1
|
Sullivan DI, Ascherman DP. Rheumatoid Arthritis-Associated Interstitial Lung Disease (RA-ILD): Update on Prevalence, Risk Factors, Pathogenesis, and Therapy. Curr Rheumatol Rep 2024; 26:431-449. [PMID: 39320427 DOI: 10.1007/s11926-024-01155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis is frequently complicated by interstitial lung disease (RA-ILD), an underappreciated contributor to excess morbidity and mortality. The true prevalence of RA-ILD is difficult to define given the variability in diagnostic criteria used. The lack of standardized screening methods, an incomplete understanding of disease pathogenesis, and dearth of validated biomarkers have limited the development of controlled clinical trials for this disease. RECENT FINDINGS Numerous studies have focused on clinical, radiographic, genetic, molecular, and/or serologic markers of disease severity as well as risk of disease progression. In addition to defining valuable clinical biomarkers, these studies have provided insights regarding the pathogenesis of RA-ILD and potential therapeutic targets. Additional studies involving immunomodulatory and/or anti-fibrotic agents have assessed new therapeutic options for different stages of RA-ILD. RA-ILD continues to be a major contributor to the increased morbidity and mortality associated with RA. Advancements in our understanding of disease pathogenesis at a molecular level are necessary to drive the development of more targeted therapy.
Collapse
Affiliation(s)
- Daniel I Sullivan
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, UPMC Montefiore Hospital, 3459 Fifth Ave, NW 628, Pittsburgh, PA, 15213, USA.
| | - Dana P Ascherman
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Wang HF, Wang YY, Li ZY, He PJ, Liu S, Li QS. The prevalence and risk factors of rheumatoid arthritis-associated interstitial lung disease: a systematic review and meta-analysis. Ann Med 2024; 56:2332406. [PMID: 38547537 PMCID: PMC10984230 DOI: 10.1080/07853890.2024.2332406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/09/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) is the most widespread and fatal pulmonary complication of rheumatoid arthritis (RA). Existing knowledge on the prevalence and risk factors of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is inconclusive. Therefore, we designed this review to address this gap. MATERIALS AND METHODS To find relevant observational studies discussing the prevalence and/or risk factors of RA-ILD, EMBASE, Web of Science, PubMed, and the Cochrane Library were explored. The pooled odds ratios (ORs) / hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated with a fixed/ random effects model. While subgroup analysis, meta-regression analysis and sensitivity analysis were carried out to determine the sources of heterogeneity, the I2 statistic was utilized to assess between-studies heterogeneity. Funnel plots and Egger's test were employed to assess publication bias. Following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, our review was conducted. RESULTS A total of 56 studies with 11,851 RA-ILD patients were included in this meta-analysis. The pooled prevalence of RA-ILD was 18.7% (95% CI 15.8-21.6) with significant heterogeneity (I2 = 96.4%). The prevalence of RA-ILD was found to be more likely as a result of several identified factors, including male sex (ORs = 1.92 95% CI 1.70-2.16), older age (WMDs = 6.89, 95% CI 3.10-10.67), having a smoking history (ORs =1.91, 95% CI 1.48-2.47), pulmonary comorbidities predicted (HRs = 2.08, 95% CI 1.89-2.30), longer RA duration (ORs = 1.03, 95% CI 1.01-1.05), older age of RA onset (WMDs =4.46, 95% CI 0.63-8.29), positive RF (HRs = 1.15, 95%CI 0.75-1.77; ORs = 2.11, 95%CI 1.65-2.68), positive ACPA (ORs = 2.11, 95%CI 1.65-2.68), higher ESR (ORs = 1.008, 95%CI 1.002-1.014), moderate and high DAS28 (≥3.2) (ORs = 1.87, 95%CI 1.36-2.58), rheumatoid nodules (ORs = 1.87, 95% CI 1.18-2.98), LEF use (ORs = 1.42, 95%CI 1.08-1.87) and steroid use (HRs= 1.70, 1.13-2.55). The use of biological agents was a protective factor (HRs = 0.77, 95% CI 0.69-0.87). CONCLUSION(S) The pooled prevalence of RA-ILD in our study was approximately 18.7%. Furthermore, we identified 13 risk factors for RA-ILD, including male sex, older age, having a smoking history, pulmonary comorbidities, older age of RA onset, longer RA duration, positive RF, positive ACPA, higher ESR, moderate and high DAS28 (≥3.2), rheumatoid nodules, LEF use and steroid use. Additionally, biological agents use was a protective factor.
