1
|
Zhang J, Liu J, Ding J, Yu H, Li Z, Chen Y, Lin Y, Niu Y, Lu L, Jin X, Zheng Y. Tris(2-chloroethyl) Phosphate Leads to Unbalanced Circulating Erythrocyte in Mice by Activating both Medullary and Extramedullary Erythropoiesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:199-211. [PMID: 39743774 DOI: 10.1021/acs.est.4c09436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms. The results demonstrated a marked increase in circulating RBC counts post-TCEP exposure, concomitantly heightening the risk of polycythemia vera (PV). TCEP exposure stimulated erythropoiesis across all stages of medullary development, including the differentiation of hematopoietic stem cells into erythroid progenitors, the progression of erythrocyte development, and the maturation of erythrocyte. Moreover, TCEP potentiated extramedullary erythropoiesis in the spleen and liver. Subsequent bioinformatics analysis implied that TCEP-induced erythropoiesis was attributed to p53 downregulation. Thus, these findings indicate that TCEP disrupts erythrocyte-mediated hematological homeostasis through the enhancement of both medullary and extramedullary erythropoiesis, leading to the alteration of hematological equilibrium.
Collapse
Affiliation(s)
- Jingxu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jian Ding
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongyan Yu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Ziyuan Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yidi Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lin Lu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoting Jin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Cuenca-Zamora EJ, Martínez C, Morales ML, Guijarro-Carrillo PJ, López-Poveda MJ, Alcolea-Guardiola C, Vidal-Garrido N, Lozano ML, Gonzalez-Conejero R, Teruel-Montoya R, Ferrer-Marín F. Pacritinib prevents inflammation-driven myelofibrosis-like phenotype in a miR-146a -/- murine model. Biomed Pharmacother 2024; 181:117712. [PMID: 39603040 DOI: 10.1016/j.biopha.2024.117712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic proinflammatory signaling is a characteristic trait in myeloproliferative neoplasms (MPN), particularly myelofibrosis (MF). Aberrant inflammatory signaling, particularly from NF-κB pathway, exacerbates the progression of MPN. Previously, we identified a critical role of miR-146a, a negative regulator of the TLR/NF-κB axis, in MF development. MPN patients carrying the miR-146a rs2431697-TT genotype, associated with lower miR-146a expression levels, have a higher risk of progression to overt-MF from chronic-phase disease. Using miR-146a-/- (KO) mice, a MF-like model lacking MPN driver mutations, we here investigate whether pacritinib, a dual JAK/NF-κB pathways inhibitor (via JAK2/IRAK1, respectively), prevents the age-associated myelofibrotic phenotype of these mice. Young miR-146a-/- mice were treated either with or without pacritinib, for 3 or 6 months. Notably, pacritinib prevented the splenomegaly, reticulin fibrosis and osteosclerosis observed in untreated KO mice. Pacritinib also avoided the myeloproliferation, loss of splenic architecture, and extramedullary hematopoiesis observed in age-matched untreated KO mice. Pharmacological targeting of IRAK1/JAK2 attenuated the pro-inflammatory environment, preventing the increase of inflammatory cytokines, particularly CXCL1 and TNF-α, without inducing cytopenias but rather the opposite. Compared to age-matched untreated KO mice, treated mice showed higher platelet counts irrespective of treatment duration, and higher erythrocyte counts with the longer treatment. Additionally, pacritinib preventive treatment reduced COL1A1 production in an in vitro model mimicking JAK2-driven fibrosis. These findings highlight that dual inhibition of JAK2/IRAK1 with pacritinib, by delaying or attenuating the myelofibrotic progression, could be a potential modifier of the natural course of MPN.
Collapse
Affiliation(s)
- Ernesto José Cuenca-Zamora
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Constantino Martínez
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | - María Luz Morales
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Pedro Jesús Guijarro-Carrillo
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | | | | | - Natalia Vidal-Garrido
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | - María Luisa Lozano
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain
| | - Rocío Gonzalez-Conejero
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; Universidad de Murcia, Murcia, Spain
| | - Raúl Teruel-Montoya
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| | - Francisca Ferrer-Marín
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| |
Collapse
|
3
|
Li SR, Wu ZZ, Yu HJ, Sun ZJ. Targeting erythroid progenitor cells for cancer immunotherapy. Int J Cancer 2024; 155:1928-1938. [PMID: 39039820 DOI: 10.1002/ijc.35102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Immunotherapy, especially immune checkpoint blockade therapy, represents a major milestone in the history of cancer therapy. However, the current response rate to immunotherapy among cancer patients must be improved; thus, new strategies for sensitizing patients to immunotherapy are urgently needed. Erythroid progenitor cells (EPCs), a population of immature erythroid cells, exert potent immunosuppressive functions. As a newly recognized immunosuppressive population, EPCs have not yet been effectively targeted. In this review, we summarize the immunoregulatory mechanisms of EPCs, especially for CD45+ EPCs. Moreover, in view of the regulatory effects of EPCs on the tumor microenvironment, we propose the concept of EPC-immunity, present existing strategies for targeting EPCs, and discuss the challenges encountered in both basic research and clinical applications. In particular, the impact of existing cancer treatments on EPCs is discussed, laying the foundation for combination therapies. The aim of this review is to provide new avenues for improving the efficacy of cancer immunotherapy by targeting EPCs.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhi-Zhong Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
4
|
Della Volpe L, Midena F, Vacca R, Tavella T, Alessandrini L, Farina G, Brandas C, Lo Furno E, Giannetti K, Carsana E, Naldini MM, Barcella M, Ferrari S, Beretta S, Santoro A, Porcellini S, Varesi A, Gilioli D, Conti A, Merelli I, Gentner B, Villa A, Naldini L, Di Micco R. A p38 MAPK-ROS axis fuels proliferation stress and DNA damage during CRISPR-Cas9 gene editing in hematopoietic stem and progenitor cells. Cell Rep Med 2024; 5:101823. [PMID: 39536752 PMCID: PMC11604517 DOI: 10.1016/j.xcrm.2024.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Ex vivo activation is a prerequisite to reaching adequate levels of gene editing by homology-directed repair (HDR) for hematopoietic stem and progenitor cell (HSPC)-based clinical applications. Here, we show that shortening culture time mitigates the p53-mediated DNA damage response to CRISPR-Cas9-induced DNA double-strand breaks, enhancing the reconstitution capacity of edited HSPCs. However, this results in lower HDR efficiency, rendering ex vivo culture necessary yet detrimental. Mechanistically, ex vivo activation triggers a multi-step process initiated by p38 mitogen-activated protein kinase (MAPK) phosphorylation, which generates mitogenic reactive oxygen species (ROS), promoting fast cell-cycle progression and subsequent proliferation-induced DNA damage. Thus, p38 inhibition before gene editing delays G1/S transition and expands transcriptionally defined HSCs, ultimately endowing edited cells with superior multi-lineage differentiation, persistence throughout serial transplantation, enhanced polyclonal repertoire, and better-preserved genome integrity. Our data identify proliferative stress as a driver of HSPC dysfunction with fundamental implications for designing more effective and safer gene correction strategies for clinical applications.
