1
|
Melzer YF, Fergen NL, Mess C, Stadler JC, Geidel G, Schwietzer YA, Kött J, Pantel K, Schneider SW, Utikal J, Wladykowski E, Vidal-Y-Sy S, Bauer AT, Gebhardt C. Evaluation of S100A8/A9 and neutrophils as prognostic markers in metastatic melanoma patients under immune-checkpoint inhibition. Transl Oncol 2025; 52:102224. [PMID: 39700646 PMCID: PMC11718343 DOI: 10.1016/j.tranon.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Immune-checkpoint inhibitors (ICIs) have revolutionized melanoma treatment, yet approximately half of patients do not respond to these therapies. Identifying prognostic biomarkers is crucial for treatment decisions. Our retrospective study assessed liquid biopsies and tumor tissue analyses for two potential biomarkers: danger-associated molecular pattern (DAMP) S100A8/A9 and its source, neutrophils. In 43 metastatic unresected stage III/IV melanoma patients, elevated serum levels of S100A8/A9 and neutrophils before and during ICI treatment correlated with worse outcomes. Furthermore, in 113 melanoma patients, neutrophil expression in the tumor microenvironment (TME) was associated with relapse and reduced survival. Measuring S100A8/A9 and neutrophils could enhance immunotherapy monitoring by predicting impaired clinical outcomes and non-response to ICIs. Serum S100A8/A9 levels and neutrophil counts at baseline (T0) and during treatment (T3) correlated with reduced progression-free survival (PFS). Elevated S100A8/A9 levels at T0 and T3 negatively impacted overall survival (OS). Notably, neutrophil infiltration was more prevalent in primary melanomas than in nevi and metastases, and its presence in primary melanomas was linked to poorer survival. S100A8/A9 serum levels, neutrophil counts, and tumor-associated neutrophil infiltration represent promising biomarkers for predicting treatment response and clinical outcomes in melanoma patients receiving ICIs. SIGNIFICANCE: These findings underscore the critical need for reliable biomarkers in melanoma research, particularly for predicting responses to immune-checkpoint inhibitors (ICIs). Identifying S100A8/A9 levels and neutrophil infiltration as potential indicators of treatment outcomes offers valuable insights for personalized therapy decisions. By enhancing monitoring and prognosis assessment, these biomarkers contribute to refining treatment strategies, ultimately improving patient care and outcomes. This research bridges gaps in understanding melanoma response mechanisms and highlights avenues for further investigation into immune-related markers, fostering advancements in precision medicine for melanoma patients.
Collapse
Affiliation(s)
- Yasmin F Melzer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Nadine L Fergen
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Christian Mess
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Julia-Christina Stadler
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Glenn Geidel
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Ysabel A Schwietzer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Julian Kött
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Klaus Pantel
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Tumor Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - Ewa Wladykowski
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Alexander T Bauer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
2
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Meng S, Yang G, Yu E, Li J. Bibliometric analysis and visualization of the research on the relationship between RNA methylation and immune cell infiltration in tumors. Front Immunol 2024; 15:1477828. [PMID: 39726589 PMCID: PMC11669668 DOI: 10.3389/fimmu.2024.1477828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Background This research endeavors to delve into the research hotspots and trends concerning RNA methylation and tumor immune cells through the application of bibliometric analysis and visualization techniques. Methods A comprehensive search in WoSCC (2014-2023) for RNA methylation and tumor immune cell articles/reviews was conducted. Bibliometric analysis and visualization employed CiteSpace, Bibliometric, and VOSviewer tools. Results A total of 3295 articles were included in the analysis, with a continuously increasing number of publications linking RNA methylation to tumoral immune cells. Chinese authors and research institutions have demonstrated a sustained growth trend in both the number of publications and author influence. SUN YAT SEN UNIVERSITY, a Chinese institution, has published the highest number of articles in this field, while also demonstrating extensive international and inter-institutional collaborations. Meanwhile, HARVARD UNIVERSITY has also achieved impressive results. For instance, Frontiers in Immunology has published the largest number of articles in this category. Nature Communications has published articles that are most influential in this field, playing a pivotal role in disseminating research findings. The sustained vitality of this field is attributed to its solid research foundation, including the groundbreaking work published by Professor Chiappinelli KB in Cell and the widely cited paper by Professor Han DL in Nature. Analysis of research trend topics reveals that m5C, immunotherapy, and the immune microenvironment are current research focuses. Conclusion Future investigative efforts at the juncture of RNA methylation and tumor immune cells are anticipated to concentrate on domains including m5C, n7-methylguanosine, cuproptosis, prognosis assessment, immunotherapeutic strategies, and the tumor microenvironment.
Collapse
Affiliation(s)
- Sibo Meng
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guanghui Yang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Enhao Yu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Jiaxin Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Ning H, Yang Q, Ren Y, Qiu L. Systematic regulation of immune checkpoint molecules by redox regulators CNC-bZIP transcription factors. Discov Oncol 2024; 15:685. [PMID: 39565431 PMCID: PMC11579261 DOI: 10.1007/s12672-024-01574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Although oxidative stress is strongly connected to the initiation and progression of cancer, the underlying molecular pathways remain unknown. The redox regulator CNC-bZIPs are important transcription factor groups that mediate the interplay of environmental cues and intercellular homeostasis. Immune checkpoint molecules (ICMs) are key molecules that mediate the communication between immune cells and tumor cells. This research sought to explore the transcriptional regulatory effects of CNC-bZIPs on ICMs. METHODS The potential role of CNC-bZIPs in tumors and the correlation between CNC-bZIPs and ICMs were analyzed by the gene expression characteristics, survival analysis, and correlation analysis in TCGA data. And the transcriptional regulatory effects of CNC-bZIPs on ICMs were verified through cis acting element analysis and promoter activity reporter experiments. RESULTS In this study, we found that high expression of CNC-bZIPs predicted poor prognosis, and we determined that CNC-bZIPs are universally connected to ICMs by analyzing gene expression correlation in TCGA tumor data. Specifically, CD47 and CD274 exhibit universally positive correlation with CNC-bZIPs in various tumor tissues. Promoter analysis revealed that there are several ARE elements, which are specifically recognized by CNC-bZIPs, in the promoter regions of CD47 and CD274 genes. Overexpression of NFE2L1 and NFE2L2 was used to explore the regulation of common ICM genes, such as CD47 and CD274, and the transcriptional regulatory effect of CNC-bZIPs on ICMs was confirmed using promoter activity reporter experiments. CONCLUSION In this study, the universal and systematic transcriptional regulatory role of the CNC-bZIP transcription factor family on ICMs was discovered. According to this study, the results and conclusions drawn are based on gene expression correlation and promoter activity assays, the CNC-bZIPs/ICMs transcriptional regulatory axis was revealed to be a potential regulatory axis that may drive redox signaling and anti-tumor immune responses.
Collapse
Affiliation(s)
- Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qiufang Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yonggang Ren
- Innovation Center for Basic Medicine, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Erqi District, No.1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Cai Q, Pang C, Wang Z, Li J, Dai Y, Fan FY, Wang ZQ, Hu X, Li L, Chen XW, Ji R, Mei Q, Zhang C, Liang P, Yu X, Liu FY, Cheng Z, Yu J. Relationship between post-ablation fever and prognosis in initial hepatocellular carcinoma: A 15-year multicenter, retrospective cohort study. Int J Surg 2024; 111:01279778-990000000-01955. [PMID: 39291970 PMCID: PMC11745605 DOI: 10.1097/js9.0000000000002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Fever is a common side effect following thermal ablation in patients with hepatocellular carcinoma (HCC), yet its impact on prognosis remains unclear. MATERIALS AND METHODS This retrospective study included initial HCC patients who underwent US-guided percutaneous microwave ablation at 13 hospitals between January 2006 and February 2021. All patients were categorized into afebrile, transient low-grade fever (TLF), and prolonged or high-grade fever (PHF) groups. Primary outcomes included very early recurrence (VER) and early recurrence (ER), secondary outcomes were disease-free survival (DFS) and overall survival (OS). Fever cut-offs for VER/ER were established using restrictive cubic splines and adjusted Cox model. Survival analyses used the Kaplan-Meier method. RESULTS A total of 1458 initial HCC patients (mean age, 59±11[SD]; 1146 men). Compared to afebrile individuals, patients with TLF (temperatures ranging 37.0-38.8°C for 1-2 d), showed independent protective effects against VER (HR, 0.73; 95% CI: 0.57,0.95; P=0.02) and ER (HR, 0.66; 95% CI: 0.54,0.81; P<0.001), however, PHF showed no differences in VER (HR, 0.99; 95% CI: 0.76,1.30; P=0.96) and ER (HR, 0.86; 95% CI: 0.69,1.07; P=0.17). With a median follow-up of 47 months (IQR:26-79), the median DFS for TLF patients was 40 months, superior to afebrile (30 mo, P=0.019) and PHF patients (33 mo, P=0.049). The 5-year OS rate for TLF patients was 73.2%, higher than afebrile (69.3%, P=0.02) and PHF patients (66.7%, P=0.03). No significant difference was found in DFS and OS between afebrile and PHF patients (P=0.90 and 0.71). Notably, TLF patients exhibited the highest lymphocyte counts increasing median 7 days after ablation (P<0.001 vs. afebrile and P=0.01 vs. PHF). CONCLUSION Transient low-grade fever following percutaneous microwave ablation in hepatocellular carcinoma patients demonstrated protection against early recurrence, possibly attributed to the short-term activation of lymphocytes.