Collapse
Affiliation(s)
- Hong-Fei Wang
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yan-Yun Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medicine University, Hangzhou, China
- Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Zhi-Yu Li
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)
| | - Pei-Jie He
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shan Liu
- Center of Clinical Evaluation and Analysis, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)
| | - Qiu-Shuang Li
- Center of Clinical Evaluation and Analysis, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)
| |
Collapse
|
3
|
Hu J, Shen P, Mao Y, Qiu J, Xu L, Wu Y, Wang Y, Ding Y, Lin H, Shui L, Feng T, Wang J, Chen K. Association of fine particulate matter and residential green space with rheumatoid arthritis. ENVIRONMENTAL RESEARCH 2024; 263:120151. [PMID: 39414107 DOI: 10.1016/j.envres.2024.120151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Fine particulate matter (PM2.5) is a recognized risk factor for respiratory and cardiovascular diseases, but the association between PM2.5 and rheumatoid arthritis (RA) is still controversial. Additionally, evidence on the relationship of green space with RA is scarce. This study aimed to investigate the separate and combined associations of PM2.5 and green space with risk of RA. METHODS Our study involved 30,684 participants from the Yinzhou cohort in Ningbo, China. PM2.5 concentrations were determined using a land-use regression model. Residential green space was assessed using the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) from satellite images. We employed the Cox proportional hazard model to evaluate the relationships of PM2.5 and green space with RA. RESULTS During the 176,894 person-years of follow-up period, 354 cases of RA were identified. Hazard ratio (HR) and the corresponding 95% confidence interval (95% CI) for every interquartile range (IQR) increase in PM2.5 were 1.23 (95% CI: 1.02, 1.49). Compared with lower exposure to residential green space, individuals living in areas with more green space had a decreased risk of RA (HR was 0.80 (95% CI: 0.70, 0.92), 0.80 (95% CI: 0.70, 0.92), and 0.79 (95% CI: 0.70, 0.89) for 250m, 500m, and 1000m NDVI buffers, respectively). Similar results were observed for the association between EVI and RA. Furthermore, a significant multiplicative interaction was observed between PM2.5 and green space (NDVI 250m and EVI 250m). No mediating effect of PM2.5 on the relationship between green space and RA was observed. CONCLUSION Our findings indicated that living in areas with higher green space was linked to a reduced risk of RA, whereas living in areas with higher PM2.5 was associated with an increased risk of RA. The beneficial effect of high green space may be offset by exposure to PM2.5.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jie Qiu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Lisha Xu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Yonghao Wu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Yixing Wang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ye Ding
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongbo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Liming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo 315040, China
| | - Tong Feng
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| | - Jianbing Wang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
4
|
Wu H, Liu J, Conway E, Zhan N, Zheng L, Sun S, Li J. Fine particulate matter components associated with exacerbated depressive symptoms among middle-aged and older adults in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174228. [PMID: 38914329 DOI: 10.1016/j.scitotenv.2024.174228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Growing awareness acknowledges ambient fine particulate matter (PM2.5) as an environmental risk factor for mental disorders, especially among older people. However, there remains limited evidence regarding which specific chemical components of PM2.5 may be more detrimental. This nationwide prospective cohort study included 22,126 middle-aged and older adult participants of the China Health and Retirement Longitudinal Study (CHARLS, 2011-2016), to explore the individual and joint associations between long-term exposure to various PM2.5 components (sulfate, nitrate, ammonium, organic matter, and black carbon) and depressive symptoms. The depressive symptoms were assessed using the 10-item Center for Epidemiological Studies-Depression Scale (CES-D-10). Using the novel quantile-based g-computation for multi-pollutant mixture analysis, we found that exposure to the mixture of major PM2.5 components was significantly associated with aggravating depressive symptoms, with the exposure-response curve exhibiting consistent linear or supra-linear shape without a lower threshold. The estimated weight index indicated that, among major PM2.5 components, only nitrate, sulfate, and black carbon significantly contributed to the exacerbation of depressive symptoms. Given the expanding aging population, stricter regulation on the emissions of particularly toxic PM2.5 components may mitigate the escalating disease burden of depression.
Collapse
Affiliation(s)
- Haisheng Wu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiaqi Liu
- Department of Mathematics, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Erica Conway
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Na Zhan
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | | | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
5
|
Bade KJ, Mueller KT, Sparks JA. Air Pollution and Rheumatoid Arthritis Risk and Progression: Implications for the Mucosal Origins Hypothesis and Climate Change for RA Pathogenesis. Curr Rheumatol Rep 2024; 26:343-353. [PMID: 39093508 DOI: 10.1007/s11926-024-01160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE OF REVIEW The goal of this review paper is to summarize the main research and findings regarding air pollution and its association with the risk and progression of rheumatoid arthritis (RA). RECENT FINDINGS The most studied components of air pollution included particulate matter of ≤ 2.5 microns in diameter (PM2.5), PM10, carbon monoxide (CO), nitrogen dioxide (NO2), nitric oxide (NOx), sulfur dioxide (SO2), and ozone (O3). In addition, specific occupations and occupational inhalants have been investigated for RA risk. Several studies showed that increased exposure to air pollutants increased the risk of developing RA, particularly seropositive RA. There was evidence of gene-inhalant interactions for seropositive RA risk. Fewer studies have been conducted on RA disease activity and bone erosions. Some studies suggest that patients with RA-associated interstitial lung disease may have worse outcomes if exposed to air pollution. We summarized associations between air pollution and increased RA risk, including RA-associated interstitial lung disease. Relatively few studies investigated air pollution and RA disease activity or other outcomes. These results suggest an important role of air pollution for seropositive RA development and suggest that climate change could be a driver in increasing RA incidence as air pollution increases.
Collapse
Affiliation(s)
- Katarina J Bade
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, 60 Fenwood Road, #6016U, Boston, MA, 02115, USA
| | - Kevin T Mueller
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, 60 Fenwood Road, #6016U, Boston, MA, 02115, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, 60 Fenwood Road, #6016U, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Chen S, Liu D, Huang L, Guo C, Gao X, Xu Z, Yang Z, Chen Y, Li M, Yang J. Global associations between long-term exposure to PM 2.5 constituents and health: A systematic review and meta-analysis of cohort studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134715. [PMID: 38838524 DOI: 10.1016/j.jhazmat.2024.134715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Existing studies on the most impactful component remain controversial, hindering the optimization of future air quality standards that concerns particle composition. We aimed to summarize the health risk associated with PM2.5 components and identify those components with the greatest health risk. We performed a meta-analysis to quantify the combined health effects of PM2.5 components, and used the meta-smoothing to produce the pooled concentration-response (C-R) curves. Out of 8954 initial articles, 80 cohort studies met the inclusion criteria, including a total of 198.08 million population. The pooled C-R curves demonstrated approximately J-shaped association between total mortality and exposure to BC, and NO3-, but U-shaped and inverted U-shaped relationship withSO42- and OC, respectively. In addition, this study found that exposure to various elements, including BC,SO42-NO3-, NH4+, Zn, Ni, and Si, were significantly associated with an increased risk of total mortality, with Ni presenting the largest estimate. And exposure to NO3-, Zn, and Si was positively associated with an increased risk of respiratory mortality, while exposure to BC, SO42-, and NO3- showed a positive association with risk of cardiovascular mortality. For health outcome of morbidity, BC was notably associated with a higher incidence of asthma, type 2 diabetes and stroke. Subgroup analysis revealed a higher susceptibility to PM2.5 components in Asia compared to Europe and North America, and females showed a higher vulnerability. Given the significant health effects of PM2.5 components, governments are advised to introduce them in regional monitoring and air quality control guidelines. ENVIRONMENTAL IMPLICATION: PM2.5 is a complex mixture of chemical components from various sources, and each component has unique physicochemical properties and uncertain toxicity, posing significant threat to public health. This study systematically reviewed cohort studies on the association between long-term exposure to 13 PM2.5 components and the risk of morbidity and mortality. And we applied the meta-smoothing approach to establish the pooled concentration-response associations between PM2.5 components and mortality globally. Our findings will provide strong support for PM2.5 components monitoring and the improvement of air quality-related regulations. This will aid in helping to enhance health intervention strategies and mitigating public exposure to detrimental particulate matter.