Collapse
Affiliation(s)
- Lucrezia Della Volpe
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federico Midena
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Roberta Vacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Teresa Tavella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Alessandrini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giacomo Farina
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; University of Milan-Bicocca, 20126 Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elena Lo Furno
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Carsana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo M Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Santoro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Porcellini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diego Gilioli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1066 Lausanne, Switzerland
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; University School of Advanced Studies IUSS, 27100 Pavia, Italy.
| |
Collapse
|
5
|
Zeng AG, Iacobucci I, Shah S, Mitchell A, Wong G, Bansal S, Chen D, Gao Q, Kim H, Kennedy JA, Arruda A, Minden MD, Haferlach T, Mullighan CG, Dick JE. Single-cell transcriptional mapping reveals genetic and non-genetic determinants of aberrant differentiation in AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.26.573390. [PMID: 38234771 PMCID: PMC10793439 DOI: 10.1101/2023.12.26.573390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In acute myeloid leukemia (AML), genetic mutations distort hematopoietic differentiation, resulting in the accumulation of leukemic blasts. Yet, it remains unclear how these mutations intersect with cellular origins and whether they converge upon similar differentiation patterns. Single-cell RNA sequencing (scRNA-seq) has enabled high-resolution mapping of the relationship between leukemia and normal cell states, yet this application is hampered by imprecise reference maps of normal hematopoiesis and small sample sizes among patient cohorts. As a first step we constructed a reference atlas of human bone marrow hematopoiesis from 263,519 single-cell transcriptomes spanning 55 cellular states, that was benchmarked against independent datasets of immunophenotypically pure hematopoietic stem and progenitor cells. Using this reference atlas, we mapped over 1.2 million single-cell transcriptomes spanning 318 AML, mixed phenotype acute leukemia (MPAL), and acute erythroid leukemia (AEL) samples. This large-scale analysis, together with systematic mapping of genotype-to-phenotype associations between driver mutations and differentiation landscapes, revealed convergence of diverse genetic alterations on twelve recurrent patterns of aberrant differentiation in AML. This included unconventional lymphoid and erythroid priming linked to RUNX1 and TP53 mutations, respectively. We also identified non-genetic determinants of AML differentiation such as two subgroups of KMT2A-rearranged AML that differ in the identity of their leukemic stem cells (LSCs), likely reflecting distinct cellular origins. Furthermore, distinct LSC-driven hierarchies can co-exist within individual patients, providing insights into AML evolution. Together, precise mapping of normal and malignant cell states provides a framework for advancing the study and disease classification of hematologic malignancies thereby informing therapy development.
Collapse
Affiliation(s)
- Andy G.X. Zeng
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| | - Ilaria Iacobucci
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sayyam Shah
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Gordon Wong
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - David Chen
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Qingsong Gao
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hyerin Kim
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| | - James A. Kennedy
- Division of Medical Oncology and Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | | | - Charles G. Mullighan
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - John E. Dick
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| |
Collapse
|
6
|
Park MD, Berichel JL, Hamon P, Wilk CM, Belabed M, Yatim N, Saffon A, Boumelha J, Falcomatà C, Tepper A, Hegde S, Mattiuz R, Soong BY, LaMarche NM, Rentzeperis F, Troncoso L, Halasz L, Hennequin C, Chin T, Chen EP, Reid AM, Su M, Cahn AR, Koekkoek LL, Venturini N, Wood-isenberg S, D’souza D, Chen R, Dawson T, Nie K, Chen Z, Kim-Schulze S, Casanova-Acebes M, Swirski FK, Downward J, Vabret N, Brown BD, Marron TU, Merad M. Hematopoietic aging promotes cancer by fueling IL-1⍺-driven emergency myelopoiesis. Science 2024; 386:eadn0327. [PMID: 39236155 PMCID: PMC7616710 DOI: 10.1126/science.adn0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Age is a major risk factor for cancer, but how aging impacts tumor control remains unclear. In this study, we establish that aging of the immune system, regardless of the age of the stroma and tumor, drives lung cancer progression. Hematopoietic aging enhances emergency myelopoiesis, resulting in the local accumulation of myeloid progenitor-like cells in lung tumors. These cells are a major source of interleukin (IL)-1⍺, which drives the enhanced myeloid response. The age-associated decline of DNA methyltransferase 3A enhances IL-1⍺ production, and disrupting IL-1 receptor 1 signaling early during tumor development normalized myelopoiesis and slowed the growth of lung, colonic, and pancreatic tumors. In human tumors, we identified an enrichment for IL-1⍺-expressing monocyte-derived macrophages linked to age, poorer survival, and recurrence, unraveling how aging promotes cancer and offering actionable therapeutic strategies.
