1
|
Kayaalp Nalbant E, Feliciano TJ, Mohammadlou A, Xiong VL, Trujillo JE, Calvert AE, Kaplan N, Foroozandeh P, Kim J, Bai EM, Qi X, Tobias F, Roth EW, Dravid VP, Lu KQ, Nguyen ST, Shad Thaxton C, Peng H, Lavker RM. A novel therapy to ameliorate nitrogen mustard-induced limbal stem cell deficiency using lipoprotein-like nanoparticles. NPJ Regen Med 2025; 10:14. [PMID: 40113808 PMCID: PMC11926173 DOI: 10.1038/s41536-025-00402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic corneal inflammation, a component of sulfur mustard (SM) and nitrogen mustard (NM) injuries frequently leads to limbal stem cell deficiency (LSCD), which can compromise vision. Corneal conjunctivalization, neovascularization, and persistent inflammation are hallmarks of LSCD. Ocular exposure to SM and NM results in an acute and delayed phase of corneal disruption, culminating in LSCD. Available therapies for mustard keratopathy (e.g., topical corticosteroids) often have adverse side effects, and generally are ineffective in preventing the development of LSCD. We developed a novel, optically transparent HDL nanoparticle (NP) with an organic core (oc) molecular scaffold. This unique oc-HDL NP: (i) markedly improved corneal haze during the acute and delayed phases in vivo; (ii) significantly reduced the inflammatory response; and (iii) blunted conjunctivalization and corneal neovascularization during the delayed phase. These findings strongly suggest that our HDL NP is an ideal treatment for mustard keratopathy and other chronic corneal inflammatory diseases.
Collapse
Affiliation(s)
- Elif Kayaalp Nalbant
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Timothy J Feliciano
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Vincent L Xiong
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jacquelyn E Trujillo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea E Calvert
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Parisa Foroozandeh
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jayden Kim
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emma M Bai
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaolin Qi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fernando Tobias
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Eric W Roth
- Department of Materials Science, Northwestern University, Evanston, IL, USA
| | - Vinayak P Dravid
- Department of Materials Science, Northwestern University, Evanston, IL, USA
| | - Kurt Q Lu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - SonBinh T Nguyen
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - C Shad Thaxton
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Han Peng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Robert M Lavker
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
2
|
Li R, Wang J, Wang J, Xie W, Song P, Zhang J, Xu Y, Tian D, Wu L, Wang C. Serum Lipid Biomarkers for the Diagnosis and Monitoring of Neuromyelitis Optica Spectrum Disorder: Towards Improved Clinical Management. J Inflamm Res 2025; 18:3779-3794. [PMID: 40103803 PMCID: PMC11913982 DOI: 10.2147/jir.s496018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/22/2025] [Indexed: 03/20/2025] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is a group of immune-mediated disorders that often lead to severe disability. The diagnosis and monitoring of NMOSD can be challenging, particularly in seronegative cases, highlighting the need for reliable biomarkers to enhance clinical management. This study aimed to identify serum lipid biomarkers for the diagnosis and monitoring of NMOSD and to assess their potential to improve clinical decision-making. Methods We conducted a comprehensive serum proteomic analysis in a discovery cohort of NMOSD patients and controls to identify lipid-related proteins associated with NMOSD. Subsequently, we validated the candidate biomarkers in the retrospective cohort and developed diagnostic models using a random forest algorithm. The association between these lipid biomarkers and disease activity was further evaluated in longitudinal analysis. Results Our analysis identified a panel of serum lipid-related biomarkers that demonstrated significant differences between NMOSD patients and controls. The diagnostic models achieved the impressive accuracy of 72% for the full NMOSD spectrum, 72% for AQP4-IgG+ NMOSD, and 68% for double seronegative NMOSD. Importantly, these biomarkers showed a correlation with disease activity, with levels changing from relapse to remission. Additionally, a combination of these lipid biomarkers was found to predict relapse with the AUC of 0.861. A user-friendly smartphone application was developed to facilitate the straightforward "input-index, output-answer" screening process, enhancing both clinical decision-making and patient care. Conclusion The diagnostic model based on the serum lipid-related indexes (TC, TG, LDL, HDL, ApoA1, and ApoB) may be the useful tool for NMOSD in diagnosis and monitoring of disease stage, thereby improving the treatment outcome for patients. Future studies should focus on integrating these biomarkers into routine clinical practice to realize their full potential in enhancing NMOSD management.
Collapse
Affiliation(s)
- Ruibing Li
- Department of Laboratory Medicine, the First Medical Centre of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Jinyang Wang
- Department of Laboratory Medicine, the First Medical Centre of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
- School of Laboratory Medicine, Weifang Medical College, Weifang, Shandong, 261053, People's Republic of China
| | - Jianan Wang
- Department of Laboratory Medicine, the First Medical Centre of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Wei Xie
- Department of Neurology, the First Medical Centre of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong - Liverpool University, Suzhou, 215000, People's Republic of China
| | - Jie Zhang
- School of Advanced Technology, Xi'an Jiaotong - Liverpool University, Suzhou, 215000, People's Republic of China
| | - Yun Xu
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Decai Tian
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Lei Wu
- Department of Neurology, the First Medical Centre of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Chengbin Wang
- Department of Laboratory Medicine, the First Medical Centre of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| |
Collapse
|
3
|
Giacaglia MB, Pires V, Santana MFM, Passarelli M. Unraveling the Pleiotropic Role of High-Density Lipoproteins (HDLs) in Autoimmune Rheumatic Diseases. Int J Rheumatol 2024; 2024:1896817. [PMID: 39574464 PMCID: PMC11581784 DOI: 10.1155/2024/1896817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Autoimmune rheumatic diseases (ARDs) exhibit an elevated incidence of cardiovascular disease (CVD). The elevation of inflammatory and immune stress accompanying ARDs contributes to atherosclerosis development and alterations in lipid metabolism and lipoprotein profile add to cardiovascular (CV) risk. The plasma concentration of high-density lipoprotein cholesterol (HDLc) is inversely related to CVD and serves as a discriminator of CV risk. However, this association is not unequivocal, and changes in HDL functionality appear to emerge as a better indicator of CV risk, albeit difficult to measure and monitor clinically. The modulation of HDLc itself can bring benefits in controlling autoimmunity and reducing ARD activity. Understanding HDL function and each peculiarity involved in ARDs enables to seek means to prevent ischemic outcomes associated with CVD, in the face of the residual CV risk persisting even with controlled disease activity and classic risk factors. By comprehending HDL's structural and functional nuances, it will be possible to develop more effective strategies to manage the evolution and outcomes of ARDs. It is also necessary to standardize diagnostic methods and establish different markers for each specific disease allowing the design of intervention strategies to restore HDL functionality, reduce residual CV, and prevent, alleviate, or even suppress ARD activity.
Collapse
Affiliation(s)
- Marcia B. Giacaglia
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE) 01525-000, São Paulo, Brazil
| | - Vitória Pires
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo 01246-000, São Paulo, Brazil
| | - Monique F. M. Santana
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo 01246-000, São Paulo, Brazil
| | - Marisa Passarelli
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE) 01525-000, São Paulo, Brazil
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo 01246-000, São Paulo, Brazil
| |
Collapse
|
4
|
Jury EC, Peng J, Van Vijfeijken A, Martin Gutierrez L, Woodridge L, Wincup C, Pineda-Torra I, Ciurtin C, Robinson GA. Systemic lupus erythematosus patients have unique changes in serum metabolic profiles across age associated with cardiometabolic risk. Rheumatology (Oxford) 2024; 63:2741-2753. [PMID: 38048621 PMCID: PMC11443078 DOI: 10.1093/rheumatology/kead646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
OBJECTIVES Cardiovascular disease through accelerated atherosclerosis is a leading cause of mortality for patients with systemic lupus erythematosus (SLE), likely due to increased chronic inflammation and cardiometabolic defects over age. We investigated age-associated changes in metabolomic profiles of SLE patients and healthy controls (HCs). METHODS Serum NMR metabolomic profiles from female SLE patients (n = 164, age = 14-76) and HCs (n = 123, age = 13-72) were assessed across age by linear regression and by age group between patients/HCs (Group 1, age ≤ 25, n = 62/46; Group 2, age = 26-49, n = 50/46; Group 3, age ≥ 50, n = 52/31) using multiple t tests. The impact of inflammation, disease activity and treatments were assessed, and UK Biobank disease-wide association analysis of metabolites was performed. RESULTS Age-specific metabolomic profiles were identified in SLE patients vs HCs, including reduced amino acids (Group 1), increased very-low-density lipoproteins (Group 2), and increased low-density lipoproteins (Group 3). Twenty-five metabolites were significantly altered in all SLE age groups, dominated by decreased atheroprotective high-density lipoprotein (HDL) subsets, HDL-bound apolipoprotein (Apo)A1 and increased glycoprotein acetyls (GlycA). Furthermore, ApoA1 and GlycA were differentially associated with disease activity and serological measures, as well as atherosclerosis incidence and myocardial infarction mortality risk through disease-wide association. Separately, glycolysis pathway metabolites (acetone/citrate/creatinine/glycerol/lactate/pyruvate) uniquely increased with age in SLE, significantly influenced by prednisolone (increased pyruvate/lactate) and hydroxychloroquine (decreased citrate/creatinine) treatment and associated with type 1 and type 2 diabetes by disease-wide association. CONCLUSIONS Increasing HDL (ApoA1) levels through therapeutic/nutritional intervention, whilst maintaining low disease activity, in SLE patients from a young age could improve cardiometabolic disease outcomes. Biomarkers from the glycolytic pathway could indicate adverse metabolic effects of current therapies.
Collapse
Affiliation(s)
- Elizabeth C Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Junjie Peng
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | | | - Lucia Martin Gutierrez
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Laurel Woodridge
- Centre for Experimental & Translational Medicine, Division of Medicine, University College London, London, UK
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Chris Wincup
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Ines Pineda-Torra
- Centre for Experimental & Translational Medicine, Division of Medicine, University College London, London, UK
| | - Coziana Ciurtin
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - George A Robinson
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| |
Collapse
|
5
|
Atehortua L, Sean Davidson W, Chougnet CA. Interactions Between HDL and CD4+ T Cells: A Novel Understanding of HDL Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol 2024; 44:1191-1201. [PMID: 38660807 PMCID: PMC11111342 DOI: 10.1161/atvbaha.124.320851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Several studies in animal models and human cohorts have recently suggested that HDLs (high-density lipoproteins) not only modulate innate immune responses but also adaptative immune responses, particularly CD4+ T cells. CD4+ T cells are central effectors and regulators of the adaptive immune system, and any alterations in their homeostasis contribute to the pathogenesis of cardiovascular diseases, autoimmunity, and inflammatory diseases. In this review, we focus on how HDLs and their components affect CD4+ T-cell homeostasis by modulating cholesterol efflux, immune synapsis, proliferation, differentiation, oxidative stress, and apoptosis. While the effects of apoB-containing lipoproteins on T cells have been relatively well established, this review focuses specifically on new connections between HDL and CD4+ T cells. We present a model where HDL may modulate T cells through both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Laura Atehortua
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH
| | - W. Sean Davidson
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
6
|
Hsu GCY, Shih SR, Chang FY, Liao SL, Wei YH. An Appraisal of the Preventive Effect of Statins on the Development of Graves' Ophthalmopathy: A Hospital-Based Cohort Study. Ophthalmol Ther 2024; 13:1499-1511. [PMID: 38581604 PMCID: PMC11109055 DOI: 10.1007/s40123-024-00930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024] Open
Abstract
INTRODUCTION Graves' ophthalmopathy (GO) is an autoimmune inflammatory disorder observed in a substantial proportion of patients with Graves' disease (GD), with debilitating symptoms of disfiguring, periorbital pain, dry eyes, diplopia, and even visual disturbances. Previous studies involving Western populations have noted discrepancies in risk factors for GO. Therefore, this study aimed to determine the risk factors for GO development and the protective effect of statins in newly diagnosed patients with GD in Taiwan. METHODS This retrospective case-control study was based on a tertiary center cohort involving patients with GD diagnosed between 2010 and 2019 at the National Taiwan University Hospital (n = 11,035). Patients who were diagnosed or treated elsewhere, had been followed up for less than 6 months or were with a diagnosis of orbital tumor were excluded. Overall, 3578 patients with GD met the inclusion criteria. Univariate and multivariate logistic regression analyses were used to ascertain the odds ratio (OR) of developing GO, with adjustment for sociodemographic factors, interventions for managing GD and thyroid hormone levels, to determine protective and risk factors for GO. RESULTS In our multivariate model, the use of statins reduced the risk of GO development (OR 0.2; 95% confidence interval [CI] 0.08-0.50; p < 0.001). Thyroid dysfunction including hyperthyroidism (OR 4.2; 95% CI 2.97-5.88; p < 0.001) and hypothyroidism (OR 4.7; 95% CI 3.02-7.19; p < 0.001) was associated with an increased risk of developing GO. Smoking status and lipid profile were not risk factors in our cohort. CONCLUSION In newly diagnosed patients with GD, the use of statins decreased the risk of developing GO by 80%, whereas serum lipid levels were not considered risk factors. Further nationwide population-based studies may help clarify the differences in risk factors between various ethnic groups. TRAIL REGISTRATION This trial was approved by the Research Ethics Committee of National Taiwan University Hospital (202202066RINC), retrospectively registered from January 1, 2010 to December 31, 2019.
