1
|
Wang J, Cao Y, Shi D, Zhang Z, Li X, Chen C. Crucial Involvement of Heme Biosynthesis in Vegetative Growth, Development, Stress Response, and Fungicide Sensitivity of Fusarium graminearum. Int J Mol Sci 2024; 25:5268. [PMID: 38791308 PMCID: PMC11120706 DOI: 10.3390/ijms25105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid β-oxidation, autophagy, and virulence.
Collapse
Affiliation(s)
| | | | | | | | | | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (Y.C.); (D.S.); (Z.Z.); (X.L.)
| |
Collapse
|
2
|
Pethő D, Hendrik Z, Nagy A, Beke L, Patsalos A, Nagy L, Póliska S, Méhes G, Tóth C, Potor L, Eaton JW, Jacob HS, Balla G, Balla J, Gáll T. Heme cytotoxicity is the consequence of endoplasmic reticulum stress in atherosclerotic plaque progression. Sci Rep 2021; 11:10435. [PMID: 34001932 PMCID: PMC8129109 DOI: 10.1038/s41598-021-89713-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.
Collapse
|
3
|
Hopp MT, Imhof D. Linking Labile Heme with Thrombosis. J Clin Med 2021; 10:427. [PMID: 33499296 PMCID: PMC7865584 DOI: 10.3390/jcm10030427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Thrombosis is one of the leading causes of death worldwide. As such, it also occurs as one of the major complications in hemolytic diseases, like hemolytic uremic syndrome, hemorrhage and sickle cell disease. Under these conditions, red blood cell lysis finally leads to the release of large amounts of labile heme into the vascular compartment. This, in turn, can trigger oxidative stress and proinflammatory reactions. Moreover, the heme-induced activation of the blood coagulation system was suggested as a mechanism for the initiation of thrombotic events under hemolytic conditions. Studies of heme infusion and subsequent thrombotic reactions support this assumption. Furthermore, several direct effects of heme on different cellular and protein components of the blood coagulation system were reported. However, these effects are controversially discussed or not yet fully understood. This review summarizes the existing reports on heme and its interference in coagulation processes, emphasizing the relevance of considering heme in the context of the treatment of thrombosis in patients with hemolytic disorders.
Collapse
Affiliation(s)
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany;
| |
Collapse
|
4
|
Wang Z, Gao J, Teng H, Peng J. RETRACTED ARTICLE: Role of aminolevulinic acid synthase 1 in doxorubicin-induced oxidative stress to the ardiomyocyte. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2231. [PMID: 31907585 DOI: 10.1007/s00210-019-01799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Zuoyan Wang
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Junyi Gao
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Haobo Teng
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Jianjun Peng
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China.
| |
Collapse
|
5
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Gyongyosi A, Szoke K, Fenyvesi F, Fejes Z, Debreceni IB, Nagy B, Tosaki A, Lekli I. Inhibited autophagy may contribute to heme toxicity in cardiomyoblast cells. Biochem Biophys Res Commun 2019; 511:732-738. [DOI: 10.1016/j.bbrc.2019.02.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
|
7
|
Taslı H, Akbıyık A, Topaloğlu N, Alptüzün V, Parlar S. Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus. J Microbiol 2018; 56:828-837. [PMID: 30353469 DOI: 10.1007/s12275-018-8244-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) with multiple drug resistance patterns is frequently isolated from skin and soft tissue infections that are involved in chronic wounds. Today, difficulties in the treatment of MRSA associated infections have led to the development of alternative approaches such as antimicrobial photodynamic therapy. This study aimed to investigate photoinactivation with cationic porphyrin derivative compounds against MRSA in in-vitro conditions. In the study, MRSA clinical isolates with different antibiotic resistance profiles were used. The newly synthesized cationic porphyrin derivatives (PM, PE, PPN, and PPL) were used as photosensitizer, and 655 nm diode laser was used as light source. Photoinactivation experiments were performed by optimizing energy doses and photosensitizer concentrations. In photoinactivation experiments with different energy densities and photosensitizer concentrations, more than 99% reduction was achieved in bacterial cell viability. No decrease in bacterial survival was observed in control groups. It was determined that there was an increase in photoinactivation efficiency by increasing the energy dose. At the energy dose of 150 J/cm2 a survival reduction of over 6.33 log10 was observed in each photosensitizer type. While 200 μM PM concentration was required for this photoinactivation, 12.50 μM was sufficient for PE, PPN, and PPL. In our study, antimicrobial photodynamic therapy performed with cationic porphyrin derivatives was found to have potent antimicrobial efficacy against multidrug resistant S. aureus which is frequently isolated from wound infections.
Collapse
Affiliation(s)
- Hüseyin Taslı
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey.
| | - Ayse Akbıyık
- Department of Nursing, Faculty of Health Sciences, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Nermin Topaloğlu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| | - Sülünay Parlar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
8
|
Vendrame F, Olops L, Saad STO, Costa FF, Fertrin KY. Differences in heme and hemopexin content in lipoproteins from patients with sickle cell disease. J Clin Lipidol 2018; 12:1532-1538. [PMID: 30219641 DOI: 10.1016/j.jacl.2018.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/13/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND High blood cholesterol is associated with atherogenesis and endothelial dysfunction. The latter is present in hemolytic diseases, such as sickle cell anemia, whose carriers have hypocholesterolemia and low incidence of coronary artery disease. OBJECTIVE We aimed to characterize cholesterol fractions in patients with sickle cell disease and explore the relationship among lipoproteins, varying degrees of hemolysis, and its biomarkers. METHODS We recruited 37 healthy individuals, 39 with hemoglobin SC disease, and 40 with sickle cell anemia and quantified cholesterol fractions, heme resulting from hemoglobin breakdown, and its main scavenger protein hemopexin. RESULTS Hypocholesterolemia was most significant in patients with sickle cell anemia, and cholesterol levels correlated positively with hemopexin. Nevertheless, patients still had higher relative low-density lipoprotein (LDL) oxidation than healthy subjects. Analysis of lipoproteins isolated by density ultracentrifugation showed that the LDL fraction contained higher concentrations of heme than the high-density lipoprotein (HDL) fraction, whereas HDL contained more hemopexin than LDL, albeit greatly reduced in patients. CONCLUSION Our findings show that the abnormally low lipoprotein levels in sickle cell anemia correlate with hemolysis markers, particularly with hemopexin concentrations, along with significant reduction of this heme scavenger in HDL fractions. This may suggest an important role for HDL in the defense against heme-induced endothelial dysfunction in hemolytic diseases.
Collapse
Affiliation(s)
- Felipe Vendrame
- Hematology and Hemotherapy Center, University of Campinas-UNICAMP, Campinas, Brazil
| | - Leticia Olops
- Hematology and Hemotherapy Center, University of Campinas-UNICAMP, Campinas, Brazil
| | | | | | - Kleber Yotsumoto Fertrin
- Hematology and Hemotherapy Center, University of Campinas-UNICAMP, Campinas, Brazil; Division of Hematology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Cueno ME, Ochiai K. Gingival Periodontal Disease (PD) Level-Butyric Acid Affects the Systemic Blood and Brain Organ: Insights Into the Systemic Inflammation of Periodontal Disease. Front Immunol 2018; 9:1158. [PMID: 29915575 PMCID: PMC5994410 DOI: 10.3389/fimmu.2018.01158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
Butyric acid (BA) is produced by periodontopathic bacterial pathogens and contributes to periodontal disease (PD) induction. Moreover, PD has been associated with detrimental effects which subsequently may lead to systemic disease (SD) development affecting certain organs. Surprisingly, the potential systemic manifestations and organ-localized effects of BA have never been elucidated. Here, we simulated BA-based oral infection among young (20-week-old) rats and isolated blood cytosol to determine BA effects on stress network-related signals [total heme, hydrogen peroxide (H2O2), catalase (CAT), glutathione reductase (GR), free fatty acid (FFA), NADP/NADPH], inflammation-associated signals [caspases (CASP12 and CASP1), IL-1β, TNF-α, metallomatrix proteinase-9 (MMP-9), and toll-like receptor-2 (TLR2)], and neurological blood biomarkers [presenilin (PS1 and PS2) and amyloid precursor protein (APP)]. Similarly, we extracted the brain from both control and BA-treated rats, isolated the major regions (hippocampus, pineal gland, hypothalamus, cerebrum, and cerebellum), and, subsequently, measured stress network-related signals [oxidative stress: total heme, NADPH, H2O2, GR, and FFA; ER stress: GADD153, calcium, CASP1, and CASP3] and a brain neurodegenerative biomarker (Tau). In the blood, we found that BA was no longer detectable. Nevertheless, oxidative stress and inflammation were induced. Interestingly, amounts of representative inflammatory signals (CASP12, CASP1, IL-1β, and TNF-α) decreased while MMP-9 levels increased which we believe would suggest that inflammation was MMP-9-modulated and would serve as an alternative inflammatory mechanism. Similarly, TLR2 activity was increased which would insinuate that neurological blood biomarkers (APP, PS1, and PS2) were likewise affected. In the brain, BA was not detected, however, we found that both oxidative and ER stresses were likewise altered in all brain regions. Interestingly, tau protein amounts were significantly affected in the cerebellar and hippocampal regions which coincidentally are the major brain regions affected in several neurological disorders. Taken together, we propose that gingival BA can potentially cause systemic inflammation ascribable to prolonged systemic manifestations in the blood and localized detrimental effects within the brain organ.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kuniyasu Ochiai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
10
|
Cueno ME, Imai K. Various cellular stress components change as the rat ages: An insight into the putative overall age-related cellular stress network. Exp Gerontol 2017; 102:36-42. [PMID: 29197562 DOI: 10.1016/j.exger.2017.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/24/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022]
Abstract
Cellular stress is mainly comprised of oxidative, nitrosative, and endoplasmic reticulum stresses and has long been correlated to the ageing process. Surprisingly, the age-related difference among the various components in each independent stress pathway and the possible significance of these components in relation to the overall cellular stress network remain to be clearly elucidated. In this study, we obtained blood from ageing rats upon reaching 20-, 40-, and 72-wk.-old. Subsequently, we measured representative cellular stress-linked biomolecules (H2O2, glutathione reductase, heme, NADPH, NADP, nitric oxide, GADD153) and cell signals [substance P (SP), free fatty acid, calcium, NF-κB] in either or both blood serum and cytosol. Subsequently, network analysis of the overall cellular stress network was performed. Our results show that there are changes affecting stress-linked biomolecules and cell signals as the rat ages. Additionally, based on our network analysis data, we postulate that NADPH, H2O2, GADD153, and SP are the key components and the interactions between these components are central to the overall age-related cellular stress network in the rat blood. Thus, we propose that the main pathway affecting the overall age-related cellular stress network in the rat blood would entail NADPH-related oxidative stress (involving H2O2) triggering GADD153 activation leading to SP induction which in-turn affects other cell signals.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan.
