1
|
Kasprzyk-Pochopień J, Kamińska A, Mielczarek P, Piekoszewski W, Klimkowska A, Sładek K, Soja J, Adamek D, Stępień E. Comparison of nanoLC-MALDI-MS/MS with nanoLC-TIMS-MS/MS in the proteomic analysis of extracellular vesicles of bronchoalveolar lavage fluid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39835386 DOI: 10.1039/d4ay01599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The study aims to evaluate and compare two advanced proteomic techniques, nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS, in characterizing extracellular vesicles (EVs) from the bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF). Pulmonary diseases, driven by pollutants and infections, often necessitate detailed analysis of BALF to identify diagnostic biomarkers and therapeutic targets. EVs, which include exosomes, microvesicles, and apoptotic bodies, are isolated using filtration and ultracentrifugation, and their morphology, concentration, and size distribution are assessed through transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The proteomic profiles of these EVs are then analyzed using the aforementioned techniques, highlighting their unique and common proteins. The study found that nanoLC-TIMS-MS/MS identified significantly more proteins compared to nanoLC-MALDI-MS/MS. Functional analysis via Gene Ontology revealed pathways related to inflammation and cell signaling, underscoring the role of EVs in disease pathophysiology. The findings suggest that EVs in BALF can serve as valuable biomarkers and therapeutic targets in respiratory diseases, providing a foundation for future research and clinical applications.
Collapse
Affiliation(s)
- Joanna Kasprzyk-Pochopień
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
| | - Agnieszka Kamińska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Krakow, Poland
| | - Wojciech Piekoszewski
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Krzysztof Sładek
- Department of Pulmonology, University Hospital in Krakow, Krakow, Poland
| | - Jerzy Soja
- Department of Pulmonology, University Hospital in Krakow, Krakow, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, Faculty of Medicine Jagiellonian University, Krakow, Poland
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
- Center for Theranostics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Reese CF, Gooz M, Hajdu Z, Hoffman S. CD45+/ Col I+ Fibrocytes: Major Source of Collagen in the Fibrotic Lung, but not in Passaged Fibroblast Cultures. Matrix Biol 2025:S0945-053X(25)00011-3. [PMID: 39828137 DOI: 10.1016/j.matbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The role of cells of the hematopoietic lineage in fibrosis is controversial. Here we evaluate the contribution of Col I+/CD45+ cells (fibrocytes) to lung fibrosis. Systemic bleomycin treatment was used to induce fibrosis in a bone marrow transplant and two transgenic mouse models. Lung cells from these mice were analyzed by flow cytometry, both immediately upon release from the tissue or following growth on tissue-culture plastic. Fibrotic and control human lung tissue were also used. Fibroblasts and fibrocytes derived from a transgenic mouse model were compared in terms of their morphology, growth, and adhesion to fibronectin. Single cell RNAseq was performed with the analysis focusing on CD45-/Col I+ "fibroblasts" and CD45+/Col I+ "fibrocytes" in control and fibrotic mouse lung tissue. Finally, we inhibited fibrosis in mice using a novel, water-soluble version of caveolin scaffolding domain (CSD) called WCSD. In both mouse and human lung tissue, we observed by flow cytometry a large increase in fibrocyte number and Col I expression associated with fibrosis. In contrast, fibroblast number was not significantly increased. A large increase (>50-fold) in fibrocyte number associated with fibrosis was also observed by single cell RNAseq. In this case, fibroblasts increased 5-fold. Single cell RNAseq also revealed that myofibroblast markers in fibrotic tissue are associated with a cluster containing a similar number of fibrocytes and fibroblasts, not with a resident fibroblast cluster. Some investigators claim that fibrocytes are not present among primary fibroblasts. However, we found that fibrocytes were the predominant cell type present in these cultures prior to passage. Fewer fibrocytes were present after one passage, and almost none after two passages. Our experiments suggest that fibrocytes are crowded out of cultures during passage because fibroblasts have a larger footprint than fibrocytes, even though fibrocytes bind more efficiently to fibronectin. Finally, we observed by flow cytometry that in mice treated with bleomycin and WCSD compared to bleomycin alone, there was a large decrease in the number of fibrocytes present but not in the number of fibroblasts. In summary, fibrocytes are a major collagen-producing cell type that is increased in number in association with fibrosis as well as a major source of myofibroblasts. The common observation that collagen-producing spindle-shaped cells associated with fibrosis are CD45- may be an artifact of passage in cell culture.
Collapse
Affiliation(s)
- Charles F Reese
- Division of Rheumatology/Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Monika Gooz
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Zoltan Hajdu
- Department of Anatomical Sciences, Edward Via College of Osteopathic Medicine, 350 Howard Street, Spartanburg, SC 29303
| | - Stanley Hoffman
- Division of Rheumatology/Department of Medicine, Medical University of South Carolina, Charleston, SC 29425.
| |
Collapse
|
3
|
Cambria E, Blazeski A, Ko EC, Thai T, Dantes S, Barbie DA, Shelton SE, Kamm RD. Myofibroblasts reduce angiogenesis and vasculogenesis in a vascularized microphysiological model of lung fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632378. [PMID: 39868191 PMCID: PMC11760796 DOI: 10.1101/2025.01.10.632378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Lung fibrosis, characterized by chronic and progressive scarring, has no cure. Hallmarks are the accumulation of myofibroblasts and extracellular matrix, as well as vascular remodeling. The crosstalk between myofibroblasts and vasculature is poorly understood, with conflicting reports on whether angiogenesis and vessel density are increased or decreased in lung fibrosis. We developed a microphysiological system that recapitulates the pathophysiology of lung fibrosis and disentangles myofibroblast-vascular interactions. Lung myofibroblasts maintained their phenotype in 3D without exogenous TGF-β and displayed anti-angiogenic and anti-vasculogenic activities when cultured with endothelial cells in a microfluidic device. These effects, including decreased endothelial sprouting, altered vascular morphology, and increased vascular permeability, were mediated by increased TGF-β1 and reduced VEGF secretion. Pharmacological interventions targeting these cytokines restored vascular morphology and permeability, demonstrating the potential of this model to screen anti-fibrotic drugs. This system provides insights into myofibroblast-vascular crosstalk in lung fibrosis and offers a platform for therapeutic development.
Collapse
|
4
|
Leonard-Duke J, Agro SMJ, Csordas DJ, Bruce AC, Eggertsen TG, Tavakol TN, Comlekoglu T, Barker TH, Bonham CA, Saucerman JJ, Taite LJ, Peirce SM. Multiscale computational model predicts how environmental changes and treatments affect microvascular remodeling in fibrotic disease. PNAS NEXUS 2025; 4:pgae551. [PMID: 39720203 PMCID: PMC11667245 DOI: 10.1093/pnasnexus/pgae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024]
Abstract
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired and lung function declines. We integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (EC) and pericytes, the cells that comprise microvessels. Nintedanib, an Food and Drug Administration-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can predict and explain how cell decisions affect tissue changes during disease and in response to treatments.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Samuel M J Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - David J Csordas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Taylor G Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Tara N Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Tien Comlekoglu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Catherine A Bonham
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lakeshia J Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Yang J, Lu D, Sun Y, Qiu M, Zhao T, Yan B, Wang S, Shao Z, Wang D, Li T, Xiao Q, Fu T. Cell Membrane Hybrid Liposome-Targeted Delivery of the Heat Shock Protein 90 C-Terminal Inhibitor for the Treatment of Idiopathic Pulmonary Fibrosis. ACS Pharmacol Transl Sci 2024; 7:4083-4095. [PMID: 39698274 PMCID: PMC11651165 DOI: 10.1021/acsptsci.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a grave challenge as it is characterized by high fatality rates and irreversible progression without effective clinical interventions available at present. Previous studies have demonstrated that inhibition of heat shock protein 90 (HSP90) by an N-terminal inhibitor disrupts its interaction with TGFβRII, leading to the instability of TGFβRII, thus blocking the role of transforming growth factor-β1 (TGF-β1), which could potentially ameliorate IPF symptoms. However, given that the broad spectrum of HSP90 N-terminal inhibitors may lead to unanticipated side effects, we hypothesize that C-terminal inhibitors of HSP90 can interfere with TGFβRII while minimizing adverse reactions. In this study, silybin, a C-terminal inhibitor of HSP90, was separated into monomers, and silybin A was screened for its superior efficacy against TGFβRII. To facilitate targeted therapy for treating IPF, a cell membrane hybrid liposome loaded with silybin A (Cm-A-Lip) was developed to deliver silybin A to lung fibroblasts through pulmonary drug delivery. A bleomycin-induced IPF mouse model was used to evaluate the efficacy of Cm-A-Lip. By examination of lung hydroxyproline content, wet weight, histology, and inflammatory factor expression, the results showed that pulmonary delivery of Cm-A-Lip could increase the drug retention time in lung tissue compared with intravenous injection. Furthermore, Cm-A-Lip exhibited superior antifibrotic activity relative to conventional liposmomes loaded with silybin A (A-Lip) while concurrently mitigating systemic inflammatory responses associated with silybin A administration, thus enhancing the overall safety profile.
Collapse
Affiliation(s)
| | | | - Yuping Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengmeng Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianlong Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baofei Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Siting Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhitao Shao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Demei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingqing Xiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
7
|
In 't Zandt R, Mahmutovic Persson I, Tibiletti M, von Wachenfeldt K, Parker GJM, Olsson LE. Contrast enhanced longitudinal changes observed in an experimental bleomycin-induced lung fibrosis rat model by radial DCE-MRI at 9.4T. PLoS One 2024; 19:e0310643. [PMID: 39331604 PMCID: PMC11432896 DOI: 10.1371/journal.pone.0310643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Identifying biomarkers in fibrotic lung disease is key for early anti-fibrotic intervention. Dynamic contrast-enhanced (DCE) MRI offers valuable perfusion-related insights in fibrosis but adapting human MRI methods to rodents poses challenges. Here, we explored these translational challenges for the inflammatory and fibrotic phase of a bleomycin lung injury model in rats. Eleven male Sprague-Dawley rats received a single intratracheal dose of bleomycin (1000iU), four control rats received saline. Imaging was performed on days 7 and 28 post-induction. Ultra-short echo time imaging was used to image the lung for 7 minutes after which Clariscan was injected intravenously. Lung signal changes were measured for an additional 21 minutes. Images were reconstructed with a sliding-window approach, providing a temporal resolution of 10 seconds per image. After imaging on day 28, animals were euthanized, and lungs were collected for histology. Bleomycin-exposed rats initially exhibited reduced body weight, recovering to control levels after 20 days. Lung volume increased in bleomycin animals from 4.4±0.9 ml in controls to 5.5±0.5 ml and 6.5±1.2 ml on day 7 and 28. DCE-MRI showed no change of initial gradient of relative enhancement in the curves between controls and bleomycin animals on day 7 and 28 post-induction. On day 7, the DCE-MRI washout phase in bleomycin animals had higher signals than the saline group and than observed at a later time point. Lung pixels were binned in 7 enhancement classes. On day 28, the size of low relative enhancement bins almost doubled in volume compared to controls and animals on day 7 post-induction. Histology on day 28 suggests that findings could be explained by changes in lung tissue density due to lung volume increase. Adapting this clinical MRI method to rodents at 9.4T remains a challenge. Future studies may benefit from lower field strength MRI combined with higher temporal resolution DCE-MRI.
