1
|
Watanabe-Matsui M, Kadoya S, Segawa K, Shima H, Nakagawa T, Nagasawa Y, Hayashi S, Matsumoto M, Ikeda M, Muto A, Ochiai K, Nguyen LC, Doh-Ura K, Shirouzu M, Nakayama K, Murayama K, Igarashi K. Heme regulates protein interactions and phosphorylation of BACH2 intrinsically disordered region in humoral response. iScience 2025; 28:111529. [PMID: 39758820 PMCID: PMC11699347 DOI: 10.1016/j.isci.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/03/2023] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Heme is known to bind to the intrinsically disordered region (IDR) to regulate protein function. The binding of heme to the IDR of transcription factor BACH2 promotes plasma cell differentiation, but the molecular basis is unknown. Heme was found to increase BACH2 IDR interaction with TANK-binding kinase 1 (TBK1). TBK1 inactivated BACH2 by phosphorylation of its IDR, whereas BACH2 repressed TBK1 gene expression. BACH2 phosphorylation by TBK1 inhibited its interaction with the co-repressor NCOR1 and promoted plasma cell differentiation. Heme also induced BACH2 binding to ubiquitin E3 ligase adaptor FBXO22, which polyubiquitinated BACH2 only in the presence of heme in vitro. Mutations of some of the TBK1-mediated phosphorylation sites promoted BACH2-FBXO22 interaction, while additional mutations abrogated their interaction, suggesting that TBK1 can both inhibit and promote BACH2-FBXO22 interaction. Therefore, heme regulates phosphorylation of BACH2 IDR by TBK1 and its interaction with NCOR1 and FBXO22, leading to de-repression of BACH2 target genes in humoral immunity.
Collapse
Affiliation(s)
- Miki Watanabe-Matsui
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Shun Kadoya
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Segawa
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Tokyo, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichiro Hayashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Ikeda
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Long C. Nguyen
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Daldal F, Dancis A. Graves' Disease and Microcytic Anemia: A Forgotten Connection. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e945836. [PMID: 39587452 DOI: 10.12659/ajcr.945836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
BACKGROUND Microcytic anemia has long been associated with thyrotoxicosis, but this correlation has been largely forgotten, and few literature references to this phenomenon exist since the 1980s. No mechanism for this association has been proposed. CASE REPORT Here, we present the case of a 56-year-old man who developed clinically significant hyperthyroidism in the setting of Graves' disease and simultaneous microcytic anemia. He was treated with methimazole, and the hyperthyroidism symptoms and biochemical parameters remitted. Simultaneously, the red cell microcytosis and anemia remitted. Notably, iron deficiency as indicated by high serum ferritin was not present during the acute illness, and the ferritin level decreased with methimazole treatment. CONCLUSIONS The supraphysiological concentration of 3,5,3'-triiodo-L-thyronine (T3) gained entry to the cells, bound to hormone receptors (TR), activating a set of responsive genes, via thyroid response elements (TREs). In red cell precursors, which were notably not iron deficient, proteotoxic stress was induced, leading to activation of HRI kinase activity as part of the integrated stress response. The phosphorylation of eIF2 on the critical Ser51 led to depletion of the ternary complex (eIF2-GTP-Met-tRNA) by preventing eIF2 from exchanging GDP for GTP. Formation of the preinitiation complex was hampered, and translation of the abundant globin mRNA was attenuated. Decreased globin synthesis in turn was coupled to smaller red cell size, as occurs in thalassemia.
Collapse
Affiliation(s)
- Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelplhia, PA, USA
| | - Andrew Dancis
- Department of Medicine, Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA
| |
Collapse
|
3
|
Soladogun AS, Zhang L. The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis. Antioxidants (Basel) 2024; 13:1441. [PMID: 39765770 PMCID: PMC11672823 DOI: 10.3390/antiox13121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Heme, a complex iron-containing molecule, is traditionally recognized for its pivotal role in oxygen transport and cellular respiration. However, emerging research has illuminated its multifaceted functions in the nervous system, extending beyond its canonical roles. This review delves into the diverse roles of heme in the nervous system, highlighting its involvement in neural development, neurotransmission, and neuroprotection. We discuss the molecular mechanisms by which heme modulates neuronal activity and synaptic plasticity, emphasizing its influence on ion channels and neurotransmitter receptors. Additionally, the review explores the potential neuroprotective properties of heme, examining its role in mitigating oxidative stress, including mitochondrial oxidative stress, and its implications in neurodegenerative diseases. Furthermore, we address the pathological consequences of heme dysregulation, linking it to conditions such as Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. By providing a comprehensive overview of heme's multifunctional roles in the nervous system, this review underscores its significance as a potential therapeutic target and diagnostic biomarker for various neurological disorders.
Collapse
Affiliation(s)
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
4
|
Wang J, Zhang Y, Liu J, Wu J, Liang Y, Xu C, Ma J, Liang J, Zhao Y, Zhang X, Li Y, Wang D, Zheng L, Wang D, Jin X, Song H, Zhu X, Cheng Q, Lin L, Gao J, Tong J, Shi L. TMEM56 deficiency impairs the haem metabolism and cell cycle progression during human erythropoiesis. Br J Haematol 2024; 205:2008-2021. [PMID: 39344568 DOI: 10.1111/bjh.19801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
TMEM56, a gene coding a transmembrane protein, is abundantly expressed in erythroid cells. Despite this, its role in erythropoiesis has not been well characterized. In this study, we sought to clarify the function of TMEM56 in erythroid development, focusing specifically on its involvement in haem biosynthesis and cell cycle progression. To do this, we used CD34+ haematopoietic stem cells derived from umbilical cord blood and differentiated them into erythroid cells in an ex vivo model. Our results indicate that the loss of TMEM56 disrupts haem biosynthesis and impairs erythroid differentiation. Furthermore, deletion of Tmem56 in the erythroid lineage in murine models using erythropoietin receptor (EpoR)-Cre revealed defects in erythroid progenitors within the bone marrow under both normal conditions and during haemolytic anaemia. These observations underscore the regulatory role of TMEM56 in maintaining erythroid lineage homeostasis. Taken together, our results unveil a previously unrecognized function of TMEM56 in erythroid differentiation and suggest its potential as an unfounded target for therapeutic strategies in the treatment of erythropoietic disorders.
Collapse
Affiliation(s)
- Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yanhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qimei Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lexuan Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
5
|
Wang J, Ekambaram S, Huang X, Mailman RB, Proctor EA, Dokholyan NV. Comprehensive mapping of the Interaction of levodopa and iron metabolism in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612928. [PMID: 39345474 PMCID: PMC11429739 DOI: 10.1101/2024.09.13.612928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Levodopa remains the primary treatment for Parkinson's disease (PD), yet its long-term use has been associated with iron accumulation in the brain, a phenomenon linked to neurodegeneration. We utilize deep machine learning to determine plausible molecular mechanisms that may underlie the effects of levodopa on iron metabolism. Using the DRIFT platform, we performed a proteome-wide target identification of levodopa and uncovered significant interactions potentially involved in cellular iron transport. Pathway analysis revealed that levodopa may influence critical iron-related pathways, including the response of EIF2AK1 to heme deficiency, heme signaling, and ABC-family protein-mediated transport. These findings suggest that levodopa may contribute to iron dysregulation in PD by interacting with iron transporters and modulating iron-related pathways. Because levodopa is used at relatively high doses in PD, our findings provide new insight into secondary effects unrelated to being a precursor of dopamine. This highlights the need for careful consideration of its effects on iron metabolism as a consequence of use in the long-term management of PD. Further experimental validation is required to confirm these interactions, and also to explore potential strategies to mitigate iron-related side effects while preserving therapeutic efficacy.
Collapse
|
6
|
Liao R, Bresnick EH. Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes. Exp Hematol 2024; 137:104252. [PMID: 38876253 PMCID: PMC11381147 DOI: 10.1016/j.exphem.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
7
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
8
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
9
|
Zheng Z, Yang S, Gou F, Tang C, Zhang Z, Gu Q, Sun G, Jiang P, Wang N, Zhao X, Kang J, Wang Y, He Y, Yang M, Lu T, Lu S, Qian P, Zhu P, Cheng H, Cheng T. The ATF4-RPS19BP1 axis modulates ribosome biogenesis to promote erythropoiesis. Blood 2024; 144:742-756. [PMID: 38657191 DOI: 10.1182/blood.2023021901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Hematopoietic differentiation is controlled by intrinsic regulators and the extrinsic hematopoietic niche. Activating transcription factor 4 (ATF4) plays a crucial role in the function of fetal and adult hematopoietic stem cell maintenance. However, the precise function of ATF4 in the bone marrow (BM) niche and the mechanism by which ATF4 regulates adult hematopoiesis remain largely unknown. Here, we used 4 cell-type-specific mouse Cre lines to achieve conditional knockout of Atf4 in Cdh5+ endothelial cells, Prx1+ BM stromal cells, Osx+ osteoprogenitor cells, and Mx1+ hematopoietic cells and uncovered the role of Atf4 in niche cells and hematopoiesis. Intriguingly, depletion of Atf4 in niche cells did not affect hematopoiesis; however, Atf4-deficient hematopoietic cells exhibited erythroid differentiation defects, leading to hypoplastic anemia. Mechanistically, ATF4 mediated direct regulation of Rps19bp1 transcription, which is, in turn, involved in 40 S ribosomal subunit assembly to coordinate ribosome biogenesis and promote erythropoiesis. Finally, we demonstrate that under conditions of 5-fluorouracil-induced stress, Atf4 depletion impedes the recovery of hematopoietic lineages, which requires efficient ribosome biogenesis. Taken together, our findings highlight the indispensable role of the ATF4-RPS19BP1 axis in the regulation of erythropoiesis.
