1
|
Siegel SJ, DeWolf S, Schmalz J, Saber W, Dong J, Martens MJ, Logan B, Albanese A, Iovino L, Chen E, Kaminski J, Neuberg D, Hebert K, Keskula P, Zavistaski J, Steinberg L, Schichter I, Cagnin L, Hernandez V, Warren M, Applegate K, Bar M, Chhabra S, Choi SW, Clark W, Das S, Jenq R, Jones RJ, Levine JE, Murthy H, Rashidi A, Riches M, Sandhu K, Sung AD, Larkin K, Al Malki MM, Gooptu M, Elmariah H, Alousi A, Runaas L, Shaffer B, Rezvani A, El Jurdi N, Loren AW, Scheffey D, Sanders C, Hamadani M, Dudakov J, Bien S, Robins H, Horowitz M, Bolaños-Meade J, Holtan S, Bhatt AS, Perales MA, Kean LS. Graft-versus-host disease prophylaxis shapes T cell biology and immune reconstitution after hematopoietic cell transplant. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.25.25322901. [PMID: 40061351 PMCID: PMC11888538 DOI: 10.1101/2025.02.25.25322901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Successful hematopoietic cell transplant requires immunosuppression to prevent graft-versus-host disease (GVHD), a lethal, T-cell-mediated post-transplant complication. The phase 3 BMT CTN 1703 trial demonstrated superior GVHD-free/relapse-free survival for post-transplant cyclophosphamide (PT-Cy)-based GVHD prophylaxis versus tacrolimus/methotrexate (Tac/MTX), but did not improve overall survival. To compare T-cell biology between GVHD prophylaxis regimens, 324 patients were co-enrolled onto BMT CTN 1801 (NCT03959241). We quantified T-cell immune reconstitution using multi-modal analysis, including T-cell receptor (TCR) sequencing of 2,359 longitudinal samples (180,432,350 T-cells). Compared to Tac/MTX, PT-Cy was associated with an early, substantial reduction in TCR diversity that was sustained for 2 years. PT-Cy led to a T-cell reconstitution bottleneck, including reduced thymic output and virus-associated TCRs. Decreased D+14 TCR diversity predicted prevention of chronic GVHD, but also correlated with increased moderate-to-severe infections. This study reveals how distinct immunosuppression strategies have significant effects on the global immune repertoire, underpinning post-transplant clinical outcomes.
Collapse
Affiliation(s)
- Steven J Siegel
- Department of Pediatrics, Harvard Medical School and Divisions of Infectious Diseases and Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Susan DeWolf
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Wael Saber
- Department of Medicine, Medical College of Wisconsin and Center for International Blood and Marrow Transplant Research (CIBMTR), Milwaukee, WI
| | - Jiayi Dong
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Michael J Martens
- CIBMTR and Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI
| | - Brent Logan
- CIBMTR and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | | | - Lorenzo Iovino
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Edward Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA and the Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Kyle Hebert
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Paula Keskula
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | | | - Lea Steinberg
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | | | - Lorenzo Cagnin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Vanessa Hernandez
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Makya Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Merav Bar
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Sung Won Choi
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - William Clark
- Division of Hematology-Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA
| | - Suman Das
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Robert Jenq
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Richard J Jones
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University and the Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - John E Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hemant Murthy
- Division of Hematology-Oncology and Blood and Marrow Transplant and Cellular Therapy Programs, Mayo Clinic, Jacksonville, FL
| | - Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Karamjeet Sandhu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Kansas University Medical Center, Kansas City, KS
| | - Karilyn Larkin
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Mahasweta Gooptu
- Department of Hematology and Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hany Elmariah
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer and Research Institute, Tampa, FL
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Lyndsey Runaas
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Brian Shaffer
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, and the Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Andrew Rezvani
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA
| | - Najla El Jurdi
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Alison W Loren
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Mehdi Hamadani
- Blood and Marrow Transplant Program and Cellular Therapy Program, Medical College of Wisconsin and CIBMTR, Milwaukee, WI
| | - Jarrod Dudakov
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center and Department of Immunology, University of Washington, Seattle, WA
| | | | | | - Mary Horowitz
- Blood and Marrow Transplant Program and Cellular Therapy Program, Medical College of Wisconsin and CIBMTR, Milwaukee, WI
| | - Javier Bolaños-Meade
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University and the Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shernan Holtan
- Blood and Marrow Transplantation Section, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Ami S Bhatt
- Division of Hematology, Departments of Medicine and Genetics, Stanford University, Palo Alto, CA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, and the Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Leslie S Kean
- Department of Pediatrics, Harvard Medical School, Division of Hematology/Oncology, Boston Children's Hospital, and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
2
|
Zhang H, Guo W, Wang J, Lu N, Zheng X, Sun Q, Xia Y, Zhang R, Chen X, Ma Q, Yang D, Pang A, Wei J, He Y, Feng S, Han M, Zhai W, Jiang E. Impact of bone marrow fibrosis on outcomes of allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Bone Marrow Transplant 2024; 59:1654-1666. [PMID: 39192082 PMCID: PMC11611735 DOI: 10.1038/s41409-024-02402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Bone marrow fibrosis (BMF) of unknown etiology was common in hematological malignancies, but its prognostic value for acute myeloid leukemia (AML) is unclear. We interrogated data from 532 newly diagnosed subjects with AML receiving allogeneic hematological stem cell transplantation to evaluate the prognostic impact of BMF on transplant outcomes. Using the European consensus on the grading of BMF at diagnosis, 255 (48%) subjects were BMF-0, 209 (39%), BMF-1 and 68 (13%), BMF-2-3. Subjects with BMF-2-3 had poor overall survival (P < 0.001), disease-free survival (P < 0.001) and a higher incidence of relapse (CIR, P < 0.001). Multi-variable analyses in subjects achieving pre-transplant complete remission showed BMF-2-3 was an independent risk factor for CIR (Hazard Ratio [HR] = 2.17, (95% CI, 1.11, 4,24); P = 0.02). Furthermore, BMF-2-3 group showed delayed neutrophil and platelet engraftment and delayed B cell recovery post-transplantation. These findings demonstrate the significance of BMF in transplant outcomes and attract more attention to AML with BMF.
Collapse
Affiliation(s)
- Haixiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiali Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ni Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinhui Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yonghui Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
3
|
Kiene S, Albrecht M, Theurich S, Scheid C, Skoetz N, Holtick U. Bone marrow versus peripheral blood allogeneic haematopoietic stem cell transplantation for haematological malignancies in adults. Cochrane Database Syst Rev 2024; 11:CD010189. [PMID: 39508306 PMCID: PMC11542152 DOI: 10.1002/14651858.cd010189.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
BACKGROUND Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is an established treatment option for many malignant and non-malignant haematological disorders. Peripheral blood stem cells represent the main stem cell source in malignant diseases due to faster engraftment and practicability issues compared with bone marrow stem cells. Since the early 2000s, there have been many developments in the clinical field. Allo-HSCT using haploidentical family donors (haplo-HSCT) has emerged as an alternative for people who do not have human leukocyte antigen (HLA)-matched siblings or unrelated donors. In addition, the introduction of new methods and strategies in allo-HSCT, such as the use of post-transplant cyclophosphamide (PT-Cy), better donor selection, the more frequent administration of anti-thymocyte globulins (ATGs), but also improved management of side effects such as graft-versus-host disease (GvHD) and infection, have impacted outcomes after allo-HSCT. In addition, as transplant indications and strategies continue to adapt in line with novel research findings, the effect of the stem cell source on post-transplant outcomes is unclear. For our analysis, we considered peripheral blood stem cells as the standard graft source for adults with haematological malignancies. This is an update of a review first published in 2014. OBJECTIVES To assess the effect of bone marrow transplantation versus peripheral blood stem cell transplantation in adults with haematological malignancies with regard to overall survival, disease-free survival, incidence of non-relapse or transplant-related mortality, incidence of extensive chronic graft-versus-host disease (GvHD), incidence of acute GvHD grades III to IV, incidence of overall chronic GvHD, and quality of life. SEARCH METHODS For this update we searched CENTRAL, MEDLINE, Embase, and two trials registries on 2 November 2022 with no language restrictions. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing bone marrow transplantation (BMT) with peripheral blood stem cell transplantation (PBSCT) in adults (aged ≥ 18 years) with haematological malignancies. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies and extracted data. We evaluated risk of bias using the original Cochrane risk of bias tool (RoB 1), and we evaluated the certainty of the evidence using the GRADE approach. MAIN RESULTS The updated search identified no new studies for inclusion. We found two additional reports relating to a previously included study; they provided new data on quality of life and infection rates after transplantation. As these are clinically relevant outcomes, quality of life was added to the summary of findings table (replacing acute GvHD II to IV), and rate of infection was added to our list of secondary outcomes. We included nine RCTs with a total of 1521 participants. Overall, the risk of bias in the included studies was low. Median participant age across studies ranged from 21 to 45 years, and studies took place in Canada, the USA, New Zealand, Brazil, Australia, Egypt, and across Europe. Bone marrow transplantation (BMT) compared with peripheral blood stem cell transplantation (PBSCT) likely results in little to no difference in overall survival (hazard ratio (HR) for all-cause death 1.07, 95% CI 0.91 to 1.25; 6 studies, 1330 participants; moderate-certainty evidence). There may be little to no difference between BMT and PBSCT in terms of disease-free survival (HR for disease recurrence or all-cause death 1.04, 95% CI 0.89 to 1.21; 6 studies, 1225 participants; low-certainty evidence) and non-relapse or transplant-related mortality (HR 0.98, 95% CI 0.76 to 1.28; 3 studies, 758 participants; low-certainty evidence). BMT compared with PBSCT likely results in lower rates of extensive chronic GvHD (HR 0.69, 95% CI 0.54 to 0.90; 4 studies, 765 participants; moderate-certainty evidence) and overall chronic GvHD (HR 0.72, 95% CI 0.61 to 0.85; 4 studies, 1121 participants; moderate-certainty evidence). BMT compared with PBSCT may reduce the incidence of acute GvHD grades III to IV, although the 95% CI of the HR is also compatible with no effect (HR 0.75, 95% CI 0.55 to 1.02; 3 studies, 925 participants; moderate-certainty evidence). Evidence from two trials that used different quality of life assessment instruments suggests that BMT compared with PBSCT may be associated with higher quality of life five years after transplantation. AUTHORS' CONCLUSIONS Moderate-certainty evidence suggests little to no difference in overall survival following allo-HSCT using bone marrow versus peripheral blood stem cells (the current clinical standard stem cell source). Low-certainty evidence suggests little to no difference between the stem cell sources in terms of disease-free survival and non-relapse or transplant-related survival. BMT likely reduces the risk of extensive chronic GvHD and overall chronic GvHD compared with PBSCT. Evidence from two RCTs suggests that BMT compared with PBSCT may result in higher long-term quality of life, possibly due to the lower chronic GvHD incidence. With this update, we aimed to supply the most recent data on the choice of stem cell source for allo-HSCT in adults by including new evidence published up to November 2022. We identified no new ongoing studies and no new RCTs with published results. Further research in this field is warranted.
Collapse
Affiliation(s)
- Sinje Kiene
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Stem Cell Transplantation Program, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Melanie Albrecht
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Stem Cell Transplantation Program, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sebastian Theurich
- Department of Medicine III, University Hospital LMU, Ludwig-Maximilians-Universität München, Munich, Germany
- Cancer- and Immunometabolism Research Group, Gene Center LMU, Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, German Cancer Research Center, Heidelberg, Germany., Munich, Germany
| | - Christof Scheid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Stem Cell Transplantation Program, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Evidence Synthesis Unit Germany, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Udo Holtick
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Stem Cell Transplantation Program, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Uhlemann H, Epp K, Klesse C, Link-Rachner CS, Surendranath V, Günther UP, Schetelig J, Heidenreich F. Shape of the art: TCR-repertoire after allogeneic hematopoietic cell transplantation. Best Pract Res Clin Haematol 2024; 37:101558. [PMID: 39098804 DOI: 10.1016/j.beha.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
The human adaptive immune repertoire is characterized by specificity and diversity to provide immunity against past and future tasks. Such tasks are mainly infections but also malignant transformations of cells. With its multiple lines of defense, the human immune system contains both, rapid reaction forces and the potential to capture, disassemble and analyze strange structures in order to teach the adaptive immune system and mount a specific immune response. Prevention and mitigation of autoimmunity is of equal importance. In the context of allogeneic hematopoietic cell transplantation (HCT) specific challenges exist with the transfer of cells from the adapted donor immune system to the immunosuppressed recipient. Those challenges are immunogenetic disparity between donor and host, reconstitution of immunity early after HCT by expansion of mature immune effector cells, and impaired thymic function, if the recipient is an adult (as it is the case in most HCTs). The possibility to characterize the adaptive immune repertoire by massively parallel sequencing of T-cell receptor gene rearrangements allows for a much more detailed characterization of the T-cell repertoire. In addition, high-dimensional characterization of immune effector cells based on their immunophenotype and single cell RNA sequencing allow for much deeper insights in adaptive immune responses. We here review, existing - still incomplete - information on immune reconstitution after allogeneic HCT. Building on the technological advances much deeper insights into immune recovery after HCT and adaptive immune responses and can be expected in the coming years.