Collapse
Affiliation(s)
- Matthew D. Park
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Jessica Le Berichel
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Pauline Hamon
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - C. Matthias Wilk
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Meriem Belabed
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Nader Yatim
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Alexis Saffon
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- INSERM U932, Immunity and Cancer, Institut Curie, Paris-Cité University; Paris, France
| | - Jesse Boumelha
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Chiara Falcomatà
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Alexander Tepper
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Samarth Hegde
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Raphaël Mattiuz
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Brian Y. Soong
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Nelson M. LaMarche
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Frederika Rentzeperis
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Leanna Troncoso
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Laszlo Halasz
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Clotilde Hennequin
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Theodore Chin
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Earnest P. Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Amanda M. Reid
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Matthew Su
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Ashley Reid Cahn
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Laura L. Koekkoek
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Nicholas Venturini
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Shira Wood-isenberg
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Darwin D’souza
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Rachel Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Travis Dawson
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Kai Nie
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Zhihong Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Seunghee Kim-Schulze
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Maria Casanova-Acebes
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Filip K. Swirski
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute; London, UK
- Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research; London, UK
| | - Nicolas Vabret
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Brian D. Brown
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Thomas U. Marron
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Miriam Merad
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| |
Collapse
|
7
|
Zhu C, Stiehl T. Modelling post-chemotherapy stem cell dynamics in the bone marrow niche of AML patients. Sci Rep 2024; 14:25060. [PMID: 39443599 PMCID: PMC11500015 DOI: 10.1038/s41598-024-75429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Acute myeloid leukemia (AML) is a stem cell-driven malignancy of the blood forming (hematopoietic) system. Despite of high dose chemotherapy with toxic side effects, many patients eventually relapse. The "7+3 regimen", which consists of 7 days of cytarabine in combination with daunorubicin during the first 3 days, is a widely used therapy protocol. Since peripheral blood cells are easily accessible to longitudinal sampling, significant research efforts have been undertaken to characterize and reduce adverse effects on circulating blood cells. However, much less is known about the impact of the 7+3 regimen on human hematopoietic stem cells and their physiological micro-environments, the so-called stem cell niches. One reason for this is the technical inability to observe human stem cells in vivo and the discomfort related to bone marrow biopsies. To better understand the treatment effects on human stem cells, we consider a mechanistic mathematical model of the stem cell niche before, during and after chemotherapy. The model accounts for different maturation stages of leukemic and hematopoietic cells and considers key processes such as cell proliferation, self-renewal, differentiation and therapy-induced cell death. In the model, hematopoietic (HSCs) and leukemic stem cells (LSCs) compete for a joint niche and respond to both systemic and niche-derived signals. We relate the model to clinical trial data from literature which longitudinally quantifies the counts of hematopoietic stem like (CD34+CD38-ALDH+) cells at diagnosis and after therapy. The proposed model can capture the clinically observed interindividual heterogeneity and reproduce the non-monotonous dynamics of the hematopoietic stem like cells observed in relapsing patients. Our model allows to simulate different scenarios proposed in literature such as therapy-related impairment of the stem cell niche or niche-mediated resistance. Model simulations suggest that during the post-therapy phase a more than 10-fold increase of hematopoietic stem-like cell proliferation rates is required to recapitulate the measured cell dynamics in patients achieving complete remission. We fit the model to data of 7 individual patients and simulate variations of the treatment protocol. These simulations are in line with the clinical finding that G-CSF priming can improve the treatment outcome. Furthermore, our model suggests that a decline of HSC counts during remission might serve as an indication for salvage therapy in patients lacking MRD (minimal residual disease) markers.
Collapse
Affiliation(s)
- Chenxu Zhu
- Institute for Computational Biomedicine-Disease Modeling, RWTH Aachen University, Aachen, Germany
| | - Thomas Stiehl
- Institute for Computational Biomedicine-Disease Modeling, RWTH Aachen University, Aachen, Germany.
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
- Centre for Mathematical Modeling-Human Health and Disease, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
8
|
Shaban D, Najm N, Droin L, Nijnik A. Hematopoietic Stem Cell Fates and the Cellular Hierarchy of Mammalian Hematopoiesis: from Transplantation Models to New Insights from in Situ Analyses. Stem Cell Rev Rep 2024:10.1007/s12015-024-10782-8. [PMID: 39222178 DOI: 10.1007/s12015-024-10782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoiesis is the process that generates the cells of the blood and immune system from hematopoietic stem and progenitor cells (HSPCs) and represents the system with the most rapid cell turnover in a mammalian organism. HSPC differentiation trajectories, their underlying molecular mechanisms, and their dysfunctions in hematologic disorders are the focal research questions of experimental hematology. While HSPC transplantations in murine models are the traditional tool in this research field, recent advances in genome editing and next generation sequencing resulted in the development of many fundamentally new approaches for the analyses of mammalian hematopoiesis in situ and at single cell resolution. The current review will cover many recent developments in this field in murine models, from the bulk lineage tracing studies of HSPC differentiation to the barcoding of individual HSPCs with Cre-recombinase, Sleeping Beauty transposase, or CRISPR/Cas9 tools, to map hematopoietic cell fates, together with their transcriptional and epigenetic states. We also address studies of the clonal dynamics of human hematopoiesis, from the tracing of HSPC clonal behaviours based on viral integration sites in gene therapy patients to the recent analyses of unperturbed human hematopoiesis based on naturally accrued mutations in either nuclear or mitochondrial genomes. Such studies are revolutionizing our understanding of HSPC biology and hematopoiesis both under homeostatic conditions and in the response to various forms of physiological stress, reveal the mechanisms responsible for the decline of hematopoietic function with age, and in the future may advance the understanding and management of the diverse disorders of hematopoiesis.
Collapse
Affiliation(s)
- Dania Shaban
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nay Najm
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lucie Droin
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Yahagi A, Mochizuki-Kashio M, Sorimachi Y, Takubo K, Nakamura-Ishizu A. Abcb10 regulates murine hematopoietic stem cell potential and erythroid differentiation. Exp Hematol 2024; 135:104191. [PMID: 38493949 DOI: 10.1016/j.exphem.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Erythropoiesis in the adult bone marrow relies on mitochondrial membrane transporters to facilitate heme and hemoglobin production. Erythrocytes in the bone marrow are produced although the differentiation of erythroid progenitor cells that originate from hematopoietic stem cells (HSCs). Whether and how mitochondria transporters potentiate HSCs and affect their differentiation toward erythroid lineage remains unclear. Here, we show that the ATP-binding cassette (ABC) transporter 10 (Abcb10), located on the inner mitochondrial membrane, is essential for HSC maintenance and erythroid-lineage differentiation. Induced deletion of Abcb10 in adult mice significantly increased erythroid progenitor cell and decreased HSC number within the bone marrow (BM). Functionally, Abcb10-deficient HSCs exhibited significant decreases in stem cell potential but with a skew toward erythroid-lineage differentiation. Mechanistically, deletion of Abcb10 rendered HSCs with excess mitochondrial iron accumulation and oxidative stress yet without alteration in mitochondrial bioenergetic function. However, impaired hematopoiesis could not be rescued through the in vivo administration of a mitochondrial iron chelator or antioxidant to Abcb10-deficient mice. Abcb10-mediated mitochondrial iron transfer is thus pivotal for the regulation of physiologic HSC potential and erythroid-lineage differentiation.