Collapse
Affiliation(s)
- Zhaofeng Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Fanglin Gou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Chao Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Zhaoru Zhang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University Medical Center, Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University Medical Center, Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Nini Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Junnan Kang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Yicheng He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Meng Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Shihong Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University Medical Center, Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
10
|
Adapa SR, Sami A, Meshram P, Ferreira GC, Jiang RHY. Uncovering Porphyrin Accumulation in the Tumor Microenvironment. Genes (Basel) 2024; 15:961. [PMID: 39062740 PMCID: PMC11275590 DOI: 10.3390/genes15070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Heme, an iron-containing tetrapyrrole, is essential in almost all organisms. Heme biosynthesis needs to be precisely regulated particularly given the potential cytotoxicity of protoporphyrin IX, the intermediate preceding heme formation. Here, we report on the porphyrin intermediate accumulation within the tumor microenvironment (TME), which we propose to result from dysregulation of heme biosynthesis concomitant with an enhanced cancer survival dependence on mid-step genes, a process we recently termed "Porphyrin Overdrive". Specifically, porphyrins build up in both lung cancer cells and stromal cells in the TME. Within the TME's stromal cells, evidence supports cancer-associated fibroblasts (CAFs) actively producing porphyrins through an imbalanced pathway. Conversely, normal tissues exhibit no porphyrin accumulation, and CAFs deprived of tumor cease porphyrin overproduction, indicating that both cancer and tumor-stromal porphyrin overproduction is confined to the cancer-specific tissue niche. The clinical relevance of our findings is implied by establishing a correlation between imbalanced porphyrin production and overall poorer survival in more aggressive cancers. These findings illuminate the anomalous porphyrin dynamics specifically within the tumor microenvironment, suggesting a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Swamy R. Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Abdus Sami
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (G.C.F.)
| | - Pravin Meshram
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (G.C.F.)
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Rays H. Y. Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
11
|
Kuragano T. Treatment of Anemia Associated with Chronic Kidney Disease: Plea for Considering Physiological Erythropoiesis. Int J Mol Sci 2024; 25:7322. [PMID: 39000429 PMCID: PMC11242251 DOI: 10.3390/ijms25137322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Traditionally, the treatment of anemia associated with chronic kidney disease (CKD) involves prescribing erythropoiesis-stimulating agents (ESAs) or iron preparations. The effectiveness and safety of ESAs and iron have been established. However, several clinical issues, such as hyporesponsiveness to ESAs or defective iron utilization for erythropoiesis, have been demonstrated. Recently, a new class of therapeutics for renal anemia known as hypoxia-inducible factor (HIF)/proline hydroxylase (PH) inhibitors has been developed. Several studies have reported that HIF-PH inhibitors have unique characteristics compared with those of ESAs. In particular, the use of HIF-PH inhibitors may maintain target Hb concentration in patients treated with a high dose of ESAs without increasing the dose. Furthermore, several recent studies have demonstrated that patients with CKD with defective iron utilization for erythropoiesis had a high risk of cardiovascular events or premature death. HIF-PH inhibitors increase iron transport and absorption from the gastrointestinal tract; thus, they may ameliorate defective iron utilization for erythropoiesis in patients with CKD. Conversely, several clinical problems, such as aggravation of thrombotic and embolic complications, diabetic retinal disease, and cancer, have been noted at the time of HIF-PH inhibitor administration. Recently, several pooled analyses of phase III trials have reported the non-inferiority of HIF-PH inhibitors regarding these clinical concerns compared with ESAs. The advantages and issues of anemia treatment by ESAs, iron preparations, and HIF-PH inhibitors must be fully understood. Moreover, patients with anemia and CKD should be treated by providing a physiological erythropoiesis environment that is similar to that of healthy individuals.
Collapse
Affiliation(s)
- Takahiro Kuragano
- Division of Kidney and Dialysis, Hyogo Medical University, Hyogo 663-8501, Japan
| |
Collapse
|
12
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Penglong T, Saensuwanna A, Jantapaso H, Phuwakanjana P, Jearawiriyapaisarn N, Paiboonsukwong K, Wanichsuwan W, Srinoun K. miR-214 aggravates oxidative stress in thalassemic erythroid cells by targeting ATF4. PLoS One 2024; 19:e0300958. [PMID: 38625890 PMCID: PMC11020981 DOI: 10.1371/journal.pone.0300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Oxidative damage to erythroid cells plays a key role in the pathogenesis of thalassemia. The oxidative stress in thalassemia is potentiated by heme, nonheme iron, and free iron produced by the Fenton reaction, due to degradation of the unstable hemoglobin and iron overload. In addition, the levels of antioxidant enzymes and molecules are significantly decreased in erythrocytes in α- and β-thalassemia. The control of oxidative stress in red blood cells (RBCs) is known to be mediated by microRNAs (miRNAs). In erythroid cells, microR-214 (miR-214) has been reported to respond to external oxidative stress. However, the molecular mechanisms underlying this phenomenon remain unclear, especially during thalassemic erythropoiesis. In the present study, to further understand how miR-214 aggravates oxidative stress in thalassemia erythroid cells, we investigated the molecular mechanism of miR-214 and its regulation of the oxidative status in thalassemia erythrocytes. We have reported a biphasic expression of miR-214 in β- and α-thalassemia. In the present study the effect of miR-214 expression was investigated by using miR -inhibitor and -mimic transfection in erythroid cell lines induced by hemin. Our study showed a biphasic expression of miR-214 in β- and α-thalassemia. Subsequently, we examined the effect of miR-214 on erythroid differentiation in thalassemia. Our study reveals the loss-of-function of miR-214 during translational activation of activating transcription factor 4 mRNA, leading to decreased reactive oxygen species levels and increased glutathione levels in thalassemia erythroid cell. Our results suggest that the expression of activating transcription factor 4 regulated by miR-214 is important for oxidative stress modulation in thalassemic erythroid cells. Our findings can help to better understand the molecular mechanism of miRNA and transcription factors in regulation of oxidative status in erythroid cells, particularly in thalassemia, and could be useful for managing and relieving severe anemia symptoms in patients in the future.
Collapse
Affiliation(s)
- Tipparat Penglong
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Apisara Saensuwanna
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Husanai Jantapaso
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pongpon Phuwakanjana
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Worrawit Wanichsuwan
- Medical Science Research and Innovation Institute, Research and Development Office, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
14
|
Puig-Segui MS, Decker CJ, Barlit H, Labunskyy VM, Parker R, Puig S. Regulation of translation in response to iron deficiency in human cells. Sci Rep 2024; 14:8451. [PMID: 38605136 PMCID: PMC11009288 DOI: 10.1038/s41598-024-59003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Protein synthesis is a highly energy-consuming process that is downregulated in response to many environmental stresses or adverse conditions. Studies in the yeast Saccharomyces cerevisiae have shown that bulk translation is inhibited during adaptation to iron deficiency, which is consistent with its requirement for ribosome biogenesis and recycling. Although iron deficiency anemia is the most common human nutritional disorder, how iron modulates translation in mammals is poorly understood. Studies during erythropoiesis have shown that iron bioavailability is coordinated with globin synthesis via bulk translation regulation. However, little is known about the control of translation during iron limitation in other tissues. Here, we investigated how iron depletion affects protein synthesis in human osteosarcoma U-2 OS cells. By adding an extracellular iron chelator, we observed that iron deficiency limits cell proliferation, induces autophagy, and decreases the global rate of protein synthesis. Analysis of specific molecular markers indicates that the inhibition of bulk translation upon iron limitation occurs through the eukaryotic initiation factor eIF2α and mechanistic target of rapamycin (mTOR) pathways. In contrast to other environmental and nutritional stresses, iron depletion does not trigger the assembly of messenger ribonucleoprotein stress granules, which typically form upon polysome disassembly.
Collapse
Affiliation(s)
- Mireia S Puig-Segui
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Carolyn J Decker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Hanna Barlit
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
15
|
Griñán‐Ferré C, Jarné‐Ferrer J, Bellver‐Sanchís A, Codony S, Puigoriol‐Illamola D, Sanfeliu C, Oh Y, Lee S, Vázquez S, Pallàs M. Novel molecular mechanism driving neuroprotection after soluble epoxide hydrolase inhibition: Insights for Alzheimer's disease therapeutics. CNS Neurosci Ther 2024; 30:e14511. [PMID: 37905690 PMCID: PMC11017401 DOI: 10.1111/cns.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Neuroinflammation is widely recognized as a significant hallmark of Alzheimer's disease (AD). To combat neuroinflammation, the inhibition of the soluble epoxide hydrolase (sEH) enzyme has been demonstrated crucial. Importantly, sEH inhibition could be related to other neuroprotective pathways described in AD. AIMS The aim of the study was to unveil new molecular pathways driving neuroprotection through sEH, we used an optimized, potent, and selective sEH inhibitor (sEHi, UB-SCG-51). MATERIALS AND METHODS UB-SCG-51 was tested in neuroblastoma cell line, SH-SY5Y, in primary mouse and human astrocytes cultures challenged with proinflammatory insults and in microglia cultures treated with amyloid oligomers, as well as in mice AD model (5XFAD). RESULTS UB-SCG-51 (10 and 30 μM) prevented neurotoxic reactive-astrocyte conversion in primary mouse astrocytes challenged with TNF-α, IL-1α, and C1q (T/I/C) combination for 24 h. Moreover, in microglial cultures, sEHi reduced inflammation and glial activity. In addition, UB-SCG-51 rescued 5XFAD cognitive impairment, reducing the number of Amyloid-β plaques and Tau hyperphosphorylation accompanied by a reduction in neuroinflammation and apoptotic markers. Notably, a transcriptional profile analysis revealed a new pathway modulated by sEHi treatment. Specifically, the eIF2α/CHOP pathway, which promoted the endoplasmic reticulum response, was increased in the 5XFAD-treated group. These findings were confirmed in human primary astrocytes by combining sEHi and eIF2α inhibitor (eIF2αi) treatment. Besides, combining both treatments resulted in increased in C3 gene expression after T/I/C compared with the group treated with sEHi alone in cultures. DISCUSSION Therefore, sEHi rescued cognitive impairment and neurodegeneration in AD mice model, based on the reduction of inflammation and eIF2α/CHOP signaling pathway. CONCLUSIONS In whole, our results support the concept that targeting neuroinflammation through sEH inhibition is a promising therapeutic strategy to fight against Alzheimer's disease with additive and/or synergistic activities targeting neuroinflammation and cell stress.