Collapse
Affiliation(s)
- Heike Uhlemann
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany.
| | - Katharina Epp
- University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | | | | | | - Johannes Schetelig
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| | - Falk Heidenreich
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| |
Collapse
|
5
|
Feng CJ, Zhao P, Fu HX, Yan CH, Wang CC, Zhu XL, He Y, Wang FR, Zhang YY, Mo XD, Kong Y, Han W, Wang JZ, Wang Y, Chen H, Chen YH, Zhao XY, Chang YJ, Xu LP, Liu KY, Huang XJ, Zhang XH. A predictive model of herpes zoster after allogeneic hematopoietic stem cell transplantation: VZV reactivation following antiviral prophylaxis discontinuation. Am J Hematol 2024; 99:633-641. [PMID: 37772366 DOI: 10.1002/ajh.27090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Herpes zoster (HZ) refers to the rash appearing on dermatomes due to varicella zoster virus (VZV) reactivation. The incidence of HZ is significantly higher in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients than in non-HSCT recipients. Although acyclovir prophylaxis is routinely administered to every allo-HSCT recipient for 1 year after transplantation, some individuals eventually develop late-onset HZ after completing prophylaxis. Little information is known about the clinical features of HZ after prophylactic antiviral treatment discontinuation, and an effective predictive model of late-onset HZ needs to be established. A total of 3366 patients who had received allo-HSCT from 2012 to 2017 were included in our study, among whom 201 developed HZ after 1 year (late-onset HZ). We designed a nested case-control study to identify potential predictors of late-onset HZ. Finally, we established a predictive model using binary logistic regression analysis. Age (p < .001), use of immunosuppressants at +1 year (p < .001), CD4-CD8 ratio at +1 year (p < .001), certain mental disorders (depression, anxiety, insomnia and adjustment disorder) (p < .001), engraftment time of neutrophils (p < .001), and CD8+ cell count at +30 days (p < .001) were independent predictors of late-onset HZ. A risk grading system was established based on regression coefficients. Discrimination and calibration analysis indicated that the model had good performance. We also identified several predictive factors of the incidence of HZ-related complications. This is the first scoring system for predicting the incidence of late-onset HZ after allo-HSCT. This model can be applied to identify individuals at high risk of late-onset HZ in the early period after receiving allo-HSCT.
Collapse
Affiliation(s)
- Cheng-Jie Feng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Peng Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Chen-Cong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Lu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yun He
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
6
|
Albert E, Giménez E, Hernani R, Piñana JL, Solano C, Navarro D. Torque Teno Virus DNA Load in Blood as an Immune Status Biomarker in Adult Hematological Patients: The State of the Art and Future Prospects. Viruses 2024; 16:459. [PMID: 38543824 PMCID: PMC10974055 DOI: 10.3390/v16030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
A solid body of scientific evidence supports the assumption that Torque teno virus (TTV) DNA load in the blood compartment may behave as a biomarker of immunosuppression in solid organ transplant recipients; in this clinical setting, high or increasing TTV DNA levels precede the occurrence of infectious complications, whereas the opposite anticipates the development of acute rejection. The potential clinical value of the TTV DNA load in blood to infer the risk of opportunistic viral infection or immune-related (i.e., graft vs. host disease) clinical events in the hematological patient, if any, remains to be determined. In fact, contradictory data have been published on this matter in the allo-SCT setting. Studies addressing this topic, which we review and discuss herein, are highly heterogeneous as regards design, patient characteristics, time points selected for TTV DNA load monitoring, and PCR assays used for TTV DNA quantification. Moreover, clinical outcomes are often poorly defined. Prospective, ideally multicenter, and sufficiently powered studies with well-defined clinical outcomes are warranted to elucidate whether TTV DNA load monitoring in blood may be of any clinical value in the management of hematological patients.
Collapse
Affiliation(s)
- Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, 46010 Valencia, Spain; (E.A.); (E.G.)
| | - Estela Giménez
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, 46010 Valencia, Spain; (E.A.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Rafael Hernani
- Hematology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, 46010 Valencia, Spain; (R.H.); (J.L.P.); (C.S.)
| | - José Luis Piñana
- Hematology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, 46010 Valencia, Spain; (R.H.); (J.L.P.); (C.S.)
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, 46010 Valencia, Spain; (R.H.); (J.L.P.); (C.S.)
- Department of Medicine, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, 46010 Valencia, Spain; (E.A.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, 28029 Madrid, Spain
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
7
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Liu Z, Zhao X, Shen H, Liu X, Xu X, Fu R. Cellular immunity in the era of modern multiple myeloma therapy. Int J Cancer 2023; 153:1436-1447. [PMID: 37306091 DOI: 10.1002/ijc.34609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a relapsing clonal plasma cell malignancy and incurable thus far. With the increasing understanding of myeloma, highlighting the critical importance of the immune system in the pathogenesis of MM is essential. The immune changes in MM patients after treatment are associated with prognosis. In this review, we summarize currently available MM therapies and discuss how they affect cellular immunity. We find that the modern anti-MM treatments enhance antitumour immune responses. A deeper understanding of the therapeutic activity of individual drugs offers more effective treatment approaches that enhance the beneficial immunomodulatory effects. Furthermore, we show that the immune changes after treatment in MM patients can provide useful prognostic marker. Analysing cellular immune responses offers new perspectives for evaluating clinical data and making comprehensive predictions for applying novel therapies in MM patients.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
9
|
Szabolcs P, Mazor RD, Yackoubov D, Levy S, Stiff P, Rezvani A, Hanna R, Wagner J, Keating A, Lindemans CA, Karras N, McGuirk J, Hamerschlak N, López I, Sanz G, Valcarcel D, Horwitz ME. Immune Reconstitution Profiling Suggests Antiviral Protection After Transplantation with Omidubicel: a Phase 3 Substudy. Transplant Cell Ther 2023:S2666-6367(23)01256-3. [PMID: 37120136 DOI: 10.1016/j.jtct.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative treatment for hematological malignancies and non-malignant disorders. Rapid immune reconstitution (IR) following allogeneic HCT has been shown to be associated with improved clinical outcomes and lower infection rates. A global phase 3 trial (NCT02730299) of omidubicel, an advanced cell therapy manufactured from an appropriately human leukocyte antigen-matched single umbilical cord blood (UCB) unit, showed faster hematopoietic recovery, reduced rates of infection, and shorter hospitalizations in patients randomized to omidubicel compared with those randomized to standard UCB. OBJECTIVE This optional, prospective substudy of the phase 3 trial characterized the IR kinetics following HCT with omidubicel compared with UCB in a systematic and detailed manner. STUDY DESIGN In this substudy, 37 patients from 14 global sites were included (omidubicel: n=17, UCB: n=20). Peripheral blood samples were collected over 10 predefined time points from 7 to 365 days post-HCT. Flow cytometry immunophenotyping, T cell receptor excision circle quantification, and T cell receptor sequencing were employed to evaluate the longitudinal IR kinetics post-transplant and their association with clinical outcomes. RESULTS Patient characteristics in the two comparator cohorts were overall statistically similar, except for age and total body irradiation (TBI) based conditioning regimens. The median age (range) for patients who received omidubicel or UCB was 30 (13-62) years and 43 (19-55) years, respectively. The percentages of patients receiving TBI based conditioning regimens were 47% and 70% for omidubicel and UCB recipients, respectively. Graft characteristics differed in their cellular composition. Omidubicel recipients received a 33-fold higher median dose of CD34+ stem cells, while receiving one third of the median CD3+ lymphocyte dose infused to UCB transplanted patients. Compared with UCB, omidubicel recipients exhibited faster IR of all measured lymphoid and myelomonocytic subpopulations, predominantly in the first 14 days post-transplant. This effect involved circulating natural killer (NK) cells, helper T cells, monocytes, and dendritic cells, with superior long-term B cell recovery from Day 28. One-week post-HCT, omidubicel recipients exhibited 4.1 and 7.7 -fold increases in the median helper T and NK cell counts respectively, compared to their UCB transplanted counterparts. By three weeks post-HCT, omidubicel transplanted patients were 3-fold more likely to achieve clinically relevant helper T and NK cell counts of 100 cells/ µL or above. Similar to UCB, omidubicel yielded a balanced cellular subpopulation composition and diverse T cell receptor repertoire in the short to long term. Omidubicel's CD34+ cell content correlated with faster IR by Day 7 post-HCT, which in turn coincided with earlier hematopoietic recovery. Lastly, early NK and helper T cell reconstitution correlated with a decreased rate of post-HCT viral infections, suggesting a plausible explanation for this phenomenon among omidubicel recipients in the phase 3 study. CONCLUSIONS Our findings suggest that omidubicel efficiently promotes IR across multiple immune cells, including CD4+ T cells, B cells, NK cells, and dendritic cell subtypes as early as 7 days post-transplant, potentially endowing recipients of omidubicel with early protective immunity.
Collapse
Affiliation(s)
- Paul Szabolcs
- Division of Blood and Marrow Transplantation and Cellular Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | - John Wagner
- University of Minnesota, Minneapolis, Minnesota
| | - Amy Keating
- Denver Children's Hospital, Denver, Colorado
| | | | - Nicole Karras
- City of Hope National Medical Center, Duarte, California
| | - Joseph McGuirk
- University of Kansas Medical Center, Kansas City, Kansas
| | | | - Ivan López
- Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Guillermo Sanz
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Mitchell E Horwitz
- Adult Stem Cell Transplant Program, Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
10
|
Sakaguchi M, Atsuta Y, Sekiya N, Najima Y, Fukushima K, Shingai N, Toya T, Kobayashi T, Ohashi K, Doki N. Clinical impact and early prediction of carbapenem-resistant Pseudomonas aeruginosa bacteraemia in allogeneic hematopoietic stem cell transplantation recipients. J Glob Antimicrob Resist 2023; 32:187-194. [PMID: 36806701 DOI: 10.1016/j.jgar.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVE Although antipseudomonal agents are administered in high-risk patients, no reports have focused on the risk of carbapenem-resistant (CR) Pseudomonas aeruginosa bacteraemia in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. METHODS We retrospectively studied a cohort of adult allo-HSCT recipients with P. aeruginosa bacteraemia, focusing on a comparison between carbapenem-sensitive (CS) and CR P. aeruginosa after initiating conditioning chemotherapy at our institute between January 2005 and December 2020. The incidence, all-cause 30-d mortality of P. aeruginosa bacteraemia, and risk factors for carbapenem resistance among patients with P. aeruginosa bacteraemia in allo-HSCT recipients were evaluated. RESULTS Forty-eight patients with P. aeruginosa bacteraemia were included, with an incidence of 3.84/100 recipients (CS = 1.92 vs. CR = 1.92). The all-cause 30-d mortality was significantly higher in CR P. aeruginosa bacteraemia (CS = 4.2% vs. CR = 39.1%; P = 0.003). The factor significantly associated with CR P. aeruginosa bacteraemia was carbapenem use for at least 3 d within 30 d before the onset of bacteraemia (odds ratio = 8.92; 95% confidence interval: 1.35-58.90). Inappropriate antimicrobial selection was significantly more frequent in CR P. aeruginosa bacteraemia (CS = 0% vs. CR = 29.2%; P ˂ 0.009). CONCLUSION Empirical combination therapy with reference to antimicrobial susceptibility profiles in each institution should be considered when CR P. aeruginosa bacteraemia is suspected in allo-HSCT recipients based on the risk of carbapenem exposure.
Collapse
Affiliation(s)
- Masahiro Sakaguchi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan; Department of Infection Prevention and Control, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuya Atsuta
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noritaka Sekiya
- Department of Infection Prevention and Control, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan; Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kazuaki Fukushima
- Department of Infection Prevention and Control, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan; Department of Infectious Diseases, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Naoki Shingai
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
11
|
The effect of pre-conditioning immunoglobulin and absolute lymphocyte count on the outcomes of allogeneic hematopoietic cell transplantation. Transpl Immunol 2023; 76:101776. [PMID: 36572120 DOI: 10.1016/j.trim.2022.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The prevention of mortality and morbidity related to the increasingly used allogeneic hematopoietic cell transplantation (allo-HCT), along with the effects of pre- and post-transplant immune status on transplant outcomes, have become the focus of the studies conducted on this subject in recent years. In parallel, this study was designed to investigate the effects of pre-conditioning immunoglobulin (pre-conditioning-Ig) and pre-conditioning absolute lymphocyte count (pre-conditioning-ALC) levels on transplant outcomes. METHODS This study was designed as a retrospective, observational and cross-sectional study. The objective of the study is to investigate the effects of pre-conditioning-Ig and ALC levels primarily on the rate of patients with febrile neutropenia (FEN) and the duration of FEN and length of hospital stay (LoS), and secondarily on acute graft-versus-host disease (aGVHD), cytomegalovirus (CMV) viremia, and mortality in the acute leukemia patients who underwent allo-HCT. RESULTS A total of 104 acute leukemia patients, of whom 55 had acute lymphoblastic leukemia (ALL) and 49 had acute myeloid leukemia (AML), were included in the study. Compared to the AML group, the median pre-conditioning-IgG, IgA, and IgM levels were found to be significantly lower in the ALL group (11.3 vs. 6.6, p < 0.001; 1.8 vs. 0.9, p < 0.001; and 0.7 vs. 0.4, p < 0.001; respectively). But, there was no significant difference between the groups in pre-conditioning-Ig and ALC levels and transplant outcomes. However, subgroup analysis revealed that high pre-conditioning-ALC levels were significantly correlated with aGVHD levels (Odds Ratio: 1.02; p = 0.034) and low pre-conditioning-IgM levels were significantly correlated with increased mortality rate (Hazard Ratio: 0.08; p = 0.042) in AML patients. CONCLUSION The significant difference determined between the ALL and AML groups in pre-conditioning-Ig levels was not reflected on the effects of pre-conditioning-Ig and ALC levels on transplant outcomes. However, we observed that pre-conditioning-IgM and ALC levels have an impact on transplant outcomes in AML patients.