Collapse
Affiliation(s)
- Sujuan Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Di Liu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Lin Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Cui Guo
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Hong Kong SAR
| | - Xiaoke Gao
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengmeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
7
|
Zhao N, Smargiassi A, Chen H, Widdifield J, Bernatsky S. Fine Particulate Matter Components and Risk of Rheumatoid Arthritis: A Large General Canadian Open Cohort Study. Arthritis Care Res (Hoboken) 2024. [PMID: 39014888 DOI: 10.1002/acr.25403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE Exposure to fine particulate matter (PM2.5) has been linked to many diseases. However, it remains unclear which PM2.5 chemical components for these diseases, including rheumatoid arthritis (RA), are more harmful. This study aimed to assess potential associations between PM2.5 components and RA and quantify the individual effects of each chemical component on RA risk. METHODS An open cohort of 11,696,930 Canadian adults was assembled using Ontario administrative health data from January 2007 onward. Individuals were followed until RA onset, death, emigration from Ontario, or the end of the study (December 2019). Incident RA cases were defined by physician billing and hospitalization discharge diagnostic codes. The average levels of PM2.5 components (ammonium, black carbon, mineral dust, nitrate, organic matter, sea salt, and sulfate) for 5 years before cohort entry were assigned to participants based on residential postal codes. A quantile g-computation and Cox proportional hazard models for time to RA onset were developed for the mixture of PM2.5 components and environmental overall PM2.5, respectively. RESULTS We identified 67,676 new RA cases across 130,934,256 person-years. The adjusted hazard ratios for the time to RA onset were 1.027 and 1.023 (95% confidence intervals 1.021-1.033 and 1.017-1.029) per every decile increase in exposures to all seven components and per 1 μg/m3 increase in the overall PM2.5, respectively. Ammonium contributed the most to RA onset in the seven components. CONCLUSION Exposure to PM2.5 components was modestly associated with RA risk. Public health efforts focusing on specific components (eg, ammonium) may be a more efficient way to reduce RA burden.
Collapse
Affiliation(s)
- Naizhuo Zhao
- McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Hong Chen
- Health Canada, Ottawa, Institute for Clinical Evaluative Sciences, Toronto, Public Health Ontario, Toronto, and University of Toronto, Toronto, Ontario, Canada
| | - Jessica Widdifield
- Institute for Clinical Evaluative Sciences and University of Toronto, Toronto, Ontario, Canada
| | - Sasha Bernatsky
- McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Xing Y, Liu Y, Sha S, Zhang Y, Dou Y, Liu C, Xu M, Zhao L, Wang J, Wang Y, Ma X, Yan Q, Kong X. Multikingdom characterization of gut microbiota in patients with rheumatoid arthritis and rheumatoid arthritis-associated interstitial lung disease. J Med Virol 2024; 96:e29781. [PMID: 38961767 DOI: 10.1002/jmv.29781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a serious and common extra-articular disease manifestation. Patients with RA-ILD experience reduced bacterial diversity and gut bacteriome alterations. However, the gut mycobiome and virome in these patients have been largely neglected. In this study, we performed whole-metagenome shotgun sequencing on fecal samples from 30 patients with RA-ILD, and 30 with RA-non-ILD, and 40 matched healthy controls. The gut bacteriome and mycobiome were explored using a reference-based approach, while the gut virome was profiled based on a nonredundant viral operational taxonomic unit (vOTU) catalog. The results revealed significant alterations in the gut microbiomes of both RA-ILD and RA-non-ILD groups compared with healthy controls. These alterations encompassed changes in the relative abundances of 351 bacterial species, 65 fungal species, and 4,367 vOTUs. Bacteria such as Bifidobacterium longum, Dorea formicigenerans, and Collinsella aerofaciens were enriched in both patient groups. Ruminococcus gnavus (RA-ILD), Gemmiger formicilis, and Ruminococcus bromii (RA-non-ILD) were uniquely enriched. Conversely, Faecalibacterium prausnitzii, Bacteroides spp., and Roseburia inulinivorans showed depletion in both patient groups. Mycobiome analysis revealed depletion of certain fungi, including Saccharomyces cerevisiae and Candida albicans, in patients with RA compared with healthy subjects. Notably, gut virome alterations were characterized by an increase in Siphoviridae and a decrease in Myoviridae, Microviridae, and Autographiviridae in both patient groups. Hence, multikingdom gut microbial signatures showed promise as diagnostic indicators for both RA-ILD and RA-non-ILD. Overall, this study provides comprehensive insights into the fecal virome, bacteriome, and mycobiome landscapes of RA-ILD and RA-non-ILD gut microbiota, thereby offering potential biomarkers for further mechanistic and clinical research.