Collapse
Affiliation(s)
- Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| | - Júlia Jarné‐Ferrer
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Aina Bellver‐Sanchís
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Sandra Codony
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB)University of Barcelona (UB)BarcelonaSpain
| | - Dolors Puigoriol‐Illamola
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
| | - Yumin Oh
- Neuraly Inc.MarylandGaithersburgUSA
| | | | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB)University of Barcelona (UB)BarcelonaSpain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
16
|
Misra J, Carlson KR, Spandau DF, Wek RC. Multiple mechanisms activate GCN2 eIF2 kinase in response to diverse stress conditions. Nucleic Acids Res 2024; 52:1830-1846. [PMID: 38281137 PMCID: PMC10899773 DOI: 10.1093/nar/gkae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Diverse environmental insults induce the integrated stress response (ISR), which features eIF2 phosphorylation and translational control that serves to restore protein homeostasis. The eIF2 kinase GCN2 is a first responder in the ISR that is activated by amino acid depletion and other stresses not directly related to nutrients. Two mechanisms are suggested to trigger an ordered process of GCN2 activation during stress: GCN2 monitoring stress via accumulating uncharged tRNAs or by stalled and colliding ribosomes. Our results suggest that while ribosomal collisions are indeed essential for GCN2 activation in response to translational elongation inhibitors, conditions that trigger deacylation of tRNAs activate GCN2 via its direct association with affected tRNAs. Both mechanisms require the GCN2 regulatory domain related to histidyl tRNA synthetases. GCN2 activation by UV irradiation features lowered amino acids and increased uncharged tRNAs and UV-induced ribosome collisions are suggested to be dispensable. We conclude that there are multiple mechanisms that activate GCN2 during diverse stresses.
Collapse
Affiliation(s)
- Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Kenneth R Carlson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Dan F Spandau
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
- Department of Dermatology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| |
Collapse
|
17
|
Huang Y, Wang A, Wang F, Xu Y, Zhang W, Shi F, Wang S. Screening of key immune -related gene in Parkinson 's disease based on WGCNA and machine learning. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:207-219. [PMID: 38755717 PMCID: PMC11103055 DOI: 10.11817/j.issn.1672-7347.2024.230307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Abnormal immune system activation and inflammation are crucial in causing Parkinson's disease. However, we still don't fully understand how certain immune-related genes contribute to the disease's development and progression. This study aims to screen key immune-related gene in Parkinson's disease based on weighted gene co-expression network analysis (WGCNA) and machine learning. METHODS This study downloaded the gene chip data from the Gene Expression Omnibus (GEO) database, and used WGCNA to screen out important gene modules related to Parkinson's disease. Genes from important modules were exported and a Venn diagram of important Parkinson's disease-related genes and immune-related genes was drawn to screen out immune related genes of Parkinson's disease. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the the functions of immune-related genes and signaling pathways involved. Immune cell infiltration analysis was performed using the CIBERSORT package of R language. Using bioinformatics method and 3 machine learning methods [least absolute shrinkage and selection operator (LASSO) regression, random forest (RF), and support vector machine (SVM)], the immune-related genes of Parkinson's disease were further screened. A Venn diagram of differentially expressed genes screened using the 4 methods was drawn with the intersection gene being hub nodes (hub) gene. The downstream proteins of the Parkinson's disease hub gene was identified through the STRING database and a protein-protein interaction network diagram was drawn. RESULTS A total of 218 immune genes related to Parkinson's disease were identified, including 45 upregulated genes and 50 downregulated genes. Enrichment analysis showed that the 218 genes were mainly enriched in immune system response to foreign substances and viral infection pathways. The results of immune infiltration analysis showed that the infiltration percentages of CD4+ T cells, NK cells, CD8+ T cells, and B cells were higher in the samples of Parkinson's disease patients, while resting NK cells and resting CD4+ T cells were significantly infiltrated in the samples of Parkinson's disease patients. ANK1 was screened out as the hub gene. The analysis of the protein-protein interaction network showed that the ANK1 translated and expressed 11 proteins which mainly participated in functions such as signal transduction, iron homeostasis regulation, and immune system activation. CONCLUSIONS This study identifies the Parkinson's disease immune-related key gene ANK1 via WGCNA and machine learning methods, suggesting its potential as a candidate therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Yiming Huang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China.
| | - Aimin Wang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| | - Fenglin Wang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| | - Yaqi Xu
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| | - Wenjing Zhang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| | - Fuyan Shi
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China.
| | - Suzhen Wang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| |
Collapse
|
18
|
Kalinin A, Zubkova E, Menshikov M. Integrated Stress Response (ISR) Pathway: Unraveling Its Role in Cellular Senescence. Int J Mol Sci 2023; 24:17423. [PMID: 38139251 PMCID: PMC10743681 DOI: 10.3390/ijms242417423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cellular senescence is a complex process characterized by irreversible cell cycle arrest. Senescent cells accumulate with age, promoting disease development, yet the absence of specific markers hampers the development of selective anti-senescence drugs. The integrated stress response (ISR), an evolutionarily highly conserved signaling network activated in response to stress, globally downregulates protein translation while initiating the translation of specific protein sets including transcription factors. We propose that ISR signaling plays a central role in controlling senescence, given that senescence is considered a form of cellular stress. Exploring the intricate relationship between the ISR pathway and cellular senescence, we emphasize its potential as a regulatory mechanism in senescence and cellular metabolism. The ISR emerges as a master regulator of cellular metabolism during stress, activating autophagy and the mitochondrial unfolded protein response, crucial for maintaining mitochondrial quality and efficiency. Our review comprehensively examines ISR molecular mechanisms, focusing on ATF4-interacting partners, ISR modulators, and their impact on senescence-related conditions. By shedding light on the intricate relationship between ISR and cellular senescence, we aim to inspire future research directions and advance the development of targeted anti-senescence therapies based on ISR modulation.
Collapse
Affiliation(s)
- Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| |
Collapse
|
19
|
Boone M, Zappa F. Signaling plasticity in the integrated stress response. Front Cell Dev Biol 2023; 11:1271141. [PMID: 38143923 PMCID: PMC10740175 DOI: 10.3389/fcell.2023.1271141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
The Integrated Stress Response (ISR) is an essential homeostatic signaling network that controls the cell's biosynthetic capacity. Four ISR sensor kinases detect multiple stressors and relay this information to downstream effectors by phosphorylating a common node: the alpha subunit of the eukaryotic initiation factor eIF2. As a result, general protein synthesis is repressed while select transcripts are preferentially translated, thus remodeling the proteome and transcriptome. Mounting evidence supports a view of the ISR as a dynamic signaling network with multiple modulators and feedback regulatory features that vary across cell and tissue types. Here, we discuss updated views on ISR sensor kinase mechanisms, how the subcellular localization of ISR components impacts signaling, and highlight ISR signaling differences across cells and tissues. Finally, we consider crosstalk between the ISR and other signaling pathways as a determinant of cell health.
Collapse
|
20
|
Hanquier Z, Misra J, Baxter R, Maiers JL. Stress and Liver Fibrogenesis: Understanding the Role and Regulation of Stress Response Pathways in Hepatic Stellate Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1363-1376. [PMID: 37422148 PMCID: PMC10548279 DOI: 10.1016/j.ajpath.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 07/10/2023]
Abstract
Stress response pathways are crucial for cells to adapt to physiological and pathologic conditions. Increased transcription and translation in response to stimuli place a strain on the cell, necessitating increased amino acid supply, protein production and folding, and disposal of misfolded proteins. Stress response pathways, such as the unfolded protein response (UPR) and the integrated stress response (ISR), allow cells to adapt to stress and restore homeostasis; however, their role and regulation in pathologic conditions, such as hepatic fibrogenesis, are unclear. Liver injury promotes fibrogenesis through activation of hepatic stellate cells (HSCs), which produce and secrete fibrogenic proteins to promote tissue repair. This process is exacerbated in chronic liver disease, leading to fibrosis and, if unchecked, cirrhosis. Fibrogenic HSCs exhibit activation of both the UPR and ISR, due in part to increased transcriptional and translational demands, and these stress responses play important roles in fibrogenesis. Targeting these pathways to limit fibrogenesis or promote HSC apoptosis is a potential antifibrotic strategy, but it is limited by our lack of mechanistic understanding of how the UPR and ISR regulate HSC activation and fibrogenesis. This article explores the role of the UPR and ISR in the progression of fibrogenesis, and highlights areas that require further investigation to better understand how the UPR and ISR can be targeted to limit hepatic fibrosis progression.