Collapse
Affiliation(s)
- René In 't Zandt
- Faculty of Medicine, Lund University BioImaging Centre, Lund University, Lund, Sweden
| | - Irma Mahmutovic Persson
- Faculty of Medicine, Lund University BioImaging Centre, Lund University, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Marta Tibiletti
- Bioxydyn Limited, St James Tower, Manchester, United Kingdom
| | | | - Geoff J M Parker
- Bioxydyn Limited, St James Tower, Manchester, United Kingdom
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Lars E Olsson
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
8
|
Fließer E, Jandl K, Lins T, Birnhuber A, Valzano F, Kolb D, Foris V, Heinemann A, Olschewski H, Evermann M, Hoetzenecker K, Kreuter M, Voelkel NF, Marsh LM, Wygrecka M, Kwapiszewska G. Lung Fibrosis Is Linked to Increased Endothelial Cell Activation and Dysfunctional Vascular Barrier Integrity. Am J Respir Cell Mol Biol 2024; 71:318-331. [PMID: 38843440 DOI: 10.1165/rcmb.2024-0046oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 08/31/2024] Open
Abstract
Pulmonary fibrosis (PF) can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analyzed using transmission electron microscopy, immunohistochemistry, and single-cell RNA sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells (ECs) in fibrotic lungs compared with donors. A more intense CD31 and von Willebrand Factor (vWF) and patchy vascular endothelial (VE)-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin, and VEGFR-2 (vascular endothelial growth factor receptor-2) and activation marker vWF gene expression was increased in different endothelial subpopulations (e.g., arterial, venous, general capillary, aerocytes) in PF. This was associated with a heightened sensitivity of fibrotic ECs to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in ECs from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, whereas VE-Cadherin, Thrombomodulin, and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of patients with PF 6 months after the initial diagnosis. Our data demonstrate highly abnormal ECs in PF. The vascular compartment is characterized by hyperactivation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Reestablishing EC homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology and
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis
- Gottfried Schatz Research Center, Cell Biology, Histology, and Embryology, and
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Matthias Evermann
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center, Mainz, Germany
- Department of Pulmonary, Critical Care, and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Norbert F Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, the Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany; and
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
9
|
Ackermann M, Werlein C, Plucinski E, Leypold S, Kühnel MP, Verleden SE, Khalil HA, Länger F, Welte T, Mentzer SJ, Jonigk DD. The role of vasculature and angiogenesis in respiratory diseases. Angiogenesis 2024; 27:293-310. [PMID: 38580869 PMCID: PMC11303512 DOI: 10.1007/s10456-024-09910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/11/2024] [Indexed: 04/07/2024]
Abstract
In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany.
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Witten, Germany.
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | | - Edith Plucinski
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sophie Leypold
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - Hassan A Khalil
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steven J Mentzer
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danny D Jonigk
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
10
|
Raslan AA, Pham TX, Lee J, Kontodimas K, Tilston-Lunel A, Schmottlach J, Hong J, Dinc T, Bujor AM, Caporarello N, Thiriot A, von Andrian UH, Huang SK, Nicosia RF, Trojanowska M, Varelas X, Ligresti G. Lung injury-induced activated endothelial cell states persist in aging-associated progressive fibrosis. Nat Commun 2024; 15:5449. [PMID: 38937456 PMCID: PMC11211333 DOI: 10.1038/s41467-024-49545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells. Endothelial cell activation is prevalent in lungs of aged mice and can also be detected in human fibrotic lungs. Longitudinal single cell RNA-sequencing combined with lineage tracing demonstrate that endothelial activation resolves in young mouse lungs but persists in aged ones, indicating a failure of the aged vasculature to return to quiescence. Genes associated with activated lung endothelial cells states in vivo can be induced in vitro by activating YAP/TAZ. YAP/TAZ also cooperate with BDNF, a TrkB ligand that is reduced in fibrotic lungs, to promote capillary morphogenesis. These findings offer insights into aging-related lung endothelial cell dysfunction that may contribute to defective lung injury repair and persistent fibrosis.
Collapse
Affiliation(s)
- Ahmed A Raslan
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Tho X Pham
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jillian Schmottlach
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jeongmin Hong
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Taha Dinc
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andreea M Bujor
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Aude Thiriot
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberto F Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Giovanni Ligresti
- Arthritis and Autoimmune Diseases Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Kim JS, Murray S, Yow E, Anstrom KJ, Kim HJ, Flaherty KR, Martinez FJ, Noth I. Comparison of Pirfenidone and Nintedanib: Post Hoc Analysis of the CleanUP-IPF Study. Chest 2024; 165:1163-1173. [PMID: 38030064 PMCID: PMC11110676 DOI: 10.1016/j.chest.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Antifibrotics are effective in slowing FVC decline in idiopathic pulmonary fibrosis (IPF). However, whether antifibrotic type is differentially associated with FVC decline remains inconclusive. RESEARCH QUESTION Are there significant differences in 12-month FVC decline between pirfenidone and nintedanib? STUDY DESIGN AND METHODS A post hoc analysis was performed using the Clinical Efficacy of Antimicrobial Therapy Strategy Using Pragmatic Design in IPF (CleanUP-IPF) trial (No. NCT02759120). Participants who reported using pirfenidone or nintedanib on enrollment into the trial were in the primary analysis. Spirometry was scheduled at baseline and the 12- and 24-month study visits. Linear mixed-effects models with random intercept and slope were used to examine changes in FVC over time. Models were adjusted for age, sex, smoking history, coronary artery disease history, baseline FVC, and 12-month spline term. Survival and nonelective respiratory hospitalization by antifibrotic type were determined using Cox regression models with adjustment for age, sex, smoking history, coronary artery disease history, and baseline FVC and diffusing capacity for carbon monoxide. RESULTS Out of the 513 participants with IPF randomized in the CleanUP-IPF trial, 407 reported using pirfenidone (n = 264, 65%) or nintedanib (n = 143, 35%). The pirfenidone group had more participants with a history of coronary artery disease than the nintedanib group (34.1% vs 20.3%, respectively). Patients treated with nintedanib had a higher 12-month visit FVC than patients treated with pirfenidone (mean difference, 106 mL; 95% CI, 34-178). This difference was attenuated at the 24-month study visit. There were no significant differences in overall survival and nonelective respiratory hospitalization between the pirfenidone- and nintedanib-treated groups. INTERPRETATION Patients with IPF who used nintedanib had a slower 12-month FVC decline than pirfenidone in a post hoc analysis of a clinical trial.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Susan Murray
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Eric Yow
- Department of Biostatistics, Duke University, Durham, NC
| | - Kevin J Anstrom
- Department of Biostatistics, University of North Carolina-Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC
| | - Hyun J Kim
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, NY
| | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA.
| |
Collapse
|
12
|
Debnath K, Qayoom I, O'Donnell S, Ekiert J, Wang C, Sanborn MA, Liu C, Rivera A, Cho IS, Saichellappa S, Toth PT, Mehta D, Rehman J, Du X, Gao Y, Shin JW. Matrimeres are systemic nanoscale mediators of tissue integrity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586585. [PMID: 38585943 PMCID: PMC10996590 DOI: 10.1101/2024.03.25.586585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tissue barriers must be rapidly restored after injury to promote regeneration. However, the mechanism behind this process is unclear, particularly in cases where the underlying extracellular matrix is still compromised. Here, we report the discovery of matrimeres as constitutive nanoscale mediators of tissue integrity and function. We define matrimeres as non-vesicular nanoparticles secreted by cells, distinguished by a primary composition comprising at least one matrix protein and DNA molecules serving as scaffolds. Mesenchymal stromal cells assemble matrimeres from fibronectin and DNA within acidic intracellular compartments. Drawing inspiration from this biological process, we have achieved the successful reconstitution of matrimeres without cells. This was accomplished by using purified matrix proteins, including fibronectin and vitronectin, and DNA molecules under optimal acidic pH conditions, guided by the heparin-binding domain and phosphate backbone, respectively. Plasma fibronectin matrimeres circulate in the blood at homeostasis but exhibit a 10-fold decrease during systemic inflammatory injury in vivo . Exogenous matrimeres rapidly restore vascular integrity by actively reannealing endothelial cells post-injury and remain persistent in the host tissue matrix. The scalable production of matrimeres holds promise as a biologically inspired platform for regenerative nanomedicine.
Collapse
|
13
|
Leonard-Duke J, Agro SMJ, Csordas DJ, Bruce AC, Eggertsen TG, Tavakol TN, Barker TH, Bonham CA, Saucerman JJ, Taite LJ, Peirce SM. Multiscale computational model predicts how environmental changes and drug treatments affect microvascular remodeling in fibrotic disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585249. [PMID: 38559112 PMCID: PMC10979947 DOI: 10.1101/2024.03.15.585249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines. Here, we integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (ECs) and pericytes, the cells that comprise microvessels. Nintedanib, an FDA-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition (PMT) in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can explain how cell decisions affect tissue changes during disease and in response to treatments.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Samuel M. J. Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - David J. Csordas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony C. Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tara N. Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine A. Bonham
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffery J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Lakeshia J. Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Kim JS, Ma SF, Ma JZ, Huang Y, Bonham CA, Oldham JM, Adegunsoye A, Strek ME, Flaherty KR, Strickland E, Udofia I, Mooney JJ, Ghosh S, Maddipati K, Noth I. Associations of Plasma Omega-3 Fatty Acids With Progression and Survival in Pulmonary Fibrosis. Chest 2024; 165:621-631. [PMID: 37866772 PMCID: PMC10925547 DOI: 10.1016/j.chest.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Preclinical experiments suggest protective effects of omega-3 fatty acids and their metabolites in lung injury and fibrosis. Whether higher intake of omega-3 fatty acids is associated with disease progression and survival in humans with pulmonary fibrosis is unknown. RESEARCH QUESTION What are the associations of plasma omega-3 fatty acid levels (a validated marker of omega-3 nutritional intake) with disease progression and transplant-free survival in pulmonary fibrosis? STUDY DESIGN AND METHODS Omega-3 fatty acid levels were measured from plasma samples of patients with clinically diagnosed pulmonary fibrosis from the Pulmonary Fibrosis Foundation Patient Registry (n = 150), University of Virginia (n = 58), and University of Chicago (n = 101) cohorts. The N-3 index (docosahexaenoic acid + eicosapentaenoic acid) was the primary exposure variable of interest. Linear-mixed effects models with random intercept and slope were used to examine associations of plasma omega-3 fatty acid levels with changes in FVC and diffusing capacity for carbon monoxide over a period of 12 months. Cox proportional hazards models were used to examine transplant-free survival. Stratified analyses by telomere length were performed in the University of Chicago cohort. RESULTS Most of the cohort were patients with idiopathic pulmonary fibrosis (88%) and male patients (74%). One-unit increment in log-transformed N-3 index plasma level was associated with a change in diffusing capacity for carbon monoxide of 1.43 mL/min/mm Hg per 12 months (95% CI, 0.46-2.41) and a hazard ratio for transplant-free survival of 0.44 (95% CI, 0.24-0.83). Cardiovascular disease history, smoking, and antifibrotic usage did not significantly modify associations. Omega-3 fatty acid levels were not significantly associated with changes in FVC. Higher eicosapentaenoic acid plasma levels were associated with longer transplant-free survival among University of Chicago participants with shorter telomere length (P value for interaction = .02). INTERPRETATION Further research is needed to investigate underlying biological mechanisms and whether omega-3 fatty acids are a potential disease-modifying therapy.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.