Collapse
Affiliation(s)
- Qian Cai
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chuan Pang
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Zhen Wang
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Jianming Li
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Yuqing Dai
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Fang-ying Fan
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Zhong-qi Wang
- Department of Orthopedics, Fourth Medical Center of Chinese PLA General Hospital and Chinese PLA Medical College, Beijing, People’s Republic of China
| | - Xin Hu
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Lijuan Li
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Xu-wei Chen
- Department of Breast and Thyroid Surgery, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, People’s Republic of China
| | - Ran Ji
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Qian Mei
- Department of Bio-Therapeutic, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Ping Liang
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Xiaoling Yu
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Fang-yi Liu
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Zhigang Cheng
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Jie Yu
- Senior Department of Oncology, Department of Interventional Ultrasound, The Fifth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Orrapin S, Moonmuang S, Udomruk S, Yongpitakwattana P, Pruksakorn D, Chaiyawat P. Unlocking the tumor-immune microenvironment in osteosarcoma: insights into the immune landscape and mechanisms. Front Immunol 2024; 15:1394284. [PMID: 39359731 PMCID: PMC11444963 DOI: 10.3389/fimmu.2024.1394284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Osteosarcoma has a unique tumor microenvironment (TME), which is characterized as a complex microenvironment comprising of bone cells, immune cells, stromal cells, and heterogeneous vascular structures. These elements are intricately embedded in a mineralized extracellular matrix, setting it apart from other primary TMEs. In a state of normal physiological function, these cell types collaborate in a coordinated manner to maintain the homeostasis of the bone and hematopoietic systems. However, in the pathological condition, i.e., neoplastic malignancies, the tumor-immune microenvironment (TIME) has been shown to promote cancer cells proliferation, migration, apoptosis and drug resistance, as well as immune escape. The intricate and dynamic system of the TIME in osteosarcoma involves crucial roles played by various infiltrating cells, the complement system, and exosomes. This complexity is closely associated with tumor cells evading immune surveillance, experiencing uncontrolled proliferation, and facilitating metastasis. In this review, we elucidate the intricate interplay between diverse cell populations in the osteosarcoma TIME, each contributing uniquely to tumor progression. From chondroblastic and osteoblastic osteosarcoma cells to osteoclasts, stromal cells, and various myeloid and lymphoid cell subsets, the comprehensive single-cell analysis provides a detailed roadmap of the complex osteosarcoma ecosystem. Furthermore, we summarize the mutations, epigenetic mechanisms, and extracellular vesicles that dictate the immunologic landscape and modulate the TIME of osteosarcoma. The perspectives of the clinical implementation of immunotherapy and therapeutic approaches for targeting immune cells are also intensively discussed.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sutpirat Moonmuang
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Petlada Yongpitakwattana
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Piao MN, Xie J, Jin MM, Ma XT, Dou Z, Wang JP, Li JL. Efficacy and prognostic factors of stereotactic body radiotherapy combined with immunotherapy for pulmonary oligometastases: a preliminary retrospective cohort study. Transl Lung Cancer Res 2024; 13:1950-1963. [PMID: 39263027 PMCID: PMC11384503 DOI: 10.21037/tlcr-24-588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Background Stereotactic body radiotherapy (SBRT) combined immunotherapy has a synergistic effect on patients with stage IV tumors. However, the efficacy and prognostic factors analysis of SBRT combined immunotherapy for patients with pulmonary oligometastases have rarely been reported in the studies. The purpose of this study is to explore the efficacy and prognostic factors analysis of SBRT combined immunotherapy for patients with oligometastatic lung tumors. Methods A retrospective analysis was conducted on 43 patients with advanced tumors who received SBRT combined with immunotherapy for pulmonary oligometastases from October 2018 to October 2021. Local control (LC), progression-free survival (PFS), and overall survival (OS) were assessed using the Kaplan-Meier method. Univariate and multivariate analyses of OS were performed using the Cox regression model, and the P value <0.05 was considered statistically significant. The receiver operating characteristic (ROC) curve of neutrophil-to-lymphocyte ratio (NLR) after SBRT was generated. Spearman correlation analysis was used to determine the relationship of planning target volume (PTV) with absolute lymphocyte count (ALC) before and after SBRT and with neutrophil count (NE) after SBRT. Additionally, linear regression was used to examine the relationship between ALC after SBRT and clinical factors. Results A total of 43 patients with pulmonary oligometastases receiving SBRT combined with immunotherapy were included in the study. The change in NLR after SBRT was statistically significant (P<0.001). At 1 and 2 years, respectively, the LC rates were 90.3% and 87.5%, the OS rates were 83.46% and 60.99%, and the PFS rates were 69.92% and 54.25%, with a median PFS of 27.00 (17.84-36.13) months. Univariate and multivariate Cox regression analyses showed that a shorter interval between radiotherapy and immunization [≤21 days; hazard ratio (HR) =1.10, 95% confidence interval (CI): 0.06-0.89; P=0.02] and a low NLR after SBRT (HR =0.24, 95% CI: 1.01-1.9; P=0.03) were associated with improved OS. The ROC curve identified 4.12 as the cutoff value for predicting OS based on NLR after SBRT. NLR after SBRT ≤4.12 significantly extended OS compared to NLR after SBRT >4.12 (log-rank P=0.001). Spearman correlation analysis and linear regression analysis showed that PTV was negatively correlated with ALC after SBRT. Conclusions Our preliminary research shows that SBRT combined with immunotherapy has a good effect, and NLR after SBRT is a poor prognostic factor for OS. Larger PTV volume is associated with decreased ALC after SBRT.
Collapse
Affiliation(s)
- Mei-Na Piao
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiation Oncology, The Third People's Hospital of Dalian, Dalian, China
| | - Jing Xie
- Department of Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Min-Min Jin
- Department of Radiology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Ting Ma
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheng Dou
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ping Wang
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Mohammadi A, Mohammadi M, Almasi‐Dooghaee M, Mirmosayyeb O. Neutrophil to lymphocyte ratio in Alzheimer's disease: A systematic review and meta-analysis. PLoS One 2024; 19:e0305322. [PMID: 38917167 PMCID: PMC11198755 DOI: 10.1371/journal.pone.0305322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The Neutrophil-to-Lymphocyte Ratio (NLR) is a clinical indicator of peripheral inflammation that is easily accessible. It is worth noting that the formation of amyloid-β (Aβ) plaques and neurofibrillary tangles has been linked to inflammation and immune dysregulation. The main objective of this systematic review and meta-analysis is to comprehensively evaluate the existing body of research concerning the NLR in the context of Alzheimer's disease (AD) and mild cognitive impairment (MCI). METHOD We conducted a comprehensive online search and included studies that evaluated the NLR in 1) patients with AD or MCI and 2) healthy control (HC) participants. We also pooled mean and standard deviation (SD) data for each group. RESULTS Ultimately, 12 studies encompassed 1,309 individuals diagnosed with AD with mean NLR levels of 2.68, 1,929 individuals with MCI with mean NLR levels of 2.42, and 2,064 HC with mean NLR levels of 2.06 were included in this systematic review and meta-analysis. The mean NLR was 0.59 higher in AD patients compared to HC participants (mean difference (MD) = 0.59 [0.38; 0.80]). Similarly, the mean NLR was higher in AD than MCI patients (MD = 0.23 [0.13; 0.33]). Additionally, the mean NLR was higher in individuals with MCI compared to HC participants (MD = 0.37 [0.22; 0.52]). In the subgroup meta-analysis based on the Mini-Mental State Examination (MMSE), AD patients with lower MMSE scores (using a cut-off of 20) exhibited significantly higher mean NLR (3.10 vs. 2.70, with a p-value for subgroup differences < 0.01). CONCLUSION The NLR, which serves as a marker of peripheral inflammation, shows increased levels in individuals with AD and MCI compared to HC participants. Furthermore, our study indicates that NLR levels are significantly higher in AD than MCI. Additionally, our novel finding suggests significantly higher NLR levels among AD patients with more severe cognitive decline compared to AD patients with less severe cognitive decline. So, it can be concluded that the higher cognitive decline in humans is accompanied by higher NLR levels. Further longitudinal researches are needed to explore more details about the relationship between inflammation and dementia.
Collapse
Affiliation(s)
- Aynaz Mohammadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Almasi‐Dooghaee
- Neurology Department, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Tumbath S, Jiang L, Li X, Zhang T, Zahid KR, Zhao Y, Zhou H, Yin Z, Lu T, Jiang S, Chen Y, Chen X, Fu YX, Huang X. β-Lapachone promotes the recruitment and polarization of tumor-associated neutrophils (TANs) toward an antitumor (N1) phenotype in NQO1-positive cancers. Oncoimmunology 2024; 13:2363000. [PMID: 38846085 PMCID: PMC11155710 DOI: 10.1080/2162402x.2024.2363000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. β-Lapachone (β-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between β-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown. This study demonstrates that β-Lap selectively kills NQO1-positive murine tumor cells by significantly increasing intracellular ROS formation and inducing DNA double strand breaks (DSBs), resulting in DNA damage. Treatment with β-Lap efficiently eradicates immunocompetent murine tumors and significantly increases the infiltration of tumor-associated neutrophils (TANs) into the tumor microenvironment (TME), which plays a crucial role in the drug's therapeutic efficacy. Further, the presence of β-Lap-induced antigen medium leads bone marrow-derived neutrophils (BMNs) to directly kill murine tumor cells, aiding in dendritic cells (DCs) recruitment and significantly enhancing CD8+ T cell proliferation. β-Lap treatment also drives the polarization of TANs toward an antitumor N1 phenotype, characterized by elevated IFN-β expression and reduced TGF-β cytokine expression, along with increased CD95 and CD54 surface markers. β-Lap treatment also induces N1 TAN-mediated T cell cross-priming. The HMGB1/TLR4/MyD88 signaling cascade influences neutrophil infiltration into β-Lap-treated tumors. Blocking this cascade or depleting neutrophil infiltration abolishes the antigen-specific T cell response induced by β-Lap treatment. Overall, this study provides comprehensive insights into the role of tumor-infiltrating neutrophils in the β-Lap-induced antitumor activity against NQO1-positive murine tumors.
Collapse
Affiliation(s)
- Soumya Tumbath
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lingxiang Jiang
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoguang Li
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taolan Zhang
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kashif Rafiq Zahid
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ye Zhao
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hao Zhou
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhijun Yin
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shu Jiang
- Division of public health sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Yaomin Chen
- Indiana University Health Pathology Laboratory, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiumei Huang
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Kim U, Debnath R, Maiz JE, Rico J, Sinha S, Blanco MA, Chakrabarti R. ΔNp63 regulates MDSC survival and metabolism in triple-negative breast cancer. iScience 2024; 27:109366. [PMID: 38510127 PMCID: PMC10951988 DOI: 10.1016/j.isci.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) contributes greatly to mortality of breast cancer, demanding new targetable options. We have shown that TNBC patients have high ΔNp63 expression in tumors. However, the function of ΔNp63 in established TNBC is yet to be explored. In current studies, targeting ΔNp63 with inducible CRISPR knockout and Histone deacetylase inhibitor Quisinostat showed that ΔNp63 is important for tumor progression and metastasis in established tumors by promoting myeloid-derived suppressor cell (MDSC) survival through tumor necrosis factor alpha. Decreasing ΔNp63 levels are associated with decreased CD4+ and FOXP3+ T-cells but increased CD8+ T-cells. RNA sequencing analysis indicates that loss of ΔNp63 alters multiple MDSC properties such as lipid metabolism, chemotaxis, migration, and neutrophil degranulation besides survival. We further demonstrated that targeting ΔNp63 sensitizes chemotherapy. Overall, we showed that ΔNp63 reprograms the MDSC-mediated immunosuppressive functions in TNBC, highlighting the benefit of targeting ΔNp63 in chemotherapy-resistant TNBC.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier E. Maiz
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua Rico
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mario Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rumela Chakrabarti
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Zhou J, Xiao H, Wang Z, Wang H, Liang X, Zhai Z, Hong J. CD14 -CD10 -CD45 +HLA-DR -SSC + neutrophils may be granulocytic myeloid-derived suppressor cell-like cells and relate to disease progression in non-Hodgkin's lymphoma patients. Immunol Cell Biol 2024; 102:256-268. [PMID: 38361210 DOI: 10.1111/imcb.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/31/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
We explored the frequency of CD14-CD10-CD45+HLA-DR-SSC++ neutrophils (CD10- neutrophils) in patients with non-Hodgkin's lymphoma (NHL), and their immunologic characteristics and clinical significance. Patients with NHL who were newly diagnosed (NDP; n = 33), in remission (RMP; n = 28) and relapsed (RLP; n = 29) were included, and 47 volunteers were recruited as healthy controls (HCs). The frequency of CD10- neutrophils in the peripheral blood from HC and patients with NHL was detected. CD10- and CD10+ neutrophils were sorted, and their cytology was analyzed. CD3+ T cells were also isolated and cultured with the autologous CD10- or CD10+ neutrophils, after which the proliferation and death rates of T cells were determined. The levels of arginase-1 (Arg-1) and reactive oxygen species (ROS) in CD10+ or CD10- neutrophils were examined. Few CD10- neutrophils were detected in HCs but were significantly elevated in patients with NHL, especially in NDP and RLP. In addition, CD10- neutrophils in NDP with advanced stage and high risk were markedly higher than those in NDP with limited stage and low risk. In RMP and RLP, the relapse-free survival and overall survival in patients with high CD10- neutrophils were shorter than those with low CD10- neutrophils. CD10- neutrophils from patients with NHL, which mainly consist of immature neutrophils, inhibit T-cell proliferation and facilitate T-cell death. Furthermore, a significant increase was observed in Arg-1 expression, along with an increase to a certain extent in ROS. CD10- neutrophils in patients with NHL have characteristics of myeloid-derived suppressor cells and may be related to disease progression and poor prognosis.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- School of Nursing, Anhui Medical University, Hefei, China
- Nursing International Collaboration Research Center of Anhui Province, Hefei, China
| | - Hao Xiao
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhitao Wang
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huiping Wang
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue Liang
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhimin Zhai
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingfang Hong
- School of Nursing, Anhui Medical University, Hefei, China
- Nursing International Collaboration Research Center of Anhui Province, Hefei, China
| |
Collapse
|
13
|
Cho E, An MH, Lee YS, Ryu EJ, Lee YR, Park SY, Kim YJ, Lee CH, Oh D, Kim MS, Kim ND, Kim JJ, Hong YM, Cho M, Hwang TH. Development of chimeric antigen receptor (CAR)-T cells targeting A56 viral protein implanted by oncolytic virus. iScience 2024; 27:109256. [PMID: 38455976 PMCID: PMC10918216 DOI: 10.1016/j.isci.2024.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
To address the challenge of solid tumor targeting in CAR-T therapy, we utilized the A56 antigen, which is uniquely expressed on a diverse range of cancer cells following the systemic administration of an oncolytic vaccinia virus (OVV). Immunohistochemical assays precisely confirmed exclusive localization of A56 to tumor tissues. In vitro studies demonstrated a distinct superiority of A56-dependent CAR-T cytotoxicity across multiple cancer cell lines. Building on these in vitro observations, we strategically administered A56 CAR-T cells, OVV, and hydroxyurea (HU) combination in HCT-116 tumor-bearing non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, leading to a significant reduction in tumor size and an extended time to progression. Consequently, A56-targeting combinatorial immunotherapy provides the benefit of reducing inadvertent CAR-T effects on normal cells while preserving its effectiveness against cancer cells. Furthermore, our approach of implanting A56 via OVV on tumors facilitates a wide therapeutic application of CAR-T cells across various solid tumors.