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|
11
|
Gouveia Z, Carlos AR, Yuan X, Aires-da-Silva F, Stocker R, Maghzal GJ, Leal SS, Gomes CM, Todorovic S, Iranzo O, Ramos S, Santos AC, Hamza I, Gonçalves J, Soares MP. Characterization of plasma labile heme in hemolytic conditions. FEBS J 2017; 284:3278-3301. [PMID: 28783254 PMCID: PMC5978748 DOI: 10.1111/febs.14192] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/13/2017] [Accepted: 08/03/2017] [Indexed: 01/29/2023]
Abstract
Extracellular hemoglobin, a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro‐oxidant manner and regulates cellular metabolism while exerting pro‐inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases. Here, we developed and characterized a panel of heme‐specific single domain antibodies (sdAbs) that together with a cellular‐based heme reporter assay, allow for quantification and characterization of labile heme in plasma during hemolytic conditions. Using these approaches, we demonstrate that when generated during hemolytic conditions labile heme is bound to plasma molecules with an affinity higher than 10−7m and that 2–8% (~ 2–5 μm) of the total amount of heme detected in plasma can be internalized by bystander cells, termed here bioavailable heme. Acute, but not chronic, hemolysis is associated with transient reduction of plasma heme‐binding capacity, that is, the ability of plasma molecules to bind labile heme with an affinity higher than 10−7m. The heme‐specific sdAbs neutralize the pro‐oxidant activity of soluble heme in vitro, suggesting that these maybe used to counter the pathologic effects of labile heme during hemolytic conditions. Finally, we show that heme‐specific sdAbs can be used to visualize cellular heme. In conclusion, we describe a panel of heme‐specific sdAbs that when used with other approaches provide novel insights to the pathophysiology of heme.
Collapse
Affiliation(s)
| | - Ana R Carlos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Frederico Aires-da-Silva
- Technophage S.A., Lisboa, Portugal.,CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sónia S Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Olga Iranzo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana Ramos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Ana C Santos
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - João Gonçalves
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
12
|
Vercellotti GM, Zhang P, Nguyen J, Abdulla F, Chen C, Nguyen P, Nowotny C, Steer CJ, Smith A, Belcher JD. Hepatic Overexpression of Hemopexin Inhibits Inflammation and Vascular Stasis in Murine Models of Sickle Cell Disease. Mol Med 2016; 22:437-451. [PMID: 27451971 DOI: 10.2119/molmed.2016.00063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/11/2016] [Indexed: 02/02/2023] Open
Abstract
Sickle cell disease (SCD) patients have low serum hemopexin (Hpx) levels due to chronic hemolysis. We hypothesize that in SCD mice, hepatic overexpression of hemopexin will scavenge the proximal mediator of vascular activation, heme, and will inhibit inflammation and microvascular stasis. To examine the protective role of Hpx in SCD, we transplanted bone marrow from NY1DD SCD mice into Hpx™/™ or Hpx+/+ C57BL/6 mice. Dorsal skin fold chambers were implanted in week 13 post-transplant and microvascular stasis (% non-flowing venules) evaluated in response to heme infusion. Hpx™/™ sickle mice had significantly greater microvascular stasis in response to heme infusion than Hpx+/+ sickle mice (p<0.05), demonstrating the protective effect of Hpx in SCD. We utilized Sleeping Beauty (SB) transposon-mediated gene transfer to overexpress wild-type rat Hpx (wt-Hpx) in NY1DD and Townes-SS SCD mice. Control SCD mice were treated with lactated Ringer's solution (LRS) or a luciferase (Luc) plasmid. Plasma and hepatic Hpx were significantly increased compared to LRS and Luc controls. Microvascular stasis in response to heme infusion in NY1DD and Townes-SS mice overexpressing wt-Hpx had significantly less stasis than controls (p<0.05). Wt-Hpx overexpression markedly increased hepatic nuclear Nrf2 expression, HO-1 activity and protein, the heme-Hpx binding protein and scavenger receptor, CD91/LRP1 and decreased NF-κB activation. Two missense (ms)-Hpx SB-constructs that bound neither heme nor the Hpx receptor, CD91/LRP1, did not prevent heme-induced stasis. In conclusion, increasing Hpx levels in transgenic sickle mice via gene transfer activates the Nrf2/HO-1 anti-oxidant axis and ameliorates inflammation and vaso-occlusion.
Collapse
Affiliation(s)
- Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ping Zhang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Fuad Abdulla
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Phong Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Carlos Nowotny
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clifford J Steer
- Division of Gastroenterology, Department of Medicine, and Department of Genetics, Cell Biology and Development, 420 Delaware St SE, MMC 36, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ann Smith
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John D Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Cueno ME, Kamio N, Seki K, Kurita-Ochiai T, Ochiai K. High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells. Cell Stress Chaperones 2015; 20:709-13. [PMID: 25808460 PMCID: PMC4463921 DOI: 10.1007/s12192-015-0584-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 01/11/2023] Open
Abstract
Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC1(2) cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H(2)O(2), catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.
Collapse
Affiliation(s)
- Marni E. Cueno
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Noriaki Kamio
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Keisuke Seki
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Tomoko Kurita-Ochiai
- />Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba 271-8587 Japan
| | - Kuniyasu Ochiai
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| |
Collapse
|
14
|
Cueno ME, Tamura M, Ochiai K. Middle-aged rats orally supplemented with gel-encapsulated catechin favorably increases blood cytosolic NADPH levels. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:425-430. [PMID: 25925963 DOI: 10.1016/j.phymed.2015.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Green tea catechins are primarily known to function as free radical scavengers and have several beneficial uses. Orally supplemented catechin (OSC) was previously shown to increase mitochondrial heme and catalase levels in rat heart blood, however, its effect in the cytosol has not been elucidated. Here, we determined the effects of OSC in the rat heart blood cytosol. We used middle-aged (40 week-old) and young (4 week-old) rats throughout the study. We isolated blood cytosol, verified its purity, and determined heme, hydrogen peroxide (H2O2) levels, catalase (CAT) activities, gp91(phox) amounts, NADP and NAD pools, sirtuin 1 (SIRT1) and glutathione reductase (GR) activities, and free fatty acids (FFA). We established that OSC is associated with decreased heme-dependent H2O2 amounts while increasing heme-independent CAT activity. Moreover, we found that OSC-related decrease in NAD(+) amounts among middle-aged rats is associated to increased NADPH levels and SIRT1 activity. In contrast, we associated OSC-related decrease in NAD(+) amounts among young rats to decreased NADPH levels and increased SIRT1 activity. This highlights a major difference between catechin-treated middle-aged and young rats. Furthermore, we observed that cytosolic FFA and GR levels were significantly increased only among OSC-treated middle-aged rats which we hypothesize are related to increased NADPH levels. This insinuates that OSC treatment allows higher catechin amounts to enter the bloodstream of middle-aged rats. We propose that this would favorably increase NADPH amounts and lead to the simultaneous decrease in NADPH-related pro-oxidant activity and increase in NADPH-related biomolecules and anti-oxidant activities.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kuniyasu Ochiai
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
15
|
Das D, Patra M, Chakrabarti A. Binding of hemin, hematoporphyrin, and protoporphyrin with erythroid spectrin: fluorescence and molecular docking studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:171-82. [PMID: 25737232 DOI: 10.1007/s00249-015-1012-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 11/27/2022]
Abstract
Free heme has toxic effects, for example lipid peroxidation, DNA damage, and protein aggregation. In severe hemolysis, which occurs during pathological states, for example sickle cell disease, ischemia reperfusion, and malaria, levels of free heme increase inside erythrocytes. The purpose of this study was to investigate whether spectrin, the major erythroid cytoskeleton protein, is involved as an acceptor of free heme. We compared the interactions of three heme derivatives, hemin chloride, hematoporphyrin, and protoporphyrin-IX, with dimeric and tetrameric spectrin. The dissociation constants (K d) for binding to spectrin dimer and tetramer were 0.57 and 1.16 µM respectively. Thermodynamic data associated with this binding revealed the binding to be favored by a positive change in entropy. Although molecular docking studies identified the SH3 domain as the unique binding site of these heme derivatives to erythroid spectrin, experimental results indicated a binding stoichiometry of 1 heme attached to both dimeric and tetrameric spectrin, indicating the common self-associating domain to be the unique binding site. We also noticed heme-induced structural changes in the membrane skeletal protein. Erythroid spectrin could thus act as a potential acceptor of heme, particularly relevant under disease conditions.