Collapse
Affiliation(s)
- Ayano Yahagi
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Makiko Mochizuki-Kashio
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
10
|
Ediriwickrema A, Nakauchi Y, Fan AC, Köhnke T, Hu X, Luca BA, Kim Y, Ramakrishnan S, Nakamoto M, Karigane D, Linde MH, Azizi A, Newman AM, Gentles AJ, Majeti R. A single cell framework identifies functionally and molecularly distinct multipotent progenitors in adult human hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592983. [PMID: 38766031 PMCID: PMC11100686 DOI: 10.1101/2024.05.07.592983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hematopoietic multipotent progenitors (MPPs) regulate blood cell production to appropriately meet the biological demands of the human body. Human MPPs remain ill-defined whereas mouse MPPs have been well characterized with distinct immunophenotypes and lineage potencies. Using multiomic single cell analyses and complementary functional assays, we identified new human MPPs and oligopotent progenitor populations within Lin-CD34+CD38dim/lo adult bone marrow with distinct biomolecular and functional properties. These populations were prospectively isolated based on expression of CD69, CLL1, and CD2 in addition to classical markers like CD90 and CD45RA. We show that within the canonical Lin-CD34+CD38dim/loCD90CD45RA-MPP population, there is a CD69+ MPP with long-term engraftment and multilineage differentiation potential, a CLL1+ myeloid-biased MPP, and a CLL1-CD69-erythroid-biased MPP. We also show that the canonical Lin-CD34+CD38dim/loCD90-CD45RA+ LMPP population can be separated into a CD2+ LMPP with lymphoid and myeloid potential, a CD2-LMPP with high lymphoid potential, and a CLL1+ GMP with minimal lymphoid potential. We used these new HSPC profiles to study human and mouse bone marrow cells and observe limited cell type specific homology between humans and mice and cell type specific changes associated with aging. By identifying and functionally characterizing new adult MPP sub-populations, we provide an updated reference and framework for future studies in human hematopoiesis.
Collapse
|
11
|
Quaranta P, Basso-Ricci L, Jofra Hernandez R, Pacini G, Naldini MM, Barcella M, Seffin L, Pais G, Spinozzi G, Benedicenti F, Pietrasanta C, Cheong JG, Ronchi A, Pugni L, Dionisio F, Monti I, Giannelli S, Darin S, Fraschetta F, Barera G, Ferrua F, Calbi V, Ometti M, Di Micco R, Mosca F, Josefowicz SZ, Montini E, Calabria A, Bernardo ME, Cicalese MP, Gentner B, Merelli I, Aiuti A, Scala S. Circulating hematopoietic stem/progenitor cell subsets contribute to human hematopoietic homeostasis. Blood 2024; 143:1937-1952. [PMID: 38446574 PMCID: PMC11106755 DOI: 10.1182/blood.2023022666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state. Moreover, cHSPCs have low expression of multiple BM-retention molecules but maintain their homing potential after xenotransplantation. By generating a comprehensive human organ-resident HSPC data set based on single-cell RNA sequencing data, we detected organ-specific seeding properties of the distinct trafficking HSPC subpopulations. Notably, circulating multi-lymphoid progenitors are primed for seeding the thymus and actively contribute to T-cell production. Human clonal tracking data from patients receiving gene therapy (GT) also showed that cHSPCs connect distant BM niches and participate in steady-state hematopoietic production, with primitive cHSPCs having the highest recirculation capability to travel in and out of the BM. Finally, in case of hematopoietic impairment, cHSPCs composition reflects the BM-HSPC content and might represent a biomarker of the BM state for clinical and research purposes. Overall, our comprehensive work unveiled fundamental insights into the in vivo dynamics of human HSPC trafficking and its role in sustaining hematopoietic homeostasis. GT patients' clinical trials were registered at ClinicalTrials.gov (NCT01515462 and NCT03837483) and EudraCT (2009-017346-32 and 2018-003842-18).
Collapse
Affiliation(s)
- Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Pacini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Seffin
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Pais
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Pietrasanta
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jin Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Andrea Ronchi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Graziano Barera
- Pediatric Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Ometti
- Department of Orthopedics and Traumatology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Steven Zvi Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Conrad C, Magnen M, Tsui J, Wismer H, Naser M, Venkataramani U, Samad B, Cleary SJ, Qiu L, Tian JJ, De Giovanni M, Mende N, Passegue E, Laurenti E, Combes AJ, Looney MR. Decoding functional hematopoietic progenitor cells in the adult human lung. RESEARCH SQUARE 2024:rs.3.rs-3576483. [PMID: 38077002 PMCID: PMC10705601 DOI: 10.21203/rs.3.rs-3576483/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nicole Mende
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
13
|
Kellaway SG, Potluri S, Keane P, Blair HJ, Ames L, Worker A, Chin PS, Ptasinska A, Derevyanko PK, Adamo A, Coleman DJL, Khan N, Assi SA, Krippner-Heidenreich A, Raghavan M, Cockerill PN, Heidenreich O, Bonifer C. Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth. Nat Commun 2024; 15:1359. [PMID: 38355578 PMCID: PMC10867020 DOI: 10.1038/s41467-024-45691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
- Blood Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luke Ames
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alice Worker
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paulynn S Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Assunta Adamo
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Princess Maxima Center of Pediatric Oncology, Utrecht, Netherlands
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
Lee S, Zhan H. Deciphering the differential impact of thrombopoietin/MPL signaling on hematopoietic stem/progenitor cell function in bone marrow and spleen. Stem Cell Reports 2024; 19:211-223. [PMID: 38215758 PMCID: PMC10874852 DOI: 10.1016/j.stemcr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Thrombopoietin (TPO) and its receptor MPL play crucial roles in hematopoietic stem cell (HSC) function and platelet production. However, the precise effects of TPO/MPL signaling on HSC regulation in different hematopoietic niches remain unclear. Here, we investigated the effects of TPO/MPL ablation on marrow and splenic hematopoiesis in TPO-/- and MPL-/- mice during aging. Despite severe thrombocytopenia, TPO-/- and MPL-/- mice did not develop marrow failure during a 2-year follow-up. Marrow and splenic HSCs exhibited different responses to TPO/MPL ablation and exogenous TPO treatment. Splenic niche cells compensated for marrow HSC loss in TPO-/- and MPL-/- mice by upregulating CXCL12 levels. These findings provide new insights into the complex regulation of HSCs by TPO/MPL and reveal a previously unknown link between TPO and CXCL12, two key growth factors for HSC maintenance. Understanding the distinct regulatory mechanisms between marrow and spleen hematopoiesis will help to develop novel therapeutic approaches for hematopoietic disorders.