Collapse
Affiliation(s)
- Euna Cho
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Min Ho An
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Medical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Yi Sle Lee
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Eun Jin Ryu
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - You Ra Lee
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - So Youn Park
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Ye Ji Kim
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Chan Hee Lee
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Dayoung Oh
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Min Seo Kim
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy and Pusan Cancer Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Jae-Joon Kim
- Oncology and Hematology Clinic, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Young Mi Hong
- Liver Center, Pusan National University Yangsan Hospital, Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Mong Cho
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Tae Ho Hwang
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
- Medical Research Center, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
14
|
Aebisher D, Woźnicki P, Bartusik-Aebisher D. Photodynamic Therapy and Adaptive Immunity Induced by Reactive Oxygen Species: Recent Reports. Cancers (Basel) 2024; 16:967. [PMID: 38473328 DOI: 10.3390/cancers16050967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer is one of the most significant causes of death worldwide. Despite the rapid development of modern forms of therapy, results are still unsatisfactory. The prognosis is further worsened by the ability of cancer cells to metastasize. Thus, more effective forms of therapy, such as photodynamic therapy, are constantly being developed. The photodynamic therapeutic regimen involves administering a photosensitizer that selectively accumulates in tumor cells or is present in tumor vasculature prior to irradiation with light at a wavelength corresponding to the photosensitizer absorbance, leading to the generation of reactive oxygen species. Reactive oxygen species are responsible for the direct and indirect destruction of cancer cells. Photodynamically induced local inflammation has been shown to have the ability to activate an adaptive immune system response resulting in the destruction of tumor lesions and the creation of an immune memory. This paper focuses on presenting the latest scientific reports on the specific immune response activated by photodynamic therapy. We present newly discovered mechanisms for the induction of the adaptive response by analyzing its various stages, and the possible difficulties in generating it. We also present the results of research over the past 10 years that have focused on improving the immunological efficacy of photodynamic therapy for improved cancer therapy.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
15
|
Pettinella F, Mariotti B, Lattanzi C, Bruderek K, Donini M, Costa S, Marini O, Iannoto G, Gasperini S, Caveggion E, Castellucci M, Calzetti F, Bianchetto-Aguilera F, Gardiman E, Giani M, Dusi S, Cantini M, Vassanelli A, Pavone D, Milella M, Pilotto S, Biondani P, Höing B, Schleupner MC, Hussain T, Hadaschik B, Kaspar C, Visco C, Tecchio C, Koenderman L, Bazzoni F, Tamassia N, Brandau S, Cassatella MA, Scapini P. Surface CD52, CD84, and PTGER2 mark mature PMN-MDSCs from cancer patients and G-CSF-treated donors. Cell Rep Med 2024; 5:101380. [PMID: 38242120 PMCID: PMC10897522 DOI: 10.1016/j.xcrm.2023.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs.
Collapse
Affiliation(s)
- Francesca Pettinella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Barbara Mariotti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Chiara Lattanzi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Kirsten Bruderek
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany
| | - Marta Donini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Costa
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Olivia Marini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giulia Iannoto
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Gasperini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elena Caveggion
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Elisa Gardiman
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Matteo Giani
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Stefano Dusi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Maurizio Cantini
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Aurora Vassanelli
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Denise Pavone
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Pamela Biondani
- Section of Oncology, University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Benedikt Höing
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | | | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Cordelia Kaspar
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Carlo Visco
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Leo Koenderman
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Flavia Bazzoni
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany; German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
16
|
Trujillo EN, Flores BA, Romero IV, Moran JA, Leka A, Ramirez AD, Ear J, Mercer F. Complement receptor 3 is required for maximum in vitro trogocytic killing of the parasite Trichomonas vaginalis by human neutrophil-like cells. Parasite Immunol 2024; 46:e13025. [PMID: 38372623 PMCID: PMC11090219 DOI: 10.1111/pim.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
Trichomonas vaginalis (Tv) is a parasite that causes trichomoniasis, a prevalent sexually-transmitted infection. Neutrophils are found at the site of infection, and can rapidly kill the parasite in vitro, using trogocytosis. However, the specific molecular players in neutrophil killing of Tv are unknown. Here, we show that complement proteins play a role in Tv killing by human neutrophil-like cells (NLCs). Using CRISPR/Cas9, we generated NLCs deficient in each of three complement receptors (CRs) known to be expressed on human neutrophils: CR1, CR3, and CR4. Using in vitro trogocytosis assays, we found that CR3, but not CR1 or CR4 is required for maximum trogocytosis of the parasite by NLCs, with NLCs lacking CR3 demonstrating ~40% reduction in trogocytosis, on average. We also observed a reduction in NLC killing of Tv in CR3 knockout, but not CR1 or CR4 knockout NLCs. On average, NLCs lacking CR3 had ~50% reduction in killing activity. We also used a parallel approach of pre-incubating NLCs with blocking antibodies against CR3, which similarly reduced NLC killing of parasites. These data support a model in which Tv is opsonized by the complement protein iC3b, and bound by neutrophil CR3 receptor, to facilitate trogocytic killing of the parasite.
Collapse
Affiliation(s)
- Emma N. Trujillo
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Barbara A. Flores
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Isabel V. Romero
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Jose A. Moran
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Aljona Leka
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Ashley D. Ramirez
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Jason Ear
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| |
Collapse
|
17
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
18
|
Vanhaver C, Aboubakar Nana F, Delhez N, Luyckx M, Hirsch T, Bayard A, Houbion C, Dauguet N, Brochier A, van der Bruggen P, Bruger AM. Immunosuppressive low-density neutrophils in the blood of cancer patients display a mature phenotype. Life Sci Alliance 2024; 7:e202302332. [PMID: 37931958 PMCID: PMC10628041 DOI: 10.26508/lsa.202302332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
The presence of human neutrophils in the tumor microenvironment is strongly correlated to poor overall survival. Most previous studies have focused on the immunosuppressive capacities of low-density neutrophils (LDN), also referred to as granulocytic myeloid-derived suppressor cells, which are elevated in number in the blood of many cancer patients. We observed two types of LDN in the blood of lung cancer and ovarian carcinoma patients: CD45high LDN, which suppressed T-cell proliferation and displayed mature morphology, and CD45low LDN, which were immature and non-suppressive. We simultaneously evaluated the classical normal-density neutrophils (NDN) and, when available, tumor-associated neutrophils. We observed that NDN from cancer patients suppressed T-cell proliferation, and NDN from healthy donors did not, despite few transcriptomic differences. Hence, the immunosuppression mediated by neutrophils in the blood of cancer patients is not dependent on the cells' density but rather on their maturity.
Collapse
Affiliation(s)
| | - Frank Aboubakar Nana
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC)/Pôle de Pneumologie, Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Delhez
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Mathieu Luyckx
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
- Service de Gynécologie et Andrologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Centre de Chirurgie Oncologique, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Thibault Hirsch
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandre Bayard
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Camille Houbion
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Alice Brochier
- Hematology Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Annika M Bruger
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|
20
|
Atique M, Muniz I, Farshadi F, Hier M, Mlynarek A, Macarella M, Maschietto M, Nicolau B, Alaoui-Jamali MA, da Silva SD. Genetic Mutations Associated with Inflammatory Response Caused by HPV Integration in Oropharyngeal Squamous Cell Carcinoma. Biomedicines 2023; 12:24. [PMID: 38275384 PMCID: PMC10813733 DOI: 10.3390/biomedicines12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Head and neck cancer (HNC) ranks as the sixth most prevalent cancer in the world. In addition to the traditional risk factors such as alcohol and tobacco consumption, the implication of the human papillomavirus (HPV) is becoming increasingly significant, particularly in oropharyngeal cancer (OPC). (2) Methods: This study is based on a review analysis of different articles and repositories investigating the mutation profile of HPV-related OPC and its impact on patient outcomes. (3) Results: By compiling data from 38 datasets involving 8311 patients from 12 countries, we identified 330 genes that were further analyzed. These genes were enriched for regulation of the inflammatory response (RB1, JAK2, FANCA, CYLD, SYK, ABCC1, SYK, BCL6, CEBPA, SRC, BAP1, FOXP1, FGR, BCR, LRRK2, RICTOR, IGF1, and ATM), among other biological processes. Hierarchical cluster analysis showed the most relevant biological processes were linked with the regulation of mast cell cytokine production, neutrophil activation and degranulation, and leukocyte activation (FDR < 0.001; p-value < 0.05), suggesting that neutrophils may be involved in the development and progression of HPV-related OPC. (4) Conclusions: The neutrophil infiltration and HPV status emerge as a potential prognostic factor for OPC. HPV-infected HNC cells could potentially lead to a decrease in neutrophil infiltration. By gaining a better molecular understanding of HPV-mediated neutrophil immunosuppression activity, it is possible to identify a meaningful target to boost antitumor immune response in HNC and hence to improve the survival of patients with HNC.