Collapse
|
12
|
Cao Y, Gong X, Feng Y, Wang M, Hu Y, Liu H, Liu X, Qi S, Ji Y, Liu F, Zhu H, Guo W, Shen Q, Zhang R, Zhao N, Zhai W, Song X, Chen X, Geng L, Chen X, Zheng X, Ma Q, Tang B, Wei J, Huang Y, Ren Y, Song K, Yang D, Pang A, Yao W, He Y, Shang Y, Wan X, Zhang W, Zhang S, Sun G, Feng S, Zhu X, Han M, Song Z, Guo Y, Sun Z, Jiang E, Chen J. The Composite Immune Risk Score predicts overall survival after allogeneic hematopoietic stem cell transplantation: A retrospective analysis of 1838 cases. Am J Hematol 2023; 98:309-321. [PMID: 36591789 PMCID: PMC10108217 DOI: 10.1002/ajh.26792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 01/03/2023]
Abstract
There has been little consensus on how to quantitatively assess immune reconstitution after hematopoietic stem cell transplantation (HSCT) as part of the standard of care. We retrospectively analyzed 11 150 post-transplant immune profiles of 1945 patients who underwent HSCT between 2012 and 2020. 1838 (94.5%) of the cases were allogeneic HSCT. Using the training set of patients (n = 729), we identified a composite immune signature (integrating neutrophil, total lymphocyte, natural killer, total T, CD4+ T, and B cell counts in the peripheral blood) during days 91-180 after allogeneic HSCT that was predictive of early mortality and moreover simplified it into a formula for a Composite Immune Risk Score. When we verified the Composite Immune Risk Score in the validation (n = 284) and test (n = 391) sets of patients, a high score value was found to be associated with hazard ratios (HR) of 3.64 (95% C.I. 1.55-8.51; p = .0014) and 2.44 (95% C.I., 1.22-4.87; p = .0087), respectively, for early mortality. In multivariate analysis, a high Composite Immune Risk Score during days 91-180 remained an independent risk factor for early mortality after allogeneic HSCT (HR, 1.80; 95% C.I., 1.28-2.55; p = .00085). In conclusion, the Composite Immune Risk Score is easy to compute and could identify the high-risk patients of allogeneic HSCT who require targeted effort for prevention and control of infection.
Collapse
Affiliation(s)
- Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huilan Liu
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yanping Ji
- Anhui Medical UniversityHefeiChina
- Department of HematologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Fang Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huaiping Zhu
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ningning Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaoqiang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Liangquan Geng
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Xia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xuetong Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Baolin Tang
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yuanyuan Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Kaidi Song
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Wen Yao
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yue Shang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiang Wan
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Song Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Guangyu Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zimin Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| |
Collapse
|
13
|
Chen YF, Li J, Xu LL, Găman MA, Zou ZY. Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities. World J Clin Cases 2023; 11:268-291. [PMID: 36686358 PMCID: PMC9850970 DOI: 10.12998/wjcc.v11.i2.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements in basic research in molecular biology and immunology and with deepening understanding of the biological characteristics of hematopoietic stem cells, allo-HSCT has been widely applied in clinical practice. During allo-HSCT, preconditioning, the donor, and the source of stem cells can be tailored to the patient’s conditions, greatly broadening the indications for HSCT, with clear survival benefits. However, the risks associated with allo-HSCT remain high, i.e. hematopoietic reconstitution failure, delayed immune reconstitution, graft-versus-host disease, and post-transplant relapse, which are bottlenecks for further improvements in allo-HSCT efficacy and have become hot topics in the field of HSCT. Other bottlenecks recognized in the current treatment of individuals diagnosed with acute myeloid leukemia and subjected to allo-HSCT include the selection of the most appropriate conditioning regimen and post-transplantation management. In this paper, we reviewed the progress of relevant research regarding these aspects.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital, Taizhou 318000, Zhejiang Province, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Zhen-You Zou
- Department of Scientific Research,Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
14
|
Khanolkar RA, Tripathi G, Dharmani-Khan P, Dabas R, Kinzel M, Kalra A, Puckrin R, Jimenez-Zepeda V, Jamani K, Duggan PR, Chaudhry A, Bryant A, Stewart DA, Khan FM, Storek J. Incomplete chimerism following myeloablative and anti-thymocyte globulin-conditioned hematopoietic cell transplantation is a risk factor for relapse and chronic graft-versus-host disease. Cytotherapy 2022; 24:1225-1231. [PMID: 36057497 DOI: 10.1016/j.jcyt.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 07/31/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS The value of routine chimerism determination after myeloablative hematopoietic cell transplantation (HCT) is unclear, particularly in the setting of anti-thymocyte globulin (ATG)-based graft-versus-host disease (GVHD) prophylaxis. METHODS Blood samples were collected at 3 months post-HCT from 558 patients who received myeloablative conditioning and ATG-based GVHD prophylaxis. Chimerism was assessed using multiplex polymerase chain reaction of short tandem repeats in sorted T cells (CD3+) and leukemia lineage cells (CD13+CD33+ for myeloid malignancies and CD19+ for B-lymphoid malignancies). ATG exposure was determined using a flow cytometry-based assay. The primary outcomes of interest were relapse and chronic GVHD (cGVHD). RESULTS Incomplete (<95%) T-cell chimerism and leukemia lineage chimerism were present in 17% and 4% of patients, respectively. Patients with incomplete T-cell chimerism had a significantly greater incidence of relapse (36% versus 22%, subhazard ratio [SHR] = 2.03, P = 0.001) and lower incidence of cGVHD (8% versus 25%, SHR = 0.29, P < 0.001) compared with patients with complete chimerism. In multivariate modeling, patients with high post-transplant ATG area under the curve and any cytomegalovirus (CMV) serostatus other than donor/recipient seropositivity (non-D+R+) had an increased likelihood of incomplete T-cell chimerism. Patients with incomplete leukemia lineage chimerism had a significantly greater incidence of relapse (50% versus 23%, SHR = 2.70, P = 0.011) and, surprisingly, a greater incidence of cGVHD (45% versus 20%, SHR = 2.64, P = 0.003). CONCLUSIONS High post-transplant ATG exposure and non-D+R+ CMV serostatus predispose patients to incomplete T-cell chimerism, which is associated with an increased risk of relapse. The increased risk of cGVHD with incomplete B-cell/myeloid chimerism is a novel finding that suggests an important role for recipient antigen-presenting cells in cGVHD pathogenesis.
Collapse
Affiliation(s)
- Rutvij A Khanolkar
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1.
| | - Gaurav Tripathi
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Precision Laboratories, Calgary, Canada, T2N 4N1
| | - Poonam Dharmani-Khan
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Precision Laboratories, Calgary, Canada, T2N 4N1
| | - Rosy Dabas
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Megan Kinzel
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Amit Kalra
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Robert Puckrin
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Victor Jimenez-Zepeda
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Kareem Jamani
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Peter R Duggan
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Ahsan Chaudhry
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Adam Bryant
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Douglas A Stewart
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Faisal M Khan
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Precision Laboratories, Calgary, Canada, T2N 4N1
| | - Jan Storek
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| |
Collapse
|
15
|
Impact of Anti-T-lymphocyte globulin dosing on GVHD and Immune reconstitution in matched unrelated myeloablative peripheral blood stem cell transplantation. Bone Marrow Transplant 2022; 57:1548-1555. [PMID: 35831408 PMCID: PMC9532245 DOI: 10.1038/s41409-022-01666-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Data on the influence of different Anti-lymphocyte globulin (ATLG) doses on graft versus host disease (GVHD) incidence and immune reconstitution in matched unrelated (MUD) allogeneic Stem cell transplantation (allo-SCT) is limited. This retrospective study conducted at the University Medical-Center Hamburg compares GVHD and Immune reconstitution after myeloablative MUD (HLA 10/10) PBSC allogeneic stem cell transplant between 30 mg/Kg (n = 73) and 60 mg/Kg (n = 216) ATLG. Detailed phenotypes of T, B natural killer (NK), natural killer T (NKT) cells were analyzed by multicolor flow at day 30, 100, and 180 posttransplant. Neutrophil and platelet engraftments were significantly delayed in the 60 mg/kg group with a higher Cumulative incidence of Infections (67% vs 75% p = 0.049) and EBV (21% vs 41% p = 0.049) reactivation at day 100 in this group. In the 30 mg/kg group, we observed a faster reconstitution of naïve-B cells (p < 0.0001) and γδ T cells (p = 0.045) at day+30 and a faster naïve helper T-cell (p = 0.046), NK-cells (p = 0.035), and naïve B-cell reconstitution (p = 0.009) at day+180. There were no significant differences in aGVHD, cGVHD, NRM, RI, PFS, and OS between the groups. The choice of ATLG dose has significant impact on IR but not on GVHD after MUD-allo-SCT. Higher doses are associated with delayed engraftment and increased infections.
Collapse
|
16
|
Immune reconstitution after allogenic stem cell transplantation: An observational study in pediatric patients. Hematol Transfus Cell Ther 2022:S2531-1379(22)00090-6. [DOI: 10.1016/j.htct.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
|
17
|
Wittenbecher F, Lesch S, Kolling S, Blau IW, Vuong L, Borchert F, Movasshagi K, Tietze-Bürger C, Penack O, Ahn J, Bullinger L, Frentsch M, Na IK. Paired Donor and Recipient Immunophenotyping in Allogeneic Hematopoietic Stem Cell Transplantation: A Cellular Network Approach. Front Immunol 2022; 13:874499. [PMID: 35677053 PMCID: PMC9168993 DOI: 10.3389/fimmu.2022.874499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/15/2022] [Indexed: 12/03/2022] Open
Abstract
Success and complications of allogeneic hematopoietic stem cell transplantation (alloHSCT) are closely connected to the transferred graft and immune reconstitution post alloHSCT. Due to the variety of immune cells and their distinct roles, a broad evaluation of the immune cellular network is warranted in mobilization and reconstitution studies in alloHSCT. Here, we propose a comprehensive phenotypic analysis of 26 immune cell subsets with multicolor flow cytometry from only 100µl whole blood per time point. Using this approach, we provide an extensive longitudinal analysis of almost 200 time points from 21 donor-recipient pairs. We observe a broad mobilization of innate and adaptive immune cell subsets after granulocyte-colony stimulating factor (G-CSF) treatment of healthy donors. Our data suggest that the relative quantitative immune cell subset composition in recipients approaches that of healthy donors from day +180 post alloHSCT onwards. Correlation of donor and recipient cell counts reveals distinct association patterns for different immune cell subsets and hierarchical clustering of recipient cell counts identifies distinct reconstitution groups in the first month after transplantation. We suggest our comprehensive immune subset analysis as a feasible and time efficient approach for a broad immune assessment for future clinical studies in the context of alloHSCT. This comprehensive cell composition assessment can be a critical step towards personalized graft composition strategies and individualized therapy management in areas such as GvHD prophylaxis in the highly complex immunological setting of alloHSCT.
Collapse
Affiliation(s)
- Friedrich Wittenbecher
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Stella Lesch
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Kolling
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor-Wolfgang Blau
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lam Vuong
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Borchert
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kamran Movasshagi
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carola Tietze-Bürger
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olaf Penack
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Johann Ahn
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| | - Marco Frentsch
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
18
|
Faraci M, Dell'Orso G, Giardino S, Pierri F. Autoimmune diseases after allogeneic stem cell transplantation: a clinician's guide and future outlook. Expert Rev Clin Immunol 2022; 18:1-14. [PMID: 35500169 DOI: 10.1080/1744666x.2022.2072299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Autoimmune disease (AD) may occur after allogeneic hematopoietic stem cell transplantation (HSCT). The autoimmune mechanism seems to be related to an imbalance of the immune regulation effect of T-regulatory lymphocytes on autoreactive T-lymphocytes. AREAS COVERED ADs include hematological ADs (HADs) and nonhematologic ADs (NHADs) involving organs such as thyroid, peripheral and central nervous system, skin, liver, connective tissue, gastrointestinal tract, and kidney. To identify the risk factors for ADs, to report their clinical characteristics, and to discuss new approaches represent the areas covered in this review. EXPERT OPINION Some risk factors for HAD and NHAD are common and include nonmalignant diseases, young age, cord blood as a stem cell source, conditioning regimens without total body irradiation, alemtuzumab, antithymocyte globulin, T-cell-depleted transplant, some viral infection, mixed chimerism, and chronic Graft versus Host Disease. In NHADs, the detection of autoantibodies is more frequent and the transfer of autoimmunity from the donor to the recipient represents the pathogenetic mechanism responsible for these complications. New therapeutic approaches such as bortezomib, daratumumab, sirolimus, eculizumab, and eltrombopag appear to be promising in terms of better efficacy and reduced toxicity compared to traditional therapies. New horizons based on personalized therapies will allow us to improve the prognosis of AD.