Collapse
Affiliation(s)
- Sandy Lee
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA; Medical Service, Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
15
|
Tseng YJ, Kageyama Y, Murdaugh RL, Kitano A, Kim JH, Hoegenauer KA, Tiessen J, Smith MH, Uryu H, Takahashi K, Martin JF, Samee MAH, Nakada D. Increased iron uptake by splenic hematopoietic stem cells promotes TET2-dependent erythroid regeneration. Nat Commun 2024; 15:538. [PMID: 38225226 PMCID: PMC10789814 DOI: 10.1038/s41467-024-44718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are capable of regenerating the blood system, but the instructive cues that direct HSCs to regenerate particular lineages lost to the injury remain elusive. Here, we show that iron is increasingly taken up by HSCs during anemia and induces erythroid gene expression and regeneration in a Tet2-dependent manner. Lineage tracing of HSCs reveals that HSCs respond to hemolytic anemia by increasing erythroid output. The number of HSCs in the spleen, but not bone marrow, increases upon anemia and these HSCs exhibit enhanced proliferation, erythroid differentiation, iron uptake, and TET2 protein expression. Increased iron in HSCs promotes DNA demethylation and expression of erythroid genes. Suppressing iron uptake or TET2 expression impairs erythroid genes expression and erythroid differentiation of HSCs; iron supplementation, however, augments these processes. These results establish that the physiological level of iron taken up by HSCs has an instructive role in promoting erythroid-biased differentiation of HSCs.
Collapse
Affiliation(s)
- Yu-Jung Tseng
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Kageyama
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rebecca L Murdaugh
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ayumi Kitano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jong Hwan Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin A Hoegenauer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jonathan Tiessen
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mackenzie H Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, 77030, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Isobe T, Kucinski I, Barile M, Wang X, Hannah R, Bastos HP, Chabra S, Vijayabaskar MS, Sturgess KHM, Williams MJ, Giotopoulos G, Marando L, Li J, Rak J, Gozdecka M, Prins D, Shepherd MS, Watcham S, Green AR, Kent DG, Vassiliou GS, Huntly BJP, Wilson NK, Göttgens B. Preleukemic single-cell landscapes reveal mutation-specific mechanisms and gene programs predictive of AML patient outcomes. CELL GENOMICS 2023; 3:100426. [PMID: 38116120 PMCID: PMC10726426 DOI: 10.1016/j.xgen.2023.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 12/21/2023]
Abstract
Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.
Collapse
Affiliation(s)
- Tomoya Isobe
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Melania Barile
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Xiaonan Wang
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Rebecca Hannah
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Hugo P Bastos
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Shirom Chabra
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - M S Vijayabaskar
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Katherine H M Sturgess
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Matthew J Williams
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - George Giotopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Ludovica Marando
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Juan Li
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Justyna Rak
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; Hematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Malgorzata Gozdecka
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; Hematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Daniel Prins
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Mairi S Shepherd
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Sam Watcham
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; Hematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Brian J P Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK.
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Calderbank EF, Magnani L, Laurenti E. Intrafemoral Injection of Human Hematopoietic Stem and Progenitor Cells into Immunocompromised Mice. J Vis Exp 2023:10.3791/66315. [PMID: 38145377 PMCID: PMC7615601 DOI: 10.3791/66315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are defined by their lifelong ability to produce all blood cell types. This is operationally tested by transplanting cell populations containing HSCs into syngeneic or immunocompromised mice. The size and multilineage composition of the graft is then measured over time, usually by flow cytometry. Classically, a population containing HSCs is injected into the circulation of the animal, after which the HSCs home to the bone marrow, where they lodge and begin blood production. Alternatively, HSCs and/or progenitor cells (HSPCs) can be placed directly in the bone marrow cavity. This paper describes a protocol for intrafemoral injection of human HSPCs into immunodeficient mice. In short, preconditioned mice are anesthetized, and a small hole is drilled through the knee into the femur using a needle. Using a smaller insulin needle, cells are then injected directly into the same conduit created by the first needle. This method of transplantation can be applied in varied experimental designs, using either mouse or human cells as donor cells. It has been most widely used for xenotransplantation, because in this context, it is thought to provide improved engraftment over intravenous injections, therefore improving statistical power and reducing the number of mice to be used.
Collapse
Affiliation(s)
- Emily F Calderbank
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge;
| | - Laura Magnani
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge
| | - Elisa Laurenti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge;
| |
Collapse
|
18
|
Tang P, Wang H. Regulation of erythropoiesis: emerging concepts and therapeutic implications. Hematology 2023; 28:2250645. [PMID: 37639548 DOI: 10.1080/16078454.2023.2250645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The process of erythropoiesis is complex and involves the transfer of cells from the yolk sac to the fetal hepar and, ultimately, to the bone marrow during embryonic development. Within the bone marrow, erythroid progenitor cells undergo several stages to generate reticulocytes that enter the bloodstream. Erythropoiesis is regulated by various factors, with erythropoietin (EPO) synthesized by the kidney being the promoting factor and hepcidin synthesized by the hepar inhibiting iron mobilization. Transcription factors, such as GATA and KLF, also play a crucial role in erythropoiesis. Disruption of any of these factors can lead to abnormal erythropoiesis, resulting in red cell excess, red cell deficiency, or abnormal morphological function. This review provides a general description of erythropoiesis, as well as its regulation, highlighting the significance of understanding the process for the diagnosis and treatment of various hematological disorders.
Collapse
Affiliation(s)
- Pu Tang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Huaquan Wang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
19
|
Kim JEJ, Tung LT, Jiang RR, Yousefi M, Liang Y, Malo D, Vidal SM, Nijnik A. Dysregulation of B lymphocyte development in the SKG mouse model of rheumatoid arthritis. Immunology 2023; 170:553-566. [PMID: 37688495 DOI: 10.1111/imm.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023] Open
Abstract
Rheumatoid arthritis is a chronic and systemic inflammatory disease that affects approximately 1% of the world's population and is characterised by joint inflammation, the destruction of articular cartilage and bone, and many potentially life-threatening extraarticular manifestations. B lymphocytes play a central role in the pathology of rheumatoid arthritis as the precursors of autoantibody secreting plasma cells, as highly potent antigen-presenting cells, and as a source of various inflammatory cytokines, however, the effects of rheumatoid arthritis on B lymphocyte development remain poorly understood. Here, we analyse B lymphocyte development in murine models of rheumatoid arthritis, quantifying all the subsets of B cell precursors in the bone marrow and splenic B cells using flow cytometry. We demonstrate a severe reduction in pre-B cells and immature B cells in the bone marrow of mice with active disease, despite no major effects on the mature naïve B cell numbers. The loss of B cell precursors in the bone marrow of the affected mice was associated with a highly significant reduction in the proportion of Ki67+ cells, indicating impaired cell proliferation, while the viability of the B cell precursors was not significantly affected. We also observed some mobilisation of the B cell precursor cells into the mouse spleen, demonstrated with flow cytometry and pre-B colony forming units assays. In summary, the current work demonstrates a severe dysregulation in B lymphocyte development in murine rheumatoid arthritis, with possible implications for B cell repertoire formation, tolerance induction, and disease mechanisms.