Collapse
Affiliation(s)
- Debashree Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | | | | |
Collapse
|
16
|
Chi J, Zaw T, Cardona I, Hosnain M, Garg N, Lefkowitz HR, Tolias P, Du H. Use of surface-enhanced Raman scattering as a prognostic indicator of acute kidney transplant rejection. BIOMEDICAL OPTICS EXPRESS 2015; 6:761-9. [PMID: 25798301 PMCID: PMC4361431 DOI: 10.1364/boe.6.000761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 05/16/2023]
Abstract
We report an early, noninvasive and rapid prognostic method of predicting potential acute kidney dysfunction using surface-enhanced Raman scattering (SERS). Our analysis was performed on urine samples collected prospectively from 58 kidney transplant patients using a He-Ne laser (632.8 nm) as the excitation source. All abnormal kidney function episodes (three acute rejections and two acute kidney failures that were eventually diagnosed independently by clinical biopsy) consistently exhibited unique SERS spectral features in just one day following the transplant surgery. These results suggested that SERS analysis provides an early and more specific indication to kidney function than the clinically used biomarker, serum creatinine (sCr).
Collapse
Affiliation(s)
- Jingmao Chi
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, 07030,
USA
| | - Thet Zaw
- Newark Beth Israel Medical Center, Newark, NJ, 07112,
USA
| | - Iliana Cardona
- Newark Beth Israel Medical Center, Newark, NJ, 07112,
USA
| | | | - Neha Garg
- Newark Beth Israel Medical Center, Newark, NJ, 07112,
USA
| | | | - Peter Tolias
- Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ, 07030,
USA
| | - Henry Du
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, 07030,
USA
| |
Collapse
|
17
|
Gun SY, Claser C, Tan KSW, Rénia L. Interferons and interferon regulatory factors in malaria. Mediators Inflamm 2014; 2014:243713. [PMID: 25157202 PMCID: PMC4124246 DOI: 10.1155/2014/243713] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
Malaria is one of the most serious infectious diseases in humans and responsible for approximately 500 million clinical cases and 500 thousand deaths annually. Acquired adaptive immune responses control parasite replication and infection-induced pathologies. Most infections are clinically silent which reflects on the ability of adaptive immune mechanisms to prevent the disease. However, a minority of these can become severe and life-threatening, manifesting a range of overlapping syndromes of complex origins which could be induced by uncontrolled immune responses. Major players of the innate and adaptive responses are interferons. Here, we review their roles and the signaling pathways involved in their production and protection against infection and induced immunopathologies.
Collapse
Affiliation(s)
- Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
| | - Kevin Shyong Wei Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
18
|
Vercellotti GM, Khan FB, Nguyen J, Chen C, Bruzzone CM, Bechtel H, Brown G, Nath KA, Steer CJ, Hebbel RP, Belcher JD. H-ferritin ferroxidase induces cytoprotective pathways and inhibits microvascular stasis in transgenic sickle mice. Front Pharmacol 2014; 5:79. [PMID: 24860503 PMCID: PMC4029007 DOI: 10.3389/fphar.2014.00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/31/2014] [Indexed: 01/17/2023] Open
Abstract
Hemolysis, oxidative stress, inflammation, vaso-occlusion, and organ infarction are hallmarks of sickle cell disease (SCD). We have previously shown that increases in heme oxygenase-1 (HO-1) activity detoxify heme and inhibit vaso-occlusion in transgenic mouse models of SCD. HO-1 releases Fe(2+) from heme, and the ferritin heavy chain (FHC) ferroxidase oxidizes Fe(2+) to catalytically inactive Fe(3+) inside ferritin. FHC overexpression has been shown to be cytoprotective. In this study, we hypothesized that overexpression of FHC and its ferroxidase activity will inhibit inflammation and microvascular stasis in transgenic SCD mice in response to plasma hemoglobin. We utilized a Sleeping Beauty (SB) transposase plasmid to deliver a human wild-type-ferritin heavy chain (wt-hFHC) transposable element by hydrodynamic tail vein injections into NY1DD SCD mice. Control SCD mice were infused with the same volume of lactated Ringer's solution (LRS) or a human triple missense FHC (ms-hFHC) plasmid with no ferroxidase activity. 8 weeks later, LRS-injected mice had ~40% microvascular stasis (% non-flowing venules) 1 h after infusion of stroma-free hemoglobin, while mice overexpressing wt-hFHC had only 5% stasis (p < 0.05), and ms-hFHC mice had 33% stasis suggesting vascular protection by ferroxidase active wt-hFHC. The wt-hFHC SCD mice had marked increases in splenic hFHC mRNA and hepatic hFHC protein, ferritin light chain (FLC), 5-aminolevulinic acid synthase (ALAS), heme content, ferroportin, nuclear factor erythroid 2-related factor 2 (Nrf2), and HO-1 activity and protein. There was also a decrease in hepatic activated nuclear factor-kappa B (NF-κB) phospho-p65 and vascular cell adhesion molecule-1 (VCAM-1). Inhibition of HO-1 activity with tin protoporphyrin demonstrated HO-1 was not essential for the protection by wt-hFHC. We conclude that wt-hFHC ferroxidase activity enhances cytoprotective Nrf2-regulated proteins including HO-1, thereby resulting in decreased NF-κB-activation, adhesion molecules, and microvascular stasis in transgenic SCD mice.
Collapse
Affiliation(s)
- Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Fatima B Khan
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Julia Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Carol M Bruzzone
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Heather Bechtel
- Mercy Clinic Children's Cancer and Hematology, St. Louis, MO USA
| | - Graham Brown
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Karl A Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic/Foundation Rochester, MN, USA
| | - Clifford J Steer
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Robert P Hebbel
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - John D Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| |
Collapse
|
19
|
Orally supplemented catechin increases heme amounts and catalase activities in rat heart blood mitochondria: A comparison between middle-aged and young rats. Exp Gerontol 2013; 48:1319-22. [DOI: 10.1016/j.exger.2013.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022]
|
20
|
Cueno ME, Imai K, Matsukawa N, Tsukahara T, Kurita-Ochiai T, Ochiai K. Butyric acid retention in gingival tissue induces oxidative stress in jugular blood mitochondria. Cell Stress Chaperones 2013; 18:661-5. [PMID: 23397230 PMCID: PMC3745256 DOI: 10.1007/s12192-013-0409-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 12/13/2022] Open
Abstract
Butyric acid (BA) is a major extracellular metabolite produced by anaerobic periodontopathic bacteria and is commonly deposited in the gingival tissue. BA induces mitochondrial oxidative stress in vitro; however, its effects in vivo were never elucidated. Here, we determined the effects of butyric acid retention in the gingival tissues on oxidative stress induction in the jugular blood mitochondria. We established that BA injected in the rat gingival tissue has prolonged retention in gingival tissues. Blood taken at 0, 60, and 180 min after BA injection was used for further analysis. We isolated blood mitochondria, verified its purity, and measured hydrogen peroxide (H2O2), heme, superoxide (SOD), and catalase (CAT) to determine BA effects. We found that H2O2, heme, SOD, and CAT levels all increased after BA injection. This would insinuate that mitochondrial oxidative stress was induced ascribable to BA.
Collapse
Affiliation(s)
- Marni E. Cueno
- />Department of Microbiology, Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
| | - Kenichi Imai
- />Department of Microbiology, Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
| | - Noriko Matsukawa
- />Kyoto Institute of Nutrition and Pathology Inc., Tachikawa Ujitawara, Kyoto, 610-0231 Japan
| | - Takamitsu Tsukahara
- />Kyoto Institute of Nutrition and Pathology Inc., Tachikawa Ujitawara, Kyoto, 610-0231 Japan
| | - Tomoko Kurita-Ochiai
- />Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba 271-8587 Japan
| | - Kuniyasu Ochiai
- />Department of Microbiology, Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310 Japan
| |
Collapse
|
21
|
Abstract
The most important chronic morbidities of premature newborns, deeply influencing quality of life, are retinopathy of prematurity, bronchopulmonary dysplasia, intraventricular hemorrhage and periventricular leukomalacia. Since the rate of premature birth has not decreased in recent years in Hungary, and treatments of these end stage disorders are extremely difficult, prevention gains tremendous significance. Effective prevention is based on detailed knowledge of the pathophysiological mechanisms of these special diseases having multifactorial nature sharing several common risk factors, and one is the pathological angiogenesis. This sensitive system is affected by several stress situations which are the consequences of prematurity leading to abnormal vascular growth. After birth, relative hyperoxia, compared to intrauterine life, and decreasing concentrations of vascular growth factors result in vascular injury, moreover, may cause vessel apoptosis. The consequence of this phenomenon is the activation of hypoxia responsible genes resulting in robust pathological neovascularization and organ damage during the later phase. Saving normal angiogenesis and inhibiting reactive neovascularization may lead to better quality of life in these premature infants. Orv. Hetil., 2013, 154, 1498–1511.
