced myeloid differentiation, and delayed oncogenic progression in vivo. Mechanistically, MEF2D loss led to robust activation of a CEBPE-centered myeloid differentiation program in AML cells. Chromatin profiling revealed that MEF2D binds to and suppresses the chromatin accessibility of CEBPE cis-regulatory regions. In human acute leukemia samples, MEF2D expression showed a strong negative correlation with the expression of CEBPE. Depletion of CEBPE partially rescued the cell growth defect and myeloid cell differentiation induced by the loss of MEF2D. Lastly, we show that MEF2D is positively regulated by HOXA9, and downregulation of MEF2D is an important mechanism for DOT1L inhibitor-induced antileukemia effects. Collectively, our findings suggest that MEF2D plays a critical role in human MLL-r AML and uncover the MEF2D-CEBPE axis as a crucial transcriptional mechanism regulating leukemia cell self-renewal and differentiation block.
Collapse
|
23
|
Jiang Y, Wu SY, Chen YL, Zhang ZM, Tao YF, Xie Y, Liao XM, Li XL, Li G, Wu D, Wang HR, Zuo R, Cao HB, Pan JJ, Yu JJ, Jia SQ, Zhang Z, Chu XR, Zhang YP, Feng CX, Wang JW, Hu SY, Li ZH, Pan J, Fang F, Lu J. CEBPG promotes acute myeloid leukemia progression by enhancing EIF4EBP1. Cancer Cell Int 2021; 21:598. [PMID: 34743716 PMCID: PMC8574011 DOI: 10.1186/s12935-021-02305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a myeloid neoplasm accounts for 7.6% of hematopoietic malignancies. AML is a complex disease, and understanding its pathophysiology is contributing to the improvement in the treatment and prognosis of AML. In this study, we assessed the expression profile and molecular functions of CCAAT enhancer binding protein gamma (CEBPG), a gene implicated in myeloid differentiation and AML progression. Methods shRNA mediated gene interference was used to down-regulate the expression of CEBPG in AML cell lines, and knockdown efficiency was detected by RT-qPCR and western blotting. The effect of knockdown on the growth of AML cell lines was evaluated by CCK-8. Western blotting was used to detect PARP cleavage, and flow cytometry were used to determine the effect of knockdown on apoptosis of AML cells. Genes and pathways affected by knockdown of CEBPG were identified by gene expression analysis using RNA-seq. One of the genes affected by knockdown of CEBPG was Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), a known repressor of translation. Knockdown of EIF4EBP1 was used to assess its potential role in AML progression downstream of CEBPG. Results We explored the ChIP-Seq data of AML cell lines and non-AML hematopoietic cells, and found CEBPG was activated through its distal enhancer in AML cell lines. Using the public transcriptomic dataset, the Cancer Cell Line Encyclopedia (CCLE) and western blotting, we also found CEBPG was overexpressed in AML. Moreover, we observed that CEBPG promotes AML cell proliferation by activating EIF4EBP1, thus contributing to the progression of AML. These findings indicate that CEBPG could act as a potential therapeutic target for AML patients. Conclusion In summary, we systematically explored the molecular characteristics of CEBPG in AML and identified CEBPG as a potential therapeutic target for AML patients. Our findings provide novel insights into the pathophysiology of AML and indicate a key role for CEBPG in promoting AML progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02305-z.
Collapse
Affiliation(s)
- You Jiang
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Shui-Yan Wu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yan-Ling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.,School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215003, China
| | - Zi-Mu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yan-Fang Tao
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xin-Mei Liao
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiao-Lu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hai-Rong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Ran Zuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hai-Bo Cao
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jing-Jing Pan
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Juan-Juan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Si-Qi Jia
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.,School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215003, China
| | - Zheng Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xin-Ran Chu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Yong-Ping Zhang
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Chen-Xi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jian-Wei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Shao-Yan Hu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Zhi-Heng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jian Pan
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China. .,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
24
|
Ware MB, El-Rayes BF, Lesinski GB. Mirage or long-awaited oasis: reinvigorating T-cell responses in pancreatic cancer. J Immunother Cancer 2021; 8:jitc-2020-001100. [PMID: 32843336 PMCID: PMC7449491 DOI: 10.1136/jitc-2020-001100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is plagued by a dismal 5-year survival rate, early onset of metastasis and limited efficacy of systemic therapies. This scenario highlights the need to fervently pursue novel therapeutic strategies to treat this disease. Recent research has uncovered complicated dynamics within the tumor microenvironment (TME) of PDAC. An abundant stroma provides a framework for interactions between cancer-associated fibroblasts, suppressive myeloid cells and regulatory lymphocytes, which together create an inhospitable environment for adaptive immune responses. This accounts for the poor infiltration and exhausted phenotypes of effector T cells within pancreatic tumors. Innovative studies in genetically engineered mouse models have established that with appropriate pharmacological modulation of suppressive elements in the TME, T cells can be prompted to regress pancreatic tumors. In light of this knowledge, innovative combinatorial strategies involving immunotherapy and targeted therapies working in concert are rapidly emerging. This review will highlight recent advances in the field related to immune suppression in PDAC, emerging preclinical data and rationale for ongoing immunotherapy clinical trials. In particular, we draw attention to foundational findings involving T-cell activity in PDAC and encourage development of novel therapeutics to improve T-cell responses in this challenging disease.