Collapse
Affiliation(s)
- Joo Eun June Kim
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Roselyn R Jiang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Mitra Yousefi
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Danielle Malo
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Silvia M Vidal
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Fu Y, Li Z, Lin W, Yao J, Jiang X, Shu Q, Mao X, Tu J, Liang X, Li L. Extramedullary hematopoiesis contributes to enhanced erythropoiesis during pregnancy via TGF-β signaling. Front Immunol 2023; 14:1295717. [PMID: 38045690 PMCID: PMC10693449 DOI: 10.3389/fimmu.2023.1295717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Red blood cells are the predominant cellular component in human body, and their numbers increase significantly during pregnancy due to heightened erythropoiesis. CD71+ erythroid cells (CECs) are immature red blood cells, encompassing erythroblasts and reticulocytes, constitute a rare cell population primarily found in the bone marrow, although they are physiologically enriched in the neonatal mouse spleen and human cord blood. Presently, the mechanisms underlying the CECs expansion during pregnancy remain largely unexplored. Additionally, the mechanisms and roles associated with extramedullary hematopoiesis (EMH) of erythroid cells during pregnancy have yet to be fully elucidated. In this study, our objective was to examine the underlying mechanisms of erythroid-biased hematopoiesis during pregnancy. Our findings revealed heightened erythropoiesis and elevated CECs in both human and mouse pregnancies. The increased presence of transforming growth factor (TGF)-β during pregnancy facilitated the differentiation of CD34+ hematopoietic stem and progenitor cells (HSPCs) into CECs, without impacting HSPCs proliferation, ultimately leading to enhanced erythropoiesis. The observed increase in CECs during pregnancy was primarily attributed to EMH occurring in the spleen. During mouse pregnancy, splenic stromal cells were found to have a significant impact on splenic erythropoiesis through the activation of TGF-β signaling. Conversely, splenic macrophages were observed to contribute to extramedullary erythropoiesis in a TGF-β-independent manner. Our results suggest that splenic stromal cells play a crucial role in promoting extramedullary erythropoiesis and the production of CECs during pregnancy, primarily through TGF-β-dependent mechanisms.
Collapse
Affiliation(s)
- Yao Fu
- Department of Obstetrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
- Post-doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengjuan Li
- South China University of Technology School of Medicine, Guangzhou, China
| | - Wen Lin
- South China University of Technology School of Medicine, Guangzhou, China
| | - Jingxin Yao
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiang Jiang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qun Shu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyuan Mao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaoqin Tu
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinyuan Liang
- Department of Obstetrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
- Post-doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Li
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Liang KL, Laurenti E, Taghon T. Circulating IRF8-expressing CD123 +CD127 + lymphoid progenitors: key players in human hematopoiesis. Trends Immunol 2023; 44:678-692. [PMID: 37591714 PMCID: PMC7614993 DOI: 10.1016/j.it.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Lymphopoiesis is the process in which B and T cells, and innate lymphoid cells (ILCs) develop from hematopoietic progenitors that exhibit early lymphoid priming. The branching points where lymphoid-primed human progenitors are further specified to B/T/ILC differentiation trajectories remain unclear. Here, we discuss the emerging role of interferon regulatory factor (IRF)8 as a key factor to bridge human lymphoid and dendritic cell (DC) differentiation, and the current evidence for the existence of circulating and tissue-resident CD123+CD127+ lymphoid progenitors. We propose a model whereby DC/B/T/ILC lineage programs in circulating CD123+CD127+ lymphoid progenitors are expressed in balance. Upon tissue seeding, the tissue microenvironment tilts this molecular balance towards a specific lineage, thereby determining in vivo lineage fates. Finally, we discuss the translational implication of these lymphoid precursors.
Collapse
Affiliation(s)
- Kai Ling Liang
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
22
|
Ferrari S, Valeri E, Conti A, Scala S, Aprile A, Di Micco R, Kajaste-Rudnitski A, Montini E, Ferrari G, Aiuti A, Naldini L. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell 2023; 30:549-570. [PMID: 37146580 DOI: 10.1016/j.stem.2023.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
The growing clinical success of hematopoietic stem/progenitor cell (HSPC) gene therapy (GT) relies on the development of viral vectors as portable "Trojan horses" for safe and efficient gene transfer. The recent advent of novel technologies enabling site-specific gene editing is broadening the scope and means of GT, paving the way to more precise genetic engineering and expanding the spectrum of diseases amenable to HSPC-GT. Here, we provide an overview of state-of-the-art and prospective developments of the HSPC-GT field, highlighting how advances in biological characterization and manipulation of HSPCs will enable the design of the next generation of these transforming therapeutics.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
23
|
Lee S, Zhan H. Deciphering the Differential Impact of Thrombopoietin/MPL Signaling on Hematopoietic Stem Cell Function in Bone Marrow and Spleen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538580. [PMID: 37162918 PMCID: PMC10168386 DOI: 10.1101/2023.04.27.538580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Thrombopoietin (TPO) and its receptor MPL play crucial roles in hematopoietic stem cell (HSC) function and platelet production. However, the precise effects of TPO/MPL signaling on HSC regulation in different hematopoietic niches remain unclear. Here, we investigated the effects of TPO/MPL ablation on marrow and splenic hematopoiesis in TPO-/- and MPL-/- mice during aging. Despite severe thrombocytopenia, TPO-/- and MPL-/- mice did not develop marrow failure during a 2-year follow-up. Marrow and splenic HSCs exhibited different responses to TPO/MPL ablation and exogenous TPO treatment. Splenic niche cells compensated for marrow HSC loss in TPO-/- and MPL-/- mice by upregulating CXCL12 levels. These findings provide new insights into the complex regulation of HSCs by TPO/MPL and reveal a previously unknown link between TPO and CXCL12, two key growth factors for HSC maintenance. Understanding the distinct regulatory mechanisms between marrow and spleen hematopoiesis will help develop novel therapeutic approaches for hematopoietic disorders.