Collapse
Affiliation(s)
- Maura Faraci
- Hematopoietic Stem Cell Unit, Department of Hematology-Oncology, IRCSS Istituto G. Gaslini I Istituto GGaslini, Genova, Italy
| | - Gianluca Dell'Orso
- Hematopoietic Stem Cell Unit, Department of Hematology-Oncology, IRCSS Istituto G. Gaslini I Istituto GGaslini, Genova, Italy
| | - Stefano Giardino
- Hematopoietic Stem Cell Unit, Department of Hematology-Oncology, IRCSS Istituto G. Gaslini I Istituto GGaslini, Genova, Italy
| | - Filomena Pierri
- Hematopoietic Stem Cell Unit, Department of Hematology-Oncology, IRCSS Istituto G. Gaslini I Istituto GGaslini, Genova, Italy
| |
Collapse
|
19
|
Immunoprofiling reveals cell subsets associated with the trajectory of cytomegalovirus reactivation post stem cell transplantation. Nat Commun 2022; 13:2603. [PMID: 35546552 PMCID: PMC9095831 DOI: 10.1038/s41467-022-29943-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 11/11/2022] Open
Abstract
Human cytomegalovirus reactivation is a major opportunistic infection after allogeneic haematopoietic stem cell transplantation and has a complex relationship with post-transplant immune reconstitution. Here, we use mass cytometry to define patterns of innate and adaptive immune cell reconstitution at key phases of human cytomegalovirus reactivation in the first 100 days post haematopoietic stem cell transplantation. Human cytomegalovirus reactivation is associated with the development of activated, memory T-cell profiles, with faster effector-memory CD4+ T-cell recovery in patients with low-level versus high-level human cytomegalovirus DNAemia. Mucosal-associated invariant T cell levels at the initial detection of human cytomegalovirus DNAemia are significantly lower in patients who subsequently develop high-level versus low-level human cytomegalovirus reactivation. Our data describe distinct immune signatures that emerged with human cytomegalovirus reactivation after haematopoietic stem cell transplantation, and highlight Mucosal-associated invariant T cell levels at the first detection of reactivation as a marker that may be useful to anticipate the magnitude of human cytomegalovirus DNAemia. Human cytomegalovirus is a major cause of morbidity and mortality in transplant patients and multiple immune cells types are critical during infection and reactivation. Here the authors assess the immune cell compartments of haematopoietic stem cell recipients in the early period post transplantation and identify key features of effector memory CD4+ T cells and mucosal associated invariant T cells in this context.
Collapse
|
20
|
McCurdy SR, Radojcic V, Tsai HL, Vulic A, Thompson E, Ivcevic S, Kanakry CG, Powell JD, Lohman B, Adom D, Paczesny S, Cooke KR, Jones RJ, Varadhan R, Symons HJ, Luznik L. Signatures of GVHD and relapse after posttransplant cyclophosphamide revealed by immune profiling and machine learning. Blood 2022; 139:608-623. [PMID: 34657151 PMCID: PMC8796655 DOI: 10.1182/blood.2021013054] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
The key immunologic signatures associated with clinical outcomes after posttransplant cyclophosphamide (PTCy)-based HLA-haploidentical (haplo) and HLA-matched bone marrow transplantation (BMT) are largely unknown. To address this gap in knowledge, we used machine learning to decipher clinically relevant signatures from immunophenotypic, proteomic, and clinical data and then examined transcriptome changes in the lymphocyte subsets that predicted major posttransplant outcomes. Kinetics of immune subset reconstitution after day 28 were similar for 70 patients undergoing haplo and 75 patients undergoing HLA-matched BMT. Machine learning based on 35 candidate factors (10 clinical, 18 cellular, and 7 proteomic) revealed that combined elevations in effector CD4+ conventional T cells (Tconv) and CXCL9 at day 28 predicted acute graft-versus-host disease (aGVHD). Furthermore, higher NK cell counts predicted improved overall survival (OS) due to a reduction in both nonrelapse mortality and relapse. Transcriptional and flow-cytometric analyses of recovering lymphocytes in patients with aGVHD identified preserved hallmarks of functional CD4+ regulatory T cells (Tregs) while highlighting a Tconv-driven inflammatory and metabolic axis distinct from that seen with conventional GVHD prophylaxis. Patients developing early relapse displayed a loss of inflammatory gene signatures in NK cells and a transcriptional exhaustion phenotype in CD8+ T cells. Using a multimodality approach, we highlight the utility of systems biology in BMT biomarker discovery and offer a novel understanding of how PTCy influences alloimmune responses. Our work charts future directions for novel therapeutic interventions after these increasingly used GVHD prophylaxis platforms. Specimens collected on NCT0079656226 and NCT0080927627 https://clinicaltrials.gov/.
Collapse
Affiliation(s)
- Shannon R McCurdy
- Abramson Cancer Center and the Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Vedran Radojcic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Hua-Ling Tsai
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ante Vulic
- Division of Biostatistics and Bioinformatics and the Sidney Kimmel Comprehensive Cancer Center and The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth Thompson
- Division of Biostatistics and Bioinformatics and the Sidney Kimmel Comprehensive Cancer Center and The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sanja Ivcevic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Christopher G Kanakry
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jonathan D Powell
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brian Lohman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Djamilatou Adom
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Kenneth R Cooke
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard J Jones
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics and the Sidney Kimmel Comprehensive Cancer Center and The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Heather J Symons
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leo Luznik
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Huang A, Cicin-Sain C, Pasin C, Epp S, Audigé A, Müller NJ, Nilsson J, Bankova A, Wolfensberger N, Vilinovszki O, Nair G, Hockl P, Schanz U, Kouyos RD, Hasse B, Zinkernagel AS, Trkola A, Manz MG, Abela IA, Müller AMS. Antibody Response to SARS-CoV-2 Vaccination in Patients Following Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2022; 28:214.e1-214.e11. [PMID: 35092892 PMCID: PMC8802693 DOI: 10.1016/j.jtct.2022.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/06/2023]
Abstract
Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P < .001). Within the cohort of allo-HCT recipients, patients age >65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Alice Huang
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Caroline Cicin-Sain
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Chloe Pasin
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Nicolas J Müller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Switzerland
| | - Andriyana Bankova
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Nathan Wolfensberger
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Gayathri Nair
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Philipp Hockl
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland.
| |
Collapse
|
22
|
Kinzel M, Dowhan M, Kalra A, Williamson TS, Dabas R, Jamani K, Chaudhry A, Shafey M, Jimenez-Zepeda V, Duggan P, Daly A, Dharmani-Khan P, Khan F, Storek J. Risk Factors for the Incidence of and the Mortality due to Post-Transplant Lymphoproliferative Disorder after Hematopoietic Cell Transplantation. Transplant Cell Ther 2021; 28:53.e1-53.e10. [PMID: 34607072 DOI: 10.1016/j.jtct.2021.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is a potentially serious complication that occurs following hematopoietic cell transplantation (HCT), in which B cells transformed by Epstein-Barr virus (EBV) proliferate uncontrollably. It is unknown whether risk factors for the incidence of PTLD are identical to those for mortality due to PTLD, a clinically more important outcome. We sought to determine the risk factors influencing the incidence of PTLD and those influencing mortality due to PTLD in a cohort of 1184 allogenic HCT recipients. All patients were predisposed to PTLD, because their graft-versus-host disease (GVHD) prophylaxis included antithymocyte globulin. The overall PTLD incidence was 9.0%, and mortality due to PTLD was 1.1%. In multivariate analysis, risk factors for PTLD incidence include donor+/recipient- (D+/R-) EBV serostatus (subhazard ratio [SHR], 3.3; P = .002), use of a donor other than an HLA-matched sibling donor (non-MSD) (SHR, 1.7; P = .029), receipt of total body irradiation (TBI; SHR, 3.3; P = .008), and the absence of GVHD (SHR, 3.3; P < .001). The sole risk factor for mortality due to PTLD among all patients was D+/R- serostatus (SHR, 5.8; P = .022). Risk factors for mortality due to PTLD among patients who developed PTLD were use of a bone marrow (BM) graft (compared with peripheral blood stem cells [PBSCs]; SHR, 22.8; P < .001) and extralymphatic involvement (SHR, 14.6; P < .001). Interestingly, whereas the absence of GVHD was a risk factor for PTLD incidence, there was a trend toward the presence of GVHD as a risk factor for PTLD mortality (SHR, 4.2; P = .093). Likewise, whereas use of a BM graft was a risk factor for PTLD mortality, there was a trend toward use of a PBSC graft as a risk factor for PTLD incidence (SHR, 0.44; P = .179). Some risk factors for the incidence of PTLD are identical to the risk factors for mortality due to PTLD (ie, D+/R- serostatus), whereas other risk factors are disparate. Specifically, TBI was identified as a risk factor for PTLD incidence but not for PTLD mortality; the absence of GVHD was a risk factor for PTLD incidence, whereas the presence of GVHD was possibly a risk factor for PTLD mortality; and receipt of a PBSC graft was possibly a risk factor for PTLD incidence, whereas receipt of a BM graft was a risk factor for PTLD mortality.
Collapse
Affiliation(s)
- Megan Kinzel
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | - Amit Kalra
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tyler S Williamson
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rosy Dabas
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kareem Jamani
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada
| | - Ahsan Chaudhry
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada
| | - Mona Shafey
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada
| | - Victor Jimenez-Zepeda
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada
| | - Peter Duggan
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada
| | - Andrew Daly
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada
| | - Poonam Dharmani-Khan
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada; Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Faisal Khan
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada; Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Jan Storek
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Suzuki K, Nishiwaki K, Yano S. Treatment Strategy for Multiple Myeloma to Improve Immunological Environment and Maintain MRD Negativity. Cancers (Basel) 2021; 13:4867. [PMID: 34638353 PMCID: PMC8508145 DOI: 10.3390/cancers13194867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Improving the immunological environment and eradicating minimal residual disease (MRD) are the two main treatment goals for long-term survival in patients with multiple myeloma (MM). Immunomodulatory drugs (IMiDs), monoclonal antibody drugs (MoAbs), and autologous grafts for autologous stem cell transplantation (ASCT) can improve the immunological microenvironment. ASCT, MoAbs, and proteasome inhibitors (PIs) may be important for the achievement of MRD negativity. An improved immunological environment may be useful for maintaining MRD negativity, although the specific treatment for persistent MRD negativity is unknown. However, whether the ongoing treatment should be continued or changed if the MRD status remains positive is controversial. In this case, genetic, immunophenotypic, and clinical analysis of residual myeloma cells may be necessary to select the effective treatment for the residual myeloma cells. The purpose of this review is to discuss the MM treatment strategy to "cure MM" based on currently available therapies, including IMiDs, PIs, MoAbs, and ASCT, and expected immunotherapies, such as chimeric antigen receptor T cell (CAR-T) therapy, via improvement of the immunological environment and maintenance of MRD negativity.
Collapse
Affiliation(s)
- Kazuhito Suzuki
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, Tokyo 277-8567, Japan;
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Kaichi Nishiwaki
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, Tokyo 277-8567, Japan;
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Shingo Yano
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| |
Collapse
|
24
|
Jung JM, Ching W, Baumdick ME, Hofmann-Sieber H, Bosse JB, Koyro T, Möller KJ, Wegner L, Niehrs A, Russu K, Ohms M, Zhang W, Ehrhardt A, Duisters K, Spierings E, Hölzemer A, Körner C, Jansen SA, Peine S, Königs I, Lütgehetmann M, Perez D, Reinshagen K, Lindemans CA, Altfeld M, Belderbos M, Dobner T, Bunders MJ. KIR3DS1 directs NK cell-mediated protection against human adenovirus infections. Sci Immunol 2021; 6:eabe2942. [PMID: 34533978 DOI: 10.1126/sciimmunol.abe2942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Johannes M Jung
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wilhelm Ching
- Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martin E Baumdick
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Helga Hofmann-Sieber
- Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jens B Bosse
- Leibniz Institute for Experimental Virology, Hamburg, Germany.,Centre for Structural Systems Biology, Hamburg, Germany.,Hannover Medical School, Institute of Virology, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Tobias Koyro
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kimberly J Möller
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lucy Wegner
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kristina Russu
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Mareike Ohms
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wenli Zhang
- Faculty of Health, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Faculty of Health, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Kevin Duisters
- Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Angelique Hölzemer
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Christian Körner
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Suze A Jansen
- Wilhelmina Children's Hospital/Department of Pediatrics, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Regenerative Medicine Center, University Utrecht, Utrecht, Netherlands
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Königs
- Department of Pediatric Surgery, Altona Children's Hospital, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caroline A Lindemans
- Wilhelmina Children's Hospital/Department of Pediatrics, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Regenerative Medicine Center, University Utrecht, Utrecht, Netherlands
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Mirjam Belderbos
- Pediatric Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Thomas Dobner
- Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Madeleine J Bunders
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Sattler C, Hoffmann P, Herzberg PY, Weber D, Holler B, Fehn U, Plentz A, Beckhove P, Winkler J, Edinger M, Herr W, Holler E, Wolff D. Primary vaccination in adult patients after allogeneic hematopoietic stem cell transplantation - A single center retrospective efficacy analysis. Vaccine 2021; 39:4742-4750. [PMID: 34049733 DOI: 10.1016/j.vaccine.2021.04.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) results in a loss of humoral immunity and subsequent risk for severe infections. Thus, re-vaccination is required but may fail due to incomplete immune reconstitution. We retrospectively analyzed predictors of immune response to primary vaccination applied according to the EBMT (European Blood and Marrow Transplantation Group) recommendations. Serologic response to vaccination against diphtheria (D), tetanus (T), Bordetella pertussis (aP) and Haemophilus influenzae (Hib) (administrated as combined DTaP-Hib-IPV vaccination) was studied in 84 alloHSCT patients transplanted between 2008 and 2015 (age at alloHSCT: 18.6-70.6 years). All patients with a relapse-free survival of ≥9 months, at least 3 consecutive vaccinations and absence of intravenous immunoglobulin administration within 3 months before and after vaccination met the primary inclusion criteria. Additionally, immunological response to a pneumococcal conjugate vaccine was analyzed in a subgroup of 67 patients. Patients' characteristics at the time of first vaccination were recorded. Responses were measured as vaccine-specific antibody titers. Regarding DTaP-Hib-IPV vaccination, 89.3% (n = 75) of all patients achieved protective titers to at least 3 of the 4 vaccine components and were thus considered responders. 10.7% (n = 9) of the patients were classified as non-responders with positive immune response to less than 3 components. Highest response was observed for Hib (97.4%), tetanus (95.2%) and pneumococcal vaccination (83.6%) while only 68.3% responded to vaccination against Bordetella pertussis. Significant risk factors for failure of vaccination response included low B cell counts (p < 0.001; cut-off: 0.05 B cells/nl) and low IgG levels (p = 0.026; mean IgG of responders 816 mg/dl vs. 475 mg/dl of non-responders). Further, a trend was observed that prior cGvHD impairs vaccination response as 88.9% of the non-responders but only 54.7% of the responders had prior cGvHD (p = 0.073). The results demonstrate, that the currently proposed vaccination strategy leads to seroprotection in the majority of alloHSCT patients.