Collapse
Affiliation(s)
- Mai Atique
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Isis Muniz
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Fatemeh Farshadi
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Michael Hier
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Alex Mlynarek
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Marco Macarella
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Mariana Maschietto
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13084-225, SP, Brazil;
- Boldrini Children’s Center, Campinas 13084-225, SP, Brazil
| | - Belinda Nicolau
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Moulay A. Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Sabrina Daniela da Silva
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| |
Collapse
|
21
|
Liu X, Tang R, Xu J, Tan Z, Liang C, Meng Q, Lei Y, Hua J, Zhang Y, Liu J, Zhang B, Wang W, Yu X, Shi S. CRIP1 fosters MDSC trafficking and resets tumour microenvironment via facilitating NF-κB/p65 nuclear translocation in pancreatic ductal adenocarcinoma. Gut 2023; 72:2329-2343. [PMID: 37541772 PMCID: PMC10715495 DOI: 10.1136/gutjnl-2022-329349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is among the most immunosuppressive tumour types. The tumour immune microenvironment (TIME) is largely driven by interactions between immune cells and heterogeneous tumour cells. Here, we aimed to investigate the mechanism of tumour cells in TIME formation and provide potential combination treatment strategies for PDAC patients based on genotypic heterogeneity. DESIGN Highly multiplexed imaging mass cytometry, RNA sequencing, mass cytometry by time of flight and multiplex immunofluorescence staining were performed to identify the pro-oncogenic proteins associated with low immune activation in PDAC. An in vitro coculture system, an orthotopic PDAC allograft tumour model, flow cytometry and immunohistochemistry were used to explore the biological functions of cysteine-rich intestinal protein 1 (CRIP1) in tumour progression and TIME formation. RNA sequencing, mass spectrometry and chromatin immunoprecipitation were subsequently conducted to investigate the underlying mechanisms of CRIP1. RESULTS Our results showed that CRIP1 was frequently upregulated in PDAC tissues with low immune activation. Elevated CRIP1 expression induced high levels of myeloid-derived suppressor cell (MDSC) infiltration and fostered an immunosuppressive tumour microenvironment. Mechanistically, we primarily showed that CRIP1 bound to nuclear factor kappa-B (NF-κB)/p65 and facilitated its nuclear translocation in an importin-dependent manner, leading to the transcriptional activation of CXCL1/5. PDAC-derived CXCL1/5 facilitated the chemotactic migration of MDSCs to drive immunosuppression. SX-682, an inhibitor of CXCR1/2, blocked tumour MDSC recruitment and enhanced T-cell activation. The combination of anti-PD-L1 therapy with SX-682 elicited increased CD8+T cell infiltration and potent antitumor activity in tumour-bearing mice with high CRIP1 expression. CONCLUSIONS The CRIP1/NF-κB/CXCL axis is critical for triggering immune evasion and TIME formation in PDAC. Blockade of this signalling pathway prevents MDSC trafficking and thereby sensitises PDAC to immunotherapy.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhen Tan
- Department of Pancreatic and Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yubin Lei
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yiyin Zhang
- Department of General Surgery, Zhejiang University, Hangzhou, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Fan X, Shu P, Wang Y, Ji N, Zhang D. Interactions between neutrophils and T-helper 17 cells. Front Immunol 2023; 14:1279837. [PMID: 37920459 PMCID: PMC10619153 DOI: 10.3389/fimmu.2023.1279837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Neutrophils comprise the majority of immune cells in human peripheral circulation, have potent antimicrobial activities, and are clinically significant in their abundance, heterogeneity, and subcellular localization. In the past few years, the role of neutrophils as components of the innate immune response has been studied in numerous ways, and these cells are crucial in fighting infections, autoimmune diseases, and cancer. T-helper 17 (Th17) cells that produce interleukin 17 (IL-17) are critical in fighting infections and maintaining mucosal immune homeostasis, whereas they mediate several autoimmune diseases. Neutrophils affect adaptive immune responses by interacting with adaptive immune cells. In this review, we describe the physiological roles of both Th17 cells and neutrophils and their interactions and briefly describe the pathological processes in which these two cell types participate. We provide a summary of relevant drugs targeting IL-17A and their clinical trials. Here, we highlight the interactions between Th17 cells and neutrophils in diverse pathophysiological situations.
Collapse
Affiliation(s)
- Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Panyin Shu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Koldej RM, Prabahran A, Tan CW, Ludford-Menting M, Morgan H, Holzwart N, Davis MJ, Ritchie DS. Spatial proteomics identifies a spectrum of immune dysregulation in acquired bone marrow failure syndromes. Front Immunol 2023; 14:1213560. [PMID: 37818364 PMCID: PMC10560754 DOI: 10.3389/fimmu.2023.1213560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Poor graft function (PGF), manifested by multilineage cytopenias and complete donor chimerism post-allogeneic stem cell transplantation (alloSCT), and acquired aplastic anaemia (AA) are immune-mediated acquired bone marrow (BM) failure syndromes with a similar clinical presentation. In this study, we used spatial proteomics to compare the immunobiology of the BM microenvironment and identify common mechanisms of immune dysregulation under these conditions. Archival BM trephines from patients exhibited downregulation of the immunoregulatory protein VISTA and the M2 macrophage marker and suppressor of T-cell activation ARG1 with increased expression of the immune checkpoint B7-H3 compared to normal controls. Increased CD163 and CD14 expression suggested monocyte/macrophage skewing, which, combined with dysregulation of STING and VISTA, is indicative of an environment of reduced immunoregulation resulting in the profound suppression of hematopoiesis in these two conditions. There were no changes in the immune microenvironment between paired diagnostic AA and secondary MDS/AML samples suggesting that leukaemic clones develop in the impaired immune microenvironment of AA without the need for further alterations. Of the eight proteins with dysregulated expression shared by diagnostic AA and PGF, the diagnostic AA samples had a greater fold change in expression than PGF, suggesting that these diseases represent a spectrum of immune dysregulation. Unexpectedly, analysis of samples from patients with good graft function post-alloSCT demonstrated significant changes in the immune microenvironment compared to normal controls, with downregulation of CD44, STING, VISTA, and ARG1, suggesting that recovery of multilineage haematopoiesis post-alloSCT does not reflect recovery of immune function and may prime patients for the development of PGF upon further inflammatory insult. The demonstrable similarities in the immunopathology of AA and PGF will allow the design of clinical interventions that include both patient cohorts to accelerate therapeutic discovery and translation.
Collapse
Affiliation(s)
- Rachel M. Koldej
- Australian Cancer Research Foundation (ACRF) Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Ashvind Prabahran
- Australian Cancer Research Foundation (ACRF) Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Chin Wee Tan
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mandy Ludford-Menting
- Australian Cancer Research Foundation (ACRF) Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Huw Morgan
- Australian Cancer Research Foundation (ACRF) Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas Holzwart
- Australian Cancer Research Foundation (ACRF) Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Melissa J. Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - David S. Ritchie
- Australian Cancer Research Foundation (ACRF) Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Metzemaekers M, Malengier-Devlies B, Gouwy M, De Somer L, Cunha FDQ, Opdenakker G, Proost P. Fast and furious: The neutrophil and its armamentarium in health and disease. Med Res Rev 2023; 43:1537-1606. [PMID: 37036061 DOI: 10.1002/med.21958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/27/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Division of Pediatric Rheumatology, University Hospital Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at the University Hospital Leuven, Leuven, Belgium
| | | | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
DuCote TJ, Naughton KJ, Skaggs EM, Bocklage TJ, Allison DB, Brainson CF. Using Artificial Intelligence to Identify Tumor Microenvironment Heterogeneity in Non-Small Cell Lung Cancers. J Transl Med 2023; 103:100176. [PMID: 37182840 PMCID: PMC10527157 DOI: 10.1016/j.labinv.2023.100176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023] Open
Abstract
Lung cancer heterogeneity is a major barrier to effective treatments and encompasses not only the malignant epithelial cell phenotypes and genetics but also the diverse tumor-associated cell types. Current techniques used to investigate the tumor microenvironment can be time-consuming, expensive, complicated to interpret, and often involves destruction of the sample. Here we use standard hematoxylin and eosin-stained tumor sections and the HALO AI nuclear phenotyping software to characterize 6 distinct cell types (epithelial, mesenchymal, macrophage, neutrophil, lymphocyte, and plasma cells) in both murine lung cancer models and human lung cancer samples. CD3 immunohistochemistry and lymph node sections were used to validate lymphocyte calls, while F4/80 immunohistochemistry was used for macrophage validation. Consistent with numerous prior studies, we demonstrated that macrophages predominate the adenocarcinomas, whereas neutrophils predominate the squamous cell carcinomas in murine samples. In human samples, we showed a strong negative correlation between neutrophils and lymphocytes as well as between mesenchymal cells and lymphocytes and that higher percentages of mesenchymal cells correlate with poor prognosis. Taken together, we demonstrate the utility of this AI software to identify, quantify, and compare distributions of cell types on standard hematoxylin and eosin-stained slides. Given the simplicity and cost-effectiveness of this technique, it may be widely beneficial for researchers designing new therapies and clinicians working to select favorable treatments for their patients.
Collapse
Affiliation(s)
- Tanner J DuCote
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Erika M Skaggs
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Therese J Bocklage
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky; Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Derek B Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky; Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky; Markey Cancer Center, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
26
|
Liu TT, Wang YL, Zhang Z, Jia LX, Zhang J, Zheng S, Chen ZH, Shen HH, Piao CM, Du J. Abnormal adenosine metabolism of neutrophils inhibits airway inflammation and remodeling in asthma model induced by Aspergillus fumigatus. BMC Pulm Med 2023; 23:258. [PMID: 37452319 PMCID: PMC10347753 DOI: 10.1186/s12890-023-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Neutrophils consume a large amount of energy when performing their functions. Compared with other white blood cells, neutrophils contain few mitochondria and mainly rely on glycolysis and gluconeogenesis to produce ATP. The inflammatory site is hypoxic and nutrient poor. Our aim is to study the role of abnormal adenosine metabolism of neutrophils in the asthmatic airway inflammation microenvironment. METHOD In this study, an asthma model was established by intratracheal instillation of Aspergillus fumigatus extract in Ecto-5'-Nucleotidase (CD73) gene-knockout and wild-type mice. Multiple analyses from bronchoalveolar lavage fluid (BALF) were used to determine the levels of cytokines and chemokines. Immunohistochemistry was used to detect subcutaneous fibrosis and inflammatory cell infiltration. Finally, adenosine 5'-(α, β-methylene) diphosphate (APCP), a CD73 inhibitor, was pumped subcutaneously before Aspergillus attack to observe the infiltration of inflammatory cells and subcutaneous fibrosis to clarify its therapeutic effect. RESULT PAS staining showed that CD73 knockout inhibited pulmonary epithelial cell proliferation and bronchial fibrosis induced by Aspergillus extract. The genetic knockdownof CD73 significantly reduced the production of Th2 cytokines, interleukin (IL)-4, IL-6, IL-13, chemokine (C-C motif) ligand 5 (CCL5), eosinophil chemokine, neutrophil IL-17, and granulocyte colony-stimulating factor (G-CSF). In addition, exogenous adenosine supplementation increased airway inflammation. Finally, the CD73 inhibitor APCP was administered to reduce inflammation and subcutaneous fibrosis. CONCLUSION Elevated adenosine metabolism plays an inflammatory role in asthma, and CD73 could be a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Yue-Li Wang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Zhi Zhang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Shuai Zheng
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Chun-Mei Piao
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China.