Collapse
Affiliation(s)
- Yida Xing
- Department of Rheumatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiping Liu
- Department of Rheumatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shanshan Sha
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Yuemeng Dou
- Department of Rheumatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changyan Liu
- Department of Rheumatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingxi Xu
- Department of Rheumatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Zhao
- Department of Rheumatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingdan Wang
- Department of Rheumatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Wang
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaodan Kong
- Department of Rheumatology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Zhu S, Zhang F, Xie X, Zhu W, Tang H, Zhao D, Ruan L, Li D. Association between long-term exposure to fine particulate matter and its chemical constituents and premature death in individuals living with HIV/AIDS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124052. [PMID: 38703976 DOI: 10.1016/j.envpol.2024.124052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Long-term exposure to fine particulate matter (PM2.5) is associated with an increased total mortality. However, the association of PM2.5 with mortality in people living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS, PLWHA) and the relationship between its constituents and adverse outcomes remain unknown. In this cohort study, 28,140 PLWHA were recruited from the HIV/AIDS Comprehensive Response Information Management System of the Hubei Provincial Centre for Disease Control and Prevention in China between 2001 and 2020. The annual PM2.5 chemical composition data, including sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), black carbon (BC), and organic matter (OM), was extracted from the Tracking Air Pollution (TAP) dataset in China. A Cox proportional hazard model with time-varying exposure and time-to-event quantile-based generalized (g) computation was used to assess the associations between PM2.5 chemical constituents, and mortality in PLWHA. A multivariate Cox proportional hazard model estimated an excess hazard ratio (eHR) of 0.32% [95% confidence interval (CI): (0.01%, 0.64%)] for AIDS-related death (ARD), associated with 1 μg/m3 rise in PM2.5 exposure. An increase of 1 μg/m3 in NH4+ was associated with 5.13% [95% CI: (2.89%, 7.43%)] and 2.97% [95% CI: (1.52%, 4.44%)] increase in the risk of ARD and all-cause deaths (ACD), respectively. When estimated using survival-based quantile g-computation, the eHR for ARD with a joint change in a decile increase in all five components was 6.10% [95% CI: 3.77%, 8.48%)]. Long-term exposure to PM2.5 chemical composition, particularly NH4+ increased the risk of death in PLWHA. This study provides epidemiological evidence that SO42- and NH4+ increased the risk of ARD and that NH4+ increased the risk of ACD in PLWHA. Multi-constituent analyses further suggested that NH4+ may be a key component in increasing the risk of premature death in patients with HIV/AIDS. Individuals aged ≥65 with HIV/AIDS are more vulnerable to SO42-, and consequent ACD.
Collapse
Affiliation(s)
- Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaoxin Xie
- Guiyang Public Health Treatment Center, Guiyang, 550004, China
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Heng Tang
- Institute for the Prevention and Control of HIV/AIDS, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Dingyuan Zhao
- Institute for the Prevention and Control of HIV/AIDS, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Lianguo Ruan
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
10
|
Anton ML, Cardoneanu A, Burlui AM, Mihai IR, Richter P, Bratoiu I, Macovei LA, Rezus E. The Lung in Rheumatoid Arthritis-Friend or Enemy? Int J Mol Sci 2024; 25:6460. [PMID: 38928165 PMCID: PMC11203675 DOI: 10.3390/ijms25126460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune condition frequently found in rheumatological patients that sometimes raises diagnosis and management problems. The pathogenesis of the disease is complex and involves the activation of many cells and intracellular signaling pathways, ultimately leading to the activation of the innate and acquired immune system and producing extensive tissue damage. Along with joint involvement, RA can have numerous extra-articular manifestations (EAMs), among which lung damage, especially interstitial lung disease (ILD), negatively influences the evolution and survival of these patients. Although there are more and more RA-ILD cases, the pathogenesis is incompletely understood. In terms of genetic predisposition, external environmental factors act and subsequently determine the activation of immune system cells such as macrophages, neutrophils, B and T lymphocytes, fibroblasts, and dendritic cells. These, in turn, show the ability to secrete molecules with a proinflammatory role (cytokines, chemokines, growth factors) that will produce important visceral injuries, including pulmonary changes. Currently, there is new evidence that supports the initiation of the systemic immune response at the level of pulmonary mucosa where the citrullination process occurs, whereby the autoantibodies subsequently migrate from the lung to the synovial membrane. The aim of this paper is to provide current data regarding the pathogenesis of RA-associated ILD, starting from environmental triggers and reaching the cellular, humoral, and molecular changes involved in the onset of the disease.
Collapse
Affiliation(s)
- Maria-Luciana Anton
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Anca Cardoneanu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandra Maria Burlui
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Ruxandra Mihai
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
11
|
Fidler L, Widdifield J, Fisher J, Shapera S, Gershon AS. Early versus late onset interstitial lung disease in rheumatoid arthritis: An observational study of risk factors and mortality in Ontario, Canada. Respirology 2024; 29:243-251. [PMID: 38092528 DOI: 10.1111/resp.14645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/28/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND AND OBJECTIVE Interstitial lung disease (ILD) can occur as a manifestation of rheumatoid arthritis (RA) at various times in the disease course. We aimed to identify factors associated with early versus late onset RA-ILD and how the timing of RA-ILD influenced surgical lung biopsy completion and mortality. METHODS We performed a retrospective observational study using health services data from Ontario, Canada. We identified RA cases between 2000 and 2020 using the Ontario Rheumatoid Arthritis Database. RA-ILD diagnosis required repeat physician visits for ILD, with early RA-ILD defined as within 1 year of RA diagnosis. We performed multivariable logistic regression to identify factors associated with early RA-ILD and surgical lung biopsy completion, and multivariable cox-proportional hazards regression to evaluate the association of early versus late RA-ILD on all-cause and RA-ILD related mortality. RESULTS In total, we identified 3717 cases of RA-ILD. Older age at RA diagnosis [OR 1.04 (95%CI 1.03-1.05), p < 0.0001], female sex [OR 1.16 (95%CI 1.01-1.35), p = 0.04] and immigrating to Ontario [OR 1.70 (95%CI 1.35-2.14), p < 0.0001] was associated with early RA-ILD. Patients with early versus late RA-ILD experienced similar odds of undergoing a surgical lung biopsy [OR 1.34 (95%CI 0.83-2.16), p = 0.23]. Early RA-ILD was associated with increased all-cause mortality [HR 1.17 (95%CI 1.07-1.29), p = 0.0009], primarily driven by an increase in RA-ILD related mortality [HR 1.45 (95%CI 1.19-1.76), p = 0.0003]. CONCLUSION Age at RA onset, female sex and immigration status are associated with early RA-ILD. Patients with early RA-ILD experience increased all-cause and RA-ILD related mortality after adjusting for demographics and comorbidities.