| | - Shwu-Fan Ma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Jennie Z Ma
- Department of Public Health, University of Virginia School of Medicine, Charlottesville, VA
| | - Yong Huang
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Catherine A Bonham
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Justin M Oldham
- Department of Medicine, University of Michigan, Ann Arbor, MI
| | | | - Mary E Strek
- Department of Medicine, University of Chicago, Chicago, IL
| | | | - Emma Strickland
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | | | | | - Shrestha Ghosh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Department of Immunology, Harvard Medical School, Boston, MA
| | | | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
15
|
Feng X, Gao P, Li Y, Hui H, Jiang J, Xie F, Tian J. First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung. Bioeng Transl Med 2024; 9:e10626. [PMID: 38435827 PMCID: PMC10905553 DOI: 10.1002/btm2.10626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 03/05/2024] Open
Abstract
Increased pulmonary vascular permeability is a characteristic feature of lung injury. However, there are no established methods that allow the three-dimensional visualization and quantification of pulmonary vascular permeability in vivo. Evans blue extravasation test and total protein test of bronchoalveolar lavage fluid (BALF) are permeability assays commonly used in research settings. However, they lack the ability to identify the spatial and temporal heterogeneity of endothelial barrier disruption, which is typical in lung injuries. Magnetic resonance (MR) and near-infrared (NIR) imaging have been proposed to image pulmonary permeability, but suffer from limited sensitivity and penetration depth, respectively. In this study, we report the first use of magnetic particle imaging (MPI) to assess pulmonary vascular leakage noninvasively in vivo in mice. A dextran-coated superparamagnetic iron oxide (SPIO), synomag®, was employed as the imaging tracer, and pulmonary SPIO extravasation was imaged and quantified to evaluate the vascular leakage. Animal models of acute lung injury and pulmonary fibrosis (PF) were used to validate the proposed method. MPI sensitively detected the SPIO extravasation in both acutely injured and fibrotic lungs in vivo, which was confirmed by ex vivo imaging and Prussian blue staining. Moreover, 3D MPI illustrated the spatial heterogeneity of vascular leakage, which correlated well with CT findings. Based on the in vivo 3D MPI images, we defined the SPIO extravasation index (SEI) to quantify the vascular leakage. A significant increase in SEI was observed in the injured lungs, in consistent with the results obtained via ex vivo permeability assays. Overall, our results demonstrate that 3D quantitative MPI serves as a useful tool to examine pulmonary vascular integrity in vivo, which shows promise for future clinical translation.
Collapse
Affiliation(s)
- Xin Feng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial Intelligence, University of Chinese Academy of SciencesBeijingChina
| | - Pengli Gao
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang UniversityBeijingChina
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| | - Yabin Li
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial Intelligence, University of Chinese Academy of SciencesBeijingChina
| | - Jingying Jiang
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| | - Fei Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular ImagingInstitute of Automation, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Big Data‐Based Precision Medicine (Beihang University)Ministry of Industry and Information TechnologyBeijingChina
- School of Engineering Medicine, Beihang UniversityBeijingChina
| |
Collapse
|
16
|
Brazee PL, Cartier A, Kuo A, Haring AM, Nguyen T, Hariri LP, Griffith JW, Hla T, Medoff BD, Knipe RS. Augmentation of Endothelial S1PR1 Attenuates Postviral Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2024; 70:119-128. [PMID: 37934676 PMCID: PMC10848698 DOI: 10.1165/rcmb.2023-0286oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023] Open
Abstract
Respiratory viral infections are frequent causes of acute respiratory distress syndrome (ARDS), a disabling condition with a mortality of up to 46%. The pulmonary endothelium plays an important role in the development of ARDS as well as the pathogenesis of pulmonary fibrosis; however, the therapeutic potential to modulate endothelium-dependent signaling to prevent deleterious consequences has not been well explored. Here, we used a clinically relevant influenza A virus infection model, endothelial cell-specific transgenic gain-of-function and loss-of-function mice as well as pharmacologic approaches and in vitro modeling, to define the mechanism by which S1PR1 expression is dampened during influenza virus infection and determine whether therapeutic augmentation of S1PR1 has the potential to reduce long-term postviral fibrotic complications. We found that the influenza virus-induced inflammatory milieu promoted internalization of S1PR1, which was pharmacologically inhibited with paroxetine, an inhibitor of GRK2. Moreover, genetic overexpression or administration of paroxetine days after influenza virus infection was sufficient to reduce postviral pulmonary fibrosis. Taken together, our data suggest that endothelial S1PR1 signaling provides critical protection against long-term fibrotic complications after pulmonary viral infection. These findings support the development of antifibrotic strategies that augment S1PR1 expression in virus-induced ARDS to improve long-term patient outcomes.
Collapse
Affiliation(s)
- Patricia L. Brazee
- Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care
| | - Andreane Cartier
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew Kuo
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexis M. Haring
- Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care
| | - Trong Nguyen
- Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care
| | - Lida P. Hariri
- Department of Pathology, Massachusetts General Hospital, and
| | - Jason W. Griffith
- Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin D. Medoff
- Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care
| | - Rachel S. Knipe
- Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care
| |
Collapse
|
17
|
Apte SH, Groves PL, Tan ME, Lutzky VP, de Silva T, Monteith JN, Yerkovich ST, O’Sullivan BJ, Davis RA, Chambers DC. A Methodological Approach to Identify Natural Compounds with Antifibrotic Activity and the Potential to Treat Pulmonary Fibrosis Using Single-Cell Sequencing and Primary Human Lung Macrophages. Int J Mol Sci 2023; 24:15104. [PMID: 37894784 PMCID: PMC10606775 DOI: 10.3390/ijms242015104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of the interstitial pneumonias. The cause of the disease is unknown, and new therapies that stop or reverse disease progression are desperately needed. Recent advances in next-generation sequencing have led to an abundance of freely available, clinically relevant, organ-and-disease-specific, single-cell transcriptomic data, including studies from patients with IPF. We mined data from published IPF data sets and identified gene signatures delineating pro-fibrotic or antifibrotic macrophages and then used the Enrichr platform to identify compounds with the potential to drive the macrophages toward the antifibrotic transcriptotype. We then began testing these compounds in a novel in vitro phenotypic drug screening assay utilising human lung macrophages recovered from whole-lung lavage of patients with silicosis. As predicted by the Enrichr tool, glitazones potently modulated macrophage gene expression towards the antifibrotic phenotype. Next, we assayed a subset of the NatureBank pure compound library and identified the cyclobutane lignan, endiandrin A, which was isolated from the roots of the endemic Australian rainforest plant, Endiandra anthropophagorum, with a similar antifibrotic potential to the glitazones. These methods open new avenues of exploration to find treatments for lung fibrosis.
Collapse
Affiliation(s)
- Simon H. Apte
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Penny L. Groves
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
| | - Maxine E. Tan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Viviana P. Lutzky
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Tharushi de Silva
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Joshua N. Monteith
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Stephanie T. Yerkovich
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Brendan J. O’Sullivan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Rohan A. Davis
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia;
- NatureBank, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Daniel C. Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| |
Collapse
|
18
|
Schupp JC, Manning EP, Chioccioli M, Kamp JC, Christian L, Ryu C, Herzog E, Kühnel MP, Prasse A, Kaminski N, Jonigk DD, Homer RJ. Alveolar Vascular Remodeling in Nonspecific Interstitial Pneumonia: Replacement of Normal Lung Capillaries with COL15A1-Positive Endothelial Cells. Am J Respir Crit Care Med 2023; 208:819-822. [PMID: 37552025 PMCID: PMC10563189 DOI: 10.1164/rccm.202303-0544le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023] Open
Affiliation(s)
- Jonas C. Schupp
- Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
- Department of Respiratory Medicine
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), and
- German Center for Lung Research (DZL), Hannover, Germany
| | - Edward P. Manning
- Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Maurizio Chioccioli
- Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Jan C. Kamp
- Department of Respiratory Medicine
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), and
- German Center for Lung Research (DZL), Hannover, Germany
| | - Leonard Christian
- Department of Respiratory Medicine
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), and
- German Center for Lung Research (DZL), Hannover, Germany
| | - Changwan Ryu
- Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Erica Herzog
- Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Mark P. Kühnel
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), and
- Institute of Pathology, Hannover Medical School (MHH), Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- University Clinic of the RWTH Aachen University, Aachen, Germany; and
| | - Antje Prasse
- Department of Respiratory Medicine
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), and
- German Center for Lung Research (DZL), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Naftali Kaminski
- Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Danny D. Jonigk
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), and
- Institute of Pathology, Hannover Medical School (MHH), Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- University Clinic of the RWTH Aachen University, Aachen, Germany; and
| | - Robert J. Homer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
19
|
Guo H, Sun J, Zhang S, Nie Y, Zhou S, Zeng Y. Progress in understanding and treating idiopathic pulmonary fibrosis: recent insights and emerging therapies. Front Pharmacol 2023; 14:1205948. [PMID: 37608885 PMCID: PMC10440605 DOI: 10.3389/fphar.2023.1205948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a long-lasting, continuously advancing, and irrevocable interstitial lung disorder with an obscure origin and inadequately comprehended pathological mechanisms. Despite the intricate and uncharted causes and pathways of IPF, the scholarly consensus upholds that the transformation of fibroblasts into myofibroblasts-instigated by injury to the alveolar epithelial cells-and the disproportionate accumulation of extracellular matrix (ECM) components, such as collagen, are integral to IPF's progression. The introduction of two novel anti-fibrotic medications, pirfenidone and nintedanib, have exhibited efficacy in decelerating the ongoing degradation of lung function, lessening hospitalization risk, and postponing exacerbations among IPF patients. Nonetheless, these pharmacological interventions do not present a definitive solution to IPF, positioning lung transplantation as the solitary potential curative measure in contemporary medical practice. A host of innovative therapeutic strategies are presently under rigorous scrutiny. This comprehensive review encapsulates the recent advancements in IPF research, spanning from diagnosis and etiology to pathological mechanisms, and introduces a discussion on nascent therapeutic methodologies currently in the pipeline.