Collapse
Affiliation(s)
| | - Shyang-Rong Shih
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan
| | | | - Shu-Lang Liao
- College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan
| | - Yi-Hsuan Wei
- College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan.
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
7
|
Sharma A, Sharma C, Sharma L, Wal P, Mishra P, Sachdeva N, Yadav S, Vargas De-La Cruz C, Arora S, Subramaniyan V, Rawat R, Behl T, Nandave M. Targeting the vivid facets of apolipoproteins as a cardiovascular risk factor in rheumatoid arthritis. Can J Physiol Pharmacol 2024; 102:305-317. [PMID: 38334084 DOI: 10.1139/cjpp-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Preeti Mishra
- Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, India
| | - Nitin Sachdeva
- Department of Anesthesia, Mediclinic Aljowhara Hospital, Al Ain, United Arab Emirates
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Celia Vargas De-La Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Sandeep Arora
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Ravi Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Delhi, India
| |
Collapse
|
8
|
Serini S, Calviello G. Potential of Natural Phenolic Compounds against Doxorubicin-Induced Chemobrain: Biological and Molecular Mechanisms Involved. Antioxidants (Basel) 2024; 13:486. [PMID: 38671933 PMCID: PMC11047710 DOI: 10.3390/antiox13040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Chemotherapy-induced cognitive impairment or "chemobrain" is a prevalent long-term complication of chemotherapy and one of the more devastating. Most of the studies performed so far to identify the cognitive dysfunctions induced by antineoplastic chemotherapies have been focused on treatment with anthracyclines, frequently administered to breast cancer patients, a population that, after treatment, shows a high possibility of long survival and, consequently, of chemobrain development. In the last few years, different possible strategies have been explored to prevent or reduce chemobrain induced by the anthracycline doxorubicin (DOX), known to promote oxidative stress and inflammation, which have been strongly implicated in the development of this brain dysfunction. Here, we have critically analyzed the results of the preclinical studies from the last few years that have evaluated the potential of phenolic compounds (PheCs), a large class of natural products able to exert powerful antioxidant and anti-inflammatory activities, in inhibiting DOX-induced chemobrain. Several PheCs belonging to different classes have been shown to be able to revert DOX-induced brain morphological damages and deficits associated with learning, memory, and exploratory behavior. We have analyzed the biological and molecular mechanisms implicated and suggested possible future perspectives in this research area.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| |
Collapse
|
9
|
Lal R, Dharavath RN, Chopra K. Nrf2 Signaling Pathway: a Potential Therapeutic Target in Combating Oxidative Stress and Neurotoxicity in Chemotherapy-Induced Cognitive Impairment. Mol Neurobiol 2024; 61:593-608. [PMID: 37644279 DOI: 10.1007/s12035-023-03559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is one of the major adverse effects of antineoplastic drugs, which decrease the quality of life in cancer survivors. Extensive experimental and clinical research suggests that chemotherapeutic drugs generate an enormous amount of reactive oxygen species (ROS), contributing to oxidative stress, neuroinflammation, blood-brain barrier (BBB) disruption, and neuronal death, eventually leading to CICI. Despite the progress in exploring different pathological mechanisms of CICI, effective treatment to prevent CICI progression has not been developed yet. Nrf2 is the principal transcription factor that regulates cellular redox balance and inflammation-related gene expression. Emerging evidence suggests that upregulation of Nrf2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase neurogenesis. This review discusses the role of Nrf2 in CICI, how it responds to oxidative stress, inflammation, neurotoxicity, and potential Nrf2 activators that could be used to enhance Nrf2 activation in CICI.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ravinder Naik Dharavath
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Li S, Xie X, Zeng X, Wang S, Lan J. Serum apolipoprotein B to apolipoprotein A-I ratio predicts mortality in patients with heart failure. ESC Heart Fail 2024; 11:99-111. [PMID: 37822135 PMCID: PMC10804159 DOI: 10.1002/ehf2.14547] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
AIMS Apolipoproteins have been reported to be involved in many cardiovascular diseases. The aim of our study was to investigate the prognostic value of apolipoprotein B (ApoB) to apolipoprotein A-I (ApoA-I) ratio (ApoB/ApoA-I) in patients with heart failure (HF). METHODS AND RESULTS We randomly assigned 2400 HF patients into the training cohort (n = 1400) and the validation cohort (n = 1000). Using a receiver operating characteristic curve, we identified the optimal cut-off value of the ApoB/ApoA-I in the training cohort as 0.69, which was further validated in the validation cohort. A propensity score matching (PSM) analysis was conducted to eliminate the imbalance in the baseline characteristics of the high and low ApoB/ApoA-I group. A total of 2242 HF patients were generated in the PSM cohort. We also validated our results with an independent cohort (n = 838). Univariate and multivariate analyses were conducted to explore the independent prognostic value of ApoB/ApoA-I in the training cohort (n = 1400), the validation cohort (n = 1000), the PSM cohort (n = 2242), and the independent cohort (n = 838). Patients with high ApoB/ApoA-I ratio had significantly poorer prognosis compared with those with low ApoB/ApoA-I ratio in the training cohort, the validation cohort, the PSM cohort, and the independent cohort (P < 0.05). Multivariate analysis indicated that the ApoB/ApoA-I was an independent prognostic factor for HF in the training cohort [hazard ratio (HR) = 1.637, 95% confidence interval (CI) = 1.201-2.231, P = 0.002], the validation cohort (HR = 1.54, 95% CI = 1.051-2.257, P = 0.027), the PSM cohort (HR = 1.645, 95% CI = 1.273-2.125, P < 0.001), and the independent cohort (HR = 1.987, 95% CI = 1.251-3.155, P = 0.004). CONCLUSIONS Serum ApoB/ApoA-I ratio is an independent predictor for the prognosis of HF patients.
Collapse
Affiliation(s)
- Shiyang Li
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
- Panzhihua Central Hospital affiliated to Dali UniversityYunnanChina
| | - Xiaoshuang Xie
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Xiaobin Zeng
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Shihai Wang
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Jianjun Lan
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| |
Collapse
|
11
|
Miroshnichenko S, Pykhtina M, Kotliarova A, Chepurnov A, Beklemishev A. Engineering a New IFN-ApoA-I Fusion Protein with Low Toxicity and Prolonged Action. Molecules 2023; 28:8014. [PMID: 38138504 PMCID: PMC10745500 DOI: 10.3390/molecules28248014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Recombinant human interferon alpha-2b (rIFN) is widely used in antiviral and anticancer immunotherapy. However, the high efficiency of interferon therapy is accompanied by a number of side effects; this problem requires the design of a new class of interferon molecules with reduced cytotoxicity. In this work, IFN was modified via genetic engineering methods by merging it with the blood plasma protein apolipoprotein A-I in order to reduce acute toxicity and improve the pharmacokinetics of IFN. The chimeric protein was obtained via biosynthesis in the yeast P. pastoris. The yield of ryIFN-ApoA-I protein when cultivated on a shaker in flasks was 30 mg/L; protein purification was carried out using reverse-phase chromatography to a purity of 95-97%. The chimeric protein demonstrated complete preservation of the biological activity of IFN in the model of vesicular stomatitis virus and SARS-CoV-2. In addition, the chimeric form had reduced cytotoxicity towards Vero cells and increased cell viability under viral load conditions compared with commercial IFN-a2b preparations. Analysis of the pharmacokinetic profile of ryIFN-ApoA-I after a single subcutaneous injection in mice showed a 1.8-fold increased half-life of the chimeric protein compared with ryIFN.
Collapse
Affiliation(s)
- Svetlana Miroshnichenko
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| | - Mariya Pykhtina
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| | - Anastasiia Kotliarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia;
| | - Alexander Chepurnov
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| | - Anatoly Beklemishev
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| |
Collapse
|
12
|
Nääs A, Li P, Ahlm C, Aurelius E, Järhult JD, Schliamser S, Studahl M, Xiao W, Bergquist J, Westman G. Temporal pathway analysis of cerebrospinal fluid proteome in herpes simplex encephalitis. Infect Dis (Lond) 2023; 55:694-705. [PMID: 37395107 DOI: 10.1080/23744235.2023.2230281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES We examined the temporal changes of the CSF proteome in patients with herpes simplex encephalitis (HSE) during the course of the disease, in relation to anti-N-methyl-D-aspartate receptor (NMDAR) serostatus, corticosteroid treatment, brain MRI and neurocognitive performance. METHODS Patients were retrospectively included from a previous prospective trial with a pre-specified CSF sampling protocol. Mass spectrometry data of the CSF proteome were processed using pathway analysis. RESULTS We included 48 patients (110 CSF samples). Samples were grouped based on time of collection relative to hospital admission - T1: ≤ 9 d, T2: 13-28 d, T3: ≥ 68 d. At T1, a strong multi-pathway response was seen including acute phase response, antimicrobial pattern recognition, glycolysis and gluconeogenesis. At T2, most pathways activated at T1 were no longer significantly different from T3. After correction for multiplicity and considering the effect size threshold, 6 proteins were significantly less abundant in anti-NMDAR seropositive patients compared to seronegative: procathepsin H, heparin cofactor 2, complement factor I, protein AMBP, apolipoprotein A1 and polymeric immunoglobulin receptor. No significant differences in individual protein levels were found in relation to corticosteroid treatment, size of brain MRI lesion or neurocognitive performance. CONCLUSIONS We show a temporal change in the CSF proteome in HSE patients during the course of the disease. This study provides insight into quantitative and qualitative aspects of the dynamic pathophysiology and pathway activation patterns in HSE and prompts for future studies on the role of apolipoprotein A1 in HSE, which has previously been associated with NMDAR encephalitis.