Collapse
Affiliation(s)
- György Balla
- Debreceni Egyetem, Orvos- és Egészségtudományi Centrum Gyermekgyógyászati Intézet Debrecen Nagyerdei krt. 98. 4032
| | - Miklós Szabó
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Gyermekgyógyászati Klinika Budapest
| |
Collapse
|
22
|
Wang J, Wang D, Li Y, Gao Y, Wang S, Zuo H, Xu X, Wang S, Peng R. Microarray analysis of altered gene expression and the role of ATF3 in HK-2 cells treated with hemin. Ren Fail 2013; 35:624-32. [PMID: 23560949 DOI: 10.3109/0886022x.2013.780619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To identify gene expression changes and the role of activating transcription factor 3 (ATF3) in hemin toxicity in renal tubular epithelial cells, then elucidate molecular mechanisms of hemin toxicity on renal tubular epithelial cells. METHODS An oligo array comprising 35,035 genes was used to compare differential gene expression in hemin-treated and non-treated HK-2 cells (human renal proximal tubular epithelial cells), and the role of ATF3 in hemin toxicity was assessed using siRNA technique. RESULTS A total of 128 mRNAs were at least twofold up-regulated and 101 mRNAs were at least twofold down-regulated after hemin treatment. Expression levels of ATF3, heat shock protein 70, c-fos, and c-jun were remarkably increased. Hemin also suppressed nuclear factor-kappa B inhibitor α, β-2 adrenergic receptor, and interleukin-6 mRNA amounts more than twofold. We further demonstrated the protective role of ATF3 in hemin cytotoxicity. CONCLUSIONS The data suggest that hemin caused multiple changes of gene expression in HK-2 cells, and ATF3 protects against hemin cytotoxicity.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fernandez-Gonzalez A, Alex Mitsialis S, Liu X, Kourembanas S. Vasculoprotective effects of heme oxygenase-1 in a murine model of hyperoxia-induced bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2012; 302:L775-84. [PMID: 22287607 DOI: 10.1152/ajplung.00196.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by simplified alveolarization and arrested vascular development of the lung with associated evidence of endothelial dysfunction, inflammation, increased oxidative damage, and iron deposition. Heme oxygenase-1 (HO-1) has been reported to be protective in the pathogenesis of diseases of inflammatory and oxidative etiology. Because HO-1 is involved in the response to oxidative stress produced by hyperoxia and is critical for cellular heme and iron homeostasis, it could play a protective role in BPD. Therefore, we investigated the effect of HO-1 in hyperoxia-induced lung injury using a neonatal transgenic mouse model with constitutive lung-specific HO-1 overexpression. Hyperoxia triggered an increase in pulmonary inflammation, arterial remodeling, and right ventricular hypertrophy that was attenuated by HO-1 overexpression. In addition, hyperoxia led to pulmonary edema, hemosiderosis, and a decrease in blood vessel number, all of which were markedly improved in HO-1 overexpressing mice. The protective vascular response may be mediated at least in part by carbon monoxide, due to its anti-inflammatory, antiproliferative, and antiapoptotic properties. HO-1 overexpression, however, did not prevent alveolar simplification nor altered the levels of ferritin and lactoferrin, proteins involved in iron binding and transport. Thus the protective mechanisms elicited by HO-1 overexpression primarily preserve vascular growth and barrier function through iron-independent, antioxidant, and anti-inflammatory pathways.
Collapse
|
24
|
Higdon AN, Benavides GA, Chacko BK, Ouyang X, Johnson MS, Landar A, Zhang J, Darley-Usmar VM. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy. Am J Physiol Heart Circ Physiol 2012; 302:H1394-409. [PMID: 22245770 DOI: 10.1152/ajpheart.00584.2011] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hemolysis of red blood cells and muscle damage results in the release of the heme proteins myoglobin, hemoglobin, and free heme into the vasculature. The mechanisms of heme toxicity are not clear but may involve lipid peroxidation, which we hypothesized would result in mitochondrial damage in endothelial cells. To test this, we used bovine aortic endothelial cells (BAEC) in culture and exposed them to hemin. Hemin led to mitochondrial dysfunction, activation of autophagy, mitophagy, and, at high concentrations, apoptosis. To detect whether hemin induced lipid peroxidation and damaged proteins, we used derivatives of arachidonic acid tagged with biotin or Bodipy (Bt-AA, BD-AA). We found that in cells treated with hemin, Bt-AA was oxidized and formed adducts with proteins, which were inhibited by α-tocopherol. Hemin-dependent mitochondrial dysfunction was also attenuated by α-tocopherol. Protein thiol modification and carbonyl formation occurred on exposure and was not inhibited by α-tocopherol. Supporting a protective role of autophagy, the inhibitor 3-methyladenine potentiated cell death. These data demonstrate that hemin mediates cytotoxicity through a mechanism which involves protein modification by oxidized lipids and other oxidants, decreased respiratory capacity, and a protective role for the autophagic process. Attenuation of lipid peroxidation may be able to preserve mitochondrial function in the endothelium and protect cells from heme-dependent toxicity.
Collapse
Affiliation(s)
- Ashlee N Higdon
- Department of Pathology, Center For Free Radical Biology, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Doberer D, Haschemi A, Andreas M, Zapf TC, Clive B, Jeitler M, Heinzl H, Wagner O, Wolzt M, Bilban M. Haem arginate infusion stimulates haem oxygenase-1 expression in healthy subjects. Br J Pharmacol 2011; 161:1751-62. [PMID: 20718734 DOI: 10.1111/j.1476-5381.2010.00990.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Haem oxygenase 1 (HO-1) is an inducible protein that plays a major protective role in conditions such as ischaemia-reperfusion injury and inflammation. In this study, we have investigated the role of haem arginate (HA) in human male subjects in the modulation of HO-1 expression and its correlation with the GT length polymorphism (GT(n)) in the promoter of the HO-1 gene. EXPERIMENTAL APPROACH In a dose-escalation, randomized, placebo-controlled trial, seven healthy male subjects with a homozygous short (S/S) and eight with a long (L/L) GT(n) genotype received intravenous HA. HO-1 protein expression and mRNA levels in peripheral blood monocytes, bilirubin, haptoglobin, haemopexin and haem levels were analysed over a 48 h observation period. KEY RESULTS We found that the baseline mRNA levels of HO-1 were higher in L/L subjects, while protein levels were higher in S/S subjects. HA induced a dose-dependent increase in the baseline corrected area under the curve values of HO-1 mRNA and protein over 48 h. The response of HO-1 mRNA was more pronounced in L/L subjects but the protein level was similar across the groups. CONCLUSIONS AND IMPLICATION HA is an effective inducer of HO-1 in humans irrespective of the GT(n) genotype. The potential therapeutic application of HA needs to be evaluated in clinical trials.
Collapse
Affiliation(s)
- D Doberer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. THE PLANT CELL 2011; 23:785-805. [PMID: 21317376 PMCID: PMC3077796 DOI: 10.1105/tpc.110.081570] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 05/18/2023]
Abstract
TSPO, a stress-induced, posttranslationally regulated, early secretory pathway-localized plant cell membrane protein, belongs to the TspO/MBR family of regulatory proteins, which can bind porphyrins. This work finds that boosting tetrapyrrole biosynthesis enhanced TSPO degradation in Arabidopsis thaliana and that TSPO could bind heme in vitro and in vivo. This binding required the His residue at position 91 (H91), but not that at position 115 (H115). The H91A and double H91A/H115A substitutions stabilized TSPO and rendered the protein insensitive to heme-regulated degradation, suggesting that heme binding regulates At-TSPO degradation. TSPO degradation was inhibited in the autophagy-defective atg5 mutant and was sensitive to inhibitors of type III phosphoinositide 3-kinases, which regulate autophagy in eukaryotic cells. Mutation of the two Tyr residues in a putative ubiquitin-like ATG8 interacting motif of At-TSPO did not affect heme binding in vitro but stabilized the protein in vivo, suggesting that downregulation of At-TSPO requires an active autophagy pathway, in addition to heme. Abscisic acid-dependent TSPO induction was accompanied by an increase in unbound heme levels, and downregulation of TSPO coincided with the return to steady state levels of unbound heme, suggesting that a physiological consequence of active TSPO downregulation may be heme scavenging. In addition, overexpression of TSPO attenuated aminolevulinic acid-induced porphyria in plant cells. Taken together, these data support a role for TSPO in porphyrin binding and scavenging during stress in plants.