Collapse
Affiliation(s)
- Lee Fidler
- Division of Respirology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| | - Jessica Widdifield
- ICES, Toronto, Ontario, Canada
- Holland Bone & Joint Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Institute of Health Policy, Management & Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Jolene Fisher
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Shane Shapera
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Andrea S Gershon
- Division of Respirology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Institute of Health Policy, Management & Evaluation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Kim SH, Kim SY, Yoon HY, Song JW. PM 10 increases mortality risk in rheumatoid arthritis-associated interstitial lung disease. RMD Open 2024; 10:e003680. [PMID: 38331470 PMCID: PMC10860120 DOI: 10.1136/rmdopen-2023-003680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVES The effect of air pollution on the prognosis of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) remains poorly understood. We aimed to evaluate the effect of long-term exposure to particulate matter with an aerodynamic diameter of ≤10 µm (PM10) and nitrogen dioxide (NO2) on mortality in patients with RA-ILD. METHODS We included 309 patients (mean age, 61.7 years; male, 44.3%) with RA-ILD. Individual-level long-term exposures to PM10 and NO2 at their residential addresses were estimated using a national-scale exposure prediction model. The effect of the two air pollutants on mortality was estimated using a Cox-proportional hazards model adjusted for individual-level and area-level characteristics. RESULTS The median follow-up period was 4.8 years, and 40.8% of patients died or underwent lung transplantation. The annual average concentrations of PM10 and NO2 were 56.3 μg/m3 and 22.4 ppb, respectively. When air pollutant levels were stratified by quartiles, no association was observed between air pollutant concentration and mortality in patients with RA-ILD. However, when stratified by two groups (high exposure (top 25th percentile) vs low exposure (bottom 75th percentile)), we observed a significant association between high PM10 exposure and mortality (HR 1.68; 95% CI 1.11 to 2.52; p=0.013) but no association between NO2 exposure and mortality. In the subgroup analyses, the effect of high PM10 exposure on mortality was significant in patients aged <65 years (HR 1.98; 95% CI 1.02 to 3.85; p=0.045). CONCLUSIONS Our results indicated that high PM10 exposure may be associated with mortality in patients with RA-ILD.
Collapse
Affiliation(s)
- Soo Han Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea
| | - Sun-Young Kim
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
| | - Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Chen PK, Tang KT, Chen DY. The NLRP3 Inflammasome as a Pathogenic Player Showing Therapeutic Potential in Rheumatoid Arthritis and Its Comorbidities: A Narrative Review. Int J Mol Sci 2024; 25:626. [PMID: 38203796 PMCID: PMC10779699 DOI: 10.3390/ijms25010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by chronic synovitis and the progressive destruction of cartilage and bone. RA is commonly accompanied by extra-articular comorbidities. The pathogenesis of RA and its comorbidities is complex and not completely elucidated. The assembly of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activates caspase-1, which induces the maturation of interleukin (IL)-1β and IL-18 and leads to the cleavage of gasdermin D with promoting pyroptosis. Accumulative evidence indicates the pathogenic role of NLRP3 inflammasome signaling in RA and its comorbidities, including atherosclerotic cardiovascular disease, osteoporosis, and interstitial lung diseases. Although the available therapeutic agents are effective for RA treatment, their high cost and increased infection rate are causes for concern. Recent evidence revealed the components of the NLRP3 inflammasome as potential therapeutic targets in RA and its comorbidities. In this review, we searched the MEDLINE database using the PubMed interface and reviewed English-language literature on the NLRP3 inflammasome in RA and its comorbidities from 2000 to 2023. The current evidence reveals that the NLRP3 inflammasome contributes to the pathogenesis of RA and its comorbidities. Consequently, the components of the NLRP3 inflammasome signaling pathway represent promising therapeutic targets, and ongoing research might lead to the development of new, effective treatments for RA and its comorbidities.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
| | - Kuo-Tung Tang
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112304, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
14
|
Goobie GC. Where you live matters: Roadways, air pollution and lung function in patients with idiopathic pulmonary fibrosis. Respirology 2023; 28:906-908. [PMID: 37536709 DOI: 10.1111/resp.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
See related article
Collapse
Affiliation(s)
- Gillian C Goobie
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Balakrishnan B, Callahan SJ, Cherian SV, Subramanian A, Sarkar S, Bhatt N, Scholand MB. Climate Change for the Pulmonologist: A Focused Review. Chest 2023; 164:963-974. [PMID: 37054776 DOI: 10.1016/j.chest.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Climate change adversely impacts global health. Increasingly, temperature variability, inclement weather, declining air quality, and growing food and clean water supply insecurities threaten human health. Earth's temperature is projected to increase up to 6.4 °C by the end of the 21st century, exacerbating the threat. Public and health care professionals, including pulmonologists, perceive the detrimental effects of climate change and air pollution and support efforts to mitigate its effects. In fact, evidence is strong that premature cardiopulmonary death is associated with air pollution exposure via inhalation through the respiratory system, which functions as a portal of entry. However, little guidance is available for pulmonologists in recognizing the effects of climate change and air pollution on the diverse range of pulmonary disorders. To educate and mitigate risk for patients competently, pulmonologists must be armed with evidence-based findings of the impact of climate change and air pollution on specific pulmonary diseases. Our goal is to provide pulmonologists with the background and tools to improve patients' health and to prevent adverse outcomes despite climate change-imposed threats. In this review, we detail current evidence of climate change and air pollution impact on a diverse range of pulmonary disorders. Knowledge enables a proactive and individualized approach toward prevention strategies for patients, rather than merely treating ailments reactively.