Collapse
Affiliation(s)
- Clara Sattler
- Dept. of Internal Medicine III, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Petra Hoffmann
- Dept. of Internal Medicine III, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Philipp Yorck Herzberg
- Faculty of Humanities and Social Sciences, Personality Psychology and Psychological Assessment, Helmut Schmidt University Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Daniela Weber
- Dept. of Internal Medicine III, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Barbara Holler
- Dept. of Internal Medicine III, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ute Fehn
- Dept. of Internal Medicine III, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Annelie Plentz
- Dept. of Medical Microbiology and Hygiene, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI), Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Julia Winkler
- Dept. of Medicine 5 - Hematology and Oncology, University Hospital Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Matthias Edinger
- Dept. of Internal Medicine III, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Wolfgang Herr
- Dept. of Internal Medicine III, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ernst Holler
- Dept. of Internal Medicine III, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Daniel Wolff
- Dept. of Internal Medicine III, University Hospital Regensburg, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
26
|
van der Maas NG, von Asmuth EGJ, Berghuis D, van Schouwenburg PA, Putter H, van der Burg M, Lankester AC. Modeling Influencing Factors in B-Cell Reconstitution After Hematopoietic Stem Cell Transplantation in Children. Front Immunol 2021; 12:684147. [PMID: 34025685 PMCID: PMC8138425 DOI: 10.3389/fimmu.2021.684147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Reduced total and memory B-cell numbers in peripheral blood long term after hematopoietic stem cell transplantation (HSCT) are associated with an increased incidence of infections and immune complications. Using novel modelling strategies, baseline factors influencing B-cell reconstitution can be comprehensively studied. This study aims to investigate the numerical total and memory B-cell reconstitution in children and the association with baseline determinants 0.5-2 years after allogeneic HSCT. Eligible for inclusion were children transplanted in our center between 2004-2017 who received a first HSCT for malignant or non-malignant disorders. The continuous absolute counts of total and memory B-cells were evaluated as outcome measure. Exploratory analysis at one year was done to identify possible determinants. Linear mixed effect modelling was used to analyze the association of these determinants with total and memory B-cell reconstitution 0.5-2 years after HSCT. In a cohort of 223 evaluable patients analyzed at 1-year after HSCT donor age, stem cell source, donor type, recipient age and conditioning were identified as significant determinants for total and memory B-cell numbers. Multivariable analysis revealed that both donor and recipient age were inversely correlated with the size of total and memory B-cell reconstitution. In contrast, no correlation was found with stem cell source, donor type and conditioning. Making use of linear mixed modelling both stem cell donor and recipient age were identified as independent determinants of total and memory B-cell reconstitution 0.5-2 years after HSCT.
Collapse
Affiliation(s)
- Nicolaas G van der Maas
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik G J von Asmuth
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Pauline A van Schouwenburg
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Hein Putter
- Leiden University Medical Center, Department of Medical Statistics and Bioinformatics, Leiden, Netherlands
| | - Mirjam van der Burg
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
27
|
Maeda Y. Immune reconstitution after T-cell replete HLA haploidentical hematopoietic stem cell transplantation using high-dose post-transplant cyclophosphamide. J Clin Exp Hematop 2021; 61:1-9. [PMID: 33551435 PMCID: PMC8053574 DOI: 10.3960/jslrt.20040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
As HLA haploidentical related donors are quickly available, HLA haploidentical hematopoietic stem cell transplantation (haploHSCT) using high-dose post-transplant cyclophosphamide (PTCy) is now widely used. Recent basic and clinical studies revealed the details of immune reconstitution after T-cell replete haploHSCT using PTCy. T cells and NK cells in the graft proliferate abundantly at day 3 post-haploHSCT, and the PTCy eliminates these proliferating cells. After ablation of proliferating mature cells, donor-derived NK cell reconstitution occurs after the second week; however, recovering NK cells remain functionally impaired for at least several months after haploHSCT. PTCy depletes proliferating cells, resulting in the preferential accumulation of Treg and CD4+ T cells, especially the memory stem T cell (TSCM) phenotype. TSCM capable of both self-renewal and differentiation into effector T cells may play an important role in the first month of immune reconstitution. Subsequently, de novo T cells progressively recover but their levels remain well below those of donor CD4+ T cells at the first year after haploHSCT. The phenotype of recovering T cells after HSCT is predominantly effector memory, whereas B cells are predominantly phenotypically naive throughout the first year after haploHSCT. B cell recovery depends on de novo generation and they are not detected until week 4 after haploHSCT. At week 5, recovering B cells mostly exhibit an unconventional transitional cell phenotype and the cell subset undergoes maturation. Recent advances in immune reconstitution have improved our understanding of the relationship between haploHSCT with PTCy and the clinical outcome.
Collapse
Affiliation(s)
- Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
28
|
Gniadek T. Production of Components by Apheresis. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Piekarska A, Wisniewski P, Lewandowski K, Gil L, Trzonkowski P, Bieniaszewska M, Zaucha JM. Immune Status Against Hepatitis B in Patients After Allogeneic Hematopoietic Cell Transplantation-Factors Affecting Early and Long-Lasting Maintenance of Protective Anti-HBs Titers. Front Immunol 2020; 11:586523. [PMID: 33335530 PMCID: PMC7736697 DOI: 10.3389/fimmu.2020.586523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
The immunization of allogeneic hematopoietic cell transplantation (HCT) recipients against vaccine-preventable diseases is a part of posttransplantation guidelines. We conducted a prospective study to assess clinical and immunological parameters that would determine the response and long-term maintenance of protective antibody titers upon the hepatitis B virus (HBV) vaccination after HCT. The investigated variables included: vaccination of the HCT recipients and their donors prior to HCT, chronic graft versus host disease (cGVHD) and the timing of post-HCT vaccination, and B- and T-cell subtype status. Forty-two patients were immunized with three or more doses of recombinant hepatitis B surface antigen (rHBsAg) administered according to the individualized schedule of 0-1-2-6-(12) months. After vaccination, seroconversion was achieved in the whole group. The vaccines were categorized according to the antibody (Ab) titers as weak (WRs; 28.7%), good (GRs; 38%) or very good responders (VGRs; 3.3%). In multivariate logistic regression, severe cGVHD (OR= 15.5), and preceding donor immunization (OR= 0.13) were independent predictors of a weak response to vaccination. A prior belonging to the WR group impaired the durability of protection (OR= 0.17) at a median follow-up of 11.5 years. Patients with severe cGVHD showed a trend toward lower median Ab titers, although they required a higher rate of booster vaccine doses. All VGRs had CD4+ cells > 0.2 x 106/L. There was a lower mean rate of CD4+IL2+ lymphocytes in WRs. Vaccination demonstrated the immunomodulatory effect on B-cell and T-cell subsets and a Th1/Th2 cytokine profile, while shifts depended on a history of severe cGVHD and the type of vaccine responder. To conclude, vaccination of HCT donors against HBV allows a better response to vaccination in the respective HCT recipients. Double doses of rHBsAg should be considered in patients with cGVHD and in those not immunized before HCT. A dedicated intensified vaccination schedule should be administered to WRs.
Collapse
Affiliation(s)
- Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Wisniewski
- Department of Endocrinology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | | | - Lidia Gil
- Department of Hematology and Stem Cell Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Trzonkowski
- Department of Clinical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
30
|
Bhatt ST, Bednarski JJ. Immune Reconstitution in Pediatric Patients Following Hematopoietic Cell Transplant for Non-malignant Disorders. Front Immunol 2020; 11:1988. [PMID: 33013851 PMCID: PMC7461808 DOI: 10.3389/fimmu.2020.01988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 01/24/2023] Open
Abstract
Allogeneic hematopoietic cell transplant (HCT) is curative for pediatric patients with non-malignant hematopoietic disorders, including hemoglobinopathies, bone marrow failure syndromes, and primary immunodeficiencies. Early establishment of donor-derived innate and adaptive immunity following HCT is associated with improved overall survival, lower risk of infections and decreased incidence of graft failure. Immune reconstitution (IR) is impacted by numerous clinical variables including primary disease, donor characteristics, conditioning regimen, and graft versus host disease (GVHD). Recent advancements in HCT have been directed at reducing toxicity of conditioning therapy, expanding donor availability through use of alternative donor sources, and addressing morbidity from GVHD with novel graft manipulation. These novel transplant approaches impact the kinetics of immune recovery, which influence post-transplant outcomes. Here we review immune reconstitution in pediatric patients undergoing HCT for non-malignant disorders. We explore the transplant-associated factors that influence immunologic recovery and the disease-specific associations between IR and transplant outcomes.
Collapse
Affiliation(s)
- Sima T Bhatt
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
31
|
Singh J, Mohtashami M, Anderson G, Zúñiga-Pflücker JC. Thymic Engraftment by in vitro-Derived Progenitor T Cells in Young and Aged Mice. Front Immunol 2020; 11:1850. [PMID: 32973763 PMCID: PMC7462002 DOI: 10.3389/fimmu.2020.01850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
T cells play a critical role in mediating antigen-specific and long-term immunity against viral and bacterial pathogens, and their development relies on the highly specialized thymic microenvironment. T cell immunodeficiency can be acquired in the form of inborn errors, or can result from perturbations to the thymus due to aging or irradiation/chemotherapy required for cancer treatment. Hematopoietic stem cell transplant (HSCT) from compatible donors is a cornerstone for the treatment of hematological malignancies and immunodeficiency. Although it can restore a functional immune system, profound impairments exist in recovery of the T cell compartment. T cells remain absent or low in number for many months after HSCT, depending on a variety of factors including the age of the recipient. While younger patients have a shorter refractory period, the prolonged T cell recovery observed in older patients can lead to a higher risk of opportunistic infections and increased predisposition to relapse. Thus, strategies for enhancing T cell recovery in aged individuals are needed to counter thymic damage induced by radiation and chemotherapy toxicities, in addition to naturally occurring age-related thymic involution. Preclinical results have shown that robust and rapid long-term thymic reconstitution can be achieved when progenitor T cells, generated in vitro from HSCs, are co-administered during HSCT. Progenitor T cells appear to rely on lymphostromal crosstalk via receptor activator of NF-κB (RANK) and RANK-ligand (RANKL) interactions, creating chemokine-rich niches within the cortex and medulla that likely favor the recruitment of bone marrow-derived thymus seeding progenitors. Here, we employed preclinical mouse models to demonstrate that in vitro-generated progenitor T cells can effectively engraft involuted aged thymuses, which could potentially improve T cell recovery. The utility of progenitor T cells for aged recipients positions them as a promising cellular therapy for immune recovery and intrathymic repair following irradiation and chemotherapy, even in a post-involution thymus.
Collapse
Affiliation(s)
| | | | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
32
|
Kinetics of immune cell reconstitution predict survival in allogeneic bone marrow and G-CSF-mobilized stem cell transplantation. Blood Adv 2020; 3:2250-2263. [PMID: 31345792 PMCID: PMC6693008 DOI: 10.1182/bloodadvances.2018029892] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/15/2019] [Indexed: 12/25/2022] Open
Abstract
The clinical utility of monitoring immune reconstitution after allotransplant was evaluated using data from Blood and Marrow Transplant Clinical Trials Network BMT CTN 0201 (NCT00075816), a multicenter randomized study of unrelated donor bone marrow (BM) vs granulocyte colony-stimulating factor (G-CSF)-mobilized blood stem cell (G-PB) grafts. Among 410 patients with posttransplant flow cytometry measurements of immune cell subsets, recipients of G-PB grafts had faster T-cell reconstitution than BM recipients, including more naive CD4+ T cells and T-cell receptor excision circle-positive CD4+ and CD8+ T cells at 3 months, consistent with better thymic function. Faster reconstitution of CD4+ T cells and naive CD4+ T cells at 1 month and CD8+ T cells at 3 months predicted more chronic graft-versus-host disease (GVHD) but better survival in G-PB recipients, but consistent associations of T-cell amounts with GVHD or survival were not seen in BM recipients. In contrast, a higher number of classical dendritic cells (cDCs) in blood samples at 3 months predicted better survival in BM recipients. Functional T-cell immunity measured in vitro by cytokine secretion in response to stimulation with cytomegalovirus peptides was similar when comparing blood samples from BM and G-PB recipients, but the degree to which acute GVHD suppressed immune reconstitution varied according to graft source. BM, but not G-PB, recipients with a history of grades 2-4 acute GVHD had lower numbers of B cells, plasmacytoid dendritic cells, and cDCs at 3 months. Thus, early measurements of T-cell reconstitution are predictive cellular biomarkers for long-term survival and response to GVHD therapy in G-PB recipients, whereas more robust DC reconstitution predicted better survival in BM recipients.