Collapse
Affiliation(s)
- Sandy Lee
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
- Medical Service, Northport VA Medical Center, Northport, NY
| |
Collapse
|
24
|
Combinatorial Blood Platelets-Derived circRNA and mRNA Signature for Early-Stage Lung Cancer Detection. Int J Mol Sci 2023; 24:ijms24054881. [PMID: 36902312 PMCID: PMC10003255 DOI: 10.3390/ijms24054881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Despite the diversity of liquid biopsy transcriptomic repertoire, numerous studies often exploit only a single RNA type signature for diagnostic biomarker potential. This frequently results in insufficient sensitivity and specificity necessary to reach diagnostic utility. Combinatorial biomarker approaches may offer a more reliable diagnosis. Here, we investigated the synergistic contributions of circRNA and mRNA signatures derived from blood platelets as biomarkers for lung cancer detection. We developed a comprehensive bioinformatics pipeline permitting an analysis of platelet-circRNA and mRNA derived from non-cancer individuals and lung cancer patients. An optimal selected signature is then used to generate the predictive classification model using machine learning algorithm. Using an individual signature of 21 circRNA and 28 mRNA, the predictive models reached an area under the curve (AUC) of 0.88 and 0.81, respectively. Importantly, combinatorial analysis including both types of RNAs resulted in an 8-target signature (6 mRNA and 2 circRNA), enhancing the differentiation of lung cancer from controls (AUC of 0.92). Additionally, we identified five biomarkers potentially specific for early-stage detection of lung cancer. Our proof-of-concept study presents the first multi-analyte-based approach for the analysis of platelets-derived biomarkers, providing a potential combinatorial diagnostic signature for lung cancer detection.
Collapse
|
25
|
Jardine L, Schim van der Loeff I, Haq IJ, Sproat TDR. Gestational Development of the Human Immune System. Immunol Allergy Clin North Am 2023; 43:1-15. [PMID: 36410996 DOI: 10.1016/j.iac.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Building an immune system is a monumental task critical to the survival of the fetus and newborn. A functional fetal immune system must complement the maternal immune system in handling in utero infection; abstain from damaging non-self-reactions that would compromise the materno-fetal interface; mobilize in response to infection and equip mucosal tissues for pathogen exposure at birth. There is growing appreciation that immune cells also have noncanonical roles in development and specifically may contribute to tissue morphogenesis. In this review we detail how hematopoietic and lymphoid organs jointly establish cellular constituents of the immune system; how these constituents are organized in 2 mucosal sites-gut and lung-where early life immune function has long-term consequences for health; and how exemplar diseases of prematurity and inborn errors of immunity reveal dominant pathways in prenatal immunity.
Collapse
Affiliation(s)
- Laura Jardine
- Biosciences Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom; Haematology Department, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom.
| | - Ina Schim van der Loeff
- Translational and Clinical Research Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Iram J Haq
- Translational and Clinical Research Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom; Department of Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Thomas D R Sproat
- Neonatal Unit, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Richardson Road, Newcastle Upon Tyne NE1 4LP, United Kingdom
| |
Collapse
|
26
|
Reporting From the First EHA Research Conference: Exciting Science With Panoramic Views. Hemasphere 2023; 7:e816. [PMID: 36698614 PMCID: PMC9829275 DOI: 10.1097/hs9.0000000000000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
27
|
Sobrino S, Abdo C, Neven B, Denis A, Gouge-Biebuyck N, Clave E, Charbonnier S, Blein T, Kergaravat C, Alcantara M, Villarese P, Berthaud R, Dehoux L, Albinni S, Karkeni E, Lagresle-Peyrou C, Cavazzana M, Salomon R, André I, Toubert A, Asnafi V, Picard C, Blanche S, Macintyre E, Boyer O, Six E, Zuber J. Human kidney-derived hematopoietic stem cells can support long-term multilineage hematopoiesis. Kidney Int 2023; 103:70-76. [PMID: 36108807 DOI: 10.1016/j.kint.2022.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 01/10/2023]
Abstract
Long-term multilineage hematopoietic donor chimerism occurs sporadically in patients who receive a transplanted solid organ enriched in lymphoid tissues such as the intestine or liver. There is currently no evidence for the presence of kidney-resident hematopoietic stem cells in any mammal species. Graft-versus-host-reactive donor T cells promote engraftment of graft-derived hematopoietic stem cells by making space in the bone marrow. Here, we report full (over 99%) multilineage, donor-derived hematopoietic chimerism in a pediatric kidney transplant recipient with syndromic combined immune deficiency that leads to transplant tolerance. Interestingly, we found that the human kidney-derived hematopoietic stem cells took up long-term residence in the recipient's bone marrow and gradually replaced their host counterparts, leading to blood type conversion and full donor chimerism of both lymphoid and myeloid lineages. Thus, our findings highlight the existence of human kidney-derived hematopoietic stem cells with a self-renewal ability able to support multilineage hematopoiesis.