Collapse
Affiliation(s)
| | | | | | | | | | - Yulan Zeng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Caporarello N, Ligresti G. Vascular Contribution to Lung Repair and Fibrosis. Am J Respir Cell Mol Biol 2023; 69:135-146. [PMID: 37126595 PMCID: PMC10399144 DOI: 10.1165/rcmb.2022-0431tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/01/2023] [Indexed: 05/03/2023] Open
Abstract
Lungs are constantly exposed to environmental perturbations and therefore have remarkable capacity to regenerate in response to injury. Sustained lung injuries, aging, and increased genomic instability, however, make lungs particularly susceptible to disrepair and fibrosis. Pulmonary fibrosis constitutes a major cause of morbidity and is often relentlessly progressive, leading to death from respiratory failure. The pulmonary vasculature, which is critical for gas exchanges and plays a key role during lung development, repair, and regeneration, becomes aberrantly remodeled in patients with progressive pulmonary fibrosis. Although capillary rarefaction and increased vascular permeability are recognized as distinctive features of fibrotic lungs, the role of vasculature dysfunction in the pathogenesis of pulmonary fibrosis has only recently emerged as an important contributor to the progression of this disease. This review summarizes current findings related to lung vascular repair and regeneration and provides recent insights into the vascular abnormalities associated with the development of persistent lung fibrosis.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois; and
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
21
|
Jayant G, Kuperberg S, Somnay K, Wadgaonkar R. The Role of Sphingolipids in Regulating Vascular Permeability in Idiopathic Pulmonary Fibrosis. Biomedicines 2023; 11:1728. [PMID: 37371823 DOI: 10.3390/biomedicines11061728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease that causes scarring and fibrotic transformation of the lung parenchyma, resulting in the progressive loss of respiratory function and, often, death. Current treatments that target profibrotic factors can slow the rate of progression but are unable to ultimately stop it. In the past decade, many studies have shown that increased vascular permeability may be both a predictive and perpetuating factor in fibrogenesis. Consequently, there is a search for therapeutic targets to try and modulate vascular permeability in fibrotic lungs. One such class of targets that show great promise is sphingolipids. Sphingolipids are common in cell membranes and are increasingly recognized as critical to many cell signaling pathways, including those that affect the integrity of the vascular endothelial barrier. In this focused review we look at sphingolipids, particularly the sphingosine-1-phosphate (S1P) axis and its effects on vascular permeability, and how those effects may affect the pathogenesis of IPF. We further examine existing S1P modulators and their potential efficacy as therapeutics for IPF.
Collapse
Affiliation(s)
- Girish Jayant
- SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA
| | | | - Kaumudi Somnay
- NY Presbyterian Hospital Queens, New York, NY 11355, USA
| | - Raj Wadgaonkar
- SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA
| |
Collapse
|
22
|
Neighbors M, Li Q, Zhu SJ, Liu J, Wong WR, Jia G, Sandoval W, Tew GW. Bioactive lipid lysophosphatidic acid species are associated with disease progression in idiopathic pulmonary fibrosis. J Lipid Res 2023; 64:100375. [PMID: 37075981 PMCID: PMC10205439 DOI: 10.1016/j.jlr.2023.100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality. Prognostic biomarkers to identify rapid progressors are urgently needed to improve patient management. Since the lysophosphatidic acid (LPA) pathway has been implicated in lung fibrosis in preclinical models and identified as a potential therapeutic target, we aimed to investigate if bioactive lipid LPA species could be prognostic biomarkers that predict IPF disease progression. LPAs and lipidomics were measured in baseline placebo plasma of a randomized IPF-controlled trial. The association of lipids with disease progression indices were assessed using statistical models. Compared to healthy, IPF patients had significantly higher levels of five LPAs (LPA16:0, 16:1, 18:1, 18:2, 20:4) and reduced levels of two triglycerides species (TAG48:4-FA12:0, -FA18:2) (false discovery rate < 0.05, fold change > 2). Patients with higher levels of LPAs had greater declines in diffusion capacity of carbon monoxide over 52 weeks (P < 0.01); additionally, LPA20:4-high (≥median) patients had earlier time to exacerbation compared to LPA20:4-low (
Collapse
Affiliation(s)
| | - Qingling Li
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Sha Joe Zhu
- PD Data Science, F Hoffmann-La Roche, Shanghai, China
| | - Jia Liu
- PD Data Science, F Hoffmann-La Roche, Shanghai, China
| | - Weng Ruh Wong
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech Inc., South San Francisco, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Gaik W Tew
- I2O Technology and Translational Research, Genentech Inc., South San Francisco, USA.
| |
Collapse
|
23
|
Bian F, Lan YW, Zhao S, Deng Z, Shukla S, Acharya A, Donovan J, Le T, Milewski D, Bacchetta M, Hozain AE, Tipograf Y, Chen YW, Xu Y, Shi D, Kalinichenko VV, Kalin TV. Lung endothelial cells regulate pulmonary fibrosis through FOXF1/R-Ras signaling. Nat Commun 2023; 14:2560. [PMID: 37137915 PMCID: PMC10156846 DOI: 10.1038/s41467-023-38177-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Pulmonary fibrosis results from dysregulated lung repair and involves multiple cell types. The role of endothelial cells (EC) in lung fibrosis is poorly understood. Using single cell RNA-sequencing we identified endothelial transcription factors involved in lung fibrogenesis, including FOXF1, SMAD6, ETV6 and LEF1. Focusing on FOXF1, we found that FOXF1 is decreased in EC within human idiopathic pulmonary fibrosis (IPF) and mouse bleomycin-injured lungs. Endothelial-specific Foxf1 inhibition in mice increased collagen depositions, promoted lung inflammation, and impaired R-Ras signaling. In vitro, FOXF1-deficient EC increased proliferation, invasion and activation of human lung fibroblasts, and stimulated macrophage migration by secreting IL-6, TNFα, CCL2 and CXCL1. FOXF1 inhibited TNFα and CCL2 through direct transcriptional activation of Rras gene promoter. Transgenic overexpression or endothelial-specific nanoparticle delivery of Foxf1 cDNA decreased pulmonary fibrosis in bleomycin-injured mice. Nanoparticle delivery of FOXF1 cDNA can be considered for future therapies in IPF.
Collapse
Affiliation(s)
- Fenghua Bian
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Ying-Wei Lan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Shuyang Zhao
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Zicheng Deng
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Samriddhi Shukla
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Anusha Acharya
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Johnny Donovan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - David Milewski
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Matthew Bacchetta
- Departments of Thoracic and Cardiac Surgery, Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ahmed Emad Hozain
- Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Yuliya Tipograf
- Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Ya-Wen Chen
- Department of Cell, Developmental, and Regenerative Biology, Department of Otolaryngology, Institute for Airway Sciences, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yan Xu
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Jacob B, Sawhney M, Sridhar A, Jacob B, Muller J, Abu-Sbaih R, Yao SC. Potential therapeutic effects of adjunct osteopathic manipulative treatments in SARS-CoV-2 patients. J Osteopath Med 2023:jom-2022-0207. [PMID: 37079451 DOI: 10.1515/jom-2022-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/23/2023] [Indexed: 04/21/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) affects various human organ systems, including the lymphatic, pulmonary, gastrointestinal, and neurologic systems. The utilization of osteopathic manipulative treatment (OMT) techniques has been clinically effective in the alleviation of various upper respiratory infection symptoms. Consequently, the use of osteopathic manipulative medicine (OMM) in SARS-CoV-2 patients as adjunct treatment can be beneficial in promoting overall recovery. This paper attempts to address the pathophysiology of SARS-CoV-2 infection at the cellular level and its downstream effects. Subsequently, osteopathic principles were investigated to evaluate potential therapeutic effects, providing a holistic approach in the SARS-CoV-2 treatment. Although the association between the benefits of OMT on clinical improvement during the 1918 Spanish influenza pandemic can be seen, further investigation is required to establish a direct correlation between OMT and symptom management in SARS-CoV-2.
Collapse
Affiliation(s)
- Benna Jacob
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Mehak Sawhney
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aarthi Sridhar
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Berlin Jacob
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Jeffrey Muller
- Department of Clinical Specialties, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Reem Abu-Sbaih
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Sheldon C Yao
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
25
|
Rodriguez L, Tomer Y, Carson P, Dimopoulos T, Zhao M, Chavez K, Iyer S, Huang L, Ebert C, Sereda L, Murthy A, Trujillo G, Beers MF, Katzen J. Chronic Expression of a Clinical SFTPC Mutation Causes Murine Lung Fibrosis with Idiopathic Pulmonary Fibrosis Features. Am J Respir Cell Mol Biol 2023; 68:358-365. [PMID: 36473455 PMCID: PMC10112421 DOI: 10.1165/rcmb.2022-0203ma] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial lung disease. A barrier to developing more effective therapies for IPF is the dearth of preclinical models that recapitulate the early pathobiology of this disease. Intratracheal bleomycin, the conventional preclinical murine model of IPF, fails to reproduce the intrinsic dysfunction to the alveolar epithelial type 2 cell (AEC2) that is believed to be a proximal event in the pathogenesis of IPF. Murine fibrosis models based on SFTPC (Surfactant Protein C gene) mutations identified in patients with interstitial lung disease cause activation of the AEC2 unfolded protein response and endoplasmic reticulum stress-an AEC2 dysfunction phenotype observed in IPF. Although these models achieve spontaneous fibrosis, they do so with precedent lung injury and thus are challenged to phenocopy the general clinical course of patients with IPF-gradual progressive fibrosis and loss of lung function. Here, we report a refinement of a murine Sftpc mutation model to recapitulate the clinical course, physiological impairment, parenchymal cellular composition, and biomarkers associated with IPF. This platform provides the field with an innovative model to understand IPF pathogenesis and index preclinical therapeutic candidates.
Collapse
Affiliation(s)
- Luis Rodriguez
- Pulmonary, Allergy, and Critical Care Medicine Division and
| | - Yaniv Tomer
- Pulmonary, Allergy, and Critical Care Medicine Division and
| | - Paige Carson
- Pulmonary, Allergy, and Critical Care Medicine Division and
| | | | - Ming Zhao
- Pulmonary, Allergy, and Critical Care Medicine Division and
| | - Katrina Chavez
- Pulmonary, Allergy, and Critical Care Medicine Division and
| | - Swati Iyer
- Pulmonary, Allergy, and Critical Care Medicine Division and
| | - Li Huang
- Fibrosis Biology Drug Discovery, Bristol-Myers Squibb, Lawrenceville, New Jersey; and
| | - Christina Ebert
- Fibrosis Biology Drug Discovery, Bristol-Myers Squibb, Lawrenceville, New Jersey; and
| | - Larisa Sereda
- Fibrosis Biology Drug Discovery, Bristol-Myers Squibb, Lawrenceville, New Jersey; and
| | - Aditi Murthy
- Pulmonary, Allergy, and Critical Care Medicine Division and
| | - Glenda Trujillo
- Fibrosis Biology Drug Discovery, Bristol-Myers Squibb, Lawrenceville, New Jersey; and
| | - Michael F. Beers
- Pulmonary, Allergy, and Critical Care Medicine Division and
- PENN–CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- The Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Jeremy Katzen
- Pulmonary, Allergy, and Critical Care Medicine Division and
- PENN–CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Santos-Ribeiro D, Lecocq M, de Beukelaer M, Verleden S, Bouzin C, Ambroise J, Dorfmuller P, Yakoub Y, Huaux F, Quarck R, Karmouty-Quintana H, Ghigna MR, Bignard J, Nadaud S, Soubrier F, Horman S, Perros F, Godinas L, Pilette C. Disruption of GCN2 Pathway Aggravates Vascular and Parenchymal Remodeling during Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 68:326-338. [PMID: 36476191 DOI: 10.1165/rcmb.2021-0541oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) and pulmonary hypertension (PH) are chronic diseases of the pulmonary parenchyma and circulation, respectively, which may coexist, but underlying mechanisms remain elusive. Mutations in the GCN2 (general control nonderepressible 2) gene (EIF2AK4 [eukaryotic translation initiation factor 2 alpha kinase 4]) were recently associated with pulmonary veno-occlusive disease. The aim of this study is to explore the involvement of the GCN2/eIF2α (eukaryotic initiation factor 2α) pathway in the development of PH during PF, in both human disease and in a laboratory animal model. Lung tissue from patients with PF with or without PH was collected at the time of lung transplantation, and control tissue was obtained from tumor resection surgery. Experimental lung disease was induced in either male wild-type or EIF2AK4-mutated Sprague-Dawley rats, randomly receiving a single intratracheal instillation of bleomycin or saline. Hemodynamic studies and organ collection were performed 3 weeks after instillation. Only significant results (P < 0.05) are presented. In PF lung tissue, GCN2 protein expression was decreased compared with control tissue. GCN2 expression was reduced in CD31+ endothelial cells. In line with human data, GCN2 protein expression was decreased in the lung of bleomycin rats compared with saline. EIF2AK4-mutated rats treated with bleomycin showed increased parenchymal fibrosis (hydroxyproline concentrations) and vascular remodeling (media wall thickness) as well as increased right ventricular systolic pressure compared with wild-type animals. Our data show that GCN2 is dysregulated in both humans and in an animal model of combined PF and PH. The possibility of a causative implication of GCN2 dysregulation in PF and/or PH development should be further studied.