Collapse
Affiliation(s)
- Anja Nääs
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Peng Li
- ME/CFS Collaborative Research Center at Harvard, Massachusetts General Hospital, Boston, USA
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Elisabeth Aurelius
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Solna, Sweden
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Silvia Schliamser
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Region Västra Götaland, Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Wenzhong Xiao
- ME/CFS Collaborative Research Center at Harvard, Massachusetts General Hospital, Boston, USA
| | - Jonas Bergquist
- Department of Chemistry, Analytical Chemistry and Neurochemistry, Biomedical Center and The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| | - Gabriel Westman
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Jaiswara PK, Shukla SK. Chemotherapy-Mediated Neuronal Aberration. Pharmaceuticals (Basel) 2023; 16:1165. [PMID: 37631080 PMCID: PMC10459787 DOI: 10.3390/ph16081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Chemotherapy is a life-sustaining therapeutic option for cancer patients. Despite the advancement of several modern therapies, such as immunotherapy, gene therapy, etc., chemotherapy remains the first-line therapy for most cancer patients. Along with its anti-cancerous effect, chemotherapy exhibits several detrimental consequences that restrict its efficacy and long-term utilization. Moreover, it effectively hampers the quality of life of cancer patients. Cancer patients receiving chemotherapeutic drugs suffer from neurological dysfunction, referred to as chemobrain, that includes cognitive and memory dysfunction and deficits in learning, reasoning, and concentration ability. Chemotherapy exhibits neurotoxicity by damaging the DNA in neurons by interfering with the DNA repair system and antioxidant machinery. In addition, chemotherapy also provokes inflammation by inducing the release of various pro-inflammatory cytokines, including NF-kB, IL-1β, IL-6, and TNF-α. The chemotherapy-mediated inflammation contributes to chemobrain in cancer patients. These inflammatory cytokines modulate several growth signaling pathways and reactive oxygen species homeostasis leading to systemic inflammation in the body. This review is an effort to summarize the available information which discusses the role of chemotherapy-induced inflammation in chemobrain and how it impacts different aspects of therapeutic outcome and the overall quality of life of the patient. Further, this article also discusses the potential of herbal-based remedies to overcome chemotherapy-mediated neuronal toxicity as well as to improve the quality of life of cancer patients.
Collapse
Affiliation(s)
| | - Surendra Kumar Shukla
- Department of Oncology Science, University of Oklahoma Health Science Centre, Oklahoma City, OK 73104, USA;
| |
Collapse
|
14
|
Li W, Xu Y, Zeng X, Tan J, Wang Y, Wu H, Li M, Yi C. Etiological relationship between lipid metabolism and endometrial carcinoma. Lipids Health Dis 2023; 22:116. [PMID: 37537560 PMCID: PMC10401764 DOI: 10.1186/s12944-023-01868-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Endometrial carcinoma (EC) has become one of the most common gynecological malignant neoplasms in developed countries worldwide. Studies have shown that this may be closely related to the abnormal metabolism of blood lipids, which was the most significant metabolic change in the human body in this cancer. In this review, we focus on the correlation between lipid metabolism and EC and discuss the evidence that abnormal lipid metabolism promotes an increase in EC growth and metabolism, as well as the regulatory mechanism and related signaling pathways involved in this relationship. In addition, we also discussed the research progress of targeted therapies and drug treatments for EC that act on lipid metabolism, and statins are expected to become adjuvant drugs for EC in the future. This review will provide a systematic view for a better understanding of the etiological relationship between lipid metabolism and EC and further open up new therapeutic possibilities and effective treatments for EC by targeting lipid metabolism.
Collapse
Affiliation(s)
- Wenzhe Li
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Yi Xu
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xinling Zeng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jie Tan
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Ya Wang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
| | - Hongyan Wu
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Maokun Li
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
| | - Cunjian Yi
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
15
|
Everest E, Uygunoglu U, Tutuncu M, Bulbul A, Onat UI, Unal M, Avsar T, Saip S, Bilge U, Turanli ET, Siva A. Prospective outcome analysis of multiple sclerosis cases reveals candidate prognostic cerebrospinal fluid markers. PLoS One 2023; 18:e0287463. [PMID: 37339131 PMCID: PMC10281571 DOI: 10.1371/journal.pone.0287463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Predicting the long-term disability outcomes of multiple sclerosis (MS) cases is challenging. OBJECTIVE We prospectively analysed our previous MS cohort with initial cerebrospinal fluid (CSF) proteomics data to reveal disability markers after 8.2±2.2 years of follow-up. METHODS Patients with regular follow-up visits were assigned into two groups: those with an age-related MS severity (ARMSS) score ≥5 (unfavourable course group, N = 27) and ARMSS score <5 (favourable course group, N = 67). A machine learning-based algorithm was applied to reveal candidate poor prognosis-associated initial CSF proteins, which were measured in an independent MS cohort (verification group, N = 40) by ELISA. Additionally, the correlation of initial clinical and radiological parameters with long-term disability was analysed. RESULTS CSF alpha-2-macroglobulin (P = 0.0015), apo-A1 (P = 0.0016), and haptoglobin (P = 0.0003) protein levels, as well as cerebral lesion load (>9 lesions) on magnetic resonance imaging, gait disturbance (P = 0.04), and bladder/bowel symptoms (P = 0.01) were significantly higher in the unfavourable course group than in the favourable course group. Optic nerve involvement evident on initial magnetic resonance imaging (P = 0.002) and optic neuritis (P = 0.01) were more frequent in the favourable course group. CONCLUSION The herein identified initial CSF protein levels, in addition to the clinical and radiological parameters at disease onset, have predictive value for long-term disability in MS cases.
Collapse
Affiliation(s)
- Elif Everest
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Ugur Uygunoglu
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Melih Tutuncu
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alper Bulbul
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem University, Istanbul, Turkey
| | - Umut Inci Onat
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey
| | - Mehmetcan Unal
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey
| | - Timucin Avsar
- Department of Medical Biology, Faculty of Medicine, Basic Medical Sciences, Bahcesehir University, Istanbul, Turkey
| | - Sabahattin Saip
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ugur Bilge
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Eda Tahir Turanli
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey
- Graduate School of Natural and Applied Sciences, Molecular and Translational Biomedicine Program, Acibadem University, Istanbul, Turkey
| | - Aksel Siva
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
16
|
Lal R, Dharavath RN, Chopra K. Alpha-Lipoic Acid Ameliorates Doxorubicin-Induced Cognitive Impairments by Modulating Neuroinflammation and Oxidative Stress via NRF-2/HO-1 Signaling Pathway in the Rat Hippocampus. Neurochem Res 2023:10.1007/s11064-023-03914-y. [PMID: 37017891 DOI: 10.1007/s11064-023-03914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a common complication associated with the use of chemotherapeutics. Doxorubicin (DOX) is a reactive oxygen species (ROS) producing anticancer agent capable of causing potential neurotoxic effects via cytokine-induced oxidative and nitrosative damage to brain tissues. On the other hand, alpha-lipoic acid (ALA), a nutritional supplement, is reputable for its excellent antioxidant, anti-inflammatory, and anti-apoptotic activities. Consequently, the objective of the current investigation was to examine any potential neuroprotective and memory-improving benefits of ALA against DOX-induced behavioral and neurological anomalies. DOX (2 mg/kg/week, i.p.) was administrated for 4 weeks to Sprague-Dawley rats. ALA (50, 100, and 200 mg/kg) was administered for 4 weeks. The Morris water maze (MWM) and novel objective recognition task (NORT) tests were used to assess memory function. Biochemical assays with UV-visible spectrophotometry were used to analyze oxidative stress markers [malondialdehyde (MDA), protein carbonylation (PCO)], endogenous antioxidants [reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)] and acetylcholinesterase (AChE) activity in hippocampal tissue. Inflammatory markers [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nuclear factor kappa B (NF-κB)], nuclear factor erythroid 2-related factor-2 (NRF-2) and hemeoxygenase-1 (HO-1) levels were estimated using enzyme-linked immunosorbent assay (ELISA). In addition, reactive oxygen species (ROS) levels were measured in hippocampus tissue using 2-7-dichlorofluorescein-diacetate (DCFH-DA) assay with fluorimetry. ALA treatment significantly protected against DOX-induced memory impairment. Furthermore, ALA restored hippocampal antioxidants, halted DOX-induced oxidative and inflammatory insults via upregulation of NRF-2/HO-1 levels, and alleviated the increase in NF-κB expression. These results indicate that ALA offers neuroprotection against DOX-induced cognitive impairment, which could be attributed to its antioxidant potential via the NRF-2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ravinder Naik Dharavath
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Dule S, Barchetta I, Cimini FA, Passarella G, Dellanno A, Filardi T, Venditti V, Bleve E, Bailetti D, Romagnoli E, Morano S, Baroni MG, Cavallo MG. Reduced High-Density Lipoprotein Cholesterol Is an Independent Determinant of Altered Bone Quality in Women with Type 2 Diabetes. Int J Mol Sci 2023; 24:ijms24076474. [PMID: 37047445 PMCID: PMC10095189 DOI: 10.3390/ijms24076474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an increased fracture risk. Our study aimed to explore differences in bone alterations between T2DM women and controls and to assess clinical predictors of bone impairment in T2DM. For this observational case control study, we recruited 126 T2DM female patients and 117 non-diabetic, age- and BMI-comparable women, who underwent clinical examination, routine biochemistry and dual-energy X-ray absorptiometry (DXA) scans for bone mineral density (BMD) and trabecular bone score (TBS) assessment-derived indexes. These were correlated to metabolic parameters, such as glycemic control and lipid profile, by bivariate analyses, and significant variables were entered in multivariate adjusted models to detect independent determinants of altered bone status in diabetes. The T2DM patients were less represented in the normal bone category compared with controls (5% vs. 12%; p = 0.04); T2DM was associated with low TBS (OR: 2.47, C.I. 95%: 1.19–5.16, p = 0.016) in a regression model adjusted for age, menopausal status and BMI. In women with T2DM, TBS directly correlated with plasma high-density lipoprotein cholesterol (HDL-c) (p = 0.029) and vitamin D (p = 0.017) levels. An inverse association was observed with menopausal status (p < 0.001), metabolic syndrome (p = 0.014), BMI (p = 0.005), and waist circumference (p < 0.001). In the multivariate regression analysis, lower HDL-c represented the main predictor of altered bone quality in T2DM, regardless of age, menopausal status, BMI, waist circumference, statin treatment, physical activity, and vitamin D (p = 0.029; R2 = 0.47), which likely underlies common pathways between metabolic disease and bone health in diabetes.
Collapse
Affiliation(s)
- Sara Dule
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | | | - Giulia Passarella
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Arianna Dellanno
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Tiziana Filardi
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Vittorio Venditti
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Enrico Bleve
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Diego Bailetti
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Susanna Morano
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
- Correspondence:
| | | |
Collapse
|
18
|
Xiong X, Duan Z, Zhou H, Huang G, Niu L, Luo Z, Li W. Correlation of apolipoprotein A-I with T cell subsets and interferon-ү in coronary artery disease. Immun Inflamm Dis 2023; 11:e797. [PMID: 36988256 PMCID: PMC10013138 DOI: 10.1002/iid3.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND The association of Apolipoprotein A-I (APOAI) with T cell subsets and interferon-ү (IFN-γ) in patients with coronary artery disease (CAD) has been not reported. Thus, this study aimed to investigate the association of APOAI with T cell subsets and IFN-γ in CAD. METHODS This study included a total of 107 patients with CAD including acute coronary syndrome and chronic coronary syndrome. T cell subsets, and CD3-CD56+ natural killer cells were quantified by flow cytometric analysis. The serum concentrations of IFN-ү were measured by enzyme-linked immunosorbent assay. Lipid profiles, C-reactive protein (CRP), and fibrinogen were measured in the clinical laboratory. Clinical data was obtained duration hospitalization. RESULTS The CD4+ T cells were higher in patients of the low-APOAI group ( .05). The high-density lipoprotein cholesterol (HDL-C) was also inversely associated with CD4+ T cells (p < .05), and positively associated with CD8+ T cells (p < .05). Lastly, APOA1 and HDL-C did not correlated with fibrinogen and CRP (p > .05). CONCLUSION The present study demonstrated the correlation of APOAI with T cell subsets and IFN-γ in CAD. These results provided novel information for the regulatory action between APOAI and T cell subsets and inflammatory immunity in CAD.