Collapse
Affiliation(s)
| | | | | | | | - Henri Batoko
- Institute of Life Sciences, Molecular Physiology Group, Université Catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Glucocorticoid treatment skews human monocyte differentiation into a hemoglobin-clearance phenotype with enhanced heme-iron recycling and antioxidant capacity. Blood 2010; 116:5347-56. [DOI: 10.1182/blood-2010-04-277319] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Glucocorticoids are used extensively to treat autoimmune hemolytic anemias. Some beneficial effects of glucocorticoid pulse therapy have also been reported in sickle cell disease and paroxysmal nocturnal hemoglobinuria. Based on established concepts of hemoglobin (Hb) toxicity and physiologic Hb scavenger systems, we evaluated whether glucocorticoids could support an adaptive response to extracellular Hb independently of their immunosuppressive activities. Using global proteome and transcriptome analysis with mass-spectrometry (isobaric tag for relative and absolute quantitation and liquid chromatography-mass spectrometry) and gene-array experiments, we found that glucocorticoid treatment in vitro and in patients on glucocorticoid-pulse therapy polarized monocytes into a M2/alternatively activated phenotype with high Hb-scavenger receptor (CD163) expression and enhanced Hb-clearance and detoxification capability. Monocytes concurrently exposed to the interactive activity of glucocorticoids and extracellular Hb were characterized by high expression of a group of antioxidant enzymes known to be regulated by the conserved oxidative response transcription factor nuclear factor E2-related factor. Further, suppressed transferrin receptor, together with high ferroportin expression, pointed to a shift in iron homeostasis directed toward an increased cellular export of heme-derived iron. Therefore, stimulating Hb-endocytosis by CD163 and enhancing antioxidative homeostasis and iron recycling may be an essential activity of glucocorticoids that helps alleviate the adverse effects of extracellular Hb.
Collapse
|
28
|
Al-Aubaidy HA, Jelinek HF. 8-Hydroxy-2-deoxy-guanosine identifies oxidative DNA damage in a rural prediabetes cohort. Redox Rep 2010; 15:155-60. [PMID: 20663291 DOI: 10.1179/174329210x12650506623681] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rising levels of oxidative stress play an important role in the pathogenesis of type 2 diabetes mellitus. Therefore, we investigated the serum level of 8-hydroxy-2-deoxy-guanosine (8-OHdG) as an early oxidative stress marker in patients with prediabetes and with type 2 diabetes mellitus. SUBJECTS AND METHODS Convenience sampling from people attending a diabetes screening clinic. Participants at the rural diabetes screening clinic had their medical history recorded as well as body mass index, blood glucose, cholesterol, glutathione, malondialdehyde, fasting blood glucose and 8-OHdG measured. Statistical analysis was performed using ANOVA followed by Sheffe posthoc test for between-group differences. RESULTS The 8-OHdG level was significantly greater in the prediabetes (516.5 +/- 260 pg/ml) compared to control group (177.8 +/- 91 pg/ml; P < 0.01). The diabetes group (1926.9 +/- 1197 pg/ml) had the highest level of 8-OHdG, being approximately four times greater compared to the prediabetes group (P < 0.001). No significant change in the cholesterol profile, MDA level indicative of lipid peroxidation and antioxidant activity as measured by erythrocyte reduced glutathione was observed in the prediabetes group compared to the control group (P > 0.05). CONCLUSIONS 8-OHdG levels in both the prediabetes and diabetes group were increased from control values suggesting a role for 8-OHdG as an early disease marker that may be more sensitive compared to cholesterol, MDA and erythrocyte reduced glutathione levels, which were within normal limits. This is of clinical significance as 8-OHdG is a strong indicator of oxidative stress related DNA damage within blood vessel walls and other tissue that increases the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Hayder A Al-Aubaidy
- Faculty of Science, Charles Sturt University, Albury, New South Wales, Australia.
| | | |
Collapse
|
29
|
Piazza M, Damore G, Costa B, Gioannini TL, Weiss JP, Peri F. Hemin and a metabolic derivative coprohemin modulate the TLR4 pathway differently through different molecular targets. Innate Immun 2010; 17:293-301. [PMID: 20472612 DOI: 10.1177/1753425910369020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heme is a prosthetic group in a large number of essential proteins that have a pivotal role in oxygen transport, storage and electron shuttling. High amounts of free heme are associated with pathological states. Recently, it has been suggested that activation of Toll-like receptor 4 (TLR4) is one of the ways in which the 'danger signal' of free heme is detected. Here, we examine the biochemical basis of the modulation of the TLR4 pathway by hemin (iron(III)-protoporphyrin IX) and its metabolic, oxidated derivative coprohemin (iron(III)-coproporphyrin I). High concentrations of hemin (50 μM) triggered TLR4-mediated IL-8 production in the human HEK293/TLR4 cell line in the absence of the co-receptors CD14 and MD-2; the latter an essential co-receptor for TLR4 activation by endotoxin. Hemin and endotoxin have additive effects when co-administrated to HEK/TLR4 cells, suggesting that hemin and endotoxin activate TLR4 by different mechanisms. Coprohemin, in contrast to hemin, is unable to trigger TLR4-dependent activation of HEK/TLR4 cells, but instead causes dose-dependent inhibition of endotoxin-stimulated IL-8 production. The inhibitory effect of coprohemin is paralleled by reduced delivery of endotoxin to MD-2 (-TLR4) that is necessary for activation of TLR4 by endotoxin. Thus, despite their similar chemical structure, hemin and coprohemin have very different effects on the TLR4 pathway, the former acting as a mild agonist of TLR4, the latter as an antagonist selectively targeting the endotoxin-MD-2 interaction.
Collapse
Affiliation(s)
- Matteo Piazza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Pecaut MJ, Gridley DS. The impact of mouse strain on iron ion radio-immune response of leukocyte populations. Int J Radiat Biol 2010; 86:409-19. [PMID: 20397846 DOI: 10.3109/09553000903567995] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Exposure to various forms of radiation, including iron ions that have an exceptionally high biological effectiveness, is an inevitable consequence of spaceflight. However, genetic background can significantly influence the response to radiation and hence also the overall health of crewmembers. The major goal of this study was to compare leukocyte population responses in two strains of mice that differ in susceptibility to radiation: C57BL/6 (resistant) and CBA/Ca (susceptible). MATERIALS AND METHODS The mice were whole-body irradiated with 0, 50, 200, or 300 cGy (56)Fe(26) (1 GeV) at approximately 1 Gy/min and euthanised on days 4 and 30 thereafter for analyses. Analyses included body and organ masses (spleen, liver, thymus, lungs), distribution of leukocyte populations in blood and spleen, red blood cell and platelet characteristics, expression of surface molecules (CD11b, CD54), and spontaneous and mitogen-induced blastogenesis. RESULTS There were main effects of Dose and Dose x Day interactions on virtually all quantified parameters in both strains of mice. In contrast, there were relatively few Dose x Strain and three-way interactions. Strain-related interactions involved changes in circulating phagocytic populations, erythrocytes, and liver mass. CONCLUSION The data demonstrate that genetic background can modify certain immune-related parameters after exposure to heavy particle radiation. The possible implications of these findings are discussed.
Collapse
Affiliation(s)
- Michael J Pecaut
- Department of Radiation Medicine, Radiation Research Laboratories, Loma Linda University and Medical Center, Loma Linda, CA 92354, USA.
| | | |
Collapse
|
31
|
Tolosano E, Fagoonee S, Morello N, Vinchi F, Fiorito V. Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal 2010; 12:305-20. [PMID: 19650691 DOI: 10.1089/ars.2009.2787] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hemopexin is an acute-phase plasma glycoprotein, produced mainly by the liver and released into plasma, where it binds heme with high affinity. Other sites of hemopexin synthesis are the nervous system, skeletal muscle, retina, and kidney. The only known receptor for the heme-hemopexin complex is the scavenger receptor, LDL receptor-related protein (LRP)1, which is expressed in most cell types, thus indicating multiple sites of heme-hemopexin complex recovery. The better-characterized function of hemopexin is heme scavenging at the systemic level, consisting of the transport of heme to the liver, where it is catabolyzed or used for the synthesis of hemoproteins or exported to bile canaliculi. This is important both in physiologic heme management for heme-iron recycling and in pathologic conditions associated with intravascular hemolysis to prevent the prooxidant and proinflammatory effects of heme. Other than scavenging heme, the heme-hemopexin complex has been shown to be able to activate signaling pathways, thus promoting cell survival, and to modulate gene expression. In this review, the importance of heme scavenging by hemopexin, as well as the other emerging functions of this protein, are discussed.
Collapse
Affiliation(s)
- Emanuela Tolosano
- Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | | | | | | | | |
Collapse
|
32
|
Heme Arginate Suppresses Cardiac Lesions and Hypertrophy in Deoxycorticosterone Acetate-Salt Hypertension. Exp Biol Med (Maywood) 2009; 234:764-78. [DOI: 10.3181/0810-rm-302] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In hypertension, elevated levels of oxidative/inflammatory mediators including nuclear factor kappaB (NF-κB), activating protein (AP-1), c-Jun-NH2-terminal kinase (JNK), and cell-regulatory proteins such as transforming growth factor beta (TGF-β), trigger the mobilization of extracellular matrix (ECM) leading to fibrosis, hypertrophy and impairment of cardiac function. Although the heme oxygenase (HO) system is cytoprotective, its effects on cardiac fibrosis and hypertrophy in deoxycorticosterone acetate (DOCA-salt) hypertension are not completely elucidated. Here, we report cardioprotection by the HO inducer, heme arginate against histopathological lesions in DOCA-hypertension. Treatment with heme arginate restored physiological blood pressure, and abated cardiac hypertrophy (3.75 ± 0.12 vs. 3.19 ± 0.09 g/kg body wt; n =16, P < 0.01), left-to-right ventricular ratio (6.67 ± 0.62 vs. 4.39 ± 0.63; n = 16, P < 0.01), left ventricular mass (2.48 ± 0.14 vs. 2.01 ± 0.09 g/kg body wt; n = 16, P < 0.01) and left-ventricular wall thickness (2.82 ± 0.16 vs. 1.98 ± 0.14 mm; n = 16, P < 0.01), whereas the HO inhibitor, chromium mesoporphyrin, exacerbated hypertrophy and cardiac lesions. The suppression of cardiac hypertrophy was accompanied by a robust increase in HO-1, HO activity, cyclic guanosine monophosphate (cGMP), ferritin and the total antioxidant capacity, whereas 8-isoprostane, NF-κB, JNK, AP-1, TGF-β, fibronectin and collagen-I were significantly abated. Correspondingly, histopathological parameters that depict progressive cardiac damage, including fibrosis, interstitial/perivascular collagen deposition, scarring, muscle-fiber thickness, muscular hypertrophy and coronary-arteriolar thickening were abated. Our study suggests that upregulating the HO system lowers blood pressure, potentiates the antioxidant status in tissues, suppresses oxidative stress/mediators such as NF-κB, AP-1 and cJNK, and suppresses the mobilization of ECM proteins like TGF-β, collagen and fibronectin, with corresponding reduction of cardiac histopathological lesion and hypertrophy.