Collapse
Affiliation(s)
- Bathmapriya Balakrishnan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL.
| | - Sean J Callahan
- Division of Pulmonary Medicine, University of Utah Health, Salt Lake City, UT; Division of Pulmonary Medicine, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| | - Sujith V Cherian
- Division of Critical Care, Pulmonary and Sleep Medicine, University of Texas Health-McGovern Medical School, Houston; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| | - Abirami Subramanian
- Department of Pulmonary and Critical Care Medicine, Baylor Scott and White Health, Dallas, TX; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| | - Sauradeep Sarkar
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV
| | - Nitin Bhatt
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University, Columbus, OH; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| | - Mary-Beth Scholand
- Division of Pulmonary Medicine, University of Utah Health, Salt Lake City, UT; Occupational and Environmental Health Section, Diffuse Lung Disease and Lung Transplant Network, CHEST, Glenview, IL
| |
Collapse
|
16
|
Gumtorntip W, Kasitanon N, Louthrenoo W, Chattipakorn N, Chattipakorn SC. Potential roles of air pollutants on the induction and aggravation of rheumatoid arthritis: From cell to bedside studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122181. [PMID: 37453681 DOI: 10.1016/j.envpol.2023.122181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Rheumatoid arthritis (RA) is an involving chronic systemic inflammatory disease which mainly affects the joints. Several factors including genetic, environment and infections have been acknowledged as being involved in the pathogenesis and aggravation of RA. Air pollution, particularly particulate matter is widely recognized as a cause of health problems. This review is to summarize and discuss the association between air pollutants and the development or the aggravation of RA based on evidence from in vitro, in vivo and clinical studies. The results from the review found that air pollutants can stimulate immunological processes and stimulate inflammatory mediators and autoantibodies productions, both in intro and in vivo studies. In addition, air pollutants can induce RA and aggravate RA disease activity. Unfortunately, there also are some discrepancies in the results, which might be due to the type cell line and the concentration of air pollutants used in the in vitro and in vivo studies, as well as the concentration and duration of exposure in human studies. These findings suggest that future studies focused on elucidating these mechanisms using advanced techniques and identifying reliable biomarkers to assess individual susceptibility and disease activity should be carried out. Longitudinal studies, intervention strategies, and policy implications also should be explored. A comprehensive understanding on these association will facilitate targeted approaches for prevention and management of air pollutant-induced RA and improve health outcome.
Collapse
Affiliation(s)
- Wanitcha Gumtorntip
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nuntana Kasitanon
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Worawit Louthrenoo
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Kim Y, Yang HI, Kim KS. Etiology and Pathogenesis of Rheumatoid Arthritis-Interstitial Lung Disease. Int J Mol Sci 2023; 24:14509. [PMID: 37833957 PMCID: PMC10572849 DOI: 10.3390/ijms241914509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Interstitial lung disease (ILD) is one of the most serious extra-articular complications of rheumatoid arthritis (RA), which increases the mortality of RA. Because the pathogenesis of RA-ILD remains poorly understood, appropriate therapeutic strategies and biomarkers have not yet been identified. Thus, the goal of this review was to summarize and analyze the reported data on the etiology and pathogenesis of RA-ILD. The incidence of RA-ILD increases with age, and is also generally higher in men than in women and in patients with specific genetic variations and ethnicity. Lifestyle factors associated with an increased risk of RA-ILD include smoking and exposure to pollutants. The presence of an anti-cyclic citrullinated peptide antibody, high RA disease activity, and rheumatoid factor positivity also increase the risk of RA-ILD. We also explored the roles of biological processes (e.g., fibroblast-myofibroblast transition, epithelial-mesenchymal transition, and immunological processes), signaling pathways (e.g., JAK/STAT and PI3K/Akt), and the histopathology of RA involved in RA-ILD pathogenesis based on published preclinical and clinical models of RA-ILD in animal and human studies.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Medicine, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea;
| | - Hyung-In Yang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea;
| | - Kyoung-Soo Kim
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Li J, Tang W, Li S, He C, Dai Y, Feng S, Zeng C, Yang T, Meng Q, Meng J, Pan Y, Deji S, Zhang J, Xie L, Guo B, Lin H, Zhao X. Ambient PM2.5 and its components associated with 10-year atherosclerotic cardiovascular disease risk in Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115371. [PMID: 37643506 DOI: 10.1016/j.ecoenv.2023.115371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Exposure to particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5) may increase the risk of 10-year atherosclerotic cardiovascular disease (ASCVD) risk. While PM2.5 is comprised of various components, the evidence on the correlation of its components with 10-year ASCVD risk and which component contributes most remains limited. METHODS Data were derived from the baseline assessments of China Multi-Ethnic Cohort (CMEC). In total, 69,722 individuals aged 35-74 years were included into this study. The annual average concentration of PM2.5 and its components (black carbon, ammonium, nitrate, sulfate, organic matter, soil particles, and sea salt) were estimated by satellite remote sensing and chemical transport models. The ASCVD risk of individuals was calculated by the equations from the China-PAR Project (prediction for ASCVD risk in China). The relationship between single exposure to PM2.5 and its components and predicted 10-year ASCVD risk was assessed using the logistic regression model. The effect of joint exposure was estimated, and the most significant contributor was identified using the weighted quantile sum approach. RESULTS Totally 69,722 participants were included, of which 95.8 % and 4.2 % had low and high 10-year ASCVD risk, respectively. Per standard deviation increases in the 3-year average concentration of PM2.5 mass (odds ratio [OR] 1.23, 95 % confidence interval [CI]: 1.12-1.35), black carbon (1.21, 1.11-1.33), ammonium (1.21, 1.10-1.32), nitrate (1.25, 1.14-1.38), organic matter (1.29, 1.18-1.42), sulfate (1.17, 1.07-1.28), and soil particles (1.15, 1.04-1.26) were related to high 10-year ASCVD risk. The overall effect (1.19, 1.11-1.28) of the PM2.5 components was positively associated with 10-year ASCVD risk, and organic matter had the most contribution to this relationship. Female participants were more significantly impacted by PM2.5, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles compared to others. CONCLUSION Long-term exposure to PM2.5 mass, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles were positively associated with high 10-year ASCVD risk, while sea salt exhibited a protective effect. Moreover, the organic matter might take primary responsibility for the relationship between PM2.5 and 10-year ASCVD risk. Females were more susceptible to the adverse effect.