Collapse
Affiliation(s)
- Xinlin Xiong
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
- Department of cardiologyClinical Medical College& Affiliated Hospital of Chengdu UniversityChengdu citySichuan ProvincePeople's Republic of China
| | - Zonggang Duan
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Haiyan Zhou
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Guangwei Huang
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Li Niu
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Zhenhua Luo
- Department of Central Lab, Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's HospitalThe Affiliated People's Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
- Guizhou University School of MedicineGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Wei Li
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| |
Collapse
|
19
|
Wygrecka M, Alexopoulos I, Potaczek DP, Schaefer L. Diverse functions of apolipoprotein A-I in lung fibrosis. Am J Physiol Cell Physiol 2023; 324:C438-C446. [PMID: 36534503 DOI: 10.1152/ajpcell.00491.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Apolipoprotein A-I (apoA-I) mediates reverse cholesterol transport (RCT) out of cells. In addition to its important role in the RTC, apoA-I also possesses anti-inflammatory and antioxidative functions including the ability to activate inflammasome and signal via toll-like receptors. Dysfunctional apoA-I or its low abundance may cause accumulation of cholesterol mass in alveolar macrophages, leading to the formation of foam cells. Increased numbers of foam cells have been noted in the lungs of mice after experimental exposure to cigarette smoke, silica, or bleomycin and in the lungs of patients suffering from different types of lung fibrosis, including idiopathic pulmonary fibrosis (IPF). This suggests that dysregulation of lipid metabolism may be a common event in the pathogenesis of interstitial lung diseases. Recognition of the emerging role of cholesterol in the regulation of lung inflammation and remodeling provides a challenging concept for understanding lung diseases and offers novel and exciting avenues for therapeutic development. Accordingly, a number of preclinical studies demonstrated decreased expression of inflammatory and profibrotic mediators and preserved lung tissue structure following the administration of the apoA-I or its mimetic peptides. This review highlights the role of apoA-I in lung fibrosis and provides evidence for its potential use in the treatment of this pathological condition.
Collapse
Affiliation(s)
- Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Institute of Lung Health, German Center for Lung Research (DZL), Giessen, Germany
| | - Ioannis Alexopoulos
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Multiscale Imaging Platform, Institute for Lung Health (ILH), German Center for Lung Research (DZL), Giessen, Germany
| | - Daniel P Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Marburg, Germany.,Bioscientia MVZ Labor Mittelhessen GmbH, Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Host biomarker-based quantitative rapid tests for detection and treatment monitoring of tuberculosis and COVID-19. iScience 2022; 26:105873. [PMID: 36590898 PMCID: PMC9791715 DOI: 10.1016/j.isci.2022.105873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
Diagnostic services for tuberculosis (TB) are not sufficiently accessible in low-resource settings, where most cases occur, which was aggravated by the COVID-19 pandemic. Early diagnosis of pulmonary TB can reduce transmission. Current TB-diagnostics rely on detection of Mycobacterium tuberculosis (Mtb) in sputum requiring costly, time-consuming methods, and trained staff. In this study, quantitative lateral flow (LF) assays were used to measure levels of seven host proteins in sera from pre-COVID-19 TB patients diagnosed in Europe and latently Mtb-infected individuals (LTBI), and from COVID-19 patients and healthy controls. Analysis of host proteins showed significantly lower levels in LTBI versus TB (AUC:0 · 94) and discriminated healthy individuals from COVID-19 patients (0 · 99) and severe COVID-19 from TB. Importantly, these host proteins allowed treatment monitoring of both respiratory diseases. This study demonstrates the potential of non-sputum LF assays as adjunct diagnostics and treatment monitoring for COVID-19 and TB based on quantitative detection of multiple host biomarkers.
Collapse
|
21
|
Ghosh S, Rihan M, Ahmed S, Pande AH, Sharma SS. Immunomodulatory potential of apolipoproteins and their mimetic peptides in asthma: Current perspective. Respir Med 2022; 204:107007. [DOI: 10.1016/j.rmed.2022.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
|
22
|
Napolitano G, Fasciolo G, Tomajoli MTM, Carlucci A, Ascione E, Salvatore A. Effects of superoxide anion attack on the lipoprotein HDL. Mol Cell Biochem 2022; 478:1059-1066. [PMID: 36219354 PMCID: PMC10126046 DOI: 10.1007/s11010-022-04563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
High-density lipoprotein (HDL) is an anti-atherosclerotic lipoprotein. Thanks to the activity of apolipoprotein ApoA1, the principal protein component of HDL, this last is responsible for converting cholesterol into ester form and transporting excessive cholesterol to the liver ("reverse cholesterol transport" RCT). When HDL undergoes oxidation, it becomes dysfunctional and proatherogenic. ApoA1 is a target of oxidation, and its alteration affects RCT and contributes to atherosclerosis development. Until now, the mechanism of HDL oxidation is not fully understood and only hydroxyl radicals seem to induce direct oxidation of protein and lipidic components of lipoproteins. Here we demonstrate that superoxide radical, widely produced in early atherosclerosis, directly oxidizes HDL, and as a consequence, ApoA1 undergoes structural alterations impairing its anti-atherosclerotic functions. Our results highlight in an in vitro system the potential mechanism by which O2·- triggers atherosclerotic pathogenesis in vivo. Our study gets the basis for therapeutic approaches focused on the management of superoxide generation in early atherosclerosis onset.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38-I, 80133, Naples, Italy.
- International PhD Programme/UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy.
| | - Gianluca Fasciolo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126, Naples, Italy
| | - Maria Teresa Muscari Tomajoli
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38-I, 80133, Naples, Italy
- International PhD Programme/UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - Alessandro Carlucci
- S. Antimo Industrial Development Department, Kedrion Biopharma, Strada Statale 7 Bis 19, Sant'Antimo, 80029, Napoli, Italia
| | - Ester Ascione
- S. Antimo Industrial Development Department, Kedrion Biopharma, Strada Statale 7 Bis 19, Sant'Antimo, 80029, Napoli, Italia
| | - Alfonso Salvatore
- S. Antimo Industrial Development Department, Kedrion Biopharma, Strada Statale 7 Bis 19, Sant'Antimo, 80029, Napoli, Italia
| |
Collapse
|
23
|
Faguer S, Del Bello A, Danet C, Renaudineau Y, Izopet J, Kamar N. Apolipoprotein-A-I for severe COVID-19-induced hyperinflammatory states: A prospective case study. Front Pharmacol 2022; 13:936659. [PMID: 36225555 PMCID: PMC9550000 DOI: 10.3389/fphar.2022.936659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections can promote cytokine storm and multiorgan failure in individuals with an underlying immunosuppression or specific genetic background. Hyperinflammatory states, including critical forms of COVID-19, are characterized by a remodeling of the lipid profile including a dramatic decrease of the serum levels of apolipoprotein-A-I (ApoA-I), a protein known for its capacity to reduce systemic and lung inflammation, modulate innate and adaptive immunity, and prevent endothelial dysfunction and blood coagulation. In this study, four immunocompromised patients with severe COVID-19 cytokine storm that progressed despite standard-of-care therapy [Omicron (n = 3) and Delta (n = 1) variants] received 2– 4 infusions (10 mg/kg) of CER-001, an ApoA-I-containing HDL mimetic. Injections were well-tolerated with no serious adverse events. Three patients treated while not on mechanical ventilation had early clinical and biological improvement (oxygen withdrawal and correction of hematological and inflammatory parameters, including serum levels of interleukin-8) and were discharged from the hospital 3–4 days after CER-001 infusions. In the fourth patient who received CER-001 after orotracheal intubation for acute respiratory distress syndrome, infusions were followed by transient respiratory improvement before secondary worsening related to ventilation-associated pneumonia. This pilot uncontrolled exploratory compassionate study provides initial safety and proof-of-concept data from patients with a COVID-19 cytokine storm receiving ApoA-I. Further randomized controlled trial evaluation is now required to ascertain whether ApoA-I has any beneficial effects on patients with a COVID-19 cytokine storm.
Collapse
Affiliation(s)
- Stanislas Faguer
- Referral Center for Rare Kidney Diseases, Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, Toulouse, France
- Faculty of Medicine, University Paul Sabatier—Toulouse 3, Toulouse, France
- French National Institute of Health and Medical Research, U1297 (Institute of Metabolic and Cardiovascular Diseases), Toulouse, France
- *Correspondence: Stanislas Faguer,
| | - Arnaud Del Bello
- Referral Center for Rare Kidney Diseases, Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, Toulouse, France
| | - Chloé Danet
- Department of Clinical Pharmacy, University Hospital of Toulouse, Toulouse, France
| | - Yves Renaudineau
- Faculty of Medicine, University Paul Sabatier—Toulouse 3, Toulouse, France
- French National Institute of Health and Medical Research, U1291 (INFINITY), Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, Toulouse, France
| | - Jacques Izopet
- Faculty of Medicine, University Paul Sabatier—Toulouse 3, Toulouse, France
- French National Institute of Health and Medical Research, U1291 (INFINITY), Toulouse, France
- Laboratory of Virology, University Hospital of Toulouse, Toulouse, France
| | - Nassim Kamar
- Referral Center for Rare Kidney Diseases, Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, Toulouse, France
- Faculty of Medicine, University Paul Sabatier—Toulouse 3, Toulouse, France
- French National Institute of Health and Medical Research, U1291 (INFINITY), Toulouse, France
| |
Collapse
|
24
|
Dong H, Wang J, Hu P, Lu N. Association of Apolipoprotein A1, High Density Lipoprotein Cholesterol, and Their Ratio with Inflammatory Marker in Chinese Adults with Coronary Artery Disease. Angiology 2022:33197221121002. [PMID: 36065748 DOI: 10.1177/00033197221121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sparse data assessed the association of apolipoprotein A1 (ApoA1) and high density lipoprotein cholesterol (HDL-C) with inflammation. We investigated this association in a hospital-based cross-sectional pilot study that included 7296 patients with coronary artery disease (CAD). In multivariate analysis, negative associations of ApoA1 and HDL-C with C-reactive protein (CRP), high sensitivity CRP (hsCRP), and tumor necrosis factor-α (TNF-α) were shown. The corresponding CRP, hsCRP, and TNF-α values were 5.28 (vs 11.70 mg/L), 4.50 (vs 11.50 mg/L), and 7.68 (vs 10.90 pg/mL) for ApoA1, and 7.13 (vs 10.60 mg/L), 6.27 (vs 9.19 mg/L), and 8.11 (vs 11.86 pg/mL) for HDL-C in the fourth quartiles compared with the first quartiles. ApoA1/HDL-C ratio was inversely associated with hsCRP and interleukin-6 (IL-6). No significant associations of ApoA1 and HDL-C with IL-6 and IL-8, and of ApoA1/HDL-C ratio with CRP, IL-8, and TNF-α were observed. In path analyses, there was no evidence of mediating effects of body mass index on the "ApoA1 and HDL-C-inflammation" relationship. Generally, our study of CAD patients identified graded and inverse associations of ApoA1, HDL-C, and ApoA1/HDL-C ratio with inflammatory marker (CRP, hsCRP, IL-6, IL-8, or TNF-α) levels.