Collapse
Affiliation(s)
| | | | | | - Stijn Verleden
- Laboratory of Respiratory Diseases & Thoracic Surgery, Department of Chronic Diseases and Metabolism, and
| | | | | | - Peter Dorfmuller
- Department of Pathology, University of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, German Center for Lung Research, Giessen, Germany
| | - Yousef Yakoub
- Louvain Center for Toxicology and Applied Pharmacology, and
| | - François Huaux
- Louvain Center for Toxicology and Applied Pharmacology, and
| | - Rozenn Quarck
- Clinical Department of Respiratory Diseases, University Hospitals - University of Leuven, Leuven, Belgium
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology and.,Division of Critical Care and.,Division of Pulmonary and Sleep Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Maria-Rosa Ghigna
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Département de Pathologie and.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | | | - Sophie Nadaud
- UMR_S 1166-ICAN, INSERM, Sorbonne Université, Paris, France
| | | | - Sandrine Horman
- Cardiovascular Research Unit, Institute of Experimental and Clinical Research, Catholic University of Louvain, Brussels, Belgium
| | - Frederic Perros
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique-Hôpitaux de Paris, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, Pierre-Bénite and Bron, France; and
| | - Laurent Godinas
- Clinical Department of Respiratory Diseases, University Hospitals - University of Leuven, Leuven, Belgium
| | - Charles Pilette
- Pneumology, ENT and Dermatology.,Département de Pneumologie, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
27
|
Doryab A, Heydarian M, Yildirim AÖ, Hilgendorff A, Behr J, Schmid O. Breathing-induced stretch enhances the efficacy of an inhaled and orally delivered anti-fibrosis drug in vitro. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
28
|
Betageri KR, Link PA, Haak AJ, Ligresti G, Tschumperlin DJ, Caporarello N. The matricellular protein CCN3 supports lung endothelial homeostasis and function. Am J Physiol Lung Cell Mol Physiol 2023; 324:L154-L168. [PMID: 36573684 PMCID: PMC9925165 DOI: 10.1152/ajplung.00248.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Aberrant vascular remodeling contributes to the progression of many aging-associated diseases, including idiopathic pulmonary fibrosis (IPF), where heterogeneous capillary density, endothelial transcriptional alterations, and increased vascular permeability correlate with poor disease outcomes. Thus, identifying disease-driving mechanisms in the pulmonary vasculature may be a promising strategy to limit IPF progression. Here, we identified Ccn3 as an endothelial-derived factor that is upregulated in resolving but not in persistent lung fibrosis in mice, and whose function is critical for vascular homeostasis and repair. Loss and gain of function experiments were carried out to test the role of CCN3 in lung microvascular endothelial function in vitro through RNAi and the addition of recombinant human CCN3 protein, respectively. Endothelial migration, permeability, proliferation, and in vitro angiogenesis were tested in cultured human lung microvascular endothelial cells (ECs). Loss of CCN3 in lung ECs resulted in transcriptional alterations along with impaired wound-healing responses, in vitro angiogenesis, barrier integrity as well as an increased profibrotic activity through paracrine signals, whereas the addition of recombinant CCN3 augmented endothelial function. Altogether, our results demonstrate that the matricellular protein CCN3 plays an important role in lung endothelial function and could serve as a promising therapeutic target to facilitate vascular repair and promote lung fibrosis resolution.
Collapse
Affiliation(s)
- Kalpana R Betageri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Patrick A Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
29
|
Raslan AA, Pham TX, Lee J, Hong J, Schmottlach J, Nicolas K, Dinc T, Bujor AM, Caporarello N, Thiriot A, von Andrian UH, Huang SK, Nicosia RF, Trojanowska M, Varelas X, Ligresti G. Single Cell Transcriptomics of Fibrotic Lungs Unveils Aging-associated Alterations in Endothelial and Epithelial Cell Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.523179. [PMID: 36712020 PMCID: PMC9882122 DOI: 10.1101/2023.01.17.523179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lung regeneration deteriorates with aging leading to increased susceptibility to pathologic conditions, including fibrosis. Here, we investigated bleomycin-induced lung injury responses in young and aged mice at single-cell resolution to gain insights into the cellular and molecular contributions of aging to fibrosis. Analysis of 52,542 cells in young (8 weeks) and aged (72 weeks) mice identified 15 cellular clusters, many of which exhibited distinct injury responses that associated with age. We identified Pdgfra + alveolar fibroblasts as a major source of collagen expression following bleomycin challenge, with those from aged lungs exhibiting a more persistent activation compared to young ones. We also observed age-associated transcriptional abnormalities affecting lung progenitor cells, including ATII pneumocytes and general capillary (gCap) endothelial cells (ECs). Transcriptional analysis combined with lineage tracing identified a sub-population of gCap ECs marked by the expression of Tropomyosin Receptor Kinase B (TrkB) that appeared in bleomycin-injured lungs and accumulated with aging. This newly emerged TrkB + EC population expressed common gCap EC markers but also exhibited a distinct gene expression signature associated with aberrant YAP/TAZ signaling, mitochondrial dysfunction, and hypoxia. Finally, we defined ACKR1 + venous ECs that exclusively emerged in injured lungs of aged animals and were closely associated with areas of collagen deposition and inflammation. Immunostaining and FACS analysis of human IPF lungs demonstrated that ACKR1 + venous ECs were dominant cells within the fibrotic regions and accumulated in areas of myofibroblast aggregation. Together, these data provide high-resolution insights into the impact of aging on lung cell adaptability to injury responses.
Collapse
|
30
|
Browning JL, Bhawan J, Tseng A, Crossland N, Bujor AM, Akassoglou K, Assassi S, Skaug B, Ho J. Extensive and Persistent Extravascular Dermal Fibrin Deposition Characterizes Systemic Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.523256. [PMID: 36711912 PMCID: PMC9882194 DOI: 10.1101/2023.01.16.523256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by progressive multiorgan fibrosis. While the cause of SSc remains unknown, a perturbed vasculature is considered a critical early step in the pathogenesis. Using fibrinogen as a marker of vascular leakage, we found extensive extravascular fibrinogen deposition in the dermis of both limited and diffuse systemic sclerosis disease, and it was present in both early and late-stage patients. Based on a timed series of excision wounds, retention on the fibrin deposit of the splice variant domain, fibrinogen αEC, indicated a recent event, while fibrin networks lacking the αEC domain were older. Application of this timing tool to SSc revealed considerable heterogeneity in αEC domain distribution providing unique insight into disease activity. Intriguingly, the fibrinogen-αEC domain also accumulated in macrophages. These observations indicate that systemic sclerosis is characterized by ongoing vascular leakage resulting in extensive interstitial fibrin deposition that is either continually replenished and/or there is impaired fibrin clearance. Unresolved fibrin deposition might then incite chronic tissue remodeling.
Collapse
Affiliation(s)
- Jeffrey L Browning
- Department of Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- Department of Rheumatology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
| | - Jag Bhawan
- Department of Dermatopathology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
| | - Anna Tseng
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA
| | - Nicholas Crossland
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA
| | - Andreea M Bujor
- Department of Rheumatology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease San Francisco California USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center, Houston, TX
| | - Brian Skaug
- Division of Rheumatology, University of Texas Health Science Center, Houston, TX
| | - Jonathan Ho
- Department of Dermatopathology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- Section Dermatology University of the West Indies, Mona Jamaica
| |
Collapse
|
31
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
33
|
Torres LA, Lee KE, Barton GP, Hahn AD, Sandbo N, Schiebler ML, Fain SB. Dynamic contrast enhanced MRI for the evaluation of lung perfusion in idiopathic pulmonary fibrosis. Eur Respir J 2022; 60:2102058. [PMID: 35273033 PMCID: PMC10015995 DOI: 10.1183/13993003.02058-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/24/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The objective of this work was to apply quantitative and semiquantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) methods to evaluate lung perfusion in idiopathic pulmonary fibrosis (IPF). METHODS In this prospective trial 41 subjects, including healthy control and IPF subjects, were studied using DCE-MRI at baseline. IPF subjects were then followed for 1 year; progressive IPF (IPFprog) subjects were distinguished from stable IPF (IPFstable) subjects based on a decline in percent predicted forced vital capacity (FVC % pred) or diffusing capacity of the lung for carbon monoxide (D LCO % pred) measured during follow-up visits. 35 out of 41 subjects were retained for final baseline analysis (control: n=15; IPFstable: n=14; IPFprog: n=6). Seven measures and their coefficients of variation (CV) were derived using temporally resolved DCE-MRI. Two sets of global and regional comparisons were made: control versus IPF groups and control versus IPFstable versus IPFprog groups, using linear regression analysis. Each measure was compared with FVC % pred, D LCO % pred and the lung clearance index (LCI % pred) using a Spearman rank correlation. RESULTS DCE-MRI identified regional perfusion differences between control and IPF subjects using first moment transit time (FMTT), contrast uptake slope and pulmonary blood flow (PBF) (p≤0.05), while global averages did not. FMTT was shorter for IPFprog compared with both IPFstable (p=0.004) and control groups (p=0.023). Correlations were observed between PBF CV and D LCO % pred (rs= -0.48, p=0.022) and LCI % pred (rs= +0.47, p=0.015). Significant group differences were detected in age (p<0.001), D LCO % pred (p<0.001), FVC % pred (p=0.001) and LCI % pred (p=0.007). CONCLUSIONS Global analysis obscures regional changes in pulmonary haemodynamics in IPF using DCE-MRI in IPF. Decreased FMTT may be a candidate marker for IPF progression.