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China.
| |
Collapse
|
27
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
28
|
Mehta NH, Zhou L, Li Y, McIntire LB, Nordvig A, Butler T, de Leon M, Chiang GC. Peripheral immune cell imbalance is associated with cortical beta-amyloid deposition and longitudinal cognitive decline. Sci Rep 2023; 13:8847. [PMID: 37258519 PMCID: PMC10232445 DOI: 10.1038/s41598-023-34012-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/22/2023] [Indexed: 06/02/2023] Open
Abstract
Neuroinflammation is believed to be a key process in Alzheimer's disease (AD) pathogenesis. Recently, the neutrophil-to-lymphocyte (NLR) and lymphocyte-to-monocyte ratios (LMR) have been proposed to be useful peripheral markers of inflammation. However, it is unclear how these inflammatory ratios relate to AD pathology, such as β-amyloid (Aβ) plaques and tau tangles. Using 18F-florbetapir and 18F-flortaucipir positron emission tomography (PET), we sought to determine how the NLR and LMR are associated with AD pathology both cross-sectionally and longitudinally. We further evaluated associations between the NLR and LMR and longitudinal cognitive decline. Using data from the Alzheimer's Disease Neuroimaging Initiative, we analyzed blood, PET, and cognitive data from 1544 subjects-405 cognitively normal, 838 with mild cognitive impairment (MCI), and 301 with AD. Associations between the NLR and LMR and Aβ and tau on PET were assessed using ordinary least-squares and mixed-effects regression models, while adjusting for age, sex, years of education, and apolipoprotein E ε2 or ε4 carrier status. Associations between the NLR and LMR and cognitive function, as measured by the AD Assessment Scale-Cognitive Subscale, 13-item version, were also assessed. MCI and AD subjects had higher NLR (p = 0.017, p < 0.001, respectively) and lower LMR (p = 0.013, p = 0.023). The NLR, but not the LMR, was significantly associated with Aβ (p = 0.028), suggesting that higher NLR was associated with greater Aβ deposition in the brain. Neither the NLR nor the LMR was associated with tau deposition (p > 0.05). A higher NLR was associated with greater longitudinal cognitive decline (p < 0.001). A higher ratio of peripheral neutrophils to lymphocytes, possibly reflecting an imbalance in innate versus adaptive immunity, is related to greater Aβ deposition and longitudinal cognitive decline. As the field moves toward blood-based biomarkers of AD, the altered balance of innate versus adaptive immunity could be a useful biomarker of underlying pathology and may also serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Neel H Mehta
- Department of Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Liangdong Zhou
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
| | - Yi Li
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
| | - Laura Beth McIntire
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10065, USA
| | - Anna Nordvig
- Department of Neurology, Alzheimer's Disease and Memory Disorders Program, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 428 East 72nd Street Suite 500, New York, NY, 10021, USA
| | - Tracy Butler
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
| | - Mony de Leon
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA
| | - Gloria C Chiang
- Brain Health Imaging Institute, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 407 E 61st Street, New York, NY, 10065, USA.
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, Starr Pavilion, Box 141, New York, NY, 10065, USA.
| |
Collapse
|
29
|
Gankema AAF, Furumaya C, Fernández-Hermira S, Hoogenboezem M, Matlung HL, van Bruggen R, Kuijpers TW. Efficient complement-mediated clearance of immunosuppressed T cells by macrophages. Front Immunol 2023; 14:1183180. [PMID: 37261342 PMCID: PMC10228723 DOI: 10.3389/fimmu.2023.1183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Treatment outcome is largely dictated by the tumor type, disease stage, and treatment success rates, but also by the variation among patients in endogenous anti-tumor responses. Studies indicate that the presence of neutrophils in the tumor microenvironment is associated with a worse patient outcome due to their ability to suppress local anti-tumor T cell activity. Our previous studies investigated the mechanisms by which neutrophils suppress and damage T cells to become smaller in size (small T cells), debilitating their effector activities. Several studies indicate a role for tumor-associated macrophages in scavenging damaged or dead cells. We hypothesized that the observed lack of small T cells in the TME by confocal microscopy is due to immediate uptake by macrophages. In this study, we confirmed that indeed only the smaller, damaged T cells are taken up by macrophages, once serum-opsonized. Damaged T cells opsonized with complement factor C3 fragments were phagocytosed by macrophages, resulting in almost instantaneous and highly efficient uptake of these small T cells. Inhibition of the complement receptors CR1, CR3 and CR4 expressed by macrophages completely blocked phagocytosis. By contrast, actively proliferating T cells (large T cells) were neither impaired in neutrophil-MDSC activity nor opsonized for phagocytosis by macrophages. Rapid removal of damaged T cells suggests a role of complement and macrophages within the tumor microenvironment to clear suppressed T cells in cancer patients.
Collapse
Affiliation(s)
- Angela A. F. Gankema
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Charita Furumaya
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Sara Fernández-Hermira
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Mark Hoogenboezem
- Department of Research Facilities, Sanquin Research, Amsterdam, Netherlands
| | - Hanke L. Matlung
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Wang W, Spurgeon ME, Pope A, McGregor S, Ward-Shaw E, Gronski E, Lambert PF. Stress keratin 17 and estrogen support viral persistence and modulate the immune environment during cervicovaginal murine papillomavirus infection. Proc Natl Acad Sci U S A 2023; 120:e2214225120. [PMID: 36917668 PMCID: PMC10041145 DOI: 10.1073/pnas.2214225120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
A murine papillomavirus, MmuPV1, infects both cutaneous and mucosal epithelia of laboratory mice and can be used to model high-risk human papillomavirus (HPV) infection and HPV-associated disease. We have shown that estrogen exacerbates papillomavirus-induced cervical disease in HPV-transgenic mice. We have also previously identified stress keratin 17 (K17) as a host factor that supports MmuPV1-induced cutaneous disease. Here, we sought to test the role of estrogen and K17 in MmuPV1 infection and associated disease in the female reproductive tract. We experimentally infected wild-type and K17 knockout (K17KO) mice with MmuPV1 in the female reproductive tract in the presence or absence of exogenous estrogen for 6 mon. We observed that a significantly higher percentage of K17KO mice cleared the virus as opposed to wild-type mice. In estrogen-treated wild-type mice, the MmuPV1 viral copy number was significantly higher compared to untreated mice by as early as 2 wk postinfection, suggesting that estrogen may help facilitate MmuPV1 infection and/or establishment. Consistent with this, viral clearance was not observed in either wild-type or K17KO mice when treated with estrogen. Furthermore, neoplastic disease progression and cervical carcinogenesis were supported by the presence of K17 and exacerbated by estrogen treatment. Subsequent analyses indicated that estrogen treatment induces a systemic immunosuppressive state in MmuPV1-infected animals and that both estrogen and K17 modulate the local intratumoral immune microenvironment within MmuPV1-induced neoplastic lesions. Collectively, these findings suggest that estrogen and K17 act at multiple stages of papillomavirus-induced disease at least in part via immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Ali Pope
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Stephanie McGregor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53705
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Ellery Gronski
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
31
|
Alshalani A, Beuger BM, van Bruggen R, Acker JP, Juffermans NP. Cultured CD71 + erythroid cells modulate the host immune response. Transfus Med 2023. [PMID: 36919690 DOI: 10.1111/tme.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/21/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE The study aimed to determine the impact of Red Blood Cells (RBCs) generated from peripheral blood mononuclear cells (PBMCs) on T cell proliferation and host response following whole blood stimulation. BACKGROUND Culturing RBCs is a potential solution for donor shortage. The impact of immature cultured RBCs which express CD71+ on host immune response is not known. METHODS/MATERIALS PBMCs were seeded in an erythroid expansion medium. CD71+ cells were isolated at days 14 and 21 of culture and incubated with either purified T cells or with LPS-stimulated whole blood. Controls were incubated with medium. RESULTS At day 9, the percentage of cells that expressed CD45 and CD71 reached to the highest level (32.9%, IQR; 26.2-39.05) while the percentage of cells that expressed CD71 and CD235a reached to the highest level on day 17 (70.2%, IQR; 66.1-72.8). Incubation of T cells with days 14 CD71+ cells and day 21 CD71+ cells increased T cell proliferation. In a whole blood stimulation assay, day 21 CD71+ cells, but not day 14 CD71+ cells, inhibited the production of IL-6 and TNFα. CONCLUSION Cultured erythroid cells can modulate the immune response by promoting T cell proliferation and inhibiting cytokine secretions following whole blood stimulation.
Collapse
Affiliation(s)
- Abdulrahman Alshalani
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.,Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Boukje M Beuger
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Alshalani A, Beuger BM, Tuip-de Boer AM, van Bruggen R, Acker JP, Juffermans NP. The impact of biological age of red blood cell on in vitro endothelial activation markers. Front Physiol 2023; 14:1127103. [PMID: 36969576 PMCID: PMC10030615 DOI: 10.3389/fphys.2023.1127103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction: Blood donor characteristics influence red blood cell transfusion outcomes. As donor sex affects the distribution of young to old RBCs in the circulation, we hypothesized that the amount of circulating young RBCs in the blood product are associated with immune suppression.Materials and Methods: Blood samples were collected from healthy volunteers and density fractionated into young and old subpopulations. In an activated endothelial cell model, RBC adhesion to endothelium and secretion of endothelial activation markers were assessed. The impact of RBC biological age was also assessed in a T cell proliferation assay and in a whole blood stimulation assay.Results: After Percoll fractionation, young RBCs contained more reticulocytes compared to old RBCs. Young RBCs associated with lower levels of E-selectin, ICAM-1, and vWF from activated endothelial cells compared to old RBCs. RBC subpopulations did not affect T cell proliferation or cytokine responses following whole blood stimulation.Conclusion: Young RBCs contain more reticulocytes which are associated with lower levels of endothelial activation markers compared to old RBCs.
Collapse
Affiliation(s)
- Abdulrahman Alshalani
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Abdulrahman Alshalani,
| | - Boukje M. Beuger
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Anita M. Tuip-de Boer
- Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jason P. Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, Amsterdam, Netherlands
- Department of Intensive Care, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
33
|
Segal BH, Giridharan T, Suzuki S, Khan ANH, Zsiros E, Emmons TR, Yaffe MB, Gankema AAF, Hoogeboom M, Goetschalckx I, Matlung HL, Kuijpers TW. Neutrophil interactions with T cells, platelets, endothelial cells, and of course tumor cells. Immunol Rev 2023; 314:13-35. [PMID: 36527200 PMCID: PMC10174640 DOI: 10.1111/imr.13178] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neutrophils sense microbes and host inflammatory mediators, and traffic to sites of infection where they direct a broad armamentarium of antimicrobial products against pathogens. Neutrophils are also activated by damage-associated molecular patterns (DAMPs), which are products of cellular injury that stimulate the innate immune system through pathways that are similar to those activated by microbes. Neutrophils and platelets become activated by injury, and cluster and cross-signal to each other with the cumulative effect of driving antimicrobial defense and hemostasis. In addition, neutrophil extracellular traps are extracellular chromatin and granular constituents that are generated in response to microbial and damage motifs and are pro-thrombotic and injurious. Although neutrophils can worsen tissue injury, neutrophils may also have a role in facilitating wound repair following injury. A central theme of this review relates to how critical functions of neutrophils that evolved to respond to infection and damage modulate the tumor microenvironment (TME) in ways that can promote or limit tumor progression. Neutrophils are reprogrammed by the TME, and, in turn, can cross-signal to tumor cells and reshape the immune landscape of tumors. Importantly, promising new therapeutic strategies have been developed to target neutrophil recruitment and function to make cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tiffany R Emmons
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela A F Gankema
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogeboom
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Goetschalckx
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital Amsterdam University Medical Center (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Sargent AL, Leedberg JA, Burress JE, Dalwadi PS, O'Fallon KS, Gaffney-Stomberg E, Gaines PCW. Quantitatively Assessing the Respiratory Burst in Innate Immune Cells. Methods Mol Biol 2023; 2614:47-70. [PMID: 36587118 DOI: 10.1007/978-1-0716-2914-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The respiratory burst is a rapid cellular consumption of oxygen resulting in abundant production of reactive oxygen species (ROS), most often associated with primary mediators of innate immunity, neutrophils and macrophages. These myeloid cells convert ROS into potent antimicrobial oxidants that efficiently kill pathogens. The respiratory burst also can have destructive consequences, as ROS are well known to support chronic inflammation and aberrant autoimmune responses. Interestingly, ROS perform conflicting roles in the tumor microenvironment; ROS and derived cytotoxic products can destroy cancer cells but also suppress important tumor-fighting functions of T cells or natural killer cells, or yield mutagenized proteins that can promote tumorigenesis or support tumor cell growth. Moreover, high numbers of neutrophils or macrophages in tumors are associated with poor prognosis. Therefore, accurate and quantitative assays to assess the respiratory burst are an important tool for measuring ROS production by neutrophils or cells of the monocyte/macrophage system, each recently identified in the tumor microenvironment. Described are methods to derive mouse or human models of neutrophils or macrophages, which are then used in a detailed assay to quantitatively measure ROS produced by either cell type using luminescence-enhanced reagents and a multi-well platform along with different stimulants that cause rapid ROS production.