Collapse
|
33
|
Ousia S, Kalra A, Williamson TS, Prokopishyn N, Dharmani-Khan P, Khan FM, Jimenez-Zepeda V, Jamani K, Duggan PR, Daly A, Russell JA, Storek J. Hematopoietic cell transplant outcomes after myeloablative conditioning with fludarabine, busulfan, low-dose total body irradiation, and rabbit antithymocyte globulin. Clin Transplant 2020; 34:e14018. [PMID: 32573834 DOI: 10.1111/ctr.14018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 11/30/2022]
Abstract
Optimal conditioning and graft-vs-host disease (GVHD) prophylaxis for hematopoietic cell transplantation (HCT) are unknown. Here, we report on outcomes after low toxicity, myeloablative conditioning consisting of fludarabine, busulfan, and 4 Gy total body irradiation, in combination with thymoglobulin and post-transplant methotrexate and cyclosporine. We retrospectively studied 700 patients with hematologic malignancies who received blood stem cells from 7 to 8/8 HLA-matched unrelated or related donors. Median follow-up of surviving patients was 5 years. At 5 years, overall survival (OS), relapse-free survival (RFS), and chronic GVHD/relapse-free survival (cGRFS) were 58%, 55%, and 40%. Risk factors for poor OS, RFS, and cGRFS were (1). high to very high disease risk index (DRI), (2). high recipient age, and (3). cytomegalovirus (CMV)-seropositive recipient with seronegative donor (D-R+). The latter risk factor applied particularly to patients with lymphoid malignancies. Neither donor other than HLA-matched sibling (7-8/8 unrelated) nor one HLA allele mismatch was risk factors for poor OS, RFS, or cGRFS. In conclusion, the above regimen results in excellent long-term outcomes. The outcomes are negatively impacted by older age, high or very high DRI, and CMV D-R+ serostatus, but not by donor unrelatedness or one HLA allele mismatch.
Collapse
Affiliation(s)
- Samar Ousia
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada.,Ain Shams University, Cairo, Egypt
| | - Amit Kalra
- University of Calgary, Calgary, AB, Canada
| | | | - Nicole Prokopishyn
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada
| | - Poonam Dharmani-Khan
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada
| | - Faisal M Khan
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada
| | - Victor Jimenez-Zepeda
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada
| | - Kareem Jamani
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada
| | - Peter R Duggan
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada
| | - Andrew Daly
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada
| | - James A Russell
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada
| | - Jan Storek
- University of Calgary, Calgary, AB, Canada.,Alberta Blood and Marrow Transplant Program, Alberta Health Services, Calgary, AB, Canada
| |
Collapse
|
34
|
Winkler J, Tittlbach H, Schneider A, Buchstaller C, Mayr A, Vasova I, Roesler W, Mach M, Mackensen A, Winkler TH. Measuring the cellular memory B cell response after vaccination in patients after allogeneic stem cell transplantation. Ann Hematol 2020; 99:1895-1906. [PMID: 32519092 PMCID: PMC7340644 DOI: 10.1007/s00277-020-04072-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/28/2020] [Indexed: 02/04/2023]
Abstract
After allogeneic hematopoietic stem cell transplantation (HSCT), patients are repetitively vaccinated to reduce the risk of infection caused by the immune deficiency following allogeneic HSCT. By the vaccination of transplanted patients, the humoral memory function can be restored in the majority of cases. It is unknown, however, to what extent memory B cells derived from the donor contribute to the mobilization of antibody-secreting cells and long-term humoral memory in patients after allogeneic HSCT. We therefore analyzed patients after allogeneic HSCT for memory B cell responses 7 days after single vaccination against tetanus toxoid (TT), diphtheria toxoid (DT), pertussis toxoid (PT), Haemophilus influenzae type b (Hib), and poliovirus. Patients showed an insufficient mobilization of plasmablasts (PB) after vaccination, whereas healthy subjects (HD, n = 13) exhibited a significant increase of PB in the peripheral blood. Regarding vaccine-specific antibody-secreting PB, all HD responded against all vaccine antigens, as expected. However, only 65% of the patients responded with a measurable increase in IgG-secreting PB against TT, 65% against DT, 33% against PT, and 53% against poliovirus. Correspondingly, the antibody titers on day 7 after vaccination did not increase in patients. A significant increase of serum titers for the vaccine antigens was detectable in the majority of patients only after repetitive vaccinations. In contrast to the low mobilization of vaccine-specific PB after vaccination, a high number of PB before vaccination was detectable in patients following allogeneic HSCT. High frequencies of circulating PB correlated with the incidence of moderate/severe chronic GVHD. In summary, patients showed a weak mobilization of antigen-specific PB and an inadequate increase in antibody titers 7 days after the first vaccination. Patients with moderate or severe chronic GVHD in their history had a significantly higher percentage of IgG-secreting PB prior to vaccination. The antigen specificity of these IgG-secreting PB is currently unknown.
Collapse
Affiliation(s)
- Julia Winkler
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Glückstrasse 6, 91054, Erlangen, Germany.
| | - Hannes Tittlbach
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Glückstrasse 6, 91054, Erlangen, Germany.,Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Schneider
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Corinna Buchstaller
- Department of Medical Informatics, Biometry, and Epidemiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mayr
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Ingrid Vasova
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Glückstrasse 6, 91054, Erlangen, Germany
| | - Wolf Roesler
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Glückstrasse 6, 91054, Erlangen, Germany
| | - Michael Mach
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Glückstrasse 6, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
35
|
Idso JM, Lao S, Schloemer NJ, Knipstein J, Burns R, Thakar MS, Malarkannan S. Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway. Oncotarget 2020; 11:1799-1815. [PMID: 32499867 PMCID: PMC7244011 DOI: 10.18632/oncotarget.27546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines. Additionally, entinostat increased both cytotoxicity and IFN-γ production in human NK cells following coculture with these tumor cells. Mechanistically, entinostat treatment resulted in increased chromatin accessibility to the promoter region for interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) gene and thereby increasing the transcript and protein levels of IFIT1 that augmented the IFIT1-mediated IRF1, STAT4, and STING pathways. Corresponding transcriptome analysis revealed enrichment of IRF1 and STAT4 and gene sets responsible for NK cell-mediated IFN-γ production and cytotoxicity, respectively. Our results show a novel mechanism by which entinostat initiates an IFIT1-STING-mediated potentiation of STAT4 via IRF1 to augment NK cell-mediated anti-tumor responses.
Collapse
Affiliation(s)
- John M Idso
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Shunhua Lao
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey Knipstein
- Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Burns
- Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Co-senior authors
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Co-senior authors
| |
Collapse
|
36
|
Antirelapse effect of pretransplant exposure to rabbit antithymocyte globulin. Blood Adv 2020; 3:1394-1405. [PMID: 31043372 DOI: 10.1182/bloodadvances.2018030247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/24/2019] [Indexed: 01/15/2023] Open
Abstract
It remains unknown why rabbit antithymocyte globulin (ATG; Thymoglobulin) has not affected relapse after hematopoietic cell transplantation (HCT) in randomized studies. We hypothesized that high pre-HCT ATG area under the curve (AUC) would be associated with a low incidence of relapse, whereas high post-HCT AUC would be associated with a high incidence of relapse. We measured serum levels of ATG capable of binding to mononuclear cells (MNCs), lymphocytes, T cells, CD4 T cells, or CD33 cells. We estimated pre- and post-HCT AUCs in 152 adult recipients of myeloablative conditioning and blood stem cells. High pre-HCT AUCs of MNC- and CD33 cell-binding ATG were associated with a low incidence of relapse and high relapse-free survival (RFS). There was a trend toward an association of high post-HCT AUC of lymphocyte-binding ATG with a high incidence of relapse and low RFS. High pre-HCT AUCs were also associated with faster engraftment and had no impact on graft-versus-host disease (GVHD) or fatal infections. High post-HCT AUCs were associated with a low risk of GVHD, seemed associated with an increased risk of fatal infections, and had no impact on engraftment. In conclusion, pre-HCT AUC seems to have a positive, whereas post-HCT AUC seems to have a negative, impact on relapse.
Collapse
|
37
|
Miller PDE, Snowden JA, De Latour RP, Iacobelli S, Eikema DJ, Knol C, Marsh JCW, Rice C, Koh M, Fagioli F, Chaganti S, Finke J, Duarte RF, Bader P, Farge D, Passweg JR, Madrigal JA, Dufour C. Autoimmune cytopenias (AIC) following allogeneic haematopoietic stem cell transplant for acquired aplastic anaemia: a joint study of the Autoimmune Diseases and Severe Aplastic Anaemia Working Parties (ADWP/SAAWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2020; 55:441-451. [PMID: 31554929 PMCID: PMC6995778 DOI: 10.1038/s41409-019-0680-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 07/06/2019] [Accepted: 07/20/2019] [Indexed: 12/03/2022]
Abstract
This retrospective study explored the incidence of autoimmune cytopenia (AIC) in 530 paediatric and adult patients with acquired aplastic anaemia (aAA) who underwent first allogeneic HSCT between 2002 and 2012. AIC was a rare complication with a cumulative incidence of AIC at 1, 3, 5 and 10 years post HSCT of 2.5% (1.2-3.9 95% CI), 4.4% (2.6-6.2 95% CI), 4.6% (2.8-6.5 95% CI) and 5.1% (3.1-7.2 95% CI). Overall survival at 5 years after diagnosis of AIC was 85.9% (71-100 95% CI). Twenty-five patients were diagnosed with AIC at a median of 10.6 (2.6-91.5) months post HSCT. Eight (32%) patients were diagnosed with immune thrombocytopenia (ITP), seven (28%) with autoimmune haemolytic anaemia (AIHA), seven (24%) with Evans syndrome and four (16%) with autoimmune neutropenia (AIN). Treatment strategies were heterogeneous. Complete responses were seen in 12 of 25 patients, with death in three patients. In multivariable Cox analysis of a subgroup of 475 patients, peripheral blood stem cell (PBSC) transplant was associated with higher risk of AIC compared with bone marrow (BM) when conditioning regimens contained fludarabine and/or alemtuzumab (2.81 [1.06-7.49 95% CI]; p = 0.038), or anti-thymocyte globulin (ATG) (2.86 [1.11-7.37 95% CI]; p = 0.029). Myeloablative conditioning was associated with a lower risk of AIC compared with reduced intensity conditioning (RIC) in fludarabine and/or alemtuzumab (0.34 [0.12-0.98 95% CI]; p = 0.046) and ATG containing regimens (0.34 [0.12-0.95 95% CI]; p = 0.04). These findings provide clinically useful information regarding the incidence of a rare and potentially life-threatening complication of allogeneic HSCT for aAA, and further support for BM as the preferred stem cell source for transplant of patients with aAA.
Collapse
Affiliation(s)
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Simona Iacobelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Cora Knol
- EBMT Data Office, Leiden, Netherlands
| | - Judith C W Marsh
- Department of Haematological Medicine, Kings College Hospital, London, UK
| | - Carmel Rice
- Department of Haematological Medicine, Kings College Hospital, London, UK
| | - Mickey Koh
- Department of Haematology, St George's Hospital NHS Foundation Trust, London, UK
| | - Franca Fagioli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| | - Sridhar Chaganti
- Centre for Clinical Haematology, University Hospital Birmingham, Birmingham, UK
| | - Jürgen Finke
- Department of Hematology and Oncology, University Medical Center, Freiburg, Germany
| | - Rafael F Duarte
- Department of Hematology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Peter Bader
- University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Dominique Farge
- Department of Autoimmune Diseases and Vascular Pathology, Hopital Saint-Louis, Paris, France
| | - Jakob R Passweg
- Division of Hematology, University Hospital of Santander, Basel, Switzerland
| | | | - Carlo Dufour
- Hematology Unit, G. Gaslini Children's Hospital, Genova, Italy
| |
Collapse
|
38
|
Zaghi E, Calvi M, Di Vito C, Mavilio D. Innate Immune Responses in the Outcome of Haploidentical Hematopoietic Stem Cell Transplantation to Cure Hematologic Malignancies. Front Immunol 2019; 10:2794. [PMID: 31849972 PMCID: PMC6892976 DOI: 10.3389/fimmu.2019.02794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
In the context of allogeneic transplant platforms, human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents one of the latest and most promising curative strategies for patients affected by high-risk hematologic malignancies. Indeed, this platform ensures a suitable stem cell source immediately available for virtually any patents in need. Moreover, the establishment in recipients of a state of immunologic tolerance toward grafted hematopoietic stem cells (HSCs) remarkably improves the clinical outcome of this transplant procedure in terms of overall and disease free survival. However, the HLA-mismatch between donors and recipients has not been yet fully exploited in order to optimize the Graft vs. Leukemia effect. Furthermore, the efficacy of haplo-HSCT is currently hampered by several life-threatening side effects including the onset of Graft vs. Host Disease (GvHD) and the occurrence of opportunistic viral infections. In this context, the quality and the kinetic of the immune cell reconstitution (IR) certainly play a major role and several experimental efforts have been greatly endorsed to better understand and accelerate the post-transplant recovery of a fully competent immune system in haplo-HSCT. In particular, the IR of innate immune system is receiving a growing interest, as it recovers much earlier than T and B cells and it is able to rapidly exert protective effects against both tumor relapses, GvHD and the onset of life-threatening opportunistic infections. Herein, we review our current knowledge in regard to the kinetic and clinical impact of Natural Killer (NK), γδ and Innate lymphoid cells (ILCs) IRs in both allogeneic and haplo-HSCT. The present paper also provides an overview of those new therapeutic strategies currently being implemented to boost the alloreactivity of the above-mentioned innate immune effectors in order to ameliorate the prognosis of patients affected by hematologic malignancies and undergone transplant procedures.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
39
|
Bögeholz J, Russkamp NF, Wilk CM, Gourri E, Haralambieva E, Schanz U, Mueller NJ, Manz MG, Müller AMS. Long-Term Follow-Up of Antibody Titers Against Measles, Mumps, and Rubella in Recipients of Allogenic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:581-592. [PMID: 31682977 DOI: 10.1016/j.bbmt.2019.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023]
Abstract
Outbreaks of viral infections, such as measles, are regularly observed and pose a serious threat to recipients of allogeneic hematopoietic cell transplantation (HCT). The questions of how long cellular and humoral protective host immunity persists, and whether donor immunity can be transferred has not been clarified. Here we present a retrospective analysis of humoral immunity-serial antibody titers against measles, mumps, and rubella-in 331 patients who underwent allogeneic HCT at our single center between 2002 and 2015. Associations between the loss of protective antibody levels and clinical patient characteristics and transplantation parameters were examined. In general, antibody protection against measles persisted longer, with 72% of patients maintaining sufficient titers at 5 years post-HCT even without revaccination, while at that time only 65% and 50% of patients had protective immunity against rubella and mumps, respectively. The great majority of donors were seropositive for all 3 viruses; however, it appeared that donor humoral immunity could not be transferred and had no impact on post-HCT serostatus. Rather, the most relevant factor for persistent protective antibody titers against measles and rubella was whether patients were born before the introduction of the respective vaccine and thus were immunized by the wild-type disease-inducing virus instead of the vaccine. Moreover, the presence of moderate and severe chronic graft-versus-host disease (GVHD) was associated with more rapid loss of immune protection. In contrast, underlying disease, intensity of the conditioning regimen, use of antithymocyte globulin, age, and graft source had no influence on antibody titers. Overall, our findings suggest that the majority of antibodies against measles, mumps, and rubella originate from residual host cells, whereas donor immune status appears to have no influence on antibody protection post-HCT.