Collapse
Affiliation(s)
- Luis A Torres
- Dept of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Kristine E Lee
- Dept of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Gregory P Barton
- Dept of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Andrew D Hahn
- Dept of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Nathan Sandbo
- Dept of Medicine, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Mark L Schiebler
- Dept of Medicine, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
- Dept of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Sean B Fain
- Dept of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
- Dept of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
- Dept of Biomedical Engineering, College of Engineering, University of Wisconsin - Madison, Madison, WI, USA
- Dept of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
34
|
Doryab A, Taskin MB, Stahlhut P, Groll J, Schmid O. Real-Time Measurement of Cell Mechanics as a Clinically Relevant Readout of an In Vitro Lung Fibrosis Model Established on a Bioinspired Basement Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205083. [PMID: 36030365 DOI: 10.1002/adma.202205083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Lung fibrosis, one of the major post-COVID complications, is a progressive and ultimately fatal disease without a cure. Here, an organ- and disease-specific in vitro mini-lung fibrosis model equipped with noninvasive real-time monitoring of cell mechanics is introduced as a functional readout. To establish an intricate multiculture model under physiologic conditions, a biomimetic ultrathin basement (biphasic elastic thin for air-liquid culture conditions, BETA) membrane (<1 µm) is developed with unique properties, including biocompatibility, permeability, and high elasticity (<10 kPa) for cell culturing under air-liquid interface and cyclic mechanical stretch conditions. The human-based triple coculture fibrosis model, which includes epithelial and endothelial cell lines combined with primary fibroblasts from idiopathic pulmonary fibrosis patients established on the BETA membrane, is integrated into a millifluidic bioreactor system (cyclic in vitro cell-stretch, CIVIC) with dose-controlled aerosolized drug delivery, mimicking inhalation therapy. The real-time measurement of cell/tissue stiffness (and compliance) is shown as a clinical biomarker of the progression/attenuation of fibrosis upon drug treatment, which is confirmed for inhaled Nintedanib-an antifibrosis drug. The mini-lung fibrosis model allows the combined longitudinal testing of pharmacodynamics and pharmacokinetics of drugs, which is expected to enhance the predictive capacity of preclinical models and hence facilitate the development of approved therapies for lung fibrosis.
Collapse
Affiliation(s)
- Ali Doryab
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Neuherberg, Germany
- Comprehensive Pneumology Center-Munich (CPC-M) bioArchive, Helmholtz Munich, 81377, Munich, Germany
| | - Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Neuherberg, Germany
- Comprehensive Pneumology Center-Munich (CPC-M) bioArchive, Helmholtz Munich, 81377, Munich, Germany
| |
Collapse
|
35
|
de Rooij LPMH, Becker LM, Teuwen LA, Boeckx B, Jansen S, Feys S, Verleden S, Liesenborghs L, Stalder AK, Libbrecht S, Van Buyten T, Philips G, Subramanian A, Dumas SJ, Meta E, Borri M, Sokol L, Dendooven A, Truong ACK, Gunst J, Van Mol P, Haslbauer JD, Rohlenova K, Menter T, Boudewijns R, Geldhof V, Vinckier S, Amersfoort J, Wuyts W, Van Raemdonck D, Jacobs W, Ceulemans LJ, Weynand B, Thienpont B, Lammens M, Kuehnel M, Eelen G, Dewerchin M, Schoonjans L, Jonigk D, van Dorpe J, Tzankov A, Wauters E, Mazzone M, Neyts J, Wauters J, Lambrechts D, Carmeliet P. The pulmonary vasculature in lethal COVID-19 and idiopathic pulmonary fibrosis at single cell resolution. Cardiovasc Res 2022; 119:520-535. [PMID: 35998078 PMCID: PMC9452154 DOI: 10.1093/cvr/cvac139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Aims SARS-CoV-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage and perturbed hemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. Methods and Results We performed single nucleus RNA-seq (snRNA-seq) on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs and 12 controls. The vascular fraction, comprising 38,794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137,746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. Conclusions This study uncovered novel insights into the abundance, expression patterns and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions. Translational perspective While assessing clinical and molecular characteristics of severe and lethal COVID-19 cases, the vasculature’s undeniable role in disease progression has been widely acknowledged. COVID-19 lung pathology moreover shares certain clinical features with late-stage IPF – yet an in-depth interrogation and direct comparison of the endothelium at single-cell level in both conditions is still lacking. By comparing the transcriptomes of ECs from lungs of deceased COVID-19 patients to those from IPF explant and control lungs, we gathered key insights the heterogeneous composition and potential roles of ECs in both lethal diseases, which may serve as a foundation for development of novel therapeutics.
Collapse
Affiliation(s)
| | | | - Laure-Anne Teuwen
- Present address: Department of Oncology, Antwerp University Hospital (UZA), Edegem 2650, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Sander Jansen
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Simon Feys
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Stijn Verleden
- Present address: Department of Antwerp Surgical Training, Anatomy and Research Centre, Division of Thoracic and Vascular Surgery, University of Antwerp, Wilrijk, Belgium
| | | | - Anna K Stalder
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Sasha Libbrecht
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Tina Van Buyten
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Gino Philips
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Abhishek Subramanian
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Sébastien J Dumas
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Elda Meta
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Mila Borri
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
- University of Antwerp, Faculty of Medicine, Wilrijk 2610, Belgium
| | - Anh-Co K Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Pierre Van Mol
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jasmin D Haslbauer
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Katerina Rohlenova
- Present address: Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 252 50, Czech Republic
| | - Thomas Menter
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | | | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Jacob Amersfoort
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Wim Wuyts
- Department of Respiratory Medicine, Unit for Interstitial Lung Diseases, UZ Gasthuisberg, Leuven 3000, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
| | - Werner Jacobs
- Medical CBRNe unit, Queen Astrid Military Hospital, Belgian Defense, Neder-Over-Heembeek 1120, Belgium
- Department of Forensic Pathology, ASTARC Antwerp University Hospital and University of Antwerp, Antwerp 2610, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Martin Lammens
- Department of Pathology Antwerp University Hospital, Edegem 2560, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp 2000, Belgium
| | - Mark Kuehnel
- Medizinische Hochschule Hannover (MHH), Institut für Pathologie, D-30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Centre for Lung research (DZL), Hannover 30625, Germany
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Danny Jonigk
- Medizinische Hochschule Hannover (MHH), Institut für Pathologie, D-30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Centre for Lung research (DZL), Hannover 30625, Germany
| | - Jo van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
- Respiratory Oncology Unit, University Hospital KU Leuven, Leuven 3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Johan Neyts
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | | |
Collapse
|
36
|
Sehgal M, Jakhete SM, Manekar AG, Sasikumar S. Specific epigenetic regulators serve as potential therapeutic targets in idiopathic pulmonary fibrosis. Heliyon 2022; 8:e09773. [PMID: 36061031 PMCID: PMC9434059 DOI: 10.1016/j.heliyon.2022.e09773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/27/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a disorder observed mostly in older human beings, is characterised by chronic and progressive lung scarring leading to an irreversible decline in lung function. This health condition has a dismal prognosis and the currently available drugs only delay but fail to reverse the progression of lung damage. Consequently, it becomes imperative to discover improved therapeutic compounds and their cellular targets to cure IPF. In this regard, a number of recent studies have targeted the epigenetic regulation by histone deacetylases (HDACs) to develop and categorise antifibrotic drugs for lungs. Therefore, this review focuses on how aberrant expression or activity of Classes I, II and III HDACs alter TGF-β signalling to promote events such as epithelial-mesenchymal transition, differentiation of activated fibroblasts into myofibroblasts, and excess deposition of the extracellular matrix to propel lung fibrosis. Further, this study describes how certain chemical compounds or dietary changes modulate dysregulated HDACs to attenuate five faulty TGF-β-dependent profibrotic processes, both in animal models and cell lines replicating IPF, thereby identifying promising means to treat this lung disorder.
Collapse
Affiliation(s)
- Manas Sehgal
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Sharayu Manish Jakhete
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Amruta Ganesh Manekar
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Satish Sasikumar
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| |
Collapse
|
37
|
Davis MJ, Martin RE, Pinheiro GM, Hoke ES, Moyer S, Mayer-Barber KD, Chang YC, Kwon-Chung KJ. MDA5 signaling induces type 1 IFN- and IL-1-dependent lung vascular permeability which protects mice from opportunistic fungal infection. Front Immunol 2022; 13:931194. [PMID: 35967332 PMCID: PMC9368195 DOI: 10.3389/fimmu.2022.931194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lungs balance threat from primary viral infection, secondary infection, and inflammatory damage. Severe pulmonary inflammation induces vascular permeability, edema, and organ dysfunction. We previously demonstrated that poly(I:C) (pICLC) induced type 1 interferon (t1IFN) protected mice from Cryptococcus gattii (Cg) via local iron restriction. Here we show pICLC increased serum protein and intravenously injected FITC-dextran in the lung airspace suggesting pICLC induces vascular permeability. Interestingly, pICLC induced a pro-inflammatory signature with significant expression of IL-1 and IL-6 which depended on MDA5 and t1IFN. Vascular permeability depended on MDA5, t1IFN, IL-1, and IL-6. T1IFN also induced MDA5 and other MDA5 signaling components suggesting that positive feedback contributes to t1IFN dependent expression of the pro-inflammatory signature. Vascular permeability, induced by pICLC or another compound, inhibited Cg by limiting iron. These data suggest that pICLC induces t1IFN which potentiates pICLC-MDA5 signaling increasing IL-1 and IL-6 resulting in leakage of antimicrobial serum factors into lung airspace. Thus, induced vascular permeability may act as an innate defense mechanism against opportunistic fungal infection, such as cryptococcosis, and may be exploited as a host-directed therapeutic target.
Collapse
Affiliation(s)
- Michael J. Davis
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rachel E. Martin
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Giovana M. Pinheiro
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Elizabeth S. Hoke
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shannon Moyer
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yun C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Kyung J. Kwon-Chung,
| |
Collapse
|
38
|
Caporarello N, Lee J, Pham TX, Jones DL, Guan J, Link PA, Meridew JA, Marden G, Yamashita T, Osborne CA, Bhagwate AV, Huang SK, Nicosia RF, Tschumperlin DJ, Trojanowska M, Ligresti G. Dysfunctional ERG signaling drives pulmonary vascular aging and persistent fibrosis. Nat Commun 2022; 13:4170. [PMID: 35879310 PMCID: PMC9314350 DOI: 10.1038/s41467-022-31890-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/04/2022] [Indexed: 01/18/2023] Open
Abstract
Vascular dysfunction is a hallmark of chronic diseases in elderly. The contribution of the vasculature to lung repair and fibrosis is not fully understood. Here, we performed an epigenetic and transcriptional analysis of lung endothelial cells (ECs) from young and aged mice during the resolution or progression of bleomycin-induced lung fibrosis. We identified the transcription factor ETS-related gene (ERG) as putative orchestrator of lung capillary homeostasis and repair, and whose function is dysregulated in aging. ERG dysregulation is associated with reduced chromatin accessibility and maladaptive transcriptional responses to injury. Loss of endothelial ERG enhances paracrine fibroblast activation in vitro, and impairs lung fibrosis resolution in young mice in vivo. scRNA-seq of ERG deficient mouse lungs reveales transcriptional and fibrogenic abnormalities resembling those associated with aging and human lung fibrosis, including reduced number of general capillary (gCap) ECs. Our findings demonstrate that lung endothelial chromatin remodeling deteriorates with aging leading to abnormal transcription, vascular dysrepair, and persistent fibrosis following injury.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jisu Lee
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Tho X Pham
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Dakota L Jones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiazhen Guan
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Patrick A Link
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey A Meridew
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Grace Marden
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Takashi Yamashita
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Collin A Osborne
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Aditya V Bhagwate
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberto F Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Maria Trojanowska
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
39
|
Evaluation of Proteasome Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11091543. [PMID: 35563849 PMCID: PMC9099509 DOI: 10.3390/cells11091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, and it has a worse prognosis than non-small cell lung cancer. The pathomechanism of IPF is not fully understood, but it has been suggested that repeated microinjuries of epithelial cells induce a wound healing response, during which fibroblasts differentiate into myofibroblasts. These activated myofibroblasts express α smooth muscle actin and release extracellular matrix to promote matrix deposition and tissue remodeling. Under physiological conditions, the remodeling process stops once wound healing is complete. However, in the lungs of IPF patients, myofibroblasts re-main active and deposit excess extracellular matrix. This leads to the destruction of alveolar tissue, the loss of lung elastic recoil, and a rapid decrease in lung function. Some evidence has indicated that proteasomal inhibition combats fibrosis by inhibiting the expressions of extracellular matrix proteins and metalloproteinases. However, the mechanisms by which proteasome inhibitors may protect against fibrosis are not known. This review summarizes the current research on proteasome inhibitors for pulmonary fibrosis, and provides a reference for whether proteasome inhibitors have the potential to become new drugs for the treatment of pulmonary fibrosis.