Collapse
|
33
|
Heme oxygenase-1: from biology to therapeutic potential. Trends Mol Med 2009; 15:50-8. [DOI: 10.1016/j.molmed.2008.12.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/02/2008] [Accepted: 12/02/2008] [Indexed: 01/24/2023]
|
34
|
Pócsi I, Jeney V, Kertai P, Pócsi I, Emri T, Gyémánt G, Fésüs L, Balla J, Balla G. Fungal siderophores function as protective agents of LDL oxidation and are promising anti-atherosclerotic metabolites in functional food. Mol Nutr Food Res 2008; 52:1434-47. [DOI: 10.1002/mnfr.200700467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
A central role for free heme in the pathogenesis of severe malaria: the missing link? J Mol Med (Berl) 2008; 86:1097-111. [PMID: 18641963 DOI: 10.1007/s00109-008-0368-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/10/2008] [Accepted: 05/09/2008] [Indexed: 12/14/2022]
Abstract
Malaria, the disease caused by Plasmodium infection, is endemic to poverty in so-called underdeveloped countries. Plasmodium falciparum, the main infectious Plasmodium species in sub-Saharan countries, can trigger the development of severe malaria, including cerebral malaria, a neurological syndrome that claims the lives of more than one million children (<5 years old) per year. Attempts to eradicate Plasmodium infection, and in particular its lethal outcomes, have so far been unsuccessful. Using well-established rodent models of malaria infection, we found that survival of a Plasmodium-infected host is strictly dependent on the host's ability to up-regulate the expression of heme oxygenase-1 (HO-1 encoded by the gene Hmox1). HO-1 is a stress-responsive enzyme that catabolizes free heme into biliverdin, via a reaction that releases Fe and generates the gas carbon monoxide (CO). Generation of CO through heme catabolism by HO-1 prevents the onset of cerebral malaria. The protective effect of CO is mediated via its binding to cell-free hemoglobin (Hb) released from infected red blood cells during the blood stage of Plasmodium infection. Binding of CO to cell-free Hb prevents heme release and thus generation of free heme, which we found to play a central role in the pathogenesis of cerebral malaria. We will address hereby how defense mechanisms that prevent the deleterious effects of free heme, including the expression of HO-1, impact on the pathologic outcome of Plasmodium infection and how these may be used therapeutically to suppress its lethal outcomes.
Collapse
|
36
|
Vinchi F, Gastaldi S, Silengo L, Altruda F, Tolosano E. Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:289-99. [PMID: 18556779 DOI: 10.2353/ajpath.2008.071130] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intravascular hemolysis results in the release of massive amounts of hemoglobin and heme into plasma, where they are rapidly bound by haptoglobin and hemopexin, respectively. Data from haptoglobin and hemopexin knockout mice have shown that both proteins protect from renal damage after phenylhydrazine-induced hemolysis, whereas double-mutant mice were especially prone to liver damage. However, the specific role of hemopexin remains elusive because of the difficulty in discriminating between hemoglobin and heme recovery. To study the specific role of hemopexin in intravascular hemolysis, we established a mouse model of heme overload. Under these conditions, both endothelial activation and vascular permeability were significantly higher in hemopexin-null mice compared with wild-type controls. Vascular permeability was particularly altered in the liver, where congestion in the centrolobular area was believed to be associated with oxidative stress and inflammation. Liver damage in hemopexin- null mice may be prevented by induction of heme oxygenase-1 before heme overload. Furthermore, heme-treated hemopexin-null mice exhibited hyperbilirubinemia, prolonged heme oxygenase-1 expression, excessive heme metabolism, and lack of H-ferritin induction in the liver compared with heme-treated wild-type controls. Moreover, these mutant mice metabolize an excess of heme in the kidney. These studies highlight the importance of hemopexin in heme detoxification, thus suggesting that drugs mimicking hemopexin activity might be useful to prevent endothelial damage in patients suffering from hemolytic disorders.
Collapse
Affiliation(s)
- Francesca Vinchi
- Molecular Biotechnology Center, Via Nizza 52, 10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
37
|
Chow JM, Huang GC, Lin HY, Shen SC, Yang LY, Chen YC. Cytotoxic effects of metal protoporphyrins in glioblastoma cells: Roles of albumin, reactive oxygen species, and heme oxygenase-1. Toxicol Lett 2008; 177:97-107. [DOI: 10.1016/j.toxlet.2008.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/24/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
|
38
|
Balla J, Vercellotti GM, Jeney V, Yachie A, Varga Z, Jacob HS, Eaton JW, Balla G. Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid Redox Signal 2007; 9:2119-37. [PMID: 17767398 DOI: 10.1089/ars.2007.1787] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Iron-derived reactive oxygen species are involved in the pathogenesis of numerous vascular disorders. One abundant source of redox active iron is heme, which is inherently dangerous when it escapes from its physiologic sites. Here, we present a review of the nature of heme-mediated cytotoxicity and of the strategies by which endothelium manages to protect itself from this clear and present danger. Of all sites in the body, the endothelium may be at greatest risk of exposure to heme. Heme greatly potentiates endothelial cell killing mediated by leukocytes and other sources of reactive oxygen. Heme also promotes the conversion of low-density lipoprotein to cytotoxic oxidized products. Hemoglobin in plasma, when oxidized, transfers heme to endothelium and lipoprotein, thereby enhancing susceptibility to oxidant-mediated injury. As a defense against such stress, endothelial cells upregulate heme oxygenase-1 and ferritin. Heme oxygenase opens the porphyrin ring, producing biliverdin, carbon monoxide, and a most dangerous product-redox active iron. The latter can be effectively controlled by ferritin via sequestration and ferroxidase activity. These homeostatic adjustments have been shown to be effective in the protection of endothelium against the damaging effects of heme and oxidants; lack of adaptation in an iron-rich environment led to extensive endothelial damage in humans.
Collapse
Affiliation(s)
- József Balla
- Department of Medicine, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Iron is essential for all living organism, although in excess amount it is dangerous via catalyzing the formation of reactive oxygen species. Absorption of iron is strictly controlled resulting in a fine balance of iron-loss and iron-uptake. In countries where the ingestion of heme-iron is significant by meal, great part of iron content in the body originates from heme. Heme derived from food is absorbed by a receptor-mediated manner by enterocytes of small intestine then it is degraded in a reaction catalyzed by heme oxygenase. Iron released from the porphyrin ring leaves enterocytes as transferrin associated iron. Prosthetic group of several proteins contains heme, therefore, it is synthesized by all cells. One of the most significant heme proteins is hemoglobin which transports oxygen in the erythrocytes. Hemoglobin released from erythrocyte during intravascular hemolysis binds to haptoglobin and is taken up by cells of the monocyte-macrophage lineage. Oxidation of hemoglobin (ferro) to methemoglobin (ferri) is inhibited by the structure of hemoglobin although it is not hindered. Superoxide anion is also formed in the reaction that initiates further free radical reactions. In contrast to ferrohemoglobin, methemoglobin readily releases heme, therefore, oxidation of hemoglobin drives the formation of free heme in plasma. Heme binds to a plasma protein, hemopexin, and is internalized by cells of monocyte-macrophage lineage in a receptor-mediated manner, then degraded in reaction catalysed by heme oxygenase. Heme is also taken up by plasma lipoproteins and endothelial cells leading to oxidation of LDL and subsequent endothelial cell damage. The purpose of this work was to summarize the processes related to heme.