Collapse
Affiliation(s)
- Hongli Dong
- Scientific Education Section and Department of Child Healthcare, Affiliated Maternal & Child Care Hospital of Nantong University, Nantong, China
| | - Jie Wang
- Image Center, Wuhan Asia Heart Hospital, Wuhan, China
| | - Ping Hu
- Image Center, Wuhan Asia Heart Hospital, Wuhan, China
| | - Nan Lu
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Liu Y, Ma X, Ma L, Su Z, Li D, Chen X. Elevated ApoB/ApoA-I ratio is associated with acute anti-N-Methyl-D-aspartate receptor encephalitis, but not disease outcomes. Front Neurol 2022; 13:896656. [PMID: 36119695 PMCID: PMC9475113 DOI: 10.3389/fneur.2022.896656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Objective The purpose of the present study is to clarify the relationship between the apolipoprotein B100/apolipoprotein A-I (ApoB/ApoA-I) ratio and anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Methods A total of 71 patients with anti-NMDAR encephalitis were included in this study, and their ApoB/ApoA-I ratios in baseline and follow-up were retrospectively analyzed. Results The ApoB/ApoA-I ratio was closely correlated with the baseline-modified Rankin scale (mRS) score of >3 in patients with anti-NMDAR encephalitis. A subgroup analysis showed obvious differences between the high and low ApoB/ApoA-I ratio groups. The ApoB/ApoA-I ratio was positively correlated with intensive care unit (ICU) treatment, length of hospital stay, baseline mRS score, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). The ratios of the high and low ApoB/ApoA-I groups both improved in the follow-up. Conclusion The increased ApoB/ApoA-I ratio is associated with acute anti-NMDAR encephalitis, but not disease outcomes. Serum ApoB/ApoA-I ratio was related to inflammation and immunity in peripheral blood. The findings might provide a new idea for further exploration of the pathogenesis and treatment of anti-NMDAR encephalitis.
Collapse
|
26
|
Thomas SR, Zhang Y, Rye KA. The pleiotropic effects of high-density lipoproteins and apolipoprotein A-I. Best Pract Res Clin Endocrinol Metab 2022; 37:101689. [PMID: 36008277 DOI: 10.1016/j.beem.2022.101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The high density lipoprotein (HDL) fraction of human plasma consists of multiple subpopulations of spherical particles that are structurally uniform, but heterogeneous in terms of size, composition and function. Numerous epidemiological studies have established that an elevated high density lipoprotein cholesterol (HDL-C) level is associated with decreased cardiovascular risk. However, with several recent randomised clinical trials of HDL-C raising agents failing to reduce cardiovascular events, contemporary research is transitioning towards clinical development of the cardioprotective functions of HDLs and the identification of functions that can be exploited for treatment of other diseases. This review describes the origins of HDLs and the causes of their compositional and functional heterogeneity. It then summarises current knowledge of how cardioprotective and other functions of HDLs are regulated. The final section of the review summarises recent advances in the clinical development of HDL-targeted therapies.
Collapse
Affiliation(s)
- Shane R Thomas
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Yunjia Zhang
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Kerry-Anne Rye
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Huang H, Li Z, Huang J, Xie Y, Xiao Z, Hu Y, Chen G, Wang M, Li Z, Chen Q, Zhu W, Su W, Luo Y, Chen X, Liang D. Apolipoprotein A1 Modulates Teff/Treg Balance Through Scavenger Receptor Class B Type I-Dependent Mechanisms in Experimental Autoimmune Uveitis. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35881406 PMCID: PMC9339694 DOI: 10.1167/iovs.63.8.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose Experimental autoimmune uveitis (EAU) is a representative animal model of human uveitis. In this study, we investigated whether apolipoprotein A1 (APOA1) can alleviate EAU and explored its underlying mechanism. Methods Mice were immunized with interphotoreceptor retinoid-binding protein 1-20 and treated with APOA1 or vehicle. The retinas, draining lymph nodes (DLNs), and spleens were analyzed. Isolated T cells were used for proliferation, differentiation, and function assays in vitro. Selective inhibitors and pathway agonists were used to study signaling pathways. The effect of APOA1 on peripheral blood mononuclear cells (PBMCs) from uveitis patients was also examined. Results Administration of APOA1 ameliorated EAU. APOA1 suppressed pathogenic CD4+ T cell expansion in DLNs and spleen, and decreased the infiltration of effector T (Teff) cells into retina. APOA1 also inhibited T cell proliferation and T helper 1 cell differentiation in vitro and promoted regulatory T (Treg) cell differentiation. APOA1 restricted inflammatory cytokine production from lipopolysaccharide-stimulated PBMCs. Mechanistic studies revealed that the effect of APOA1 was mediated by scavenger receptor class B type I (SR-BI) and downstream signals including phosphatidylinositol 3-kinase/Protein kinase B (PKB, or Akt), p38 mitogen-activated protein kinase, and nuclear factor–κB. Conclusions APOA1 ameliorates EAU by regulating the Teff/Treg partially through SR-BI. Our results suggest that APOA1 can be a therapeutic alternative for autoimmune uveitis.
Collapse
Affiliation(s)
- Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhiqiang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minzhen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
28
|
Rashid MB, Marey MA, Fukuda K, Haneda S, Kusama K, Shimada M, Imakawa K, Miyamoto A. Intrauterine infusion of low levels of interferon-tau on day-8 post-estrus stimulates the bovine endometrium to secrete apolipoprotein-A1: A possible implication for early embryo tolerance. Am J Reprod Immunol 2022; 88:e13592. [PMID: 35785505 DOI: 10.1111/aji.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
We previously reported that interferon-tau (IFNT), derived from day-7 blastocyst, generates anti-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. However, the real in vivo impact of early embryo-derived IFNT on the uterine proteomic profile is mostly unknown. This study aimed to investigate proteomic changes of uterine flush (UF) when infused with a low physiological level of IFNT without embryo on day-8 post-estrus and its possible impact on the uterine immunological microenvironment. First, a fresh medium was infused into the uterine lumen on day-6, from which UF was obtained 24 h later, and this procedure was repeated on day-7 (control UF). On day-8, this procedure was done with a medium containing recombinant bovine IFNT (100 pg/ml) (IFNT-supplemented UF). Control and IFNT-supplemented UF were tested for immune responses in peripheral blood mononuclear cells (PBMCs). Real-time PCR results revealed that IFNT-supplemented UF downregulated pro-inflammatory cytokines (TNFA, IL1B) and upregulated anti-inflammatory cytokine (TGFB1) and PTGES in PBMCs. Through 2-D PAGE, followed by TOF/TOF mass spectrometer, apolipoprotein-A1 (Apo-A1) protein was identified in the IFNT-supplemented UF, which was confirmed by ELISA analysis. Proteomic analysis revealed again that the in vitro stimulation of BEECs by IFNT upregulated Apo-A1 expression. Further, stimulation of PBMCs with recombinant bovine Apo-A1 downregulated TNFA and NFKB and upregulated TGFB1 and PTGES in PBMCs. Altogether, our results suggest that minute amounts of IFNT alone, normally secreted from bovine blastocyst, stimulate Apo-A1 secretion from the endometrial epithelium in the absence of embryo that initiates an anti-inflammatory environment, which could pave the way for the acceptance of early embryo in the uterus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohammad B Rashid
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.,Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Mohamed A Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Kenji Fukuda
- Department of Life and Food Sciences, Section of Biomolecular Structure and Function, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shingo Haneda
- Department of Clinical Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
29
|
Onzi GR, D'Agustini N, Garcia SC, Guterres SS, Pohlmann PR, Rosa DD, Pohlmann AR. Chemobrain in Breast Cancer: Mechanisms, Clinical Manifestations, and Potential Interventions. Drug Saf 2022; 45:601-621. [PMID: 35606623 DOI: 10.1007/s40264-022-01182-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
Among the potential adverse effects of breast cancer treatment, chemotherapy-related cognitive impairment (CRCI) has gained increased attention in the past years. In this review, we provide an overview of the literature regarding CRCI in breast cancer, focusing on three main aspects. The first aspect relates to the molecular mechanisms linking individual drugs commonly used to treat breast cancer and CRCI, which include oxidative stress and inflammation, reduced neurogenesis, reduced levels of specific neurotransmitters, alterations in neuronal dendrites and spines, and impairment in myelin production. The second aspect is related to the clinical characteristics of CRCI in patients with breast cancer treated with different drug combinations. Data suggest the incidence rates of CRCI in breast cancer vary considerably, and may affect more than 50% of treated patients. Both chemotherapy regimens with or without anthracyclines have been associated with CRCI manifestations. While cross-sectional studies suggest the presence of symptoms up to 20 years after treatment, longitudinal studies confirm cognitive impairments lasting for at most 4 years after the end of chemotherapy. The third and final aspect is related to possible therapeutic interventions. Although there is still no standard of care to treat CRCI, several pharmacological and non-pharmacological approaches have shown interesting results. In summary, even if cognitive impairments derived from chemotherapy resolve with time, awareness of CRCI is crucial to provide patients with a better understanding of the syndrome and to offer them the best care directed at improving quality of life.
Collapse
Affiliation(s)
- Giovana R Onzi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.
| | - Nathalia D'Agustini
- Programa de Pós-Graduação em Patologia da Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Solange C Garcia
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Silvia S Guterres
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Paula R Pohlmann
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniela D Rosa
- Programa de Pós-Graduação em Patologia da Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Serviço de Oncologia, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Adriana R Pohlmann
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
30
|
Samangooei M, Farjam M, Etemadifar M, Taheri A, Meshkibaf MH, Movahedi B, Niknam Z, Noroozi S. Evaluation of S100A12 and Apo-A1 plasma level potency in untreated new relapsing-remitting multiple sclerosis patients and their family members. Sci Rep 2022; 12:2160. [PMID: 35140322 PMCID: PMC8828754 DOI: 10.1038/s41598-022-06322-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis is an inflammatory disease of the spinal cord and brain. Receptor for advanced glycation end products and Apolipoprotein A1 (Apo-AI) have been recommended to have a pathogenic role in the neuroinflammatory disorder as multiple sclerosis. The purpose of this research was to measure the plasma levels of S100A12 and Apo-A1 in the first-degree family of relapsing–remitting multiple sclerosis (RRMS) patients. Plasma levels of S100A12 & Apo-A1 were evaluated via enzyme-linked immunosorbent assay in the thirty-five new cases of untreated patients with deterministic RRMS according to the McDonald criteria, twenty-four healthy controls, and twenty-six first-degree members of untreated RRMS patients (called them as high-risk group). The main findings of this study were as follows: the plasma level of S100A12 was significantly lower in the new cases of untreated RRMS (P ≤ 0.05; 0.045) and high-risk (P ≤ 0.05; 0.001) groups. Although the plasma protein level of Apo-A1 was reduced significantly in the high-risk group (P < 0.05, P = 0.003) as compared to the healthy control group, there was no significant difference in the untreated RRMS patients (P = 0.379). The plasma level of vitamin D3 in both RRMS patients and high-risk groups displayed significance reduction, although, there was no significant association between vitamin D and S100A12 & Apo-A1 levels. Given the role of S100A12 and Apo-A1 in the inflammatory process performed in the first-degree family members of the RRMS patients, which revealed a significant decrease in this group, we concluded that they can be considered as one of the contributing factors in the pathogenesis of MS, though more research is needed before assuming them as predictive biomarkers.