Collapse
Affiliation(s)
- Ava L Sargent
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jordan A Leedberg
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jessica E Burress
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Purva S Dalwadi
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Kevin S O'Fallon
- US Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | | | - Peter C W Gaines
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
35
|
Hurtado Gutiérrez MJ, Allard FL, Mosha HT, Dubois CM, McDonald PP. Human Neutrophils Generate Extracellular Vesicles That Modulate Their Functional Responses. Cells 2022; 12:cells12010136. [PMID: 36611930 PMCID: PMC9818892 DOI: 10.3390/cells12010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Neutrophils influence innate and adaptive immunity by releasing various cytokines and chemokines, by generating neutrophil extracellular traps (NETs), and by modulating their own survival. Neutrophils also produce extracellular vesicles (EVs) termed ectosomes, which influence the function of other immune cells. Here, we studied neutrophil-derived ectosomes (NDEs) and whether they can modulate autologous neutrophil responses. We first characterized EV production by neutrophils, following MISEV 2018 guidelines to facilitate comparisons with other studies. We found that such EVs are principally NDEs, that they are rapidly released in response to several (but not all) physiological stimuli, and that a number of signaling pathways are involved in the induction of this response. When co-incubated with autologous neutrophils, NDE constituents were rapidly incorporated into recipient cells and this triggered and/or modulated neutrophil responses. The pro-survival effect of GM-CSF, G-CSF, IFNγ, and dexamethasone was reversed; CXCL8 and NET formation were induced in otherwise unstimulated neutrophils; the induction of inflammatory chemokines by TNFα was modulated depending on the activation state of the NDEs' parent cells; and inducible NET generation was attenuated. Our data show that NDE generation modulates neutrophil responses in an autocrine and paracrine manner, and indicate that this probably represents an important aspect of how neutrophils shape their environment and cellular interactions.
Collapse
Affiliation(s)
- María José Hurtado Gutiérrez
- Department of Immunology and Cell Biology, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1H5N4, Canada
| | - Frédérick L. Allard
- Department of Immunology and Cell Biology, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1H5N4, Canada
| | - Hugo Tshivuadi Mosha
- Department of Immunology and Cell Biology, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1H5N4, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1H5N4, Canada
| | - Patrick P. McDonald
- Pulmonary Division, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1K2R1, Canada
- Correspondence:
| |
Collapse
|
36
|
Westerlund J, Askman S, Pettersson Å, Hellmark T, Johansson ÅCM, Hansson M. Suppression of T-Cell Proliferation by Normal Density Granulocytes Led to CD183 Downregulation and Cytokine Inhibition in T-Cells. J Immunol Res 2022; 2022:8077281. [PMID: 36438199 PMCID: PMC9683987 DOI: 10.1155/2022/8077281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2023] Open
Abstract
Normal density granulocytes (NDGs) can suppress T-cell responses in a similar way as myeloid-derived suppressor cells (MDSCs). In this study, we tested the hypothesis that NDGs from healthy donors preferentially inhibit T helper 1 (Th1) cells and investigated the myeloid-derived suppressive effect in different T-cell populations. We found that NDG-induced suppression of T-cell proliferation was contact dependent, mediated by integrin CD11b, and dependent on NDG-production of reactive oxygen species (ROS). The suppression was rapid and occurred within the first few hours of coculture. The suppression did not influence the CD8+/CD4+ ratio indicating an equal sensitivity in these populations. We further analyzed the CD4+ T helper subsets and found that NDGs induced a loss of Th1 surface marker, CD183, that was unrelated to ligand-binding to CD183. In addition, we analyzed the Th1, Th2, and Th17 cytokine production and found that all cytokine groups were suppressed when T-cells were incubated with NDGs. We therefore concluded that NDGs do not preferentially suppress Th1-cells. Instead, NDGs generally suppress Th cells and cytotoxic T-cells but specifically downregulate the Th1 marker CD183.
Collapse
Affiliation(s)
- Julia Westerlund
- Lund University, Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, BMC B13, 22184 Lund, Sweden
| | - Sandra Askman
- Lund University, Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, BMC B13, 22184 Lund, Sweden
- Skåne University Hospital, Department of Respiratory Medicine and Allergology, 22185 Lund, Sweden
| | - Åsa Pettersson
- Lund University, Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, BMC B13, 22184 Lund, Sweden
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Nephrology, Barngatan 2, 22185 Lund, Sweden
| | - Thomas Hellmark
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Nephrology, Barngatan 2, 22185 Lund, Sweden
| | - Åsa C. M. Johansson
- Lund University, Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, BMC B13, 22184 Lund, Sweden
- Skåne University Hospital, Region Skåne, Clinical Genetics and Pathology, 22185 Lund, Sweden
| | - Markus Hansson
- Skåne University Hospital, Department of Hematology, Oncology and Radiation Physics, 22185 Lund, Sweden
- University of Göteborg, Sahlgrenska Academy, Institute of Medicine, Department of Internal Medicin and clinical nutrition, Bruna stråket 5, Plan 5, 41325 Göteborg, Sweden
| |
Collapse
|
37
|
Behrens LM, van Egmond M, van den Berg TK. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol Rev 2022; 314:280-301. [PMID: 36331258 DOI: 10.1111/imr.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
- Department of Surgery, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
| | | |
Collapse
|
38
|
High Neutrophil-to-Lymphocyte Ratio Facilitates Cancer Growth-Currently Marketed Drugs Tadalafil, Isotretinoin, Colchicine, and Omega-3 to Reduce It: The TICO Regimen. Cancers (Basel) 2022; 14:cancers14194965. [PMID: 36230888 PMCID: PMC9564173 DOI: 10.3390/cancers14194965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Several elements that are composed of, or related to, neutrophils, have been shown to inhibit strong immune responses to cancer and promote cancers’ growth. This paper presents the collected data showing these elements and how their coordinated actions as an ensemble facilitate growth in the common cancers. The paper goes on to present a drug regimen, TICO, designed to reduce the cancer growth enhancing effects of the neutrophil related elements. TICO uses four already marketed, readily available generic drugs, repurposed to inhibit neutrophil centered growth facilitation of cancer. Abstract This paper presents remarkably uniform data showing that higher NLR is a robust prognostic indicator of shorter overall survival across the common metastatic cancers. Myeloid derived suppressor cells, the NLRP3 inflammasome, neutrophil extracellular traps, and absolute neutrophil count tend to all be directly related to the NLR. They, individually and as an ensemble, contribute to cancer growth and metastasis. The multidrug regimen presented in this paper, TICO, was designed to decrease the NLR with potential to also reduce the other neutrophil related elements favoring malignant growth. TICO is comprised of already marketed generic drugs: the phosphodiesterase 5 inhibitor tadalafil, used to treat inadequate erections; isotretinoin, the retinoid used for acne treatment; colchicine, a standard gout (podagra) treatment; and the common fish oil supplement omega-3 polyunsaturated fatty acids. These individually impose low side effect burdens. The drugs of TICO are old, cheap, well known, and available worldwide. They all have evidence of lowering the NLR or the growth contributing elements related to the NLR when clinically used in general medicine as reviewed in this paper.
Collapse
|
39
|
Gut Microbiota and Therapy in Metastatic Melanoma: Focus on MAPK Pathway Inhibition. Int J Mol Sci 2022; 23:ijms231911990. [PMID: 36233289 PMCID: PMC9569448 DOI: 10.3390/ijms231911990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Gut microbiome (GM) and its either pro-tumorigenic or anti-tumorigenic role is intriguing and constitutes an evolving landscape in translational oncology. It has been suggested that these microorganisms may be involved in carcinogenesis, cancer treatment response and resistance, as well as predisposition to adverse effects. In melanoma patients, one of the most immunogenic cancers, immune checkpoint inhibitors (ICI) and MAPK-targeted therapy—BRAF/MEK inhibitors—have revolutionized prognosis, and the study of the microbiome as a modulating factor is thus appealing. Although BRAF/MEK inhibitors constitute one of the main backbones of treatment in melanoma, little is known about their impact on GM and how this might correlate with immune re-induction. On the contrary, ICI and their relationship to GM has become an interesting field of research due to the already-known impact of immunotherapy in modulating the immune system. Immune reprogramming in the tumor microenvironment has been established as one of the main targets of microbiome, since it can induce immunosuppressive phenotypes, promote inflammatory responses or conduct anti-tumor responses. As a result, ongoing clinical trials are evaluating the role of fecal microbiota transplant (FMT), as well as the impact of using dietary supplements, antibiotics and probiotics in the prediction of response to therapy. In this review, we provide an overview of GM’s link to cancer, its relationship with the immune system and how this may impact response to treatments in melanoma patients. We also discuss insights about novel therapeutic approaches including FMT, changes in diet and use of probiotics, prebiotics and symbiotics. Finally, we hypothesize on the possible pathways through which GM may impact anti-tumor efficacy in melanoma patients treated with targeted therapy, an appealing subject of which little is known.
Collapse
|
40
|
Li P, Rozich N, Wang J, Wang J, Xu Y, Herbst B, Yu R, Muth S, Niu N, Li K, Funes V, Gai J, Osipov A, Edil BH, Wolfgang CL, Lei M, Liang T, Zheng L. Anti-IL-8 antibody activates myeloid cells and potentiates the anti-tumor activity of anti-PD-1 antibody in the humanized pancreatic cancer murine model. Cancer Lett 2022; 539:215722. [PMID: 35533951 PMCID: PMC9485862 DOI: 10.1016/j.canlet.2022.215722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma(PDAC) does not respond to single-agent immune checkpoint inhibitor therapy, including anti-PD-1 antibody(aPD-1) therapy. Higher plasma levels of IL-8 are associated with poorer outcomes in patients who receive aPD-1 therapies, providing a rationale for combination immunotherapy with an anti-IL-8 antibody(aIL-8) and aPD-1. We thus investigated whether human aIL-8 therapy can potentiate the antitumor activity of aPD-1 and further investigated how the combination affects the immune response by regulating myeloid cells in the tumor microenvironment in a humanized murine model of PDAC with a reconstituted immune system consisting of human T cells and a combination of CD14+ and CD16+ myeloid cells. The results show that the combination of aIL-8 and aPD-1 treatment significantly enhanced antitumor activity following the infusion of myeloid cells. Our results further showed that the target of IL-8 is mainly present in CD16+ myeloid cells and is likely to be granulocytes. FACS analysis showed that aIL-8 treatment increased granulocytic myeloid cells in tumors. Consistently, single-nuclear RNA-sequencing analysis of tumor tissue showed that the innate immune response and cytokine response pathways in the myeloid cell cluster were activated by aIL-8 treatment. This is the first preclinical study using a humanized mouse model for new combination immunotherapeutic development and supports the further clinical testing of aIL-8 in combination with aPD-1 for PDAC treatment. This study also suggests that peripherally derived myeloid cells can potentiate the antitumor response of T cells, likely through the innate immune response, and aIL-8 re-educates tumor-infiltrating myeloid cells by activating the innate immune response.