Collapse
Affiliation(s)
- Jiawei Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenge Tang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Sicheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Congyuan He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yucen Dai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingting Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan 850000, China
| | - Jiantong Meng
- Chengdu Center for Disease Control & Prevention, Chengdu, Sichuan 610041, China
| | | | - Suolang Deji
- Tibet Center for Disease Control and Prevention CN, Lhasa 850000, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
19
|
Smith DJF, Jenkins RG. Contemporary Concise Review 2022: Interstitial lung disease. Respirology 2023; 28:627-635. [PMID: 37121779 DOI: 10.1111/resp.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Novel genetic associations for idiopathic pulmonary fibrosis (IPF) risk have been identified. Common genetic variants associated with IPF are also associated with chronic hypersensitivity pneumonitis. The characterization of underlying mechanisms, such as pathways involved in myofibroblast differentiation, may reveal targets for future treatments. Newly identified circulating biomarkers are associated with disease progression and mortality. Deep learning and machine learning may increase accuracy in the interpretation of CT scans. Novel treatments have shown benefit in phase 2 clinical trials. Hospitalization with COVID-19 is associated with residual lung abnormalities in a substantial number of patients. Inequalities exist in delivering and accessing interstitial lung disease specialist care.
Collapse
Affiliation(s)
- David J F Smith
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Interstitial Lung Disease, Royal Brompton and Harefield Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Interstitial Lung Disease, Royal Brompton and Harefield Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Zhao N, Smargiassi A, Chen H, Widdifield J, Bernatsky S. Systemic autoimmune rheumatic diseases and multiple industrial air pollutant emissions: A large general population Canadian cohort analysis. ENVIRONMENT INTERNATIONAL 2023; 174:107920. [PMID: 37068387 DOI: 10.1016/j.envint.2023.107920] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Past investigations of air pollution and systemic autoimmune rheumatic diseases (SARDs) typically focused on individual (not mixed) and overall environmental emissions. We assessed mixtures of industrial emissions of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and sulfur dioxide (SO2) and SARDs onset in Ontario, Canada. METHODS We assembled an open cohort of over 12 million adults (without SARD diagnoses at cohort entry) based on provincial health data for 2007-2020 and followed them until SARD onset, death, emigration, or end of study (December 2020). SARDs were identified using physician billing and hospitalization diagnostic codes for systemic lupus, scleroderma, myositis, undifferentiated connective tissue disease, and Sjogren's. Rheumatoid arthritis and vasculitis were not included. Average PM2.5, NO2, and SO2 industrial emissions from 2002 to one year before SARDs onset or end of study were assigned using residential postal codes. A quantile g-computation model for time to SARD onset was developed for the industrial emission mixture, adjusting for sex, age, income, rurality index, chronic obstructive pulmonary disease (as a proxy for smoking), background (environmental overall) PM2.5, and calendar year. We conducted stratified analyses across age, sex, and rurality. RESULTS We identified 43,931 new SARD diagnoses across 143,799,564 person-years. The adjusted hazard ratio for SARD onset for an increase in all emissions by one decile was 1.018 (95% confidence interval 1.013-1.022). Similar positive associations between SARDs and the mixed emissions were observed in most stratified analyses. Industrial PM2.5 contributed most to SARD risk. CONCLUSIONS Industrial air pollution emissions were associated with SARDs risk.