Collapse
Affiliation(s)
- Jan Bögeholz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland; Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Norman F Russkamp
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Christian M Wilk
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland; Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Elise Gourri
- Department of Molecular Diagnostics and Research & Development, Blood Transfusion Service Zurich, Swiss Red Cross, Zurich, Switzerland
| | | | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolas J Mueller
- Department of Infectious Diseases & Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Stocker N, Labopin M, Boussen I, Paccoud O, Bonnin A, Malard F, Amiel C, Gozlan J, Battipaglia G, Duléry R, Giannotti F, Ruggeri A, Gaugler B, Mohty M, Brissot E. Pre-emptive rituximab treatment for Epstein–Barr virus reactivation after allogeneic hematopoietic stem cell transplantation is a worthwhile strategy in high-risk recipients: a comparative study for immune recovery and clinical outcomes. Bone Marrow Transplant 2019; 55:586-594. [DOI: 10.1038/s41409-019-0699-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
|
41
|
Elfeky R, Lazareva A, Qasim W, Veys P. Immune reconstitution following hematopoietic stem cell transplantation using different stem cell sources. Expert Rev Clin Immunol 2019; 15:735-751. [PMID: 31070946 DOI: 10.1080/1744666x.2019.1612746] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Adequate immune reconstitution post-HSCT is crucial for the success of transplantation, and can be affected by both patient- and transplant-related factors. Areas covered: A systematic literature search in PubMed, Scopus, and abstracts of international congresses is performed to investigate immune recovery posttransplant. In this review, we discuss the pattern of immune recovery in the post-transplant period focusing on the impact of stem cell source (bone marrow, peripheral blood stem cells, and cord blood) on immune recovery and HSCT outcome. We examine the impact of serotherapy on immune reconstitution and the need to tailor dosing of serotherapy agents when using different stem cell sources. We discuss new techniques being used particularly with cord blood and haploidentical grafts to improve immune recovery in each scenario. Expert opinion: Cord blood T cells provide a unique CD4+ biased immune reconstitution. Initial studies using targeted serotherapy with cord grafts showed improved immune recovery with limited alloreactivity. Two competing haploidentical approaches have developed in recent years including TCRαβ/CD19 depleted grafts and post-cyclophosphamide haplo-HSCT. Both approaches have comparable survival rates with limited alloreactivity. However, delayed immune reconstitution is still an ongoing problem and could be improved by modified donor lymphocyte infusions from the same haploidentical donor.
Collapse
Affiliation(s)
- Reem Elfeky
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Arina Lazareva
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Waseem Qasim
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Paul Veys
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| |
Collapse
|
42
|
van der Maas NG, Berghuis D, van der Burg M, Lankester AC. B Cell Reconstitution and Influencing Factors After Hematopoietic Stem Cell Transplantation in Children. Front Immunol 2019; 10:782. [PMID: 31031769 PMCID: PMC6473193 DOI: 10.3389/fimmu.2019.00782] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
B cell reconstitution after hematopoietic stem cell transplantation (HSCT) is variable and influenced by different patient, donor, and treatment related factors. In this review we describe B cell reconstitution after pediatric allogeneic HST, including the kinetics of reconstitution of the different B cell subsets and the development of the B cell repertoire, and discuss the influencing factors. Observational studies show important roles for stem cell source, conditioning regimen, and graft vs. host disease in B cell reconstitution. In addition, B cell recovery can play an important role in post-transplant infections and vaccine responses to encapsulated bacteria, such as pneumococcus. A substantial number of patients experience impaired B cell function and/or dependency on Ig substitution after allogeneic HSCT. The underlying mechanisms are largely unresolved. The integrated aspects of B cell recovery after HSCT, especially BCR repertoire reconstitution, are awaiting further investigation using modern techniques in order to gain more insight into B cell reconstitution and to develop strategies to improve humoral immunity after allogeneic HSCT.
Collapse
Affiliation(s)
- Nicolaas G van der Maas
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
43
|
Chang YJ, Xu LP, Wang Y, Zhang XH, Chen H, Chen YH, Wang FR, Han W, Sun YQ, Yan CH, Tang FF, Mo XD, Liu KY, Huang XJ. Effects of Low-Dose Glucocorticoid Prophylaxis on Chronic Graft-versus-Host Disease and Graft-versus-Host Disease–Free, Relapse-Free Survival after Haploidentical Transplantation: Long-Term Follow-Up of a Controlled, Randomized Open-Label Trial. Biol Blood Marrow Transplant 2019; 25:529-537. [DOI: 10.1016/j.bbmt.2018.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
|
44
|
Gauthier SD, Moutuou MM, Daudelin F, Leboeuf D, Guimond M. IL-7 Is the Limiting Homeostatic Factor that Constrains Homeostatic Proliferation of CD8 + T Cells after Allogeneic Stem Cell Transplantation and Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 25:648-655. [PMID: 30576835 DOI: 10.1016/j.bbmt.2018.12.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022]
Abstract
Immune reconstitution after allogeneic hematopoietic stem cell transplantation relies primarily on homeostatic proliferation (HP) of mature T lymphocytes, but this process is typically impaired during graft-versus-host disease (GVHD). We previously showed that low IL-7 levels combined with lack of dendritic cell (DC) regeneration constrain CD4+ T cell HP during GVHD. However, it is not clear whether these alterations to the peripheral CD4+ T cell niche also contribute to impair CD8+ T cell regeneration during GVHD. We found that IL-7 therapy was sufficient for restoring CD8+ T cell HP in GVHD hosts while forcing DC regeneration with Flt3-L had only a modest effect on CD8+ T cell HP in IL-7 treated mice. Using bone marrow chimeras, we showed that HP of naïve CD8+ T cells is primarily regulated by MHC class I on radio-resistant stromal cells, yet optimal recovery of CD8+ T cell counts still requires expression of MHC class I on both radio-resistant and radio-sensitive hematopoietic cells. Thus, IL-7 level is the primary limiting factor that constrains naïve CD8+ T cell HP during GVHD, and accessibility of MHC class I on stromal cells explains how IL-7 therapy, as a single agent, can induce robust CD8 + T cell HP in the absence of DCs.
Collapse
Affiliation(s)
- Simon-David Gauthier
- Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Moutuaata M Moutuou
- Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Francis Daudelin
- Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Dominique Leboeuf
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada; Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Martin Guimond
- Départment de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada; Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.
| |
Collapse
|
45
|
La Rosa C, Longmate J, Lingaraju CR, Zhou Q, Kaltcheva T, Hardwick N, Aldoss I, Nakamura R, Diamond DJ. Rapid Acquisition of Cytomegalovirus-Specific T Cells with a Differentiated Phenotype, in Nonviremic Hematopoietic Stem Transplant Recipients Vaccinated with CMVPepVax. Biol Blood Marrow Transplant 2018; 25:771-784. [PMID: 30562587 DOI: 10.1016/j.bbmt.2018.12.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Early cytomegalovirus (CMV) reactivation remains a significant cause of morbidity and mortality in allogeneic hematopoietic cell transplant (HCT) recipients. CMVPepVax is an investigational peptide vaccine designed to control CMV infection in HCT recipients seropositive for CMV by stimulating the expansion of T cell subsets that target the CMV tegument protein pp65. In a randomized Phase Ib pilot trial (ClinicalTrials.gov NCT01588015), two injections of CMVPepVax (at days 28 and 56 post-HCT) demonstrated safety, immunogenicity, increased relapse-free survival, and reduced CMV reactivation and use of antivirals. In the present study, we assessed the phenotypes and time courses of the pp65-specific CD8 T cell subsets that expanded in response to CMVPepVax vaccination. The functionality and antiviral role of CMV-specific T cells have been linked to immune reconstitution profiles characterized predominantly by differentiated effector memory T (TEM) subsets that have lost membrane expression of the costimulatory molecule CD28 and often reexpress the RA isoform of CD45 (TEMRA). Major histocompatibility complex class I pp65495-503 multimers, as well as CD28 and CD45 memory markers, were used to detect immune reconstitution in blood specimens from HCT recipients enrolled in the Phase Ib clinical trial. Specimens from the 10 (out of 18) vaccinated patients who had adequate (≥.2%) multimer binding to allow for memory analysis showed highly differentiated TEM and TEMRA phenotypes for pp65495-503-specific CD8 T cells during the first 100days post-transplantation. In particular, by day 70, during the period of highest risk for CMV reactivation, combined TEM and TEMRA phenotypes constituted a median of 90% of pp65495-503-specific CD8 T cells in these vaccinated patients. CMV viremia was not detectable in the patients who received CMVPepVax, although their pp65495-503-specific CD8 T cell profiles were strikingly similar to those observed in viremic patients who did not receive the vaccine. Collectively, our findings indicate that in the absence of clinically relevant viremia, CMVPepVax reconstituted significant levels of differentiated pp65495-503-specific CD8 TEMs early post-HCT. Our data indicate that the rapid reconstitution of CMV-specific T cells with marked levels of effector phenotypes may have been key to the favorable outcomes of the CMVPepVax clinical trial.
Collapse
Affiliation(s)
- Corinna La Rosa
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Jeffrey Longmate
- Division of Biostatistics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Chetan Raj Lingaraju
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Qiao Zhou
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Teodora Kaltcheva
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Nicola Hardwick
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Don J Diamond
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
46
|
Harada K, Sekiya N, Ikegawa S, Sasaki S, Kobayashi T, Ohashi K. Cytomegalovirus meningitis in a patient with relapsed acute myeloid leukemia. Int J Hematol 2018; 109:233-238. [PMID: 30291557 DOI: 10.1007/s12185-018-2544-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022]
Abstract
Cytomegalovirus meningitis/meningoencephalitis is a potentially fatal complication following hematopoietic stem cell transplantation that causes significant morbidity and mortality. In the pre-transplant setting, a few cases involving lymphoid malignancies have been reported. However, there have been no reports of patients with myeloid malignancies. A 36-year-old man with relapsed acute myeloid leukemia received high-dose cytarabine-containing salvage chemotherapies and then developed grade 4 lymphopenia for more than one month. Subsequently, the patient developed pyrexia, accompanying headache, nausea, and vomiting with no abnormal brain imaging. Despite receiving antimicrobial treatment, his febrile status and headache persisted. Given that the patient had symptoms consistent with viral meningitis with no evidence of etiology other than positive cytomegalovirus-DNA in his cerebrospinal fluid and cytomegalovirus pp65 antigenemia, cytomegalovirus meningitis was diagnosed. After commencing ganciclovir treatment, the patient's headache and febrile status rapidly improved. Cytomegalovirus meningitis/meningoencephalitis is rare before hematopoietic stem cell transplantation, but may be useful in differential diagnoses in heavily treated acute myeloid leukemia patients with central nervous system symptoms.
Collapse
Affiliation(s)
- Kaito Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Noritaka Sekiya
- Department of Infection Prevention and Control, Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 1138677, Japan.
| | - Shuntaro Ikegawa
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Shugo Sasaki
- Department of Infection Prevention and Control, Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 1138677, Japan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| |
Collapse
|
47
|
de Silva HD, Ffrench RA, Korem M, Orlowski E, Curtis DJ, Spencer A, Avery S, Patil S, Morrissey CO. Contemporary analysis of functional immune recovery to opportunistic and vaccine-preventable infections after allogeneic haemopoietic stem cell transplantation. Clin Transl Immunology 2018; 7:e1040. [PMID: 30323928 PMCID: PMC6173278 DOI: 10.1002/cti2.1040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 01/23/2023] Open
Abstract
Objectives Infections are a major cause of mortality after allogeneic haemopoietic stem cell transplantation (alloHSCT), and immune recovery is necessary for prevention. Novel transplant procedures have changed the epidemiology of infections but contemporary data on functional immune recovery are limited. In this pilot study, we aimed to measure immune recovery in the current era of alloHSCT. Methods Twenty, 13, 11, 9 and 9 alloHSCT recipients had blood collected at baseline (time of conditioning) and 3‐, 6‐, 9‐, and 12‐months post‐alloHSCT, respectively. Clinical data were collected, and immune recovery was measured using immunophenotyping, lymphocyte proliferation, cytokine analysis and antibody isotyping. Results Median absolute T‐ and B‐cell counts were below normal from baseline until 9‐ to 12‐months post‐alloHSCT. Median absolute CD4+ T‐cell counts recovered at 12‐months post‐alloHSCT. Positive proliferative responses to Aspergillus, cytomegalovirus (CMV), Epstein‐Barr virus (EBV), influenza and tetanus antigens were detected from 9 months. IL‐6 was the most abundant cytokine in cell cultures. In cultures stimulated with CMV, EBV, influenza and tetanus peptides, the CD4+ T‐cell count correlated with IL‐1β (P = 0.045) and CD8+ T‐cell count with IFNγ (P = 0.013) and IL‐1β (P = 0.012). The NK‐cell count correlated with IL‐1β (P = 0.02) and IL‐17a (P = 0.03). Median serum levels of IgG1, IgG2 and IgG3 were normal while IgG4 and IgA were below normal range throughout follow‐up. Conclusions This pilot study demonstrates that immune recovery can be measured using CD4+ T‐cell counts, in vitro antigen stimulation and selected cytokines (IFNγ, IL‐1β, IL‐4, IL‐6, IL‐17, IL‐21, IL‐31) in alloHSCT recipients. While larger studies are required, monitoring immune recovery may have utility in predicting infection risk post‐alloHSCT.