Collapse
Affiliation(s)
- Pan Li
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Noah Rozich
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; University of Oklahoma, Oklahoma City, OK, USA
| | - Jianxin Wang
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junke Wang
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yao Xu
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Herbst
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raymond Yu
- NovaRock, Biotherapeutics Ltd., Ewing, NJ, USA
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nan Niu
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keyu Li
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vanessa Funes
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Gai
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arsen Osipov
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cedar-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Christopher L Wolfgang
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; New York University, New York, NY, USA
| | - Ming Lei
- NovaRock, Biotherapeutics Ltd., Ewing, NJ, USA.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Department of Surgery, and the Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
41
|
Lin YJ, Wu CYJ, Wu JY, Lim M. The Role of Myeloid Cells in GBM Immunosuppression. Front Immunol 2022; 13:887781. [PMID: 35711434 PMCID: PMC9192945 DOI: 10.3389/fimmu.2022.887781] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Gliomas are intrinsic brain tumors that originate from glial cells. Glioblastoma (GBM) is the most aggressive glioma type and resistant to immunotherapy, mainly due to its unique immune environment. Dimensional data analysis reveals that the intra-tumoral heterogeneity of immune cell populations in the glioma microenvironment is largely made up of cells of myeloid lineage. Conventional therapies of combined surgery, chemotherapy and radiotherapy have achieved limited improvements in the prognosis of glioma patients, as myeloid cells are prominent mediators of immune and therapeutic responses—like immunotherapy resistance—in glioma. Myeloid cells are frequently seen in the tumor microenvironment (TME), and they are polarized to promote tumorigenesis and immunosuppression. Reprogramming myeloid cells has emerged as revolutionary, new types of immunotherapies for glioma treatment. Here we detail the current advances in classifying epigenetic, metabolic, and phenotypic characteristics and functions of different populations of myeloid cells in glioma TME, including myeloid-derived suppressor cells (MDSCs), glioma-associated microglia/macrophages (GAMs), glioma-associated neutrophils (GANs), and glioma-associated dendritic cells (GADCs), as well as the mechanisms underlying promotion of tumorigenesis. The final goal of this review will be to provide new insights into novel therapeutic approaches for specific targeting of myeloid cells to improve the efficacy of current treatments in glioma patients.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Medical Foundation, Linkou Medical Center, Taoyuan, Taiwan.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Neurosurgery, Chang Gung Medical Foundation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Janet Yuling Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
42
|
Haist M, Ries F, Gunzer M, Bednarczyk M, Siegel E, Kuske M, Grabbe S, Radsak M, Bros M, Teschner D. Neutrophil-Specific Knockdown of β2 Integrins Impairs Antifungal Effector Functions and Aggravates the Course of Invasive Pulmonal Aspergillosis. Front Immunol 2022; 13:823121. [PMID: 35734179 PMCID: PMC9207500 DOI: 10.3389/fimmu.2022.823121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
β2-integrins are heterodimeric surface receptors that are expressed specifically by leukocytes and consist of a variable α (CD11a-d) and a common β-subunit (CD18). Functional impairment of CD18, which causes leukocyte adhesion deficiency type-1 results in an immunocompromised state characterized by severe infections, such as invasive pulmonary aspergillosis (IPA). The underlying immune defects have largely been attributed to an impaired migratory and phagocytic activity of polymorphonuclear granulocytes (PMN). However, the exact contribution of β2-integrins for PMN functions in-vivo has not been elucidated yet, since the mouse models available so far display a constitutive CD18 knockout (CD18-/- or CD18hypo). To determine the PMN-specific role of β2-integrins for innate effector functions and pathogen control, we generated a mouse line with a Ly6G-specific knockdown of the common β-subunit (CD18Ly6G cKO). We characterized CD18Ly6G cKO mice in-vitro to confirm the PMN-specific knockdown of β2-integrins. Next, we investigated the clinical course of IPA in A. fumigatus infected CD18Ly6G cKO mice with regard to the fungal burden, pulmonary inflammation and PMN response towards A. fumigatus. Our results revealed that the β2-integrin knockdown was restricted to PMN and that CD18Ly6G cKO mice showed an aggravated course of IPA. In accordance, we observed a higher fungal burden and lower levels of proinflammatory innate cytokines, such as TNF-α, in lungs of IPA-infected CD18Ly6G cKO mice. Bronchoalveolar lavage revealed higher levels of CXCL1, a stronger PMN-infiltration, but concomitantly elevated apoptosis of PMN in lungs of CD18Ly6G cKO mice. Ex-vivo analysis further unveiled a strong impairment of PMN effector function, as reflected by an attenuated phagocytic activity, and a diminished generation of reactive oxygen species (ROS) and neutrophil-extracellular traps (NET) in CD18-deficient PMN. Overall, our study demonstrates that β2-integrins are required specifically for PMN effector functions and contribute to the clearance of A. fumigatus by infiltrating PMN, and the establishment of an inflammatory microenvironment in infected lungs.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- *Correspondence: Maximilian Haist,
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften ISAS -e.V, Dortmund, Germany
| | - Monika Bednarczyk
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ekkehard Siegel
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Reddy AV, Hill CS, Sehgal S, Zheng L, He J, Laheru DA, Jesus-Acosta AD, Herman JM, Meyer J, Narang AK. Post-radiation neutrophil-to-lymphocyte ratio is a prognostic marker in patients with localized pancreatic adenocarcinoma treated with anti-PD-1 antibody and stereotactic body radiation therapy. Radiat Oncol J 2022; 40:111-119. [PMID: 35796114 PMCID: PMC9262702 DOI: 10.3857/roj.2021.01060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To investigate the role of pre- and post-stereotactic body radiation therapy (SBRT) neutrophil-to-lymphocyte ratio (NLR) in patients with localized pancreatic cancer treated with anti-PD-1 (programmed cell death protein-1) antibody and SBRT. MATERIALS AND METHODS This was a retrospective review of 68 patients with borderline resectable or locally advanced pancreatic cancer treated with anti-PD-1 antibody and SBRT after multi-agent chemotherapy. Immunotherapy was administered with 5-fraction SBRT in the neoadjuvant, concurrent, or adjuvant/maintenance setting. Clinical outcomes included overall survival (OS), local progression-free survival, distant metastasis-free survival, and progression-free survival. Median pre- and post-SBRT peripheral blood markers were compared with the Mann-Whitney U test. Univariate and multivariable analyses (UVA and MVA) were performed to identify variables associated with clinical outcomes. Linear regression was performed to determine correlations between variables and peripheral blood markers. RESULTS A total of 68 patients were included in the study. The percent change between median pre- and post-SBRT absolute lymphocyte count (ALC), absolute neutrophil count, and NLR were -36.0% (p < 0.001), -5.6% (p = 0.190), and +35.7% (p = 0.003), respectively. Median OS after SBRT was 22.4 months. On UVA, pre-SBRT CA19-9 (hazard ratio [HR] = 1.001; 95% confidence interval [CI], 1.000-1.001; p = 0.031), post-SBRT ALC (HR = 0.33; 95% CI, 0.11-0.91; p = 0.031), and post-SBRT NLR (HR = 1.13; 95% CI, 1.04-1.22; p = 0.009) were associated with OS. On MVA, induction chemotherapy duration (HR = 0.75; 95% CI, 0.57-0.99; p = 0.048) and post-SBRT NLR (HR = 1.14; 95% CI, 1.04-1.23; p = 0.002) predicted for OS. Patients with post-SBRT NLR ≥3.2 had a median OS of 15.6 months versus 27.6 months in patients with post-SBRT NLR <3.2 (p = 0.009). On MVA linear regression, log10CTV had a negative correlation with post-SBRT ALC (regression coefficient = -0.314; 95% CI, -0.626 to -0.003; p = 0.048). CONCLUSION Elevated NLR after SBRT is primarily due to depletion of lymphocytes and associated with worse survival outcomes in localized pancreatic cancer treated with anti-PD-1 antibody. Larger CTVs were associated with decreased post-SBRT ALC.
Collapse
Affiliation(s)
- Abhinav V. Reddy
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Colin S. Hill
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Shuchi Sehgal
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Daniel A. Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Ana De Jesus-Acosta
- Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Joseph M. Herman
- Department of Radiation Oncology, Northwell Health, New Hyde Park, NY, USA
| | - Jeffrey Meyer
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Amol K. Narang
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, Baltimore, MD, USA
| |
Collapse
|
44
|
Sanchez-Pino MD, Richardson WS, Zabaleta J, Puttalingaiah RT, Chapple AG, Liu J, Kim Y, Ponder M, DeArmitt R, Baiamonte LB, Wyczechowska D, Zheng L, Al-Khami AA, Garai J, Martini R, Davis M, Gorham JK, Wooldridge JB, Rodriguez PC, Miele L, Ochoa AC. Increased inflammatory low-density neutrophils in severe obesity and effect of bariatric surgery: Results from case-control and prospective cohort studies. EBioMedicine 2022; 77:103910. [PMID: 35248994 PMCID: PMC8897585 DOI: 10.1016/j.ebiom.2022.103910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Low-density neutrophils (LDN) are increased in several inflammatory diseases and may also play a role in the low-grade chronic inflammation associated with obesity. Here we explored their role in obesity, determined their gene signatures, and assessed the effect of bariatric surgery. METHODS We compared the number, function, and gene expression profiles of circulating LDN in morbidly obese patients (MOP, n=27; body mass index (BMI) > 40 Kg/m2) and normal-weight controls (NWC, n=20; BMI < 25 Kg/m2) in a case-control study. Additionally, in a prospective longitudinal study, we measured changes in the frequency of LDN after bariatric surgery (n=36) and tested for associations with metabolic and inflammatory parameters. FINDINGS LDN and inflammatory markers were significantly increased in MOP compared to NWC. Transcriptome analysis showed increased neutrophil-related gene expression signatures associated with inflammation, neutrophil activation, and immunosuppressive function. However, LDN did not suppress T cells proliferation and produced low levels of reactive oxygen species (ROS). Circulating LDN in MOP significantly decreased after bariatric surgery in parallel with BMI, metabolic syndrome, and inflammatory markers. INTERPRETATION Obesity increases LDN displaying an inflammatory gene signature. Our results suggest that LDN may represent a neutrophil subset associated with chronic inflammation, a feature of obesity that has been previously associated with the appearance and progression of co-morbidities. Furthermore, bariatric surgery, as an efficient therapy for severe obesity, reduces LDN in circulation and improves several components of the metabolic syndrome supporting its recognized anti-inflammatory and beneficial metabolic effects. FUNDING This work was supported in part by grants from the National Institutes of Health (NIH; 5P30GM114732-02, P20CA233374 - A. Ochoa and L. Miele), Pennington Biomedical NORC (P30DK072476 - E. Ravussin & LSU-NO Stanley S. Scott Cancer Center and Louisiana Clinical and Translational Science Center (LACaTS; U54-GM104940 - J. Kirwan).