Collapse
Affiliation(s)
- Zachary Hanquier
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Reese Baxter
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jessica L Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
21
|
Lamichhane PP, Samir P. Cellular Stress: Modulator of Regulated Cell Death. BIOLOGY 2023; 12:1172. [PMID: 37759572 PMCID: PMC10525759 DOI: 10.3390/biology12091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Cellular stress response activates a complex program of an adaptive response called integrated stress response (ISR) that can allow a cell to survive in the presence of stressors. ISR reprograms gene expression to increase the transcription and translation of stress response genes while repressing the translation of most proteins to reduce the metabolic burden. In some cases, ISR activation can lead to the assembly of a cytoplasmic membraneless compartment called stress granules (SGs). ISR and SGs can inhibit apoptosis, pyroptosis, and necroptosis, suggesting that they guard against uncontrolled regulated cell death (RCD) to promote organismal homeostasis. However, ISR and SGs also allow cancer cells to survive in stressful environments, including hypoxia and during chemotherapy. Therefore, there is a great need to understand the molecular mechanism of the crosstalk between ISR and RCD. This is an active area of research and is expected to be relevant to a range of human diseases. In this review, we provided an overview of the interplay between different cellular stress responses and RCD pathways and their modulation in health and disease.
Collapse
Affiliation(s)
| | - Parimal Samir
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
22
|
Sekine Y, Houston R, Eckl EM, Fessler E, Narendra DP, Jae LT, Sekine S. A mitochondrial iron-responsive pathway regulated by DELE1. Mol Cell 2023; 83:2059-2076.e6. [PMID: 37327776 PMCID: PMC10329284 DOI: 10.1016/j.molcel.2023.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
The heme-regulated kinase HRI is activated under heme/iron deficient conditions; however, the underlying molecular mechanism is incompletely understood. Here, we show that iron-deficiency-induced HRI activation requires the mitochondrial protein DELE1. Notably, mitochondrial import of DELE1 and its subsequent protein stability are regulated by iron availability. Under steady-state conditions, DELE1 is degraded by the mitochondrial matrix-resident protease LONP1 soon after mitochondrial import. Upon iron chelation, DELE1 import is arrested, thereby stabilizing DELE1 on the mitochondrial surface to activate the HRI-mediated integrated stress response (ISR). Ablation of this DELE1-HRI-ISR pathway in an erythroid cell model enhances cell death under iron-limited conditions, suggesting a cell-protective role for this pathway in iron-demanding cell lineages. Our findings highlight mitochondrial import regulation of DELE1 as the core component of a previously unrecognized mitochondrial iron responsive pathway that elicits stress signaling following perturbation of iron homeostasis.
Collapse
Affiliation(s)
- Yusuke Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ryan Houston
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eva-Maria Eckl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Evelyn Fessler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Shiori Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Paschoudi K, Yannaki E, Psatha N. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Int J Mol Sci 2023; 24:9527. [PMID: 37298481 PMCID: PMC10253463 DOI: 10.3390/ijms24119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
Collapse
Affiliation(s)
- Kiriaki Paschoudi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
- Department of Hematology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
24
|
Bou-Fakhredin R, Rivella S, Cappellini MD, Taher AT. Pathogenic Mechanisms in Thalassemia I: Ineffective Erythropoiesis and Hypercoagulability. Hematol Oncol Clin North Am 2023; 37:341-351. [PMID: 36907607 DOI: 10.1016/j.hoc.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Erythropoiesis is the physiological process that results in the production of red blood cells (RBCs). In conditions of pathologically altered erythropoiesis or ineffective erythropoiesis, as in the case of β-thalassemia, the reduced ability of erythrocytes to differentiate, survive and deliver oxygen stimulates a state of stress that leads to the ineffective production of RBCs. We herein describe the main features of erythropoiesis and its regulation in addition to the mechanisms behind ineffective erythropoiesis development in β-thalassemia. Finally, we review the pathophysiology of hypercoagulability and vascular disease development in β-thalassemia and the currently available prevention and treatment modalities.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; UOC General Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ali T Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
25
|
Yu X, Zhang Q, Ding H, Wang P, Feng J. Plasma Non-transferrin-Bound Iron Could Enter into Mice Duodenum and Negatively Affect Duodenal Defense Response to Virus and Immune Responses. Biol Trace Elem Res 2023; 201:786-799. [PMID: 35294743 DOI: 10.1007/s12011-022-03200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/10/2022] [Indexed: 01/21/2023]
Abstract
Plasma non-transferrin-bound iron (NTBI) exists when the plasma iron content exceeds the carrying capacity of transferrin and can be quickly cleared by the liver, pancreas, and other organs. However, whether it could enter the small intestine and its effects still remain unclear. Herein, these issues were explored. Mice were intravenously administrated of ferric citrate (treatment) or citrate acid (control) 10 min after the saturation of the transferrin. Two hours later, hepatic, duodenal, and jejunal iron content and distribution were measured and duodenal transcriptome sequencing was performed. Significant increase of duodenal and hepatic iron content was detected, indicating that plasma NTBI could be absorbed by the duodenum as well as the liver. A total of 103 differentially expressed genes were identified in the duodenum of mice in the treatment group compared to the control group. Gene Ontology (GO) functional analysis of these genes showed that they were mainly involved in defense response to virus and immune response. The results of Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis revealed that there were major changes in the hematopoietic cell lineage and some virus infection pathways between the two groups. Determination of 7 cytokines in the duodenum were further conducted, which demonstrated that the anti-inflammatory factors interferon (IL)-4 and IL-10 in the duodenum were significantly decreased after NTBI uptake. Our findings revealed that NTBI in plasma can enter the duodenum, which would change the duodenal hematopoietic cell lineage and have a negative impact on defense response to the virus and immune responses.
Collapse
Affiliation(s)
- Xiaonan Yu
- Key Laboratory of Animal Nutrition & Feed Science, Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qian Zhang
- Key Laboratory of Animal Nutrition & Feed Science, Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Haoxuan Ding
- Key Laboratory of Animal Nutrition & Feed Science, Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Peng Wang
- Key Laboratory of Animal Nutrition & Feed Science, Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Feng
- Key Laboratory of Animal Nutrition & Feed Science, Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Beta-Thalassemia Minor and SARS-CoV-2: Physiopathology, Prevalence, Severity, Morbidity, and Mortality. THALASSEMIA REPORTS 2023. [DOI: 10.3390/thalassrep13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Since the first year of the COVID-19 global pandemic, a hypothesis concerning the possible protection/immunity of beta-thalassemia carriers has remained in abeyance. Methods: Three databases (Pubmed Central, Scopus, and Google Scholar) were screened and checked in order to extract all studies about the incidence of confirmed COVID-19 cases, mortality rate, severity assessment, or ICU admission among patients with beta-thalassemia minor, were included in this analysis. The language was limited to English. Studies such as case reports, review studies, and studies that did not have complete data for calculating incidences were excluded. Results and discussion: a total of 3 studies out of 2265 were selected. According to our systematic-review meta-analysis, beta-thalassemia carriers could be less affected by COVID-19 than the general population [IRR = 0.9250 (0.5752; 1.4877)], affected by COVID-19 with a worst severity [OR = 1.5933 (0.4884; 5.1981)], less admissible into the ICU [IRR = 0.3620 (0.0025; 51.6821)], and more susceptible to die from COVID-19 or one of its consequences [IRR = 1.8542 (0.7819; 4.3970)]. However, all of those results remain insignificant with a bad p-value (respectively 0.7479, 0.4400, 0.6881, and 0.1610). Other large case-control or registry studies are needed to confirm these trends.
Collapse
|
27
|
Xue J, Li F, Dai P. The Potential of ANK1 to Predict Parkinson's Disease. Genes (Basel) 2023; 14:genes14010226. [PMID: 36672967 PMCID: PMC9859451 DOI: 10.3390/genes14010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The main cause of Parkinson's disease (PD) remains unknown and the pathologic changes in the brain limit rapid diagnosis. Herein, differentially expressed genes (DEGs) in the Gene Expression Omnibus (GEO) database (GSE8397 and GSE22491) were assessed using linear models for microarray analysis (limma). Ankyrin 1 (ANK1) was the only common gene differentially down-regulated in lateral substantia nigra (LSN), medial substantia nigra (MSN) and blood. Additionally, DEGs between high ANK1 and low ANK1 in GSE99039 were picked out and then uploaded to the Database for Annotation, Visualization and Integrated Discovery (DAVID) for gene ontology (GO) functional annotation analysis. GO analysis displayed that these DEGs were mainly enriched in oxygen transport, myeloid cell development and gas transport (biological process (BP)); hemoglobin complex, haptoglobin-hemoglobin complex and cortical cytoskeleton (cellular component (CC)); and oxygen transporter activity, haptoglobin binding and oxygen binding (molecular function (MF)). Receiver operating characteristic (ROC) curve analysis showed ANK1 had good diagnostic accuracy and increased the area under the curve (AUC) value when combined with other biomarkers. Consistently, intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropy-ridi-ne (MPTP) in C57BL/6J mice reduced ANK1 mRNA expression in both substantia nigra and blood compared to the control group. Thus, ANK1 may serve as a candidate biomarker for PD diagnosis.