Collapse
Affiliation(s)
- Mahsa Samangooei
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Taheri
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Bahram Movahedi
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Saam Noroozi
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
31
|
Billing F, Walter B, Fink S, Arefaine E, Pickarski L, Maier S, Kretz R, Jakobi M, Feuerer N, Schneiderhan-Marra N, Burkhardt C, Templin M, Zeck A, Krastev R, Hartmann H, Shipp C. Altered Proinflammatory Responses to Polyelectrolyte Multilayer Coatings Are Associated with Differences in Protein Adsorption and Wettability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55534-55549. [PMID: 34762399 DOI: 10.1021/acsami.1c16175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A full understanding of the relationship between surface properties, protein adsorption, and immune responses is lacking but is of great interest for the design of biomaterials with desired biological profiles. In this study, polyelectrolyte multilayer (PEM) coatings with gradient changes in surface wettability were developed to shed light on how this impacts protein adsorption and immune response in the context of material biocompatibility. The analysis of immune responses by peripheral blood mononuclear cells to PEM coatings revealed an increased expression of proinflammatory cytokines tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1β, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 and the surface marker CD86 in response to the most hydrophobic coating, whereas the most hydrophilic coating resulted in a comparatively mild immune response. These findings were subsequently confirmed in a cohort of 24 donors. Cytokines were produced predominantly by monocytes with a peak after 24 h. Experiments conducted in the absence of serum indicated a contributing role of the adsorbed protein layer in the observed immune response. Mass spectrometry analysis revealed distinct protein adsorption patterns, with more inflammation-related proteins (e.g., apolipoprotein A-II) present on the most hydrophobic PEM surface, while the most abundant protein on the hydrophilic PEM (apolipoprotein A-I) was related to anti-inflammatory roles. The pathway analysis revealed alterations in the mitogen-activated protein kinase (MAPK)-signaling pathway between the most hydrophilic and the most hydrophobic coating. The results show that the acute proinflammatory response to the more hydrophobic PEM surface is associated with the adsorption of inflammation-related proteins. Thus, this study provides insights into the interplay between material wettability, protein adsorption, and inflammatory response and may act as a basis for the rational design of biomaterials.
Collapse
Affiliation(s)
- Florian Billing
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Bernadette Walter
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Simon Fink
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Elsa Arefaine
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Luisa Pickarski
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Sandra Maier
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Robin Kretz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Nora Feuerer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Department of Biomedical Engineering, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | | | - Claus Burkhardt
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Anne Zeck
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Rumen Krastev
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Faculty of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| | - Hanna Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Christopher Shipp
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
32
|
Zhang J, Li Y, Zhou Y, Wang K, Pan C, Zhao Y, Xie H, Duan R, Gong Z, Jia Y. Monocyte to High-Density Lipoprotein Ratio: A Novel Predictive Marker of Disease Severity and Prognosis in Patients With Neuromyelitis Optica Spectrum Disorders. Front Neurol 2021; 12:763793. [PMID: 34777231 PMCID: PMC8580507 DOI: 10.3389/fneur.2021.763793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background and Purpose: To investigate the association of monocyte to high-density lipoprotein ratio (MHR) with disease severity and prognosis in patients with neuromyelitis optica spectrum disorders (NMOSD). Methods: This retrospective study included 125 patients with NMOSD. Demographic and clinical parameters, including the MHR, were assessed. The initial Expanded Disability Status Scale (EDSS) score and relapse rate were used to evaluate disease severity and prognosis, respectively. Correlations between MHR and disease severity and relapse rate were analyzed. The predictive value of MHR for prognosis was evaluated using receiver operating characteristic (ROC) curve analysis. Results: Compared with the low MHR group, the initial EDSS score (median 4.5 vs. 5.5%, P = 0.025) and relapse rate (51.61 vs. 30.16%, P = 0.015) were significantly higher in the high MHR group. MHR was positively correlated with the initial EDSS score (r = 0.306, P = 0.001). Multivariate analysis showed that MHR was significantly associated with severity (odds ratio = 7.90, 95% confidence interval [CI] = 1.08–57.82, P = 0.041), and it was a significant predictor of disease prognosis (hazard ratio = 3.12, 95% CI = 1.02–9.53, P = 0.046). The median relapse interval of the high MHR group was 24.40 months. When the MHR was higher than 0.565, the risk of relapse was high [sensitivity, 33.3%; specificity, 91.9%; area under the ROC curve, 0.642 (95% CI = 0.54–0.74, P = 0.007)]. Conclusion: MHR is a novel predictive marker of disease severity and prognosis in patients with NMOSD. Early monitoring and reduction of MHR may allow earlier intervention and improved prognosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaixin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyang Pan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haojie Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Nekrasova EV, Larionova EE, Danko K, Kuzmina DO, Shavva VS, Kudriavtsev IV, Orlov SV. Regulation of Apolipoprotein A-I Gene Expression in Human Macrophages by Oxidized Low-Density Lipoprotein. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1201-1213. [PMID: 34903152 DOI: 10.1134/s0006297921100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
Apolipoprotein A-I (ApoA-I) is a key component of reverse cholesterol transport in humans. In the previous studies, we demonstrated expression of the apoA-I gene in human monocytes and macrophages; however, little is known on the regulation of the apoA-I expression in macrophages during the uptake of modified low-density lipoprotein (LDL), which is one of the key processes in the early stages of atherogenesis leading to formation of foam cells. Here, we demonstrate a complex nature of the apoA-I regulation in human macrophages during the uptake of oxidized LDL (oxLDL). Incubation of macrophages with oxLDL induced expression of the apoA-I gene within the first 24 hours, but suppressed it after 48 h. Both effects depended on the interaction of oxLDL with the TLR4 receptor, rather than on the oxLDL uptake by the macrophages. The oxLDL-mediated downregulation of the apoA-I gene depended on the ERK1/2 and JNK cascades, as well as on the NF-κB cascade.
Collapse
Affiliation(s)
| | | | - Katerina Danko
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Darya O Kuzmina
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | | | - Sergey V Orlov
- Institute of Experimental Medicine, St. Petersburg, 197376, Russia.
- St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
34
|
Fernandes das Neves M, Batuca JR, Delgado Alves J. The role of high-density lipoprotein in the regulation of the immune response: implications for atherosclerosis and autoimmunity. Immunology 2021; 164:231-241. [PMID: 33934336 PMCID: PMC8442240 DOI: 10.1111/imm.13348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammation and immune dysfunction have been increasingly recognized as crucial mechanisms in atherogenesis. Modifications in cell lipid metabolism, plasma dyslipidaemia and particularly low high-density lipoprotein (HDL) levels occur both in atherosclerosis and in autoimmune rheumatic diseases (which are strongly associated with an increased risk of atherosclerosis), suggesting the presence of a crucial link. HDL, the plasma lipoprotein responsible for reverse cholesterol transport, is known for its several protective effects in the context of atherosclerosis. Among these, HDL immunomodulatory effects are possibly the less understood. Through the efflux of cholesterol from plasma cell membranes with the consequent disruption of lipid rafts and the interaction with the cholesterol transporters present in the plasma membrane, HDL affects both the innate and adaptive immune responses. Animal and human studies have demonstrated a predominance of HDL anti-inflammatory effects, despite some pro-inflammatory actions having also been reported. The HDL role on the modulation of the immune response is further suggested by the detection of low levels together with a dysfunctional HDL in patients with autoimmune diseases. Here, we review the current knowledge of the immune mechanisms of atherosclerosis and the modulatory effects HDL may have on them.
Collapse
Affiliation(s)
- Marisa Fernandes das Neves
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
- Medicine 4 DepartmentFernando Fonseca HospitalAmadoraPortugal
| | - Joana R. Batuca
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
| | - José Delgado Alves
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
- Medicine 4 DepartmentFernando Fonseca HospitalAmadoraPortugal
| |
Collapse
|
35
|
Landi C, Vantaggiato L, Shaba E, Cameli P, Carleo A, d'Alessandro M, Bergantini L, Bargagli E, Bini L. Differential redox proteomic profiles of serum from severe asthma patients after one month of benralizumab and mepolizumab treatment. Pulm Pharmacol Ther 2021; 70:102060. [PMID: 34303823 DOI: 10.1016/j.pupt.2021.102060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Mepolizumab and Benralizumab are biological drugs for severe asthma patients able to reduce moderate-to-severe exacerbation rate (peripheral eosinophilial % mepolizumab 1.6 ± 1.2; benralizumab 0; p < 0.0001), improving the quality of life and lung function parameters (FEV1%: mepolizumab 87.1 ± 21.5; benralizumab 89.7 ± 15, p < 0.04). Here we report a preliminary redox proteomic study highlighting the level of oxidative burst present in serum from patients before and after one month of both treatments. Our results highlighted apolipoprotein A1 oxidation after Mepolizumab treatment, that could be related to HDL functionality and could represent a potential biomarker for the treatment. On the other hand, after one month of Benralizumab we detected higher oxidation levels of ceruloplasmin and transthyretin, considered an important oxidative stress biomarker which action help to maintain redox homeostasis.
Collapse
Affiliation(s)
- C Landi
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy.
| | - L Vantaggiato
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy
| | - E Shaba
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy
| | - P Cameli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - A Carleo
- Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - M d'Alessandro
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - L Bergantini
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - E Bargagli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - L Bini
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
36
|
Mounier NM, Wahdan SA, Gad AM, Azab SS. Role of inflammatory, oxidative, and ER stress signaling in the neuroprotective effect of atorvastatin against doxorubicin-induced cognitive impairment in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1537-1551. [PMID: 33755739 DOI: 10.1007/s00210-021-02081-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent widely used for the treatment of several malignancies. Despite its effectiveness, DOX has been implicated in induced neurotoxicity manifested as cognitive dysfunction with varying degrees, commonly referred to as chemobrain. DOX-induced chemobrain is presumed to be due to cytokine-induced inflammatory, oxidative, and apoptotic responses damaging the brain. Atorvastatin (ATV), 3-hydroxy 3-methylglutaryl co-enzyme A (HMG Co-A) reductase inhibitor, is a cholesterol-lowering statin possessing beneficial pleiotropic effects, including anti-inflammatory, antioxidant, and anti-apoptotic properties. Therefore, this study aims to investigate the potential neuroprotective effects of ATV against DOX-induced cognitive impairment studying the possible involvement of heme oxygenase-1 (HO-1) and endoplasmic reticulum (ER) stress biomarkers. Rats were treated with DOX (2 mg/kg/week), i.p. for 4 weeks. Oral treatment with ATV (10 mg/kg) ameliorated DOX-induced behavioral alterations, protected brain histological features, and attenuated DOX-induced inflammatory, oxidative, and apoptotic biomarkers. In addition, ATV upregulated the protective HO-1 expression levels and downregulated the DOX-induced apoptotic ER stress biomarkers. In conclusion, ATV (10 mg/kg) exhibited neuroprotective properties against DOX-induced cognitive impairment which could possibly be attributed to their anti-inflammatory, antioxidant, and anti-apoptotic effects in the brain.
Collapse
Affiliation(s)
- Noha M Mounier
- Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
37
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
38
|
Kalantar K, Manzano-Román R, Ghani E, Mansouri R, Hatam G, Nguewa P, Rashidi S. Leishmanial apolipoprotein A-I expression: a possible strategy used by the parasite to evade the host's immune response. Future Microbiol 2021; 16:607-613. [PMID: 33998267 DOI: 10.2217/fmb-2020-0303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein A-I (apo A-I) represents the main component of the Trypanosome lytic factor (TLF) which contributes to the host innate immunity against Trypanosoma and Leishmania. These parasites use complex and multiple strategies such as molecular mimicry to evade or subvert the host immune system. Previous studies have highlighted the adaptation mechanisms of TLF-resistant Trypanosoma species. These data might support the hypothesis that Leishmania parasites (amastigote forms in macrophages) might express apo A-I to bypass and escape from TLF action as a component of the host innate immune responses. The anti-inflammatory property of apo A-I is another mechanism that supports our idea that apo A-I may play a role in Leishmania parasites allowing them to bypass the host innate immune system.