Collapse
Affiliation(s)
- Harini D de Silva
- Burnet Institute Life Sciences Discipline Melbourne VIC Australia.,Department of Infectious Diseases Alfred Health and Monash University Melbourne VIC Australia.,Present address: Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Rosemary A Ffrench
- Burnet Institute Life Sciences Discipline Melbourne VIC Australia.,Department of Immunology Central Clinical School Monash University Melbourne VIC Australia
| | - Maya Korem
- Department of Infectious Diseases Alfred Health and Monash University Melbourne VIC Australia.,Present address: Hadassah University Medical Centre Jerusalem Israel
| | - Eva Orlowski
- Burnet Institute Life Sciences Discipline Melbourne VIC Australia
| | - David J Curtis
- Australian Centre for Blood Diseases Monash University Melbourne VIC Australia.,Malignant Haematology and Stem Cell Transplantation Service Alfred Health Melbourne VIC Australia
| | - Andrew Spencer
- Australian Centre for Blood Diseases Monash University Melbourne VIC Australia.,Malignant Haematology and Stem Cell Transplantation Service Alfred Health Melbourne VIC Australia
| | - Sharon Avery
- Malignant Haematology and Stem Cell Transplantation Service Alfred Health Melbourne VIC Australia
| | - Sushrut Patil
- Malignant Haematology and Stem Cell Transplantation Service Alfred Health Melbourne VIC Australia
| | - Catherine Orla Morrissey
- Department of Infectious Diseases Alfred Health and Monash University Melbourne VIC Australia.,Malignant Haematology and Stem Cell Transplantation Service Alfred Health Melbourne VIC Australia
| |
Collapse
|
48
|
Norkin M, Shaw BE, Brazauskas R, Tecca HR, Leather HL, Gea-Banacloche J, T Kamble R, DeFilipp Z, Jacobsohn DA, Ringden O, Inamoto Y, A Kasow K, Buchbinder D, Shaw P, Hematti P, Schears R, Badawy SM, Lazarus HM, Bhatt N, Horn B, Chhabra S, M Page K, Hamilton B, Hildebrandt GC, Yared JA, Agrawal V, M Beitinjaneh A, Majhail N, Kindwall-Keller T, Olsson RF, Schoemans H, Gale RP, Ganguly S, A Ahmed I, Schouten HC, L Liesveld J, Khera N, Steinberg A, Shah AJ, Solh M, Marks DI, Rybka W, Aljurf M, Dietz AC, Gergis U, George B, Seo S, Flowers MED, Battiwalla M, Savani BN, Riches ML, Wingard JR. Characteristics of Late Fatal Infections after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2018; 25:362-368. [PMID: 30287390 DOI: 10.1016/j.bbmt.2018.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 11/29/2022]
Abstract
We analyzed late fatal infections (LFIs) in allogeneic stem cell transplantation (HCT) recipients reported to the Center for International Blood and Marrow Transplant Research. We analyzed the incidence, infection types, and risk factors contributing to LFI in 10,336 adult and 5088 pediatric subjects surviving for ≥2 years after first HCT without relapse. Among 2245 adult and 377 pediatric patients who died, infections were a primary or contributory cause of death in 687 (31%) and 110 (29%), respectively. At 12 years post-HCT, the cumulative incidence of LFIs was 6.4% (95% confidence interval [CI], 5.8% to 7.0%) in adults, compared with 1.8% (95% CI, 1.4% to 2.3%) in pediatric subjects; P < .001). In adults, the 2 most significant risks for developing LFI were increasing age (20 to 39, 40 to 54, and ≥55 years versus 18 to 19 years) with hazard ratios (HRs) of 3.12 (95% CI, 1.33 to 7.32), 3.86 (95% CI, 1.66 to 8.95), and 5.49 (95% CI, 2.32 to 12.99) and a history of chronic graft-versus-host disease GVHD (cGVHD) with ongoing immunosuppression at 2 years post-HCT compared with no history of GVHD with (HR, 3.87; 95% CI, 2.59 to 5.78). In pediatric subjects, the 3 most significant risks for developing LFI were a history of cGVHD with ongoing immunosuppression (HR, 9.49; 95% CI, 4.39 to 20.51) or without ongoing immunosuppression (HR, 2.7; 95% CI, 1.05 to 7.43) at 2 years post-HCT compared with no history of GVHD, diagnosis of inherited abnormalities of erythrocyte function compared with diagnosis of acute myelogenous leukemia (HR, 2.30; 95% CI, 1.19 to 4.42), and age >10 years (HR, 1.92; 95% CI, 1.15 to 3.2). This study emphasizes the importance of continued vigilance for late infections after HCT and institution of support strategies aimed at decreasing the risk of cGVHD.
Collapse
Affiliation(s)
- Maxim Norkin
- Division of Hematology/Oncology, University Florida College of Medicine, Gainesville, Florida
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Ruta Brazauskas
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Heather R Tecca
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Helen L Leather
- Division of Hematology/Oncology, University Florida College of Medicine, Gainesville, Florida
| | - Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, National Cancer Institute. Bethesda, Maryland
| | - Rammurti T Kamble
- Division of Hematology and Oncology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Zachariah DeFilipp
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, Massachusetts
| | - David A Jacobsohn
- Division of Blood and Marrow Transplantation, Center for Cancer and Blood Disorders, Children's National Health System, Washington, DC
| | - Olle Ringden
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yoshihiro Inamoto
- Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Kimberly A Kasow
- Division of Hematology-Oncology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Buchbinder
- Division of Pediatrics Hematology, Children's Hospital of Orange County, Orange, California
| | - Peter Shaw
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Peiman Hematti
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | | | - Sherif M Badawy
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Hillard M Lazarus
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Neel Bhatt
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | - Kristin M Page
- Division of Pediatric Blood and Marrow Transplantation, Duke University Medical Center, Durham, North Carolina
| | - Betty Hamilton
- Blood and Marrow Transplant Program, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | | | - Jean A Yared
- Blood and Marrow Transplantation Program, Division of Hematology/Oncology, Department of Medicine, Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland
| | - Vaibhav Agrawal
- Indiana University Simon Cancer Center, Indianapolis, Indiana
| | | | - Navneet Majhail
- Blood and Marrow Transplant Program, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Tamila Kindwall-Keller
- Division of Hematology/Oncology, University of Virginia Health System, Charlottesville, Virginia
| | - Richard F Olsson
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Centre for Clinical Research Sormland, Uppsala University, Uppsala, Sweden
| | | | - Robert Peter Gale
- Hematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Siddhartha Ganguly
- Division of Hematological Malignancy and Cellular Therapeutics, University of Kansas Health System, Kansas City, Kansas
| | - Ibrahim A Ahmed
- Department of Hematology Oncology and Bone Marrow Transplantation, The Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Harry C Schouten
- Department of Hematology, Academische Ziekenhuis, Maastricht, The Netherlands
| | - Jane L Liesveld
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Nandita Khera
- Department of Hematology/Oncology, Mayo Clinic, Phoenix, Arizona
| | - Amir Steinberg
- Department of Hematology-Oncology, Mount Sinai Hospital, New York, New York
| | - Ami J Shah
- Division of Stem Cell Transplantation and Regenerative Medicine, Lucille Packard Children's Hospital, Stanford School of Medicine, Palo Alto, California
| | - Melhem Solh
- The Blood and Marrow Transplant Group of Georgia, Northside Hospital, Atlanta, Georgia
| | - David I Marks
- Adult Bone Marrow Transplant, University Hospitals Bristol NHS Trust, Bristol, United Kingdom
| | - Witold Rybka
- Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Mahmoud Aljurf
- Department of Oncology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Andrew C Dietz
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | - Usama Gergis
- Hematologic Malignancies and Bone Marrow Transplant, Department of Medical Oncology, New York Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | | | - Sachiko Seo
- Department of Hematology and Oncology, National Cancer Research Center East, Chiba, Japan
| | - Mary E D Flowers
- Medical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Bipin N Savani
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcie L Riches
- Division of Hematology/Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John R Wingard
- Division of Hematology/Oncology, University Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
49
|
Salzmann-Manrique E, Bremm M, Huenecke S, Stech M, Orth A, Eyrich M, Schulz A, Esser R, Klingebiel T, Bader P, Herrmann E, Koehl U. Joint Modeling of Immune Reconstitution Post Haploidentical Stem Cell Transplantation in Pediatric Patients With Acute Leukemia Comparing CD34 +-Selected to CD3/CD19-Depleted Grafts in a Retrospective Multicenter Study. Front Immunol 2018; 9:1841. [PMID: 30154788 PMCID: PMC6102342 DOI: 10.3389/fimmu.2018.01841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022] Open
Abstract
Rapid immune reconstitution (IR) following stem cell transplantation (SCT) is essential for a favorable outcome. The optimization of graft composition should not only enable a sufficient IR but also improve graft vs. leukemia/tumor effects, overcome infectious complications and, finally, improve patient survival. Especially in haploidentical SCT, the optimization of graft composition is controversial. Therefore, we analyzed the influence of graft manipulation on IR in 40 patients with acute leukemia in remission. We examined the cell recovery post haploidentical SCT in patients receiving a CD34+-selected or CD3/CD19-depleted graft, considering the applied conditioning regimen. We used joint model analysis for overall survival (OS) and analyzed the dynamics of age-adjusted leukocytes; lymphocytes; monocytes; CD3+, CD3+CD4+, and CD3+CD8+ T cells; natural killer (NK) cells; and B cells over the course of time after SCT. Lymphocytes, NK cells, and B cells expanded more rapidly after SCT with CD34+-selected grafts (P = 0.036, P = 0.002, and P < 0.001, respectively). Contrarily, CD3+CD4+ helper T cells recovered delayer in the CD34 selected group (P = 0.026). Furthermore, reduced intensity conditioning facilitated faster immune recovery of lymphocytes and T cells and their subsets (P < 0.001). However, the immune recovery for NK cells and B cells was comparable for patients who received reduced-intensity or full preparative regimens. Dynamics of all cell types had a significant influence on OS, which did not differ between patients receiving CD34+-selected and those receiving CD3/CD19-depleted grafts. In conclusion, cell reconstitution dynamics showed complex diversity with regard to the graft manufacturing procedure and conditioning regimen.
Collapse
Affiliation(s)
- Emilia Salzmann-Manrique
- Department of Medicine, Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe-University, Frankfurt, Germany.,Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Melanie Bremm
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Sabine Huenecke
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Milena Stech
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Andreas Orth
- University of Applied Sciences Frankfurt, Frankfurt, Germany
| | - Matthias Eyrich
- Pediatric Hematology and Oncology, University of Wuerzburg, Wuerzburg, Germany
| | - Ansgar Schulz
- Pediatric Hematology and Oncology, University of Ulm, Ulm, Germany
| | - Ruth Esser
- Institute of Cellular Therapeutics Hannover Medical School, Hannover, Germany
| | - Thomas Klingebiel
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Peter Bader
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Eva Herrmann
- Department of Medicine, Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Ulrike Koehl
- Institute of Cellular Therapeutics Hannover Medical School, Hannover, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute of Cellular Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
50
|
Stern L, McGuire H, Avdic S, Rizzetto S, Fazekas de St Groth B, Luciani F, Slobedman B, Blyth E. Mass Cytometry for the Assessment of Immune Reconstitution After Hematopoietic Stem Cell Transplantation. Front Immunol 2018; 9:1672. [PMID: 30093901 PMCID: PMC6070614 DOI: 10.3389/fimmu.2018.01672] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Mass cytometry, or Cytometry by Time-Of-Flight, is a powerful new platform for high-dimensional single-cell analysis of the immune system. It enables the simultaneous measurement of over 40 markers on individual cells through the use of monoclonal antibodies conjugated to rare-earth heavy-metal isotopes. In contrast to the fluorochromes used in conventional flow cytometry, metal isotopes display minimal signal overlap when resolved by single-cell mass spectrometry. This review focuses on the potential of mass cytometry as a novel technology for studying immune reconstitution in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Reconstitution of a healthy donor-derived immune system after HSCT involves the coordinated regeneration of innate and adaptive immune cell subsets in the recipient. Mass cytometry presents an opportunity to investigate immune reconstitution post-HSCT from a systems-level perspective, by allowing the phenotypic and functional features of multiple cell populations to be assessed simultaneously. This review explores the current knowledge of immune reconstitution in HSCT recipients and highlights recent mass cytometry studies contributing to the field.
Collapse
Affiliation(s)
- Lauren Stern
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Helen McGuire
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Selmir Avdic
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | - Barbara Fazekas de St Groth
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Fabio Luciani
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Barry Slobedman
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, Sydney, NSW, Australia
| |
Collapse
|