Collapse
|
28
|
Bouthelier A, Fernández-Arroyo L, Mesa-Ciller C, Cibrian D, Martín-Cófreces NB, Castillo-González R, Calero M, Herráez-Aguilar D, Guajardo-Grence A, Pacheco AM, Marcos-Jiménez A, Quiroga B, Morado M, Monroy F, Muñoz-Calleja C, Sánchez-Madrid F, Urrutia AA, Aragonés J. Erythroid SLC7A5/SLC3A2 amino acid carrier controls red blood cell size and maturation. iScience 2022; 26:105739. [PMID: 36582828 PMCID: PMC9792907 DOI: 10.1016/j.isci.2022.105739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the heterodimeric amino acid carrier SLC7A5/SLC3A2 (LAT1/CD98) has been widely studied in tumor biology but its role in physiological conditions remains largely unknown. Here we show that the SLC7A5/SLC3A2 heterodimer is constitutively present at different stages of erythroid differentiation but absent in mature erythrocytes. Administration of erythropoietin (EPO) further induces SLC7A5/SLC3A2 expression in circulating reticulocytes, as it also occurs in anemic conditions. Although Slc7a5 gene inactivation in the erythrocyte lineage does not compromise the total number of circulating red blood cells (RBCs), their size and hemoglobin content are significantly reduced accompanied by a diminished erythroblast mTORC1 activity. Furthermore circulating Slc7a5-deficient reticulocytes are characterized by lower transferrin receptor (CD71) expression as well as mitochondrial activity, suggesting a premature transition to mature RBCs. These data reveal that SLC7A5/SLC3A2 ensures adequate maturation of reticulocytes as well as the proper size and hemoglobin content of circulating RBCs.
Collapse
Affiliation(s)
- Antonio Bouthelier
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Lucía Fernández-Arroyo
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Claudia Mesa-Ciller
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Danay Cibrian
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raquel Castillo-González
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain,Pathology Anatomy Department, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Macarena Calero
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid, Spain,Translational Biophysics. Instituto de Investigación Sanitaria Hospital Doce de Octubre (Imas12), Madrid, Spain
| | - Diego Herráez-Aguilar
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Andrea Guajardo-Grence
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Ana María Pacheco
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Ana Marcos-Jiménez
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Borja Quiroga
- Nephrology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Morado
- Hematology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid, Spain,Translational Biophysics. Instituto de Investigación Sanitaria Hospital Doce de Octubre (Imas12), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,Nephrology Department, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain,CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Andrés A. Urrutia
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, 28009 Madrid, Spain,CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain,Corresponding author
| |
Collapse
|
29
|
Nwosu GO, Powell JA, Pitson SM. Targeting the integrated stress response in hematologic malignancies. Exp Hematol Oncol 2022; 11:94. [DOI: 10.1186/s40164-022-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWhile numerous targeted therapies have been recently adopted to improve the treatment of hematologic malignancies, acquired or intrinsic resistance poses a significant obstacle to their efficacy. Thus, there is increasing need to identify novel, targetable pathways to further improve therapy for these diseases. The integrated stress response is a signaling pathway activated in cancer cells in response to both dysregulated growth and metabolism, and also following exposure to many therapies that appears one such targetable pathway for improved treatment of these diseases. In this review, we discuss the role of the integrated stress response in the biology of hematologic malignancies, its critical involvement in the mechanism of action of targeted therapies, and as a target for pharmacologic modulation as a novel strategy for the treatment of hematologic malignancies.
Collapse
|
30
|
Effects of Feeding 5-Aminolevulinic Acid on Iron Status in Weaned Rats from the Female Rats during Gestation and Lactation. Animals (Basel) 2022; 12:ani12202869. [PMID: 36290255 PMCID: PMC9598332 DOI: 10.3390/ani12202869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Using female Sprague−Dawley (SD) rats as a model, the current study aimed to investigate whether feeding 5-aminolevulinic acid (5-ALA) to female SD rats during gestation and lactation can affect the iron status of weaned rats and provide new ideas for the iron supplementation of piglets. A total of 27 pregnant SD rats were randomly assigned to three treatments in nine replicates, with one rat per litter. Dietary treatments were basal diet (CON), CON + 50 mg/kg 5-ALA (5-ALA50), and CON + 100 mg/kg 5-ALA (5-ALA100). After parturition, ten pups in each litter (a total of 270) were selected for continued feeding by their corresponding mother, and the pregnant rats were fed diets containing 5-ALA (0, 50 and 100 mg/kg diet) until the newborn pups were weaned at 21 days. The results showed that the number of red blood cells (RBCs) in weaned rats in the 5-ALA100 group was significantly higher (p < 0.05) than that in the CON or 5-ALA50 group. The diet with 5-ALA significantly increased (p < 0.05) the hemoglobin (HGB) concentration, hematocrit (HCT) level, serum iron (SI) content, and transferrin saturation (TSAT) level in the blood of weaned rats, as well as the concentration of Hepcidin in the liver and serum of weaned rats and the expression of Hepcidin mRNA in the liver of weaned rats, with the 5-ALA100 group having the highest (p < 0.05) HGB concentration in the weaned rats, and the 5-ALA50 group having the highest (p < 0.05) Hepcidin concentration in serum and in the expression of Hepcidin mRNA in the liver of weaned rats. The other indicators between the 5-ALA groups had no effects. However, the level of total iron binding capacity (TIBC) was significantly decreased (p < 0.05) in the 5-ALA50 group. Moreover, the iron content in the liver of weaned rats fed with 5-ALA showed an upward trend (p = 0.085). In addition, feeding a 5-ALA-supplemented diet could also significantly reduce (p < 0.05) the expression of TfR1 mRNA in the liver of weaning rats (p < 0.05), and the expression of Tfr1 was not affected between 5-ALA groups. In conclusion, dietary supplementation with 5-ALA could improve the blood parameters, increase the concentration of Hepcidin in the liver and serum, and affect the expression of iron-related genes in the liver of weaned rats. Moreover, it is appropriate to add 50 mg/kg 5-ALA to the diet under this condition.
Collapse
|
31
|
Di Modica SM, Tanzi E, Olivari V, Lidonnici MR, Pettinato M, Pagani A, Tiboni F, Furiosi V, Silvestri L, Ferrari G, Rivella S, Nai A. Transferrin receptor 2 (Tfr2) genetic deletion makes transfusion-independent a murine model of transfusion-dependent β-thalassemia. Am J Hematol 2022; 97:1324-1336. [PMID: 36071579 PMCID: PMC9540808 DOI: 10.1002/ajh.26673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/24/2023]
Abstract
β-thalassemia is a genetic disorder caused by mutations in the β-globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion-dependent form of the disease (TDT) require lifelong blood transfusions and iron chelation therapy, a symptomatic treatment associated with several complications. Other therapeutic opportunities are available, but none is fully effective and/or applicable to all patients, calling for the identification of novel strategies. Transferrin receptor 2 (TFR2) balances red blood cells production according to iron availability, being an activator of the iron-regulatory hormone hepcidin in the liver and a modulator of erythropoietin signaling in erythroid cells. Selective Tfr2 deletion in the BM improves anemia and iron-overload in non-TDT mice, both as a monotherapy and, even more strikingly, in combination with iron-restricting approaches. However, whether Tfr2 targeting might represent a therapeutic option for TDT has never been investigated so far. Here, we prove that BM Tfr2 deletion improves anemia, erythrocytes morphology and ineffective erythropoiesis in the Hbbth1/th2 murine model of TDT. This effect is associated with a decrease in the expression of α-globin, which partially corrects the unbalance with β-globin chains and limits the precipitation of misfolded hemoglobin, and with a decrease in the activation of unfolded protein response. Remarkably, BM Tfr2 deletion is also sufficient to avoid long-term blood transfusions required for survival of Hbbth1/th2 animals, preventing mortality due to chronic anemia and reducing transfusion-associated complications, such as progressive iron-loading. Altogether, TFR2 targeting might represent a promising therapeutic option also for TDT.
Collapse
Affiliation(s)
- Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Violante Olivari
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Francesca Tiboni
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Giuliana Ferrari
- Vita Salute San Raffaele UniversityMilanItaly,San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Stefano Rivella
- Division of Hematology, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
32
|
Ricketts MD, Emptage RP, Blobel GA, Marmorstein R. The Heme-Regulated Inhibitor Kinase Requires Dimerization for Heme- Sensing Activity. J Biol Chem 2022; 298:102451. [PMID: 36063997 PMCID: PMC9520036 DOI: 10.1016/j.jbc.2022.102451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The heme-regulated inhibitor (HRI) is a heme-sensing kinase that regulates mRNA translation in erythroid cells. In heme deficiency, HRI is activated to phosphorylate eukaryotic initiation factor 2α and halt production of globins, thus avoiding accumulation of heme-free globin chains. HRI is inhibited by heme via binding to one or two heme-binding domains within the HRI N-terminal and kinase domains. HRI has recently been found to inhibit fetal hemoglobin (HbF) production in adult erythroid cells. Depletion of HRI increases HbF production, presenting a therapeutically exploitable target for the treatment of patients with sickle cell disease or thalassemia, which benefit from elevated HbF levels. HRI is known to be an oligomeric enzyme that is activated through autophosphorylation, although the exact nature of the HRI oligomer, its relation to autophosphorylation, and its mode of heme regulation remain unclear. Here, we employ biochemical and biophysical studies to demonstrate that HRI forms a dimeric species that is not dependent on autophosphorylation, the C-terminal coiled-coil domain in HRI is essential for dimer formation, and dimer formation facilitates efficient autophosphorylation and activation of HRI. We also employ kinetic studies to demonstrate that the primary avenue by which heme inhibits HRI is through the heme-binding site within the kinase domain, and that this inhibition is relatively independent of binding of ATP and eukaryotic initiation factor 2α substrates. Together, these studies highlight the mode of heme inhibition and the importance of dimerization in human HRI heme-sensing activity.