Collapse
Affiliation(s)
- József Balla
- Debreceni Egyetem, Orvos- és Egészségtudományi Centrum I. Belgyógyászati Klinika, Szülészeti Klinika, Nefrológiai Tanszék, Neonatológiai Tanszék Debrecen
| | | | | | | | | |
Collapse
|
40
|
Porto BN, Alves LS, Fernández PL, Dutra TP, Figueiredo RT, Graça-Souza AV, Bozza MT. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J Biol Chem 2007; 282:24430-6. [PMID: 17581818 DOI: 10.1074/jbc.m703570200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemolysis or extensive cell damage can lead to high concentrations of free heme, causing oxidative stress and inflammation. Considering that heme induces neutrophil chemotaxis, we hypothesize that heme activates a G protein-coupled receptor. Here we show that similar to heme, several heme analogs were able to induce neutrophil migration in vitro and in vivo. Mesoporphyrins, molecules lacking the vinyl groups in their rings, were not chemotactic for neutrophils and selectively inhibited heme-induced migration. Moreover, migration of neutrophils induced by heme was abolished by pretreatment with pertussis toxin, an inhibitor of Galpha inhibitory protein, and with inhibitors of phosphoinositide 3-kinase, phospholipase Cbeta, mitogen-activated protein kinases, or Rho kinase. The induction of reactive oxygen species by heme was dependent of Galpha inhibitory protein and phosphoinositide 3-kinase and partially dependent of phospholipase Cbeta, protein kinase C, mitogen-activated protein kinases, and Rho kinase. Together, our results indicate that heme activates neutrophils through signaling pathways that are characteristic of chemoattractant molecules and suggest that mesoporphyrins might prove valuable in the treatment of the inflammatory consequences of hemorrhagic and hemolytic disorders.
Collapse
Affiliation(s)
- Bárbara N Porto
- Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21.941-590 Brasil
| | | | | | | | | | | | | |
Collapse
|
41
|
Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, Oliveira MF, Oliveira PL, Graça-Souza AV, Bozza MT. Characterization of heme as activator of Toll-like receptor 4. J Biol Chem 2007; 282:20221-9. [PMID: 17502383 DOI: 10.1074/jbc.m610737200] [Citation(s) in RCA: 427] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heme is an ancient and ubiquitous molecule present in organisms of all kingdoms, composed of an atom of iron linked to four ligand groups of porphyrin. A high amount of free heme, a potential amplifier of the inflammatory response, is a characteristic feature of diseases with increased hemolysis or extensive cell damage. Here we demonstrate that heme, but not its analogs/precursors, induced tumor necrosis factor-alpha (TNF-alpha) secretion by macrophages dependently on MyD88, TLR4, and CD14. The activation of TLR4 by heme is exquisitely strict, requiring its coordinated iron and the vinyl groups of the porphyrin ring. Signaling of heme through TLR4 depended on an interaction distinct from the one established between TLR4 and lipopolysaccharide (LPS) since anti-TLR4/MD2 antibody or a lipid A antagonist inhibited LPS-induced TNF-alpha secretion but not heme activity. Conversely, protoporphyrin IX antagonized heme without affecting LPS-induced activation. Moreover, heme induced TNF-alpha and keratinocyte chemokine but was ineffective to induce interleukin-6, interleukin-12, and interferon-inducible protein-10 secretion or co-stimulatory molecule expression. These findings support the concept that the broad ligand specificity of TLR4 and the different activation profiles might in part reside in its ability to recognize different ligands in different binding sites. Finally, heme induced oxidative burst, neutrophil recruitment, and heme oxygenase-1 expression independently of TLR4. Thus, our results presented here reveal a previous unrecognized role of heme as an extracellular signaling molecule that affects the innate immune response through a receptor-mediated mechanism.
Collapse
Affiliation(s)
- Rodrigo T Figueiredo
- Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Balla J, Jeney V, Varga Z, Komódi E, Nagy E, Balla G. Iron homeostasis in chronic inflammation. ACTA ACUST UNITED AC 2007; 94:95-106. [PMID: 17444278 DOI: 10.1556/aphysiol.94.2007.1-2.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammation induced anemia and resistance to erythropoietin are common features in patients with chronic kidney disease (CKD). Elevated levels of cytokines and enhanced oxidative stress, conditions associated with inflammatory states, are implicated in the development of anemia. Accumulating evidence suggests that activation of cytokine cascade and the associated acute-phase response, as it often occurs in patients with CKD, divert iron from erythropoiesis to storage sites within the reticuloendothelial system leading to functional iron deficiency and subsequently to anemia or resistance to erythropoietin. Other processes have also been shown to be involved in the pathogenesis of anemia provoked by the activated immune system including an inhibition of erythroid progenitor proliferation and differentiation, a suppression of erythropoietin production and a blunted response to erythropoietin. The present review concerns the underlying alterations in iron metabolism induced by chronic inflammation that result in anemia.
Collapse
Affiliation(s)
- J Balla
- Department of Medicine, Division of Nephrology and Hemodialysis Unit, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, H-4012 Debercen, Hungary.
| | | | | | | | | | | |
Collapse
|
43
|
Mense SM, Zhang L. Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res 2006; 16:681-92. [PMID: 16894358 DOI: 10.1038/sj.cr.7310086] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heme (iron protoporphyrin IX) is an essential molecule for numerous living organisms. Not only does it serve as a prosthetic group in enzymes, it also acts as a signaling molecule that controls diverse molecular and cellular processes ranging from signal transduction to protein complex assembly. Deficient heme synthesis or function impacts the hematopoietic, hepatic and nervous systems in humans. Recent studies have revealed a series of heme-regulated transcription factors and signal transducers including Hap1, a heme-activated transcription factor that mediates the effects of oxygen on gene transcription in the yeast Saccharomyces cerevisiae; Bach1, a transcriptional repressor that is negatively regulated by heme in mammalian cells; IRR, an iron regulatory protein that mediates the iron-dependant regulation of heme synthesis in the bacterium Bradyrhizobium japonicum; and heme-regulated inhibitor, an eucaryotic initiation factor 2alpha kinase that coordinates protein synthesis with heme availability in reticulocytes. In this review, we summarize the current knowledge about how heme controls the activity of these transcriptional regulators and signal transducers, and discuss diseases associated with defective heme synthesis, degradation and function.
Collapse
Affiliation(s)
- Sarah M Mense
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, NY 10032, USA
| | | |
Collapse
|
44
|
Heme oxygenase-1 upregulation protects against intestinal ischemia/reperfusion injury: a laboratory based study. Int J Surg 2006; 5:216-24. [PMID: 17660127 DOI: 10.1016/j.ijsu.2006.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/26/2006] [Accepted: 06/02/2006] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Tissue damage caused by ischemia/reperfusion injury (IRI) of the intestine may lead to organ dysfunction in several clinical conditions, and is associated with increased incidence of chronic rejection after transplantation. Heme oxygenase-1 (HO-1) is a stress-inducible protein capable of modulating inflammation, oxidative stress, and cell death. The aim of the present study was to assess the effects of HO-1 upregulation on intestinal IRI. METHODS Lewis rats (seven groups, n=6 each) underwent intestinal warm ischemia induced by clamping the superior mesenteric artery and by ligating the inferior mesenteric artery for 60 min. After 120 or 240 min of reperfusion, tissue samples were collected for analysis. Cobalt protoporphyrin (CoPP) was administered IP at 10 or 20mg/kg 24h before IRI, to induce HO-1 upregulation. Control animals received vehicle alone. Tissue injury measurements included the following: histological changes, tissue myeloperoxidase (MPO) activity, nitrate/nitrite levels, and IL-6 levels. RESULTS A significant HO-1 upregulation was demonstrated in pre-treated animals (p<0.05, 95% CI: -0.84 to -0.05). Intestinal IL-6 mRNA expression levels were significantly reduced in animals treated with CoPP 20mg/kg after 240 min of IRI (p<0.05, 95% CI: 0.09-2.25). Significant reduction in MPO activity and NO products was observed in treated animals when compared to controls (p<0.01, 95% CI: 0.07-0.24 and p<0.01, 95% CI: 5.58-12.75, respectively). CONCLUSIONS Induction of HO-1 by CoPP administration before IRI was resulted in a significant reduction of intestinal tissue injury. Developing strategies to induce HO-1 upregulation before surgery will be important to reduce IRI in the clinical setting.
Collapse
|
45
|
Kapiotis S, Hermann M, Exner M, Laggner H, Gmeiner BMK. Copper- and magnesium protoporphyrin complexes inhibit oxidative modification of LDL induced by hemin, transition metal ions and tyrosyl radicals. Free Radic Res 2006; 39:1193-202. [PMID: 16298745 DOI: 10.1080/10715760500138981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The oxidative modification of LDL may play an important role in the early events of atherogenesis. Thus the identification of antioxidative compounds may be of therapeutic and prophylactic importance regarding cardiovascular disease. Copper-chlorophyllin (Cu-CHL), a Cu(2+)-protoporphyrin IX complex, has been reported to inhibit lipid oxidation in biological membranes and liposomes. Hemin (Fe(3+)-protoporphyrin IX) has been shown to bind to LDL thereby inducing lipid peroxidation. As Cu-CHL has a similar structure as hemin, one may assume that Cu-CHL may compete with the hemin action on LDL. Therefore, in the present study Cu-CHL and the related compound magnesium-chlorophyllin (Mg-CHL) were examined in their ability to inhibit LDL oxidation initiated by hemin and other LDL oxidizing systems. LDL oxidation by hemin in presence of H(2)O(2) was strongly inhibited by both CHLs. Both chlorophyllins were also capable of effectively inhibiting LDL oxidation initiated by transition metal ions (Cu(2+)), human umbilical vein endothelial cells (HUVEC) and tyrosyl radicals generated by myeloperoxidase (MPO) in presence of H(2)O(2) and tyrosine. Cu- and Mg-CHL showed radical scavenging ability as demonstrated by the diphenylpicrylhydracylradical (DPPH)-radical assay and estimation of phenoxyl radical generated diphenyl (dityrosine) formation. As assessed by ultracentrifugation the chlorophyllins were found to bind to LDL (and HDL) in serum. The present study shows that copper chlorophyllin (Cu-CHL) and its magnesium analog could act as potent antagonists of atherogenic LDL modification induced by various oxidative stimuli. As inhibitory effects of the CHLs were found at concentrations as low as 1 mumol/l, which can be achieved in humans, the results may be physiologically/therapeutically relevant.