Collapse
Affiliation(s)
- Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, 37007, Spain
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- Department of Microbiology & Parasitology, University of Navarra, ISTUN Instituto de Salud Tropical, IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea 1, Pamplona, 31008, Spain
| | - Sajad Rashidi
- Department of Parasitology & Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Construction of Recombinant Human GM-CSF and GM-CSF-ApoA-I Fusion Protein and Evaluation of Their Biological Activity. Pharmaceuticals (Basel) 2021; 14:ph14050459. [PMID: 34068113 PMCID: PMC8152757 DOI: 10.3390/ph14050459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, two strains of the yeast P. pastoris were constructed, one of which produced authentic recombinant human granulocyte-macrophage colony-stimulating factor (ryGM-CSF), and the other was a chimera consisting of ryGM-CSF genetically fused with mature human apolipoprotein A-I (ApoA-I) (ryGM-CSF-ApoA-I). Both forms of the cytokine were secreted into the culture medium. The proteins’ yield during cultivation in flasks was 100 and 60 mg/L for ryGM-CSF and ryGM-CSF-ApoA-I, respectively. Both forms of recombinant GM-CSF stimulated the proliferation of human TF-1 erythroleukemia cells; however, the amount of chimera required was 10-fold that of authentic GM-CSF to induce a similar proliferative effect. RyGM-CSF exhibited a 2-fold proliferative effect on BFU-E (burst-forming units—erythroid) at a concentration 1.7 fold less than non-glycosylated E. coli-derived GM-CSF. The chimera together with authentic ryGM-CSF increased the number of both erythroid precursors and BMC granulocytes after 48 h of incubation of human bone marrow cells (BMCs). In addition, the chimeric form of ryGM-CSF was more effective at increasing the viability of the total amount of BMCs, decreasing apoptosis compared to the authentic form. ryGM-CSF-ApoA-I normalized the proliferation, maturation, and segmentation of neutrophils within the physiological norm, preserving the pool of blast cells under conditions of impaired granulopoiesis. The chimera form of GM-CSF exhibited the properties of a multilinear growth factor, modulating the activity of GM-CSF and, perhaps, it may be more suitable for the normalization of granulopoiesis.
Collapse
|
40
|
Liu JC, Chen YT, Hsieh YJ, Wu CC, Huang MC, Hsu YC, Wu CT, Chen CK, Dash S, Yu JS. Association of urinary ketamine and APOA1 levels with bladder dysfunction in ketamine abusers revealed via proteomics and targeted metabolite analyses. Sci Rep 2021; 11:9583. [PMID: 33953300 PMCID: PMC8099891 DOI: 10.1038/s41598-021-89089-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic ketamine abuse is associated with bladder dysfunction and cystitis. However, the effects of ketamine abuse on the urinary proteome profile and the correlations among urinary proteins, urinary ketamine (and metabolites) and clinicopathological features of ketamine-induced bladder dysfunction remain to be established. Here, we recruited 56 ketamine abusers (KA) and 40 age-matched healthy controls (HC) and applied the iTRAQ-based proteomics approach to unravel quantitative changes in the urine proteome profile between the two groups. Many of the differentially regulated proteins are involved in the complement and coagulation cascades and/or fibrotic disease. Among them, a significant increase in APOA1 levels in KA relative to control samples (392.1 ± 59.9 ng/ml vs. 13.7 ± 32.6 ng/ml, p < 0.0001) was detected via ELISA. Moreover, urinary ketamine, norketamine and dehydronorketamine contents (measured via LC-SRM-MS) were found to be positively correlated with overactive bladder syndrome score (OABSS) and APOA1 levels with urinary RBC, WBC, OABSS and numeric pain rating scale in KA. Collectively, our results may aid in developing new molecular tool(s) for management of ketamine-induced bladder dysfunction. Moreover, information regarding the differentially regulated proteins in urine of KA provides valuable clues to establish the molecular mechanisms underlying ketamine-induced cystitis.
Collapse
Affiliation(s)
- Jo-Chuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chyi Huang
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chao Hsu
- Department of Urology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Te Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chih-Ken Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Srinivas Dash
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan. .,Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
41
|
Role of Short Chain Fatty Acids and Apolipoproteins in the Regulation of Eosinophilia-Associated Diseases. Int J Mol Sci 2021; 22:ijms22094377. [PMID: 33922158 PMCID: PMC8122716 DOI: 10.3390/ijms22094377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are key components of our host defense and potent effectors in allergic and inflammatory diseases. Once recruited to the inflammatory site, eosinophils release their cytotoxic granule proteins as well as cytokines and lipid mediators, contributing to parasite clearance but also to exacerbation of inflammation and tissue damage. However, eosinophils have recently been shown to play an important homeostatic role in different tissues under steady state. Despite the tremendous progress in the treatment of eosinophilic disorders with the implementation of biologics, there is an unmet need for novel therapies that specifically target the cytotoxic effector functions of eosinophils without completely depleting this multifunctional immune cell type. Recent studies have uncovered several endogenous molecules that decrease eosinophil migration and activation. These include short chain fatty acids (SCFAs) such as butyrate, which are produced in large quantities in the gastrointestinal tract by commensal bacteria and enter the systemic circulation. In addition, high-density lipoprotein-associated anti-inflammatory apolipoproteins have recently been shown to attenuate eosinophil migration and activation. Here, we focus on the anti-pathogenic properties of SCFAs and apolipoproteins on eosinophil effector function and provide insights into the potential use of SCFAs and apolipoproteins (and their mimetics) as effective agents to combat eosinophilic inflammation.
Collapse
|
42
|
Bianchi L, Sframeli M, Vantaggiato L, Vita GL, Ciranni A, Polito F, Oteri R, Gitto E, Di Giuseppe F, Angelucci S, Versaci A, Messina S, Vita G, Bini L, Aguennouz M. Nusinersen Modulates Proteomics Profiles of Cerebrospinal Fluid in Spinal Muscular Atrophy Type 1 Patients. Int J Mol Sci 2021; 22:ijms22094329. [PMID: 33919289 PMCID: PMC8122268 DOI: 10.3390/ijms22094329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) type 1 is a severe infantile autosomal-recessive neuromuscular disorder caused by a survival motor neuron 1 gene (SMN1) mutation and characterized by progressive muscle weakness. Without supportive care, SMA type 1 is rapidly fatal. The antisense oligonucleotide nusinersen has recently improved the natural course of this disease. Here, we investigated, with a functional proteomic approach, cerebrospinal fluid (CSF) protein profiles from SMA type 1 patients who underwent nusinersen administration to clarify the biochemical response to the treatment and to monitor disease progression based on therapy. Six months after starting treatment (12 mg/5 mL × four doses of loading regimen administered at days 0, 14, 28, and 63), we observed a generalized reversion trend of the CSF protein pattern from our patient cohort to that of control donors. Notably, a marked up-regulation of apolipoprotein A1 and apolipoprotein E and a consistent variation in transthyretin proteoform occurrence were detected. Since these multifunctional proteins are critically active in biomolecular processes aberrant in SMA, i.e., synaptogenesis and neurite growth, neuronal survival and plasticity, inflammation, and oxidative stress control, their nusinersen induced modulation may support SMN improved-expression effects. Hence, these lipoproteins and transthyretin could represent valuable biomarkers to assess patient responsiveness and disease progression.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - Maria Sframeli
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
| | - Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - Gian Luca Vita
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
| | - Annamaria Ciranni
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Francesca Polito
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Rosaria Oteri
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Eloisa Gitto
- Neonatal and Paediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age, University of Messina, 98125 Messina, Italy;
| | - Fabrizio Di Giuseppe
- Dentistry and Biotechnology, and Proteomics Unit, Centre of Advanced Studies and Technoloy, Department Medical, Oral & Biotechnological Sciences, “G. d’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Stefania Angelucci
- Dentistry and Biotechnology, and Proteomics Unit, Centre of Advanced Studies and Technoloy, Department Medical, Oral & Biotechnological Sciences, “G. d’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Antonio Versaci
- Intensive Care Unit, AOU Policlinico “G. Martino”, 98125 Messina, Italy;
| | - Sonia Messina
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Giuseppe Vita
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
- Correspondence:
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - M’hammed Aguennouz
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| |
Collapse
|
43
|
Luna-Castillo KP, Lin S, Muñoz-Valle JF, Vizmanos B, López-Quintero A, Márquez-Sandoval F. Functional Food and Bioactive Compounds on the Modulation of the Functionality of HDL-C: A Narrative Review. Nutrients 2021; 13:1165. [PMID: 33916032 PMCID: PMC8066338 DOI: 10.3390/nu13041165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) remain a serious public health problem and are the primary cause of death worldwide. High-density lipoprotein cholesterol (HDL-C) has been identified as one of the most important molecules in the prevention of CVD due to its multiple anti-inflammatories, anti-atherogenic, and antioxidant properties. Currently, it has been observed that maintaining healthy levels of HDL-C does not seem to be sufficient if the functionality of this particle is not adequate. Modifications in the structure and composition of HDL-C lead to a pro-inflammatory, pro-oxidant, and dysfunctional version of the molecule. Various assays have evaluated some HDL-C functions on risk populations, but they were not the main objective in some of these. Functional foods and dietary compounds such as extra virgin olive oil, nuts, whole grains, legumes, fresh fish, quercetin, curcumin, ginger, resveratrol, and other polyphenols could increase HDL functionality by improving the cholesterol efflux capacity (CEC), paraoxonase 1 (PON1), and cholesteryl ester transfer protein (CETP) activity. Nevertheless, additional rigorous research basic and applied is required in order to better understand the association between diet and HDL functionality. This will enable the development of nutritional precision management guidelines for healthy HDL to reduce cardiovascular risk in adults. The aim of the study was to increase the understanding of dietary compounds (functional foods and bioactive components) on the functionality of HDL.
Collapse
Affiliation(s)
- Karla Paulina Luna-Castillo
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
| | - Sophia Lin
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia;
| | - José Francisco Muñoz-Valle
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Barbara Vizmanos
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Fabiola Márquez-Sandoval
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
44
|
Patel VK, Williams H, Li SCH, Fletcher JP, Medbury HJ. Monocyte Subset Recruitment Marker Profile Is Inversely Associated With Blood ApoA1 Levels. Front Immunol 2021; 12:616305. [PMID: 33717107 PMCID: PMC7952433 DOI: 10.3389/fimmu.2021.616305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Dyslipidemia promotes development of the atherosclerotic plaques that characterise cardiovascular disease. Plaque progression requires the influx of monocytes into the vessel wall, but whether dyslipidemia is associated with an increased potential of monocytes to extravasate is largely unknown. Here (using flow cytometry) we examined recruitment marker expression on monocytes from generally healthy individuals who differed in lipid profile. Comparisons were made between monocyte subsets, participants and relative to participants’ lipid levels. Monocyte subsets differed significantly in their expression of recruitment markers, with highest expression being on either the classical or non-classical subsets. However, these inter-subset differences were largely overshadowed by considerable inter-participant differences with some participants having higher levels of recruitment markers on all three monocyte subsets. Furthermore, when the expression of one recruitment marker was high, so too was that of most of the other markers, with substantial correlations evident between the markers. The inter-participant differences were explained by lipid levels. Most notably, there was a significant inverse correlation for most markers with ApoA1 levels. Our results indicate that dyslipidemia, in particular low levels of ApoA1, is associated with an increased potential of all monocyte subsets to extravasate, and to do so using a wider repertoire of recruitment markers than currently appreciated.