Collapse
Affiliation(s)
- M Daniel Ricketts
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan P Emptage
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
33
|
Koury MJ, Agarwal R, Chertow GM, Eckardt K, Fishbane S, Ganz T, Haase VH, Hanudel MR, Parfrey PS, Pergola PE, Roy‐Chaudhury P, Tumlin JA, Anders R, Farag YMK, Luo W, Minga T, Solinsky C, Vargo DL, Winkelmayer WC. Erythropoietic effects of vadadustat in patients with anemia associated with chronic kidney disease. Am J Hematol 2022; 97:1178-1188. [PMID: 35751858 PMCID: PMC9543410 DOI: 10.1002/ajh.26644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Patients with chronic kidney disease (CKD) develop anemia largely because of inappropriately low erythropoietin (EPO) production and insufficient iron available to erythroid precursors. In four phase 3, randomized, open-label, clinical trials in dialysis-dependent and non-dialysis-dependent patients with CKD and anemia, the hypoxia-inducible factor prolyl hydroxylase inhibitor, vadadustat, was noninferior to the erythropoiesis-stimulating agent, darbepoetin alfa, in increasing and maintaining target hemoglobin concentrations. In these trials, vadadustat increased the concentrations of serum EPO, the numbers of circulating erythrocytes, and the numbers of circulating reticulocytes. Achieved hemoglobin concentrations were similar in patients treated with either vadadustat or darbepoetin alfa, but compared with patients receiving darbepoetin alfa, those receiving vadadustat had erythrocytes with increased mean corpuscular volume and mean corpuscular hemoglobin, while the red cell distribution width was decreased. Increased serum transferrin concentrations, as measured by total iron-binding capacity, combined with stable serum iron concentrations, resulted in decreased transferrin saturation in patients randomized to vadadustat compared with patients randomized to darbepoetin alfa. The decreases in transferrin saturation were associated with relatively greater declines in serum hepcidin and ferritin in patients receiving vadadustat compared with those receiving darbepoetin alfa. These results for serum transferrin saturation, hepcidin, ferritin, and erythrocyte indices were consistent with improved iron availability in the patients receiving vadadustat. Thus, overall, vadadustat had beneficial effects on three aspects of erythropoiesis in patients with anemia associated with CKD: increased endogenous EPO production, improved iron availability to erythroid cells, and increased reticulocytes in the circulation.
Collapse
Affiliation(s)
- Mark J. Koury
- Division of Hematology/Oncology, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Rajiv Agarwal
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Kai‐Uwe Eckardt
- Department of Nephrology and Medical Intensive CareCharité – Universitätsmedizin BerlinBerlinGermany
| | - Steven Fishbane
- Division of Nephrology, Department of MedicineHofstra Northwell School of MedicineGreat NeckNew YorkUSA
| | - Tomas Ganz
- Department of Medicine and Pathology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Volker H. Haase
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Mark R. Hanudel
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Patrick S. Parfrey
- Department of MedicineMemorial UniversitySt John'sNewfoundland and LabradorCanada
| | | | | | | | | | | | - Wenli Luo
- Akebia Therapeutics, Inc.CambridgeMassachusettsUSA
| | - Todd Minga
- Akebia Therapeutics, Inc.CambridgeMassachusettsUSA
| | | | | | | |
Collapse
|
34
|
Eaton N, Boyd EK, Biswas R, Lee-Sundlov MM, Dlugi TA, Ramsey HE, Zheng S, Burns RT, Sola-Visner MC, Hoffmeister KM, Falet H. Endocytosis of the thrombopoietin receptor Mpl regulates megakaryocyte and erythroid maturation in mice. Front Oncol 2022; 12:959806. [PMID: 36110936 PMCID: PMC9468709 DOI: 10.3389/fonc.2022.959806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Dnm2fl/fl Pf4-Cre (Dnm2Plt-/- ) mice lacking the endocytic GTPase dynamin 2 (DNM2) in platelets and megakaryocytes (MKs) develop hallmarks of myelofibrosis. At the cellular level, the tyrosine kinase JAK2 is constitutively active but decreased in expression in Dnm2Plt-/- platelets. Additionally, Dnm2Plt-/- platelets cannot endocytose the thrombopoietin (TPO) receptor Mpl, leading to elevated circulating TPO levels. Here, we assessed whether the hyperproliferative phenotype of Dnm2Plt-/- mice was due to JAK2 constitutive activation or to elevated circulating TPO levels. In unstimulated Dnm2Plt-/- platelets, STAT3 and, to a lower extent, STAT5 were phosphorylated, but their phosphorylation was slowed and diminished upon TPO stimulation. We further crossed Dnm2Plt-/- mice in the Mpl-/- background to generate Mpl-/-Dnm2Plt-/- mice lacking Mpl ubiquitously and DNM2 in platelets and MKs. Mpl-/- Dnm2Plt-/- platelets had severely reduced JAK2 and STAT3 but normal STAT5 expression. Mpl-/- Dnm2Plt-/- mice had severely reduced bone marrow MK and hematopoietic stem and progenitor cell numbers. Additionally, Mpl-/- Dnm2Plt-/- mice had severe erythroblast (EB) maturation defects, decreased expression of hemoglobin and heme homeostasis genes and increased expression of ribosome biogenesis and protein translation genes in spleen EBs, and developed anemia with grossly elevated plasma erythropoietin (EPO) levels, leading to early fatality by postnatal day 25. Mpl-/- Dnm2Plt+/+ mice had impaired EB development at three weeks of age, which normalized with adulthood. Together, the data shows that DNM2-dependent Mpl-mediated endocytosis in platelets and MKs is required for steady-state hematopoiesis and provides novel insights into a developmentally controlled role for Mpl in normal erythropoiesis, regulating hemoglobin and heme production.
Collapse
Affiliation(s)
- Nathan Eaton
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Emily K. Boyd
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ratnashree Biswas
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Melissa M. Lee-Sundlov
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Theresa A. Dlugi
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Haley E. Ramsey
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Shikan Zheng
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Robert T. Burns
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Martha C. Sola-Visner
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Karin M. Hoffmeister
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Departments of Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hervé Falet
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
35
|
Toboz P, Amiri M, Tabatabaei N, Dufour CR, Kim SH, Fillebeen C, Ayemoba CE, Khoutorsky A, Nairz M, Shao L, Pajcini KV, Kim KW, Giguère V, Oliveira RL, Constante M, Santos MM, Morales CR, Pantopoulos K, Sonenberg N, Pinho S, Tahmasebi S. The amino acid sensor GCN2 controls red blood cell clearance and iron metabolism through regulation of liver macrophages. Proc Natl Acad Sci U S A 2022; 119:e2121251119. [PMID: 35994670 PMCID: PMC9436309 DOI: 10.1073/pnas.2121251119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.
Collapse
Affiliation(s)
- Phoenix Toboz
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Catherine R. Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Seung Hyeon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Charles E. Ayemoba
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Kostandin V. Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Regiana L. Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Marco Constante
- Nutrition and Microbiome Laboratory, Centre de recherche du CHUM and Department of Medicine, Université de Montréal, Montréal, QC, H3X 0A9, Canada
| | - Manuela M. Santos
- Nutrition and Microbiome Laboratory, Centre de recherche du CHUM and Department of Medicine, Université de Montréal, Montréal, QC, H3X 0A9, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Sandra Pinho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| |
Collapse
|
36
|
Silva RCMC, Vasconcelos LR, Travassos LH. The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 2022; 80:609-631. [PMID: 36018440 DOI: 10.1007/s12013-022-01087-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme oxygenase (HO) enzymes are responsible for the main oxidative step in heme degradation, generating equimolar amounts of free iron, biliverdin and carbon monoxide. HO-1 is induced as a crucial stress response protein, playing protective roles in physiologic and pathological conditions, due to its antioxidant, anti-apoptotic and anti-inflammatory effects. The mechanisms behind HO-1-mediated protection are being explored by different studies, affecting cell fate through multiple ways, such as reduction in intracellular levels of heme and ROS, transcriptional regulation, and through its byproducts generation. In this review we focus on the interplay between HO-1 and immune-related signaling pathways, which culminate in the activation of transcription factors important in immune responses and inflammation. We also discuss the dual interaction of HO-1 and inflammatory mediators that govern resolution and tissue damage. We highlight the dichotomy of HO-1 in innate and adaptive immune cells development and activation in different disease contexts. Finally, we address different known anti-inflammatory pharmaceuticals that are now being described to modulate HO-1, and the possible contribution of HO-1 in their anti-inflammatory effects.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Ricardo Vasconcelos
- Cellular Signaling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Abstract
An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology.