Collapse
Affiliation(s)
- Stylianos Kapiotis
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Austria
| | | | | | | | | |
Collapse
|
46
|
Srisook K, Kim C, Cha YN. Molecular mechanisms involved in enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the "one-two" punch. Antioxid Redox Signal 2005; 7:1674-87. [PMID: 16356129 DOI: 10.1089/ars.2005.7.1674] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme oxygenase (HO)-1 is a stress response protein, which confers cytoprotection against oxidative injury and provides a vital function in maintaining tissue homeostasis. Molecular mechanisms involved in the inducible transcription of ho-1 occurring in response to numerous and diverse stressful conditions have remained elusive. Since the discovery of E1 and E2, the two upstream enhancers regulating induction of ho-1 transcription in 1989, there have been many studies dealing with molecular mechanisms involved in enhancing HO-1 expression. In this commentary, recent advances in our understanding of the mechanisms involved in the induction of HO-1 expression in mammalian cells are summarized with some supportive results reported by others. Currently available data indicate that activation of ho-1 transcription involves both the heme (native substrate)-dependent selective alleviation of repressor and the oxidative stress-dependent activation of transcriptional activator. The stress-released free-heme (HO-1 substrate) from hemoproteins involved in causing oxidative stress itself appears to act as a molecular switch controlling the repressor- activator antagonism on the enhancer sequences of ho-1. Thus, induction of HO-1 appears to operate in a manner like a simple feedback loop. dox Signal. 7, 1674-1687.
Collapse
Affiliation(s)
- Klaokwan Srisook
- Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon, South Korea
| | | | | |
Collapse
|
47
|
Julius U, Pietzsch J. Glucose-induced enhancement of hemin-catalyzed LDL oxidation in vitro and in vivo. Antioxid Redox Signal 2005; 7:1507-12. [PMID: 16356114 DOI: 10.1089/ars.2005.7.1507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Growing evidence indicates that oxidative modification of low-density lipoprotein (LDL) is increased in diabetes mellitus; however, the mechanism(s) of this phenomenon is still unclear. gamma-Glutamyl semialdehyde (gammaGSA) is a product of hemin (Fe(3+)-protoporphyrin IX)-catalyzed oxidation of apolipoprotein B-100 (apoB- 100) proline and arginine residues. On reduction, gammaGSA forms 5-hydroxy-2-aminovaleric acid (HAVA). This report describes the application of sensitive HAVA assay, to characterize gammaGSA formation in LDL under normo- and hyperglycemic conditions, both in vitro and in vivo. In vitro studies revealed that apoB-100 proline and arginine residues are not oxidized to HAVA by HOCl or the myeloperoxidase/hydrogen peroxide (H(2)O(2)) oxidation system. Cu(2+), Cu(2+)/H(2)O(2), and Fe(2+) induced only minor HAVA formation. In contrast, the hemin oxidation system appeared reactive toward LDL apoB-100 proline and arginine residues. The resulting significant HAVA formation was specifically inhibited by a redox-inert ferric iron chelator. Glucose further enhanced hemin-induced increase in relative electrophoretic mobility of LDL and apoB-100 HAVAformation. In vivo we observed elevated concentrations of HAVA in LDL apoB-100 in patients with impaired glucose tolerance and with manifest diabetes mellitus. In conclusion, glucose promotes iron-mediated oxidation of apoB- 100 proline and arginine residues via a superoxide-dependent mechanism, thus rendering the LDL particles more atherogenic. The findings (a) identify a potential mechanism of enhanced atherogenesis in subjects with diabetes mellitus and (b) support the value of HAVA as a specific marker of LDL apoB-100 oxidation. Antioxid. Redox Signal. 7, 1507-1512.
Collapse
Affiliation(s)
- U Julius
- Medical Clinic and Outpatient Department III, University Hospital Dresden, Dresden, Germany.
| | | |
Collapse
|
48
|
Balla J, Vercellotti GM, Jeney V, Yachie A, Varga Z, Eaton JW, Balla G. Heme, heme oxygenase and ferritin in vascular endothelial cell injury. Mol Nutr Food Res 2005; 49:1030-43. [PMID: 16208635 DOI: 10.1002/mnfr.200500076] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron-derived reactive oxygen species are implicated in the pathogenesis of numerous vascular disorders including atherosclerosis, microangiopathic hemolytic anemia, vasculitis, and reperfusion injury. One abundant source of redox active iron is heme, which is inherently dangerous when released from intracellular heme proteins. The present review concerns the involvement of heme in vascular endothelial cell damage and the strategies used by endothelium to minimize such damage. Exposure of endothelium to heme greatly potentiates cell killing mediated by polymorphonuclear leukocytes and other sources of reactive oxygen. Free heme also promotes the conversion of low-density lipoprotein (LDL) into cytotoxic oxidized products. Only because of its abundance, hemoglobin probably represents the most important potential source of heme within the vascular endothelium; hemoglobin in plasma, when oxidized, transfers heme to endothelium and LDL, thereby enhancing cellular susceptibility to oxidant-mediated injury. As a defense against such toxicity, upon exposure to heme or hemoglobin, endothelial cells up-regulate heme oxygenase-1 and ferritin. Heme oxygenase-1 is a heme-degrading enzyme that opens the porphyrin ring, producing biliverdin, carbon monoxide, and the most dangerous product - free redox active iron. The latter can be effectively controlled by ferritin via sequestration and ferroxidase activity. Ferritin serves as a protective gene by virtue of antioxidant, antiapoptotic, and antiproliferative actions. These homeostatic adjustments have been shown effective in the protection of endothelium against the damaging effects of exogenous heme and oxidants. The central importance of this protective system was recently highlighted by a child diagnosed with heme oxygenase-1 deficiency, who exhibited extensive endothelial damage.
Collapse
Affiliation(s)
- József Balla
- Department of Medicine, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
49
|
Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett 2005; 157:175-88. [PMID: 15917143 DOI: 10.1016/j.toxlet.2005.03.004] [Citation(s) in RCA: 600] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 11/16/2022]
Abstract
Severe hemolysis or myolysis occurring during pathological states, such as sickle cell disease, ischemia reperfusion, and malaria results in high levels of free heme, causing undesirable toxicity leading to organ, tissue, and cellular injury. Free heme catalyzes the oxidation, covalent cross-linking and aggregate formation of protein and its degradation to small peptides. It also catalyzes the formation of cytotoxic lipid peroxide via lipid peroxidation and damages DNA through oxidative stress. Heme being a lipophilic molecule intercalates in the membrane and impairs lipid bilayers and organelles, such as mitochondria and nuclei, and destabilizes the cytoskeleton. Heme is a potent hemolytic agent and alters the conformation of cytoskeletal protein in red cells. Free heme causes endothelial cell injury, leading to vascular inflammatory disorders and stimulates the expression of intracellular adhesion molecules. Heme acts as a pro-inflammatory molecule and heme-induced inflammation is involved in the pathology of diverse conditions; such as renal failure, arteriosclerosis, and complications after artificial blood transfusion, peritoneal endometriosis, and heart transplant failure. Heme offers severe toxic effects to kidney, liver, central nervous system and cardiac tissue. Although heme oxygenase is primarily responsible to detoxify free heme but other extra heme oxygenase systems also play a significant role to detoxify heme. A brief account of free heme toxicity and its detoxification systems along with mechanistic details are presented.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Drug Target Discovery and Development, Central Drug Research Institute, Chatter Manzil Palace, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | |
Collapse
|
50
|
Tsemakhovich VA, Bamm VV, Shaklai M, Shaklai N. Vascular damage by unstable hemoglobins: The role of heme-depleted globin. Arch Biochem Biophys 2005; 436:307-15. [PMID: 15797243 DOI: 10.1016/j.abb.2005.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Revised: 01/26/2005] [Indexed: 10/25/2022]
Abstract
The study compared the damage inflicted to endothelial cells (ECs) by intact hemoglobin (Hb) and isolated chains. To compare optional in vivo contact of acellular Hb with the endothelium, oxy-forms of Hb and its isolated alpha- and beta-chains existing in the thalassemias were added to primary confluent cultures of bovine aorta EC. Cell damage was followed by morphological changes or leakage of lactic dehydrogenase and pre-inserted 51Cr from the cells, followed for 27 h. Under these experimental conditions, Hb did not affect the cells but its chains inflicted damage, beta- more than alpha-chains. Based on the literature and our data, we hypothesized that hemin and/or globin should be responsible for the increased endothelial damage by beta-chains. While hemin hardly affected ECs, globin, unlike the plasma protein hemopexin, was harmful. Since hemin release leaves globin with a large hydrophobic surface, the globin-damage appears to result from adsorptive pinocytosis to endothelial membrane.
Collapse
Affiliation(s)
- V A Tsemakhovich
- Department of Human Genetics, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | |
Collapse
|