Collapse
|
40
|
Abstract
Current therapies for pulmonary fibrosis (PF) focus on slowing disease progression and reducing functional decline in patients by dampening the activation of fibroblasts and other implicated cells. There is a need for strategies that target the essential cells and signaling pathways involved in disease pathogenesis. Monocyte-derived macrophages (Mo-Macs) are known to express profibrotic genes and are involved in the pathogenesis of PF. Our results show that engineered mannosylated albumin nanoparticles specifically targeted disease-inducing Mo-Macs, and further, that nanoparticles efficiently delivered small-interfering RNA against profibrotic cytokine tumor growth factor β1 to prevent bleomycin-induced lung fibrosis. The pathogenesis of lung fibrosis involves hyperactivation of innate and adaptive immune pathways that release inflammatory cytokines and growth factors such as tumor growth factor (TGF)β1 and induce aberrant extracellular matrix protein production. During the genesis of pulmonary fibrosis, resident alveolar macrophages are replaced by a population of newly arrived monocyte-derived interstitial macrophages that subsequently transition into alveolar macrophages (Mo-AMs). These transitioning cells initiate fibrosis by releasing profibrotic cytokines and remodeling the matrix. Here, we describe a strategy for leveraging the up-regulation of the mannose receptor CD206 in interstitial macrophages and Mo-AM to treat lung fibrosis. We engineered mannosylated albumin nanoparticles, which were found to be internalized by fibrogenic CD206+ monocyte derived macrophages (Mo-Macs). Mannosylated albumin nanoparticles incorporating TGFβ1 small-interfering RNA (siRNA) targeted the profibrotic subpopulation of CD206+ macrophages and prevented lung fibrosis. The findings point to the potential utility of mannosylated albumin nanoparticles in delivering TGFβ-siRNA into CD206+ profibrotic macrophages as an antilung fibrosis strategy.
Collapse
|
41
|
Liu X, Pan C, Si L, Tong S, Niu Y, Qiu H, Gan G. Definition of Acute Respiratory Distress Syndrome on the Plateau of Xining, Qinghai: A Verification of the Berlin Definition Altitude-PaO 2/FiO 2-Corrected Criteria. Front Med (Lausanne) 2022; 9:648835. [PMID: 35280910 PMCID: PMC8904903 DOI: 10.3389/fmed.2022.648835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a common critical respiratory illness. Hypoxia at high altitude is a factor that influences the progression of ARDS. Currently, we lack clear diagnostic criteria for high-altitude ARDS. The purpose of this study was to determine the value of the application of the Berlin Definition altitude-PaO2/FiO2-corrected criteria for ARDS in Xining, Qinghai (2,261 m). Methods We retrospectively analyzed the clinical data of patients with ARDS admitted to the Department of Critical Care Medicine of the Affiliated Hospital of Qinghai University from January 2018 to December 2018. The severity of ARDS was categorized according to the Berlin Definition, Berlin Definition altitude-PaO2/FiO2-corrected criteria, and the diagnostic criteria for acute lung injury (ALI)/ARDS at high altitudes in Western China (Zhang criteria). In addition, the differences between the three criteria were compared. Results Among 1,221 patients, 512 were treated with mechanical ventilation. In addition, 253 met the Berlin Definition, including 49 (19.77%) with mild ARDS, 148 (58.50%) with moderate ARDS, and 56 (22.13%) with severe ARDS. A total of 229 patients met the altitude-PaO2/FiO2-corrected criteria, including 107 with mild ARDS (46.72%), 84 with moderate ARDS (36.68%), and 38 (16.59%) with severe ARDS. Intensive care unit (ICU) mortality increased with the severity of ARDS (mild, 17.76%; moderate, 21.43%; and severe, 47.37%). Twenty-eight-day mortality increased with worsening ARDS (mild 23.36% vs. moderate 44.05% vs. severe 63.16%) (p < 0.001). There were 204 patients who met the Zhang criteria, including 87 (42.65%) with acute lung injury and 117 (57.35%) with ARDS. The area under receiver operating characteristics (AUROCs) of the Berlin Definition, the altitude-P/F-corrected criteria, and the Zhang criteria were 0.6675 (95% CI 0.5866–0.7484), 0.6216 (95% CI 0.5317–0.7116), and 0.6050 (95% CI 0.5084–0.7016), respectively. There were no statistically significant differences between the three diagnostic criteria. Conclusion For Xining, Qinghai, the altitude-PaO2/FiO2-corrected criteria for ARDS can distinguish the severity of ARDS, but these results need to be confirmed in a larger sample and in multicenter clinical studies. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT04199650.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Critical Care Medicine, Affiliated Hospital of Qinghai University, Xining, China
| | - Chun Pan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lining Si
- Department of Critical Care Medicine, Affiliated Hospital of Qinghai University, Xining, China
| | - Shijun Tong
- Department of Critical Care Medicine, Affiliated Hospital of Qinghai University, Xining, China
| | - Yi Niu
- Department of Critical Care Medicine, Affiliated Hospital of Qinghai University, Xining, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guifen Gan
- Department of Critical Care Medicine, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
42
|
Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl Res 2022; 241:13-24. [PMID: 34547499 PMCID: PMC8452088 DOI: 10.1016/j.trsl.2021.09.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Abstract
While the coronavirus disease 19 (COVID-19) pandemic has transformed the medical and scientific communites since it was first reported in late 2019, we are only beginning to understand the chronic health burdens associated with this disease. Although COVID-19 is a multi-systemic disease, the lungs are the primary source of infection and injury, resulting in pneumonia and, in severe cases, acute respiratory distress syndrome (ARDS). Given that pulmonary fibrosis is a well-recognized sequela of ARDS, many have questioned whether COVID-19 survivors will face long-term pulmonary consequences. This review is aimed at integrating our understanding of the pathophysiologic mechanisms underlying fibroproliferative ARDS with our current knowledge of the pulmonary consequences of COVID-19 disease.
Collapse
Affiliation(s)
- Jacob E Michalski
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Medicine Service, Pulmonary Section, Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
43
|
Reese CF, Chinnakkannu P, Tourkina E, Hoffman S, Kuppuswamy D. Multiple subregions within the caveolin-1 scaffolding domain inhibit fibrosis, microvascular leakage, and monocyte migration. PLoS One 2022; 17:e0264413. [PMID: 35213624 PMCID: PMC8880820 DOI: 10.1371/journal.pone.0264413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
The caveolin-1 scaffolding domain (CSD, amino acids 82-101 of caveolin-1) has been shown to suppress bleomycin-induced lung and skin fibrosis and angiotensin II (AngII)-induced myocardial fibrosis. To identify active subregions within CSD, we split its sequence into three slightly overlapping 8-amino acid subregions (82-89, 88-95, and 94-101). Interestingly, all three peptides showed activity. In bleomycin-treated mice, all three subregions suppressed the pathological effects on lung and skin tissue morphology. In addition, while bone marrow monocytes isolated from bleomycin-treated mice showed greatly enhanced migration in vitro toward CXCL12, treatment in vivo with CSD and its subregions almost completely suppressed this enhanced migration. In AngII-induced heart failure, both 82-89 and 88-95 significantly suppressed fibrosis (both Col I and HSP47 levels), microvascular leakage, and heart weight/ body weight ratio (HW/BW) while improving ventricular function. In contrast, while 94-101 suppressed the increase in Col I, it did not improve the other parameters. The idea that all three subregions can be active depending on the assay was further supported by experiments studying the in vitro migration of human monocytes in which all three subregions were extremely active. These studies are very novel in that it has been suggested that there is only one active region within CSD that is centered on amino acids 90-92. In contrast, we demonstrate here the presence of other active regions within CSD.
Collapse
Affiliation(s)
- Charles F. Reese
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| | - Panneerselvam Chinnakkannu
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| | - Elena Tourkina
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| | - Stanley Hoffman
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, Unites States of America
| |
Collapse
|
44
|
Robinson S, Parigoris E, Chang J, Hecker L, Takayama S. Contracting scars from fibrin drops. Integr Biol (Camb) 2022; 14:1-12. [PMID: 35184163 PMCID: PMC8934703 DOI: 10.1093/intbio/zyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/13/2022]
Abstract
This paper describes a microscale fibroplasia and contraction model that is based on fibrin-embedded lung fibroblasts and provides a convenient visual readout of fibrosis. Cell-laden fibrin microgel drops are formed by aqueous two-phase microprinting. The cells deposit extracellular matrix (ECM) molecules such as collagen while fibrin is gradually degraded. Ultimately, the cells contract the collagen-rich matrix to form a compact cell-ECM spheroid. The size of the spheroid provides the visual readout of the extent of fibroplasia. Stimulation of this wound-healing model with the profibrotic cytokine TGF-β1 leads to an excessive scar formation response that manifests as increased collagen production and larger cell-ECM spheroids. Addition of drugs also shifted the scarring profile: the FDA-approved fibrosis drugs (nintedanib and pirfenidone) and a PAI-1 inhibitor (TM5275) significantly reduced cell-ECM spheroid size. Not only is the assay useful for evaluation of antifibrotic drug effects, it is relatively sensitive; one of the few in vitro fibroplasia assays that can detect pirfenidone effects at submillimolar concentrations. Although this paper focuses on lung fibrosis, the approach opens opportunities for studying a broad range of fibrotic diseases and for evaluating antifibrotic therapeutics.
Collapse
Affiliation(s)
| | - Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Chang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Louise Hecker
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
45
|
Jung O, Tung YT, Sim E, Chen YC, Lee E, Ferrer M, Song MJ. Development of human-derived, three-dimensional respiratory epithelial tissue constructs with perfusable microvasculature on a high-throughput microfluidics screening platform. Biofabrication 2022; 14. [PMID: 35166694 PMCID: PMC10053540 DOI: 10.1088/1758-5090/ac32a5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
The COVID-19 pandemic has highlighted the need for human respiratory tract-based assay platforms for efficient discovery and development of antivirals and disease-modulating therapeutics. Physiologically relevant tissue models of the lower respiratory tract (LRT), including the respiratory bronchioles and the alveolar sacs, are of high interest because they are the primary site of severe SARS-CoV-2 infection and are most affected during the terminal stage of COVID-19. Current epithelial lung models used to study respiratory viral infections include lung epithelial cells at the air-liquid interface (ALI) with fibroblasts and endothelial cells, but such models do not have a perfusable microvascular network to investigate both viral infectivity and viral infection-induced thrombotic events. Using a high throughput, 64-chip microfluidic plate-based platform, we have developed two novel vascularized, LRT multi-chip models for the alveoli and the small airway. Both models include a perfusable microvascular network consisting of human primary microvascular endothelial cells, fibroblasts and pericytes. The established biofabrication protocols also enable the formation of differentiated lung epithelial layers at the ALI on top of the vascularized tissue bed. We validated the physiologically relevant cellular composition, architecture and perfusion of the vascularized lung tissue models using fluorescence microscopy, flow cytometry, and electrical resistance measurements. These vascularized, perfusable microfluidic lung tissue on high throughput assay platforms will enable the development of respiratory viral infection and disease models for research investigation and drug discovery.