Collapse
Affiliation(s)
- Sohini Dutt
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
38
|
Hunter GA, Ferreira GC. Metal ion coordination sites in ferrochelatase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
The role of eIF2 phosphorylation in cell and organismal physiology: new roles for well-known actors. Biochem J 2022; 479:1059-1082. [PMID: 35604373 DOI: 10.1042/bcj20220068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Control of protein synthesis (mRNA translation) plays key roles in shaping the proteome and in many physiological, including homeostatic, responses. One long-known translational control mechanism involves phosphorylation of initiation factor, eIF2, which is catalysed by any one of four protein kinases, which are generally activated in response to stresses. They form a key arm of the integrated stress response (ISR). Phosphorylated eIF2 inhibits eIF2B (the protein that promotes exchange of eIF2-bound GDP for GTP) and thus impairs general protein synthesis. However, this mechanism actually promotes translation of certain mRNAs by virtue of specific features they possess. Recent work has uncovered many previously unknown features of this regulatory system. Several studies have yielded crucial insights into the structure and control of eIF2, including that eIF2B is regulated by several metabolites. Recent studies also reveal that control of eIF2 and the ISR helps determine organismal lifespan and surprising roles in sensing mitochondrial stresses and in controlling the mammalian target of rapamycin (mTOR). The latter effect involves an unexpected role for one of the eIF2 kinases, HRI. Phosphoproteomic analysis identified new substrates for another eIF2 kinase, Gcn2, which senses the availability of amino acids. Several genetic disorders arise from mutations in genes for eIF2α kinases or eIF2B (i.e. vanishing white matter disease, VWM and microcephaly, epileptic seizures, microcephaly, hypogenitalism, diabetes and obesity, MEHMO). Furthermore, the eIF2-mediated ISR plays roles in cognitive decline associated with Alzheimer's disease. New findings suggest potential therapeutic value in interfering with the ISR in certain settings, including VWM, for example by using compounds that promote eIF2B activity.
Collapse
|
40
|
Dulmovits BM, Tang Y, Papoin J, He M, Li J, Yang H, Addorisio ME, Kennedy L, Khan M, Brindley E, Ashley RJ, Ackert-Bicknell C, Hale J, Kurita R, Nakamura Y, Diamond B, Barnes BJ, Hermine O, Gallagher PG, Steiner LA, Lipton JM, Taylor N, Mohandas N, Andersson U, Al-Abed Y, Tracey KJ, Blanc L. HMGB1-mediated restriction of EPO signaling contributes to anemia of inflammation. Blood 2022; 139:3181-3193. [PMID: 35040907 PMCID: PMC9136881 DOI: 10.1182/blood.2021012048] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Abstract
Anemia of inflammation, also known as anemia of chronic disease, is refractory to erythropoietin (EPO) treatment, but the mechanisms underlying the EPO refractory state are unclear. Here, we demonstrate that high mobility group box-1 protein (HMGB1), a damage-associated molecular pattern molecule recently implicated in anemia development during sepsis, leads to reduced expansion and increased death of EPO-sensitive erythroid precursors in human models of erythropoiesis. HMGB1 significantly attenuates EPO-mediated phosphorylation of the Janus kinase 2/STAT5 and mTOR signaling pathways. Genetic ablation of receptor for advanced glycation end products, the only known HMGB1 receptor expressed by erythroid precursors, does not rescue the deleterious effects of HMGB1 on EPO signaling, either in human or murine precursors. Furthermore, surface plasmon resonance studies highlight the ability of HMGB1 to interfere with the binding between EPO and the EPOR. Administration of a monoclonal anti-HMGB1 antibody after sepsis onset in mice partially restores EPO signaling in vivo. Thus, HMGB1-mediated restriction of EPO signaling contributes to the chronic phase of anemia of inflammation.
Collapse
Affiliation(s)
- Brian M Dulmovits
- Zucker School of Medicine at Hofstra Northwell, Hempstead, NY
- Institute of Molecular Medicine, and
| | | | | | - Mingzhu He
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Jianhua Li
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Huan Yang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Meghan E Addorisio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | | | | | - Elena Brindley
- Zucker School of Medicine at Hofstra Northwell, Hempstead, NY
- Institute of Molecular Medicine, and
| | - Ryan J Ashley
- Zucker School of Medicine at Hofstra Northwell, Hempstead, NY
- Institute of Molecular Medicine, and
| | | | - John Hale
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY
| | - Ryo Kurita
- Central Blood Institute, Japanese Red Cross Society, Minato-ku, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Betty Diamond
- Zucker School of Medicine at Hofstra Northwell, Hempstead, NY
- Institute of Molecular Medicine, and
| | - Betsy J Barnes
- Zucker School of Medicine at Hofstra Northwell, Hempstead, NY
- Institute of Molecular Medicine, and
| | - Olivier Hermine
- INSERM Unité Mixte de Recherche (UMR) 1163, IMAGINE Institute, Paris, France
| | | | - Laurie A Steiner
- Department of Pediatrics, University of Rochester, Rochester, NY
| | - Jeffrey M Lipton
- Zucker School of Medicine at Hofstra Northwell, Hempstead, NY
- Institute of Molecular Medicine, and
- Pediatric Hematology/Oncology, Cohen Children's Medical Center, New Hyde Park, NY
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD; and
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Yousef Al-Abed
- Zucker School of Medicine at Hofstra Northwell, Hempstead, NY
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Kevin J Tracey
- Zucker School of Medicine at Hofstra Northwell, Hempstead, NY
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Lionel Blanc
- Zucker School of Medicine at Hofstra Northwell, Hempstead, NY
- Institute of Molecular Medicine, and
- INSERM Unité Mixte de Recherche (UMR) 1163, IMAGINE Institute, Paris, France
| |
Collapse
|
41
|
Bou-Fakhredin R, De Franceschi L, Motta I, Eid AA, Taher AT, Cappellini MD. Redox Balance in β-Thalassemia and Sickle Cell Disease: A Love and Hate Relationship. Antioxidants (Basel) 2022; 11:antiox11050967. [PMID: 35624830 PMCID: PMC9138068 DOI: 10.3390/antiox11050967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia and sickle cell disease (SCD) are inherited hemoglobinopathies that result in both quantitative and qualitative variations in the β-globin chain. These in turn lead to instability in the generated hemoglobin (Hb) or to a globin chain imbalance that affects the oxidative environment both intracellularly and extracellularly. While oxidative stress is not among the primary etiologies of β-thalassemia and SCD, it plays a significant role in the pathogenesis of these diseases. Different mechanisms exist behind the development of oxidative stress; the result of which is cytotoxicity, causing the oxidation of cellular components that can eventually lead to cell death and organ damage. In this review, we summarize the mechanisms of oxidative stress development in β-thalassemia and SCD and describe the current and potential antioxidant therapeutic strategies. Finally, we discuss the role of targeted therapy in achieving an optimal redox balance.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Ali T. Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW HRI is the heme-regulated elF2α kinase that phosphorylates the α-subunit of elF2. Although the role of HRI in inhibiting globin synthesis in erythroid cells is well established, broader roles of HRI in translation have been uncovered recently. This review is to summarize the new discoveries of HRI in stress erythropoiesis and in fetal γ-globin expression. RECENT FINDINGS HRI and activating transcription factor 4 (ATF4) mRNAs are highly expressed in early erythroblasts. Inhibition of protein synthesis by HRI-phosphorylated elF2α (elF2αP) is necessary to maintain protein homeostasis in both the cytoplasm and mitochondria. In addition, HRI-elF2αP specifically enhances translation of ATF4 mRNA leading to the repression of mechanistic target of rapamycin complex 1 (mTORC1) signaling. ATF4-target genes are most highly activated during iron deficiency to maintain mitochondrial function, redox homeostasis, and to enable erythroid differentiation. HRI is therefore a master translation regulator of erythropoiesis sensing intracellular heme concentrations and oxidative stress for effective erythropoiesis. Intriguingly, HRI-elF2αP-ATF4 signaling also inhibits fetal hemoglobin production in human erythroid cells. SUMMARY The primary function of HRI is to maintain protein homeostasis accompanied by the induction of ATF4 to mitigate stress. Role of HRI-ATF4 in γ-globin expression raises the potential of HRI as a therapeutic target for hemoglobinopathy.
Collapse
Affiliation(s)
- Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
43
|
Cytoplasmic proteotoxicity regulates HRI-dependent phosphorylation of eIF2α via the Hsp70-Bag3 module. iScience 2022; 25:104282. [PMID: 35573186 PMCID: PMC9097715 DOI: 10.1016/j.isci.2022.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
The major heat shock protein Hsp70 forms a complex with a scaffold protein Bag3 that links it to components of signaling pathways. Via these interactions, the Hsp70-Bag3 module functions as a proteotoxicity sensor that controls cell signaling. Here, to search for pathways regulated by the complex, we utilized JG-98, an allosteric inhibitor of Hsp70 that blocks its interaction with Bag3. RNAseq followed by the pathway analysis indicated that several signaling pathways including UPR were activated by JG-98. Surprisingly, only the eIF2α-associated branch of the UPR was activated, while other UPR branches were not induced, suggesting that the response was unrelated to the ER proteotoxicity and ER-associated kinase PERK1. Indeed, induction of the UPR genes under these conditions was driven by a distinct eIF2α kinase HRI. Hsp70-Bag3 directly interacted with HRI and regulated eIF2α phosphorylation upon cytoplasmic proteotoxicity. Therefore, cytosolic proteotoxicity can activate certain UPR genes via Hsp70-Bag3-HRI-eIF2α axis. Disruption of Hsp70-Bag3 module activates the unfolded protein response (UPR) This induction of UPR genes is mediated by HRI-dependent phosphorylation of eIF2α Hsp70-Bag3 “monitors” cytoplasmic proteotoxicity to activate the HRI-eIF2α axis eIF2α integrates proteotoxicity signals from ER and cytoplasm
Collapse
|
44
|
Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood 2022; 139:2450-2459. [PMID: 34936695 PMCID: PMC9029096 DOI: 10.1182/blood.2021011044] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
To enable effective oxygen transport, ∼200 billion red blood cells (RBCs) need to be produced every day in the bone marrow through the fine-tuned process of erythropoiesis. Erythropoiesis is regulated at multiple levels to ensure that defective RBC maturation or overproduction can be avoided. Here, we provide an overview of different layers of this control, ranging from cytokine signaling mechanisms that enable extrinsic regulation of RBC production to intrinsic transcriptional pathways necessary for effective erythropoiesis. Recent studies have also elucidated the importance of posttranscriptional regulation and highlighted additional gatekeeping mechanisms necessary for effective erythropoiesis. We additionally discuss the insights gained by studying human genetic variation affecting erythropoiesis and highlight the discovery of BCL11A as a regulator of hemoglobin switching through genetic studies. Finally, we provide an outlook of how our ability to measure multiple facets of this process at single-cell resolution, while accounting for the impact of human variation, will continue to refine our knowledge of erythropoiesis and how this process is perturbed in disease. As we learn more about this intricate and important process, additional opportunities to modulate erythropoiesis for therapeutic purposes will undoubtedly emerge.