Collapse
Affiliation(s)
- Michael Brandon Ware
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Bassel F El-Rayes
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Zhang C, Wang T, Cui T, Liu S, Zhang B, Li X, Tang J, Wang P, Guo Y, Wang Z. Genome-Wide Phylogenetic Analysis, Expression Pattern, and Transcriptional Regulatory Network of the Pig C/EBP Gene Family. Evol Bioinform Online 2021; 17:11769343211041382. [PMID: 34471342 PMCID: PMC8404664 DOI: 10.1177/11769343211041382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The CCAAT/enhancer binding protein (C/EBP) transcription factors (TFs) regulate many important biological processes, such as energy metabolism, inflammation, cell proliferation etc. A genome-wide gene identification revealed the presence of a total of 99 C/EBP genes in pig and 19 eukaryote genomes. Phylogenetic analysis showed that all C/EBP TFs were classified into 6 subgroups named C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ, and C/EBPζ. Gene expression analysis showed that the C/EBPα, C/EBPβ, C/EBPδ, C/EBPγ, and C/EBPζ genes were expressed ubiquitously with inconsistent expression patterns in various pig tissues. Moreover, a pig C/EBP regulatory network was constructed, including C/EBP genes, TFs and miRNAs. A total of 27 feed-forward loop (FFL) motifs were detected in the pig C/EBP regulatory network. Based on the RNA-seq data, gene expression patterns related to FFL sub-network were analyzed in 27 adult pig tissues. Certain FFL motifs may be tissue specific. Functional enrichment analysis indicated that C/EBP and its target genes are involved in many important biological pathways. These results provide valuable information that clarifies the evolutionary relationships of the C/EBP family and contributes to the understanding of the biological function of C/EBP genes.
Collapse
Affiliation(s)
- Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tongyan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Bing Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Xue Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Jian Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Peng Wang
- HeiLongJiang provincial Husbandry Dapartment, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- DaBeiNong Group, Beijing, China
| |
Collapse
|
26
|
Breunig CT, Köferle A, Neuner AM, Wiesbeck MF, Baumann V, Stricker SH. CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiol Rev 2020; 101:177-211. [PMID: 32525760 DOI: 10.1152/physrev.00034.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given the large amount of genome-wide data that have been collected during the last decades, a good understanding of how and why cells change during development, homeostasis, and disease might be expected. Unfortunately, the opposite is true; triggers that cause cellular state changes remain elusive, and the underlying molecular mechanisms are poorly understood. Although genes with the potential to influence cell states are known, the historic dependency on methods that manipulate gene expression outside the endogenous chromatin context has prevented us from understanding how cells organize, interpret, and protect cellular programs. Fortunately, recent methodological innovations are now providing options to answer these outstanding questions, by allowing to target and manipulate individual genomic and epigenomic loci. In particular, three experimental approaches are now feasible due to DNA targeting tools, namely, activation and/or repression of master transcription factors in their endogenous chromatin context; targeting transcription factors to endogenous, alternative, or inaccessible sites; and finally, functional manipulation of the chromatin context. In this article, we discuss the molecular basis of DNA targeting tools and review the potential of these new technologies before we summarize how these have already been used for the manipulation of cellular states and hypothesize about future applications.
Collapse
Affiliation(s)
- Christopher T Breunig
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Anna Köferle
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Andrea M Neuner
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Maximilian F Wiesbeck
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Valentin Baumann
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Seguin A, Jia X, Earl AM, Li L, Wallace J, Qiu A, Bradley T, Shrestha R, Troadec MB, Hockin M, Titen S, Warner DE, Dowdle PT, Wohlfahrt ME, Hillas E, Firpo MA, Phillips JD, Kaplan J, Paw BH, Barasch J, Ward DM. The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice. J Biol Chem 2020; 295:11002-11020. [PMID: 32518166 DOI: 10.1074/jbc.ra120.013229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Indexed: 01/31/2023] Open
Abstract
Mitochondrial iron import is essential for iron-sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2 -/- mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2 -/- mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1 -/-/Mfrn2 -/- bone marrow-derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.
Collapse
Affiliation(s)
- Alexandra Seguin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Xuan Jia
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Aubree M Earl
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Liangtao Li
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jared Wallace
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Andong Qiu
- Columbia University, New York, New York, USA
| | - Thomas Bradley
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Rishna Shrestha
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Marie-Bérengère Troadec
- University Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France.,CHRU Brest, Service of Genetics, Laboratory of Chromosome Genetics, Brest, France
| | - Matt Hockin
- Department of Human Genetics, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Simon Titen
- Department of Human Genetics, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Dave E Warner
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - P Tom Dowdle
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Martin E Wohlfahrt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elaine Hillas
- Department of General Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Matthew A Firpo
- Department of General Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John D Phillips
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jerry Kaplan
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Barry H Paw
- Harvard Medical School, Children's Hospital, Boston, Massachusetts, USA
| | | | - Diane M Ward
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|