Collapse
Affiliation(s)
- Olive Jung
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America.,Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Esther Sim
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Emily Lee
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| |
Collapse
|
46
|
Acute exacerbation of interstitial lung disease associated with rheumatic disease. Nat Rev Rheumatol 2022; 18:85-96. [PMID: 34876670 DOI: 10.1038/s41584-021-00721-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 11/09/2022]
Abstract
Interstitial lung disease (ILD) is a cause of morbidity and mortality in patients with rheumatic diseases, such as connective-tissue diseases, rheumatoid arthritis and systemic vasculitis. Some patients with ILD secondary to rheumatic disease (RD-ILD) experience acute exacerbations, with sudden ILD progression and high mortality during or immediately after the exacerbation, and a very low 1-year survival rate. In the ILD subtype idiopathic pulmonary fibrosis (IPF), an acute exacerbation is defined as acute worsening or development of dyspnoea associated with new bilateral ground-glass opacities and/or consolidations at high-resolution CT, superimposed on a background pattern consistent with fibrosing ILD. However, acute exacerbation in RD-ILD (AE-RD-ILD) currently has no specific definition. The aetiology and pathogenesis of AE-RD-ILD remain unclear, but distinct triggers might include infection, mechanical stress, microaspiration and DMARD treatment. At this time, no effective evidence-based therapeutic strategies for AE-RD-ILD are available. In clinical practice, AE-RD-ILD is often empirically treated with high-dose systemic steroids and antibiotics, with or without immunosuppressive drugs. In this Review, we summarize the clinical features, diagnosis, management and prognosis of AE-RD-ILD, enabling the similarities and differences with acute exacerbation in IPF to be critically assessed.
Collapse
|
47
|
Abstract
Pulmonary fibrosis, a kind of terminal pathological changes in the lung, is caused by aberrant wound healing, deposition of extracellular matrix (ECM), and eventually replacement of lung parenchyma by ECM. Pulmonary fibrosis induced by acute lung injury and some diseases is reversible under treatment. While idiopathic pulmonary fibrosis is persistent and irreversible even after treatment. Currently, the pathogenesis of irreversible pulmonary fibrosis is not fully elucidated. The known factors associated with the development of irreversible fibrosis include apoptosis resistance of (myo)fibroblasts, dysfunction of pulmonary vessel, cell mitochondria and autophagy, aberrant epithelia hyperplasia and lipid metabolism disorder. In this review, other than a brief introduction of reversible pulmonary fibrosis, we focus on the underlying pathogenesis of irreversible pulmonary fibrosis from the above aspects as well as preclinical disease models, and also suggest directions for future studies.
Collapse
Affiliation(s)
- Qing Yang Yu
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,2Guangzhou Laboratory, Bio-island, Guangzhou, China
| |
Collapse
|
48
|
Knipe RS, Spinney JJ, Abe EA, Probst CK, Franklin A, Logue A, Giacona F, Drummond M, Griffith J, Brazee PL, Hariri LP, Montesi SB, Black KE, Hla T, Kuo A, Cartier A, Engelbrecht E, Christoffersen C, Shea BS, Tager AM, Medoff BD. Endothelial-Specific Loss of Sphingosine-1-Phosphate Receptor 1 Increases Vascular Permeability and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 66:38-52. [PMID: 34343038 PMCID: PMC8803357 DOI: 10.1165/rcmb.2020-0408oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease which leads to significant morbidity and mortality from respiratory failure. The two drugs currently approved for clinical use slow the rate of decline in lung function but have not been shown to halt disease progression or reverse established fibrosis. Thus, new therapeutic targets are needed. Endothelial injury and the resultant vascular permeability are critical components in the response to tissue injury and are present in patients with IPF. However, it remains unclear how vascular permeability affects lung repair and fibrosis following injury. Lipid mediators such as sphingosine-1-phosphate (S1P) are known to regulate multiple homeostatic processes in the lung including vascular permeability. We demonstrate that endothelial cell-(EC) specific deletion of the S1P receptor 1 (S1PR1) in mice (EC-S1pr1-/-) results in increased lung vascular permeability at baseline. Following a low-dose intratracheal bleomycin challenge, EC-S1pr1-/- mice had increased and persistent vascular permeability compared with wild-type mice, which was strongly correlated with the amount and localization of resulting pulmonary fibrosis. EC-S1pr1-/- mice also had increased immune cell infiltration and activation of the coagulation cascade within the lung. However, increased circulating S1P ligand in ApoM-overexpressing mice was insufficient to protect against bleomycin-induced pulmonary fibrosis. Overall, these data demonstrate that endothelial cell S1PR1 controls vascular permeability in the lung, is associated with changes in immune cell infiltration and extravascular coagulation, and modulates the fibrotic response to lung injury.
Collapse
Affiliation(s)
- Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Jillian J. Spinney
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Elizabeth A. Abe
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Clemens K. Probst
- Boston University School of Medicine, Boston University, Boston, Massachusetts
| | | | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Francesca Giacona
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Matt Drummond
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Jason Griffith
- Division of Pulmonary and Critical Care Medicine
- Center for Immunology and Inflammatory Diseases
| | - Patricia L. Brazee
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Lida P. Hariri
- Andrew M. Tager Fibrosis Research Center
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
| | - Katherine E. Black
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andreane Cartier
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric Engelbrecht
- University of Louisville School of Medicine, Louisville, Kentucky
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Barry S. Shea
- Division of Pulmonary, Critical Care, and Sleep Medicine, Rhode Island Hospital and Alpert Medical School, Providence, Rhode Island
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| |
Collapse
|
49
|
Jaffar J, McMillan L, Wilson N, Panousis C, Hardy C, Cho HJ, Symons K, Glaspole I, Westall G, Wong M. Coagulation Factor-XII induces interleukin-6 by primary lung fibroblasts: A role in idiopathic pulmonary fibrosis? Am J Physiol Lung Cell Mol Physiol 2021; 322:L258-L272. [PMID: 34873957 DOI: 10.1152/ajplung.00165.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background The mechanisms driving idiopathic pulmonary fibrosis (IPF) remain undefined, however it is postulated that coagulation imbalances may play a role. The impact of blood-derived clotting factors, including factor XII (FXII) has not been investigated in the context of IPF. Methods Plasma levels of FXII were measured by ELISA in patients with IPF and age-matched healthy donors. Expression of FXII in human lung tissue was quantified using multiplex immunohistochemistry and western blotting. Mechanistic investigation of FXII activity was assessed in vitro on primary lung fibroblasts using qPCR and specific receptor/FXII inhibition. The functional outcome of FXII on fibroblast migration was examined by high-content image analysis. Findings Compared to 35 healthy donors, plasma levels of FXII were not higher in IPF (n=27, p>0·05). Tissue FXII was elevated in IPF (n=11) and increased numbers of FXII+ cells were found in IPF (n=8) lung tissue compared to non-diseased controls (n=6, p<0·0001). Activated FXII induced IL6 mRNA and IL-6 protein in fibroblasts that was blocked by anti-FXII antibody, CSL312. FXII-induced IL-6 production via PAR-1 and NF-kB. FXII induced migration of fibroblasts in a concentration-dependent manner. Interpretation FXII is normally confined to the circulation but leaks from damaged vessels into the lung interstitium in IPF where it 1) induces IL-6 production and 2) enhances migration of resident fibroblasts, critical events that drive chronic inflammation and therefore, contribute to fibrotic disease progression. Targeting FXII-induced fibroblastic processes in IPF may ameliorate pulmonary fibrosis. Funding National Health and Medical Research Council CRE in Lung Fibrosis and CSL Ltd.
Collapse
Affiliation(s)
- Jade Jaffar
- Department of Immunology and Pathology, Monash University, Australia.,Department of Respiratory Medicine, The Alfred Hospital, Australia
| | | | | | | | | | - Hyun Jung Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Australia
| | - Karen Symons
- Department of Respiratory Medicine, The Alfred Hospital, Australia
| | - Ian Glaspole
- Department of Immunology and Pathology, Monash University, Australia.,Department of Respiratory Medicine, The Alfred Hospital, Australia
| | - Glen Westall
- Department of Immunology and Pathology, Monash University, Australia.,Department of Respiratory Medicine, The Alfred Hospital, Australia
| | - Mae Wong
- CSL Limited, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Bolandi SM, Abdolmaleki Z, Assarehzadegan MA. Anti-angiogenic Properties of Bevacizumab Improve Respiratory System Inflammation in Ovalbumin-Induced Rat Model of Asthma. Inflammation 2021; 44:2463-2475. [PMID: 34420156 PMCID: PMC8380193 DOI: 10.1007/s10753-021-01516-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Studies on the bronchial vascular bed have revealed that the number of blood vessels in the lamina propria and under the mucosa of the lung tissue increases in patients suffering from mild to severe asthma. Thus, in this study, a new strategy was employed in respiratory system disorders by angiogenesis inhibition in an ovalbumin (OVA)-induced rat model of asthma. Twenty-one male Wistar albino rats, 8 weeks old, were randomly divided into three groups (n = 7 in each group), including (1) control group, (2) OVA-treated group, and (3) OVA + Bmab (bevacizumab drug). On days 1 and 8, 1 mg of OVA and aluminum hydroxide in sterile phosphate-buffered saline (PBS) were intraperitoneally injected to rats in groups 2 and 3. The control group was only subject to intraperitoneal injection of saline on days 1 and 8. One week after the last injection, the rats (groups 2 and 3) were exposed to OVA inhalation for 30 min at 2-day intervals from days 15 to 25. After sensitization and challenge with OVA, the OVA + Bmab group (group 3) were treated with a 5 mg/kg bevacizumab drug. Genes and protein expression of IL-1β and TNF-α and the expression of vascular endothelial growth factor (VEGF) protein were assessed by real-time PCR and immunohistochemistry respectively, in lung tissue. OVA exposure increased mucosal secretion and inflammatory cell populations in lung tissue and OVA-specific IgE level in serum. Also, VEGF and cytokine factor expression were significantly elevated in the OVA-induced asthma model (p ≤ 0.05). However, rats in OVA + Bmab group showed significantly a decrease in VEGF and IL-1β and TNF-α genes as well as proteins (p ≤ 0.05). The results showed that bevacizumab efficiently diminished bronchial inflammation via downregulation of VEGF expression, followed by inflammatory cells population and cytokines reduction. Angiogenesis inhibition in rats with induced asthma not only suppresses the inflammatory process through blocking VEGF expression but also inhibits the development of new blood vessels and progressing asthmatic attacks.
Collapse
Affiliation(s)
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran.
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|