Collapse
Affiliation(s)
- Vyoma K Patel
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.,The University of Sydney, Westmead Clinical School, Westmead, NSW, Australia
| | - Helen Williams
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.,The University of Sydney, Westmead Clinical School, Westmead, NSW, Australia
| | - Stephen C H Li
- Western Sydney University, Blacktown/Mt Druitt Clinical School, Blacktown Hospital, Blacktown, NSW, Australia.,Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - John P Fletcher
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.,The University of Sydney, Westmead Clinical School, Westmead, NSW, Australia
| | - Heather J Medbury
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.,The University of Sydney, Westmead Clinical School, Westmead, NSW, Australia
| |
Collapse
|
45
|
Bauset C, Gisbert-Ferrándiz L, Cosín-Roger J. Metabolomics as a Promising Resource Identifying Potential Biomarkers for Inflammatory Bowel Disease. J Clin Med 2021; 10:jcm10040622. [PMID: 33562024 PMCID: PMC7915257 DOI: 10.3390/jcm10040622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a relapsing chronic disorder of the gastrointestinal tract characterized by disruption of epithelial barrier function and excessive immune response to gut microbiota. The lack of biomarkers providing early diagnosis or defining the status of the pathology difficulties an accurate assessment of the disease. Given the different metabolomic profiles observed in IBD patients, metabolomics may reveal prime candidates to be studied, which may help in understanding the pathology and identifying novel therapeutic targets. In this review, we summarize the most current advances describing the promising metabolites such as lipids or amino acids found through untargeted metabolomics from serum, faecal, urine and biopsy samples.
Collapse
Affiliation(s)
- Cristina Bauset
- Department of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (C.B.); (L.G.-F.)
| | - Laura Gisbert-Ferrándiz
- Department of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (C.B.); (L.G.-F.)
| | - Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| |
Collapse
|
46
|
Leung WS, Kuo WW, Ju DT, Wang TD, Shao-Tsu Chen W, Ho TJ, Lin YM, Mahalakshmi B, Lin JY, Huang CY. Protective effects of diallyl trisulfide (DATS) against doxorubicin-induced inflammation and oxidative stress in the brain of rats. Free Radic Biol Med 2020; 160:141-148. [PMID: 32745770 DOI: 10.1016/j.freeradbiomed.2020.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is a widely used antitumor drug that causes severe neurotoxicity in patients. Diallyl trisulfide (DATS) is an organosulfur compound with established potent antioxidant and anti-inflammatory properties. Herein, we investigated the neuroprotective efficacy of DATS in preventing DOX-induced neurotoxicity in a rat model. Specifically, DATS (40 mg/kg) was administered to rats 24 h after DOX treatment, once a week for 8 weeks. Our results showed that DATS treatment led to a decrease in plasma levels of tumor necrosis factor-alpha (TNF-α) induced by DOX. DATS restored cerebral cortex and hippocampus histopathological architecture and neuronal loss. Immunohistochemical staining indicated that DATS decreased the expression of glial fibrillar acidic protein (GFAP) in DOX treated rats. Components of stress-related inflammatory proteins (TNF-α, phospho nuclear factor kappa B (NF-κB), inducible nitricoxide synthase (iNOS) and cyclooxygenase-2 (COX-2)) were all significantly increased in the DOX group, in comparison with the control group, whereas they were decreased after DATS treatment. In addition, the mRNA of antioxidant enzymes (superoxide dismutase 2 (SOD2), catalase, glutathione peroxidase 1, 4 (GPx1 and GPx4)) and antioxidant proteins (heme oxygenase-1 (HO-1), superoxide dismutase 1, 2 (SOD1 and SOD2), Γ-glutamylcysteine synthase (Γ-GCSc)) were markedly increased in DOX group compared with the control group, which were significantly attenuated by DATS treatment. The upregulation of antioxidants enzymes in DOX group was probably a compensatory effect against elevated oxidative stress induced by DOX. DATS treatment could ameliorate this oxidative stress in brain. Our results suggested that DATS has potential clinical applications in the prevention of DOX-induced neurotoxicity by ameliorating inflammatory insults and oxidative stress.
Collapse
Affiliation(s)
- Wai-Shing Leung
- Department of Emergency Medicine, Jen-Ai Hospital, Taichung, 403, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Tian-De Wang
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, Hualien, 970, Taiwan; School of Medicine Tzu Chi University, Hualien, 970, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, 970, Taiwan
| | - Yu Min Lin
- Department of Emergency Medicine, Jen-Ai Hospital, Taichung, 403, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Jing-Ying Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
47
|
Wade H, Pan K, Su Q. CREBH: A Complex Array of Regulatory Mechanisms in Nutritional Signaling, Metabolic Inflammation, and Metabolic Disease. Mol Nutr Food Res 2020; 65:e2000771. [DOI: 10.1002/mnfr.202000771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Henry Wade
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Kaichao Pan
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Qiaozhu Su
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| |
Collapse
|
48
|
Bakke FK, Monte MM, Stead DA, Causey DR, Douglas A, Macqueen DJ, Dooley H. Plasma Proteome Responses in Salmonid Fish Following Immunization. Front Immunol 2020; 11:581070. [PMID: 33133099 PMCID: PMC7579410 DOI: 10.3389/fimmu.2020.581070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Vaccination plays a critical role in the protection of humans and other animals from infectious diseases. However, the same vaccine often confers different protection levels among individuals due to variation in genetics and/or immunological histories. While this represents a well-recognized issue in humans, it has received little attention in fish. Here we address this knowledge gap in a proteomic study of rainbow trout (Oncorhynchus mykiss, Walbaum), using non-lethal repeated blood sampling to establish the plasma protein response of individual fish following immunization. Six trout were immunized with adjuvanted hen egg-white lysozyme (HEL) and peripheral blood sampled at ten time points from day 0 to day 84 post-injection. We confirm that an antigen-specific antibody response to HEL was raised, showing differences in timing and magnitude among individuals. Using label-free liquid chromatography-mass spectrometry, we quantified the abundance of 278 plasma proteins across the timecourse. As part of the analysis, we show that this approach can distinguish many (but not all) duplicated plasma proteins encoded by paralogous genes retained from the salmonid-specific whole genome duplication event. Global variation in the plasma proteome was predominantly explained by individual differences among fish. However, sampling day explained a major component of variation in abundance for a statistically defined subset of 41 proteins, representing 15% of those detected. These proteins clustered into five groups showing distinct temporal responses to HEL immunization at the population level, and include classical immune (e.g. complement system members) and acute phase molecules (e.g. apolipoproteins, haptoglobins), several enzymes and other proteins supporting the immune response, in addition to evolutionarily conserved molecules that are as yet uncharacterized. Overall, this study improves our understanding of the fish plasma proteome, provides valuable marker proteins for different phases of the immune response, and has implications for vaccine development and the design of immune challenge experiments.
Collapse
Affiliation(s)
- Fiona K Bakke
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Milena M Monte
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - David A Stead
- Aberdeen Proteomics, The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Dwight R Causey
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alex Douglas
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen Dooley
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology (IMET), University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
49
|
Guo X, Li TC, Chen X. The endometrial proteomic profile around the time of embryo implantation†. Biol Reprod 2020; 104:11-26. [PMID: 32856701 DOI: 10.1093/biolre/ioaa150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 01/11/2023] Open
Abstract
Embryo implantation is an intricate process which requires competent embryo and receptive endometrium. The failure of endometrium to achieve receptivity is a recognized cause of infertility. However, due to multiplicity of events involved, the molecular mechanisms governing endometrial receptivity are still not fully understood. Traditional one-by-one approaches, including western blotting and histochemistry, are insufficient to examine the extensive changes of endometrial proteome. Although genomics and transcriptomics studies have identified several significant genes, the underlying mechanism remains to be uncovered owing to post-transcriptional and post-translational modifications. Proteomic technologies are high throughput in protein identification, and they are now intensively used to identify diagnostic and prognostic markers in the field of reproductive medicine. There is a series of studies analyzing endometrial proteomic profile, which has provided a mechanistic insight into implantation failure. These published studies mainly focused on the difference between pre-receptive and receptive stages of endometrium, as well as on the alternation of endometrial proteomics in women with reproductive failure. Here, we review recent data from proteomic analyses regarding endometrium around the time of embryo implantation and propose possible future research directions.
Collapse
Affiliation(s)
- Xi Guo
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China.,Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| |
Collapse
|
50
|
Zhou B, Ren H, Zhou X, Yuan G. Associations of iron status with apolipoproteins and lipid ratios: a cross-sectional study from the China Health and Nutrition Survey. Lipids Health Dis 2020; 19:140. [PMID: 32546165 PMCID: PMC7298938 DOI: 10.1186/s12944-020-01312-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/04/2020] [Indexed: 12/23/2022] Open
Abstract
Background Iron overload has been found to be related with various cardiometabolic disorders, like dyslipidemia, metabolic syndrome, and diabetes. The disturbance of the iron status and lipid metabolism can contribute to organ damage such as atherosclerotic plaque growth and instability. An assessment on the associations of iron status with apolipoproteins and lipid ratios would be informative for maintenance of metabolic homeostasis and hinderance of disease progression. Hence, this study aims to establish the relationships of iron status with apolipoproteins and lipid ratios. Methods A cross-sectional study of 7540 adult participants from the China Health and Nutrition Survey 2009 was conducted. Logistic regression analyses were used to investigate the relationships between indicators of iron status and the prevalence of unfavorable apolipoprotein profiles. Multivariate linear regression models were constructed to assess the dose-response correlations between serum ferritin and lipid parameters. Results After adjustment for confounding factors, in both sexes, the subjects in the top quartile of ferritin had the highest prevalence of an elevated apolipoprotein B (men: odds ratio (OR) 1.97, 95% confidence interval (CI) 1.50–2.62; women: OR 2.13, 95% CI 1.53–2.97) and an elevated apolipoprotein B/apolipoprotein A1 ratio (men: OR 2.00, 95% CI 1.50–2.66; women: OR 1.41, 95% CI 1.04–1.92) when compared with individuals in the lowest quartile. Hemoglobin were also independently associated with unfavorable apolipoprotein B and apolipoprotein B/apolipoprotein A1 ratio both in men and women. However, transferrin (men: OR 0.74, 95% CI 0.56–0.99; women: OR 0.73, 95% CI 0.56–0.95) and soluble transferrin receptor (men: OR 0.75, 95% CI 0.57–0.99; women: OR 0.71, 95% CI 0.55–0.91) were found to be negatively associated with a decreased apolipoprotein A1. Moreover, after controlling for potential confounders, the ferritin concentrations were significantly associated with the levels of lipid ratios including TG/HDL-C, non-HDL-C/HDL-C, TC/HDL-C, apoB/apoA1, and LDL-C/HDL-C ratio in men (β coefficient = 0.147, 0.061, 0.043, 0.038, 0.032, respectively, all P values < 0.001) and in women (β coefficient = 0.074, 0.034, 0.025, 0.020, 0.018, respectively, all P values < 0.05). Conclusions The indicators of iron status are significantly associated with unfavorable apolipoprotein profiles. Serum ferritin concentrations are positively correlated with the levels of lipid ratios. The management on the modifiable iron status and lipid metabolism has a clinical significance. The atherosclerotic lipid profiles of the patients with iron overload deserve special clinical concerns.
Collapse
Affiliation(s)
- Bowen Zhou
- Department of Endocrinology and Metabolism, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huihui Ren
- Department of Endocrinology and Metabolism, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xinrong Zhou
- Department of Endocrinology and Metabolism, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Gang Yuan
- Department of Endocrinology and Metabolism, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|