Collapse
Affiliation(s)
- Alexis L Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
45
|
Zhou GX, Liu WB, Dai LM, Zhu HL, Xiong YW, Li DX, Xu DX, Wang H. Environmental cadmium impairs blood-testis barrier via activating HRI-responsive mitochondrial stress in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152247. [PMID: 34896485 DOI: 10.1016/j.scitotenv.2021.152247] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/13/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a well-known testicular toxicant. Blood-testis barrier (BTB), a vital part of testes, which has been reported to be damaged upon Cd exposure. However, the detailed mechanism about Cd-mediated disruption of BTB remains unclear. This study aims to investigate the role of Heme-Regulated Inhibitor (HRI)-responsive mitochondrial stress in Cd-mediated disruption of BTB. Male mice are intraperitoneally injected (i.p.) with melatonin (Mel, a cellular stress antagonist, 5.0 mg/kg) before Cd treatment (i.p., 2.0 mg/kg) for 8 h, and then treated with Cd for 0-48 h. Mouse Sertoli cells are pretreated with Mel (10 μM) for 1 h, and then treated with Cd (10 μM) for 0-24 h. We find that Cd damages the BTB and reduces the Occludin protein, a crucial BTB-related protein via activating p38/matrix metalloproteinase-2 (p38/MMP2) pathway and Integrated Stress Response (ISR). Further experiments reveal that the Heme-Regulated Inhibitor (HRI)-responsive mitochondrial stress is triggered in Cd-treated Sertoli cells. Most importantly, Cd-activated p38 signaling and ISR are regulated by HRI-responsive mitochondrial stress in Sertoli cells. Unexpectedly, we find that melatonin rescues the Cd-mediated disruption of BTB through blocking HRI-responsive mitochondrial stress in testes. Overall, these data indicate that environmental cadmium exposure impairs the BTB through activating HRI-responsive mitochondrial stress in Sertoli cells.
Collapse
Affiliation(s)
- Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Li-Min Dai
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Dai-Xin Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
46
|
MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function. Proc Natl Acad Sci U S A 2022; 119:2111617119. [PMID: 35121660 PMCID: PMC8832985 DOI: 10.1073/pnas.2111617119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs) are typically implicated in cancer biology. Here, we show that MRP9 and MRP5 localize to mitochondrial-associated membranes and play a concerted role in maintaining mitochondrial homeostasis and male reproductive fitness. Our work fills in significant gaps in our understanding of MRP9 and MRP5 with wider implications in male fertility. It is plausible that variants in these transporters are associated with male reproductive dysfunction. Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.
Collapse
|
47
|
Holmes MJ, Misra J, Wek RC. Analysis of Translational Control in the Integrated Stress Response by Polysome Profiling. Methods Mol Biol 2022; 2428:157-171. [PMID: 35171479 DOI: 10.1007/978-1-0716-1975-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Translational control provides a strategy for rapid optimization of gene expression and restoration of protein homeostasis in response to cellular stresses. An important mechanism for translational control involves phosphorylation of eIF2, which invokes the integrated stress response (ISR). In the ISR, initiation of bulk protein synthesis is lowered coincident with enhanced translation efficiency of select gene transcripts that serve critical functions in stress adaptation. In this chapter, we focus on polysome profiling as a tool for establishing and characterizing translation control induced by eIF2 phosphorylation during environmental stresses. We describe in detail the experimental strategies of polysome profiling for detecting bulk repression of the translational machinery and quantifying translational control of key stress-induced gene transcripts. These experimental strategies can be adjusted to measure individual gene transcripts or genome-wide analyses and can be adapted to measure changes in the levels of ribosome subunits and associated factors invoked by various cellular cues in the ISR.
Collapse
Affiliation(s)
- Michael J Holmes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
48
|
Hidalgo D, Bejder J, Pop R, Gellatly K, Hwang Y, Maxwell Scalf S, Eastman AE, Chen JJ, Zhu LJ, Heuberger JAAC, Guo S, Koury MJ, Nordsborg NB, Socolovsky M. EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nat Commun 2021; 12:7334. [PMID: 34921133 PMCID: PMC8683474 DOI: 10.1038/s41467-021-27562-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/19/2021] [Indexed: 11/08/2022] Open
Abstract
The erythroid terminal differentiation program couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. Here we use Epor-/- mouse erythroblasts endowed with survival signaling to identify novel non-redundant EpoR functions. We find that, paradoxically, EpoR signaling increases red cell size while also increasing the number and speed of erythroblast cell cycles. EpoR-regulation of cell size is independent of established red cell size regulation by iron. High erythropoietin (Epo) increases red cell size in wild-type mice and in human volunteers. The increase in mean corpuscular volume (MCV) outlasts the duration of Epo treatment and is not the result of increased reticulocyte number. Our work shows that EpoR signaling alters the relationship between cycling and cell size. Further, diagnostic interpretations of increased MCV should now include high Epo levels and hypoxic stress.
Collapse
Affiliation(s)
- Daniel Hidalgo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ramona Pop
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kyle Gellatly
- Program in Bioinformatics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yung Hwang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - S Maxwell Scalf
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Anna E Eastman
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Jane-Jane Chen
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Bioinformatics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Shangqin Guo
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Mark J Koury
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
49
|
Signaling Pathways That Regulate Normal and Aberrant Red Blood Cell Development. Genes (Basel) 2021; 12:genes12101646. [PMID: 34681039 PMCID: PMC8536016 DOI: 10.3390/genes12101646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Blood cell development is regulated through intrinsic gene regulation and local factors including the microenvironment and cytokines. The differentiation of hematopoietic stem and progenitor cells (HSPCs) into mature erythrocytes is dependent on these cytokines binding to and stimulating their cognate receptors and the signaling cascades they initiate. Many of these pathways include kinases that can diversify signals by phosphorylating multiple substrates and amplify signals by phosphorylating multiple copies of each substrate. Indeed, synthesis of many of these cytokines is regulated by a number of signaling pathways including phosphoinositide 3-kinase (PI3K)-, extracellular signal related kinases (ERK)-, and p38 kinase-dependent pathways. Therefore, kinases act both upstream and downstream of the erythropoiesis-regulating cytokines. While many of the cytokines are well characterized, the nuanced members of the network of kinases responsible for appropriate induction of, and response to, these cytokines remains poorly defined. Here, we will examine the kinase signaling cascades required for erythropoiesis and emphasize the importance, complexity, enormous amount remaining to be characterized, and therapeutic potential that will accompany our comprehensive understanding of the erythroid kinome in both healthy and diseased states.
Collapse
|
50
|
Wang T, Ashrafi A, Konduri PC, Ghosh P, Dey S, Modareszadeh P, Salamat N, Alemi PS, Berisha E, Zhang L. Heme Sequestration as an Effective Strategy for the Suppression of Tumor Growth and Progression. Mol Cancer Ther 2021; 20:2506-2518. [PMID: 34552010 DOI: 10.1158/1535-7163.mct-21-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Heme is an essential nutritional, metabolic, and signaling molecule in living organisms. Pathogenic microbes extract heme from hosts to obtain metallonutrient, while heme fuels mitochondrial respiration and ATP generation in lung tumor cells. Here, we generated small heme-sequestering proteins (HeSPs) based on bacterial hemophores. These HeSPs contain neutral mutations in the heme-binding pocket and hybrid sequences from hemophores of different bacteria. We showed that HeSPs bind to heme and effectively extracted heme from hemoglobin. They strongly inhibited heme uptake and cell proliferation and induced apoptosis in non-small cell lung cancer (NSCLC) cells, while their effects on nontumorigenic cell lines representing normal lung cells were not significant. HeSPs strongly suppressed the growth of human NSCLC tumor xenografts in mice. HeSPs decreased oxygen consumption rates and ATP levels in tumor cells isolated from treated mice, while they did not affect liver and blood cell functions. IHC, along with data from Western blotting and functional assays, revealed that HeSPs reduced the levels of key proteins involved in heme uptake, as well as the consumption of major fuels for tumor cells, glucose, and glutamine. Further, we found that HeSPs reduced the levels of angiogenic and vascular markers, as well as vessel density in tumor tissues. Together, these results demonstrate that HeSPs act via multiple mechanisms, including the inhibition of oxidative phosphorylation, to suppress tumor growth and progression. Evidently, heme sequestration can be a powerful strategy for suppressing lung tumors and likely drug-resistant tumors that rely on oxidative phosphorylation for survival.
Collapse
Affiliation(s)
- Tianyuan Wang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Adnin Ashrafi
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | | | - Poorva Ghosh
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Sanchareeka Dey
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Parsa Modareszadeh
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Narges Salamat
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Parinaz Sadat Alemi
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Eranda Berisha
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|