Collapse
Affiliation(s)
- Steicy Sobrino
- INSERM UMR_S1163, Institut IMAGINE, Paris, France; Université Paris Cité, Paris, France
| | - Chrystelle Abdo
- Université Paris Cité, Paris, France; Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Bénédicte Neven
- Université Paris Cité, Paris, France; Service d'Immuno-Hématologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | | | - Nathalie Gouge-Biebuyck
- Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Emmanuel Clave
- INSERM UMR_S1160, Institut de Recherche Saint Louis, Paris, France
| | | | | | | | - Marion Alcantara
- Université Paris Cité, Paris, France; Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Patrick Villarese
- Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Romain Berthaud
- Université Paris Cité, Paris, France; Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Laurène Dehoux
- Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Souha Albinni
- Etablissement Français du Sang Ile-de-France, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Esma Karkeni
- Cytometry and Biomarkers UTechS, Center for Translational Science, Institut Pasteur, Paris, France
| | | | - Marina Cavazzana
- INSERM UMR_S1163, Institut IMAGINE, Paris, France; Université Paris Cité, Paris, France
| | - Rémi Salomon
- Université Paris Cité, Paris, France; Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | | | - Antoine Toubert
- Université Paris Cité, Paris, France; INSERM UMR_S1160, Institut de Recherche Saint Louis, Paris, France
| | - Vahid Asnafi
- Université Paris Cité, Paris, France; Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Capucine Picard
- INSERM UMR_S1163, Institut IMAGINE, Paris, France; Université Paris Cité, Paris, France; CEDI, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Stéphane Blanche
- Université Paris Cité, Paris, France; Service d'Immuno-Hématologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Elizabeth Macintyre
- Université Paris Cité, Paris, France; Laboratoire d'Onco-Hématologie, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Olivia Boyer
- Université Paris Cité, Paris, France; Service de Néphrologie Pédiatrique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | | | - Julien Zuber
- INSERM UMR_S1163, Institut IMAGINE, Paris, France; Université Paris Cité, Paris, France; Service des Maladies du Rein et Métabolisme, Transplantation et Immunologie Clinique, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
28
|
Ito R, Katano I, Kwok IWH, Ng LG, Ida-Tanaka M, Ohno Y, Mu Y, Morita H, Nishinaka E, Nishime C, Mochizuki M, Kawai K, Chien TH, Yunqian Z, Yiping F, Hua LH, Celhar T, Yen Chan JK, Takahashi T, Goto M, Ogura T, Takahashi R, Ito M. Efficient differentiation of human neutrophils with recapitulation of emergency granulopoiesis in human G-CSF knockin humanized mice. Cell Rep 2022; 41:111841. [PMID: 36543125 DOI: 10.1016/j.celrep.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are critical mediators during the early stages of innate inflammation in response to bacterial or fungal infections. A human hematopoietic system reconstituted in humanized mice aids in the study of human hematology and immunology. However, the poor development of human neutrophils is a well-known limitation of humanized mice. Here, we generate a human granulocyte colony-stimulating factor (hG-CSF) knockin (KI) NOD/Shi-scid-IL2rgnull (NOG) mouse in which hG-CSF is systemically expressed while the mouse G-CSF receptor is disrupted. These mice generate high numbers of mature human neutrophils, which can be readily mobilized into the periphery, compared with conventional NOG mice. Moreover, these neutrophils exhibit infection-mediated emergency granulopoiesis and are capable of efficient phagocytosis and reactive oxygen species production. Thus, hG-CSF KI mice provide a useful model for studying the development of human neutrophils, emergency granulopoiesis, and a potential therapeutic model for sepsis.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan.
| | - Ikumi Katano
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Immanuel W H Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Miyuki Ida-Tanaka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yusuke Ohno
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yunmei Mu
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Hanako Morita
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Eiko Nishinaka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Chiyoko Nishime
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Misa Mochizuki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tay Hui Chien
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Zhao Yunqian
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Fan Yiping
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Liew Hui Hua
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Teja Celhar
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Takeshi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
29
|
Zhu Q, Liang P, Chu C, Zhang A, Zhou W. Protein sumoylation in normal and cancer stem cells. Front Mol Biosci 2022; 9:1095142. [PMID: 36601585 PMCID: PMC9806136 DOI: 10.3389/fmolb.2022.1095142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Stem cells with the capacity of self-renewal and differentiation play pivotal roles in normal tissues and malignant tumors. Whereas stem cells are supposed to be genetically identical to their non-stem cell counterparts, cell stemness is deliberately regulated by a dynamic network of molecular mechanisms. Reversible post-translational protein modifications (PTMs) are rapid and reversible non-genetic processes that regulate essentially all physiological and pathological process. Numerous studies have reported the involvement of post-translational protein modifications in the acquirement and maintenance of cell stemness. Recent studies underscore the importance of protein sumoylation, i.e., the covalent attachment of the small ubiquitin-like modifiers (SUMO), as a critical post-translational protein modification in the stem cell populations in development and tumorigenesis. In this review, we summarize the functions of protein sumoylation in different kinds of normal and cancer stem cells. In addition, we describe the upstream regulators and the downstream effectors of protein sumoylation associated with cell stemness. We also introduce the translational studies aiming at sumoylation to target stem cells for disease treatment. Finally, we propose future directions for sumoylation studies in stem cells.
Collapse
Affiliation(s)
- Qiuhong Zhu
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Liang
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Cuiying Chu
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aili Zhang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States,*Correspondence: Aili Zhang, ; Wenchao Zhou,
| | - Wenchao Zhou
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Aili Zhang, ; Wenchao Zhou,
| |
Collapse
|
30
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|
31
|
Extramedullary hematopoietic stem cells. Blood 2022; 139:3353-3354. [PMID: 35679074 DOI: 10.1182/blood.2022015879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/20/2022] Open
|
32
|
Suo C, Dann E, Goh I, Jardine L, Kleshchevnikov V, Park JE, Botting RA, Stephenson E, Engelbert J, Tuong ZK, Polanski K, Yayon N, Xu C, Suchanek O, Elmentaite R, Domínguez Conde C, He P, Pritchard S, Miah M, Moldovan C, Steemers AS, Mazin P, Prete M, Horsfall D, Marioni JC, Clatworthy MR, Haniffa M, Teichmann SA. Mapping the developing human immune system across organs. Science 2022; 376:eabo0510. [PMID: 35549310 PMCID: PMC7612819 DOI: 10.1126/science.abo0510] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell genomics studies have decoded the immune-cell composition of several human prenatal organs but were limited in understanding the developing immune system as a distributed network across tissues. We profiled nine prenatal tissues combining single-cell RNA sequencing, antigen-receptor sequencing, and spatial transcriptomics to reconstruct the developing human immune system. This revealed the late acquisition of immune effector functions by myeloid and lymphoid cell subsets and the maturation of monocytes and T cells prior to peripheral tissue seeding. Moreover, we uncovered system-wide blood and immune cell development beyond primary hematopoietic organs, characterized human prenatal B1 cells, and shed light on the origin of unconventional T cells. Our atlas provides both valuable data resources and biological insights that will facilitate cell engineering, regenerative medicine, and disease understanding.
Collapse
Affiliation(s)
- Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Department of Paediatrics, Cambridge University Hospitals, Hills Road, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Justin Engelbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nadav Yayon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,European Molecular Biology Laboratory European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,European Molecular Biology Laboratory European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Sophie Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Mohi Miah
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Corina Moldovan
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Dave Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,European Molecular Biology Laboratory European Bioinformatics Institute, Hinxton, Cambridge, UK.,Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Post-natal conservation of human blood and marrow-specific CD34+ hematopoietic phenotypes. Exp Hematol 2022; 109:18-26. [DOI: 10.1016/j.exphem.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
|