Collapse
Affiliation(s)
- Maria Dulfary Sanchez-Pino
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | | | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA
| | - Ramesh Thylur Puttalingaiah
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA
| | - Andrew G Chapple
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jiao Liu
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA
| | - Yonghyan Kim
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA
| | - Michelle Ponder
- Biorepository Unit, Ochsner Medical Center, New Orleans, LA, USA
| | - Randi DeArmitt
- Biorepository Unit, Ochsner Medical Center, New Orleans, LA, USA
| | | | - Dorota Wyczechowska
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA
| | - Liqin Zheng
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA
| | - Amir A Al-Khami
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA
| | - Jone Garai
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA
| | - Rachel Martini
- Department of Surgery and Surgical Oncology, Cell and Developmental Biology in Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Melissa Davis
- Department of Surgery and Surgical Oncology, Cell and Developmental Biology in Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Augusto C Ochoa
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, LSU-LCMC Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, Room 911, New Orleans, LA 70112, USA; Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
45
|
Arve-Butler S, Mossberg A, Schmidt T, Welinder C, Yan H, Berthold E, Król P, Kahn R. Neutrophils Lose the Capacity to Suppress T Cell Proliferation Upon Migration Towards Inflamed Joints in Juvenile Idiopathic Arthritis. Front Immunol 2022; 12:795260. [PMID: 35095871 PMCID: PMC8792960 DOI: 10.3389/fimmu.2021.795260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
Neutrophils are highly abundant in synovial fluid of rheumatic inflamed joints. In oligoarticular juvenile idiopathic arthritis (JIA), synovial fluid neutrophils have impaired effector functions and altered phenotype. We hypothesized that these alterations might impact the immunoregulatory interplay between neutrophils and T cells. In this study we analyzed the suppressive effect of neutrophils, isolated from blood and synovial fluid of oligoarticular JIA patients, on CD4+ T cells activated by CD3/CD28 stimulation. JIA blood neutrophils suppressed T cell proliferation but synovial fluid neutrophils from several patients did not. The loss of T cell suppression was replicated in an in vitro transmigration assay, where healthy control neutrophils migrated into synovial fluid through transwell inserts with endothelial cells and synoviocytes. Non-migrated neutrophils suppressed proliferation of activated CD4+ T cells, but migrated neutrophils had no suppressive effect. Neutrophil suppression of T cells was partly dependent on reactive oxygen species (ROS), demonstrated by impaired suppression in presence of catalase. Migrated neutrophils had reduced ROS production compared to non-migrated neutrophils. A proteomic analysis of transwell-migrated neutrophils identified alterations in proteins related to neutrophil ROS production and degranulation, and biological processes involving protein transport, cell-cell contact and inflammation. In conclusion, neutrophils in synovial fluid of children with JIA have impaired capacity to suppress activated T cells, which may be due to reduced oxidative burst and alterations in proteins related to cell-cell contact and inflammation. The lack of T cell suppression by neutrophils in synovial fluid may contribute to local inflammation and autoimmune reactions in the JIA joint.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Anki Mossberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Department of Clinical Sciences, Division of Oncology, Lund University, Lund, Sweden
| | - Hong Yan
- Swedish National Infrastructure for Biological Mass Spectrometry, Biological Mass Spectrometry (BioMS), Lund, Sweden
| | - Elisabet Berthold
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Petra Król
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Robin Kahn
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
46
|
Stefano GB, Büttiker P, Weissenberger S, Ptacek R, Wang F, Esch T, Bilfinger TV, Raboch J, Kream RM. Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19. Curr Neuropharmacol 2022; 20:1229-1240. [PMID: 34951387 PMCID: PMC9886822 DOI: 10.2174/1570159x20666211223130228] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
The incidence of infections from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent for coronavirus disease 2019 (COVID-19), has dramatically escalated following the initial outbreak in China, in late 2019, resulting in a global pandemic with millions of deaths. Although the majority of infected patients survive, and the rapid advent and deployment of vaccines have afforded increased immunity against SARS-CoV-2, long-term sequelae of SARS-CoV-2 infection have become increasingly recognized. These include, but are not limited to, chronic pulmonary disease, cardiovascular disorders, and proinflammatory-associated neurological dysfunction that may lead to psychological and neurocognitive impairment. A major component of cognitive dysfunction is operationally categorized as "brain fog" which comprises difficulty concentrating, forgetfulness, confusion, depression, and fatigue. Multiple parameters associated with long-term neuropsychiatric sequelae of SARS-CoV-2 infection have been detailed in clinical studies. Empirically elucidated mechanisms associated with the neuropsychiatric manifestations of COVID-19 are by nature complex, but broad-based working models have focused on mitochondrial dysregulation, leading to systemic reductions of metabolic activity and cellular bioenergetics within the CNS structures. Multiple factors underlying the expression of brain fog may facilitate future pathogenic insults, leading to repetitive cycles of viral and bacterial propagation. Interestingly, diverse neurocognitive sequelae associated with COVID-19 are not dissimilar from those observed in other historical pandemics, thereby providing a broad and integrative perspective on potential common mechanisms of CNS dysfunction subsequent to viral infection. Poor mental health status may be reciprocally linked to compromised immune processes and enhanced susceptibility to infection by diverse pathogens. By extrapolation, we contend that COVID-19 may potentiate the severity of neurological/neurocognitive deficits in patients afflicted by well-studied neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Accordingly, the prevention, diagnosis, and management of sustained neuropsychiatric manifestations of COVID-19 are pivotal health care directives and provide a compelling rationale for careful monitoring of infected patients, as early mitigation efforts may reduce short- and long-term complications.
Collapse
Affiliation(s)
- George B. Stefano
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pascal Büttiker
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Simon Weissenberger
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Psychology, University of New York in Prague, Prague, Czech Republic
| | - Radek Ptacek
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Fuzhou Wang
- Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC27510, USA
| | - Tobias Esch
- Institute for Integrative Health Care and Health Promotion, Faculty of Health/School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Thomas V. Bilfinger
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794, USA
| | - Jiri Raboch
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Richard M. Kream
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
47
|
Abstract
For the past decade, the role and importance of neutrophils in cancer is being increasingly appreciated. Research has focused on the ability of cancer-related neutrophils to either support tumor growth or interfere with it, showing diverse mechanisms through which the effects of neutrophils take place. In contrast to the historic view of neutrophils as terminally differentiated cells, mounting evidence has demonstrated that neutrophils are a plastic and diverse population of cells. These dynamic and plastic abilities allow them to perform varied and sometimes opposite functions simultaneously. In this review, we summarize and detail clinical and experimental evidence for, and underlying mechanisms of, the dual impact of neutrophils' functions, both supporting and inhibiting cancer development. We first discuss the effects of various basic functions of neutrophils, namely direct cytotoxicity, secretion of reactive oxygen species (ROS), nitric oxide (NO) and proteases, NETosis, autophagy and modulation of other immune cells, on tumor growth and metastatic progression. We then describe the clinical evidence for pro- vs anti-tumor functions of neutrophils in human cancer. We believe and show that the "net" impact of neutrophils in cancer is the sum of a complex balance between contradicting effects which occur simultaneously.
Collapse
|
48
|
Vymazal O, Bendíčková K, De Zuani M, Vlková M, Hortová-Kohoutková M, Frič J. Immunosuppression Affects Neutrophil Functions: Does Calcineurin-NFAT Signaling Matter? Front Immunol 2021; 12:770515. [PMID: 34795676 PMCID: PMC8593005 DOI: 10.3389/fimmu.2021.770515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Neutrophils are innate immune cells with important roles in antimicrobial defense. However, impaired or dysregulated neutrophil function can result in host tissue damage, loss of homeostasis, hyperinflammation or pathological immunosuppression. A central link between neutrophil activation and immune outcomes is emerging to be the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, which is activated by neutrophil detection of a microbial threat via pattern recognition receptors and results in inflammatory cytokine production. This potent pro-inflammatory pathway is also the target of several immunosuppressive drugs used for the treatment of autoimmune disorders, during solid organ and hematopoietic cell transplantations, and as a part of anti-cancer therapy: but what effects these drugs have on neutrophil function, and their broader consequences for immune homeostasis and microbial defense are not yet known. Here, we bring together the emerging literature describing pathology- and drug- induced neutrophil impairment, with particular focus on their effects on calcineurin-NFAT signaling in the innate immune compartment.
Collapse
Affiliation(s)
- Ondřej Vymazal
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Marcela Vlková
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Clinical Immunology and Allergology, St. Anne´s University Hospital, Brno, Czechia
| | | | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
| |
Collapse
|
49
|
Mukund K, Nayak P, Ashokkumar C, Rao S, Almeda J, Betancourt-Garcia MM, Sindhi R, Subramaniam S. Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: A Mechanistic Landscape. Front Immunol 2021; 12:738073. [PMID: 34721400 PMCID: PMC8548832 DOI: 10.3389/fimmu.2021.738073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
The mechanisms underlying the immune remodeling and severity response in coronavirus disease 2019 (COVID-19) are yet to be fully elucidated. Our comprehensive integrative analyses of single-cell RNA sequencing (scRNAseq) data from four published studies, in patients with mild/moderate and severe infections, indicate a robust expansion and mobilization of the innate immune response and highlight mechanisms by which low-density neutrophils and megakaryocytes play a crucial role in the cross talk between lymphoid and myeloid lineages. We also document a marked reduction of several lymphoid cell types, particularly natural killer cells, mucosal-associated invariant T (MAIT) cells, and gamma-delta T (γδT) cells, and a robust expansion and extensive heterogeneity within plasmablasts, especially in severe COVID-19 patients. We confirm the changes in cellular abundances for certain immune cell types within a new patient cohort. While the cellular heterogeneity in COVID-19 extends across cells in both lineages, we consistently observe certain subsets respond more potently to interferon type I (IFN-I) and display increased cellular abundances across the spectrum of severity, as compared with healthy subjects. However, we identify these expanded subsets to have a more muted response to IFN-I within severe disease compared to non-severe disease. Our analyses further highlight an increased aggregation potential of the myeloid subsets, particularly monocytes, in COVID-19. Finally, we provide detailed mechanistic insights into the interaction between lymphoid and myeloid lineages, which contributes to the multisystemic phenotype of COVID-19, distinguishing severe from non-severe responses.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Priya Nayak
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Chethan Ashokkumar
- Plexision Inc., Pittsburgh, PA, United States
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sohail Rao
- DHR Health and DHR Health Institute for Research and Development, Edinburg, TX, United States
| | - Jose Almeda
- DHR Health and DHR Health Institute for Research and Development, Edinburg, TX, United States
| | | | - Rakesh Sindhi
- Plexision Inc., Pittsburgh, PA, United States
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
50
|
Siemińska I, Węglarczyk K, Surmiak M, Kurowska-Baran D, Sanak M, Siedlar M, Baran J. Mild and Asymptomatic COVID-19 Convalescents Present Long-Term Endotype of Immunosuppression Associated With Neutrophil Subsets Possessing Regulatory Functions. Front Immunol 2021; 12:748097. [PMID: 34659245 PMCID: PMC8511487 DOI: 10.3389/fimmu.2021.748097] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 infection [coronavirus disease 2019 (COVID-19)] is associated with severe lymphopenia and impaired immune response, including expansion of myeloid cells with regulatory functions, e.g., so-called low-density neutrophils, containing granulocytic myeloid-derived suppressor cells (LDNs/PMN-MDSCs). These cells have been described in both infections and cancer and are known for their immunosuppressive activity. In the case of COVID-19, long-term complications have been frequently observed (long-COVID). In this context, we aimed to investigate the immune response of COVID-19 convalescents after a mild or asymptomatic course of disease. We enrolled 13 convalescents who underwent a mild or asymptomatic infection with SARS-CoV-2, confirmed by a positive result of the PCR test, and 13 healthy donors without SARS-CoV-2 infection in the past. Whole blood was used for T-cell subpopulation and LDNs/PMN-MDSCs analysis. LDNs/PMN-MDSCs and normal density neutrophils (NDNs) were sorted out by FACS and used for T-cell proliferation assay with autologous T cells activated with anti-CD3 mAb. Serum samples were used for the detection of anti-SARS-CoV-2 neutralizing IgG and GM-CSF concentration. Our results showed that in convalescents, even 3 months after infection, an elevated level of LDNs/PMN-MDSCs is still maintained in the blood, which correlates negatively with the level of CD8+ and double-negative T cells. Moreover, LDNs/PMN-MDSCs and NDNs showed a tendency for affecting the production of anti-SARS-CoV-2 S1 neutralizing antibodies. Surprisingly, our data showed that in addition to LDNs/PMN-MDSCs, NDNs from convalescents also inhibit proliferation of autologous T cells. Additionally, in the convalescent sera, we detected significantly higher concentrations of GM-CSF, indicating the role of emergency granulopoiesis. We conclude that in mild or asymptomatic COVID-19 convalescents, the neutrophil dysfunction, including propagation of PD-L1-positive LDNs/PMN-MDSCs and NDNs, is responsible for long-term endotype of immunosuppression.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Kurowska-Baran
- Department of Clinical Microbiology, Laboratory of Virology and Serology, University Children’s Hospital, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|