Collapse
Affiliation(s)
- Naizhuo Zhao
- Center for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Audrey Smargiassi
- Département de Santé Environnementale et Santé au Travail, School of Public Health, Université de Montréal, Montréal, QC, Canada; Institut National de Santé Publique du Québec, Montréal, QC, Canada; Centre of Public Health Research, University of Montreal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Hong Chen
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; ICES, Toronto, ON, Canada; Public Health Ontario, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Jessica Widdifield
- ICES, Toronto, ON, Canada; Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management, & Evaluation, University of Toronto, Toronto, ON, Canada
| | - Sasha Bernatsky
- Center for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Divisions of Rheumatology and Clinical Epidemiology, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Goobie GC, Carlsten C, Johannson KA, Khalil N, Marcoux V, Assayag D, Manganas H, Fisher JH, Kolb MRJ, Lindell KO, Fabisiak JP, Chen X, Gibson KF, Zhang Y, Kass DJ, Ryerson CJ, Nouraie SM. Association of Particulate Matter Exposure With Lung Function and Mortality Among Patients With Fibrotic Interstitial Lung Disease. JAMA Intern Med 2022; 182:1248-1259. [PMID: 36251286 PMCID: PMC9577882 DOI: 10.1001/jamainternmed.2022.4696] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Importance Particulate matter 2.5 μm or less in diameter (PM2.5) is associated with adverse outcomes for patients with idiopathic pulmonary fibrosis, but its association with other fibrotic interstitial lung diseases (fILDs) and the association of PM2.5 composition with adverse outcomes remain unclear. Objective To investigate the association of PM2.5 exposure with mortality and lung function among patients with fILD. Design, Setting, and Participants In this multicenter, international, prospective cohort study, patients were enrolled in the Simmons Center for Interstitial Lung Disease Registry at the University of Pittsburgh in Pittsburgh, Pennsylvania; 42 sites of the Pulmonary Fibrosis Foundation Registry; and 8 sites of the Canadian Registry for Pulmonary Fibrosis. A total of 6683 patients with fILD were included (Simmons, 1424; Pulmonary Fibrosis Foundation, 1870; and Canadian Registry for Pulmonary Fibrosis, 3389). Data were analyzed from June 1, 2021, to August 2, 2022. Exposures Exposure to PM2.5 and its constituents was estimated with hybrid models, combining satellite-derived aerosol optical depth with chemical transport models and ground-based PM2.5 measurements. Main Outcomes and Measures Multivariable linear regression was used to test associations of exposures 5 years before enrollment with baseline forced vital capacity and diffusion capacity for carbon monoxide. Multivariable Cox models were used to test associations of exposure in the 5 years before censoring with mortality, and linear mixed models were used to test associations of exposure with a decrease in lung function. Multiconstituent analyses were performed with quantile-based g-computation. Cohort effect estimates were meta-analyzed. Models were adjusted for age, sex, smoking history, race, a socioeconomic variable, and site (only for Pulmonary Fibrosis Foundation and Canadian Registry for Pulmonary Fibrosis cohorts). Results Median follow-up across the 3 cohorts was 2.9 years (IQR, 1.5-4.5 years), with death for 28% of patients and lung transplant for 10% of patients. Of the 6683 patients in the cohort, 3653 were men (55%), 205 were Black (3.1%), and 5609 were White (84.0%). Median (IQR) age at enrollment across all cohorts was 66 (58-73) years. A PM2.5 exposure of 8 μg/m3 or more was associated with a hazard ratio for mortality of 4.40 (95% CI, 3.51-5.51) in the Simmons cohort, 1.71 (95% CI, 1.32-2.21) in the Pulmonary Fibrosis Foundation cohort, and 1.45 (95% CI, 1.18-1.79) in the Canadian Registry for Pulmonary Fibrosis cohort. Increasing exposure to sulfate, nitrate, and ammonium PM2.5 constituents was associated with increased mortality across all cohorts, and multiconstituent models demonstrated that these constituents tended to be associated with the most adverse outcomes with regard to mortality and baseline lung function. Meta-analyses revealed consistent associations of exposure to sulfate and ammonium with mortality and with the rate of decrease in forced vital capacity and diffusion capacity of carbon monoxide and an association of increasing levels of PM2.5 multiconstituent mixture with all outcomes. Conclusions and Relevance This cohort study found that exposure to PM2.5 was associated with baseline severity, disease progression, and mortality among patients with fILD and that sulfate, ammonium, and nitrate constituents were associated with the most harm, highlighting the need for reductions in human-derived sources of pollution.
Collapse
Affiliation(s)
- Gillian C. Goobie
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinician Investigator Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Kerri A. Johannson
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nasreen Khalil
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Veronica Marcoux
- Division of Respirology, Critical Care, and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Deborah Assayag
- Division of Respiratory Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Hélène Manganas
- Département de Médecine, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Jolene H. Fisher
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Martin R. J. Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, The Research Institute of St Joe’s Hamilton, St Joseph’s Healthcare, McMaster University, Hamilton, Ontario, Canada
| | - Kathleen O. Lindell
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- College of Nursing, Medical University of South Carolina, Charleston
| | - James P. Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoping Chen
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kevin F. Gibson
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel J. Kass
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J. Ryerson
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - S. Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Blanc PD, Trupin L, Yelin EH, Schmajuk G. Assessment of Risk of Rheumatoid Arthritis Among Underground Hard Rock and Other Mining Industry Workers in Colorado, New Mexico, and Utah. JAMA Netw Open 2022; 5:e2236738. [PMID: 36251293 PMCID: PMC9577677 DOI: 10.1001/jamanetworkopen.2022.36738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
IMPORTANCE Respirable silica exposure has been strongly and consistently linked to rheumatoid arthritis (RA) among foundry workers, persons in the construction trades, stone crushers and drillers, and coal miners. However, risk of RA in hard rock mining has not been thoroughly investigated. OBJECTIVE To analyze occupational risk of RA in hard rock miners in Colorado, New Mexico, and Utah. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional survey study estimated the association between mining industry work and reported RA in a random-digit telephone survey of men 50 years or older living in selected counties with elevated levels of pneumoconiosis mortality (N = 1988). The survey was conducted between January 12 and May 4, 2021. EXPOSURES Underground hard rock and other mining and related mineral-processing occupations. MAIN OUTCOMES AND MEASURES Report of a clinician diagnosis of RA further defined by treatment with corticosteroids or disease-modifying antirheumatic drugs. Risk was estimated using logistic regression. RESULTS The analytic sample of 1988 men (survey response rate, 11.1% of all contacts) had a mean (SD) age of 68.6 (10.1) years. Underground hard rock mining was reported by 118 (5.9%); underground mining of other types, predominantly coal mining (no concomitant hard rock), 62 (3.1%); and surface mining or ore processing (no underground), 262 (13.2%). Adjusting for age and smoking and accounting for nonmining silica exposure, mining employment was associated with increased odds of corticosteroid-treated RA (n = 89) (odds ratio, 4.12 [95%, 2.49-6.81]). The odds were similar for RA treated with disease-modifying antirheumatic drugs (n = 80) (odds ratio, 3.30 [95% CI, 1.93-5.66]). CONCLUSIONS AND RELEVANCE In this cross-sectional survey study, workers in hard rock and other underground mining and surface mining occupations experienced 3- to 4-fold increased odds of RA. These findings suggest that clinicians should consider patients with relevant work exposures as at higher risk for developing RA.
Collapse
Affiliation(s)
- Paul D. Blanc
- Department of Medicine, University of California, San Francisco
- Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Laura Trupin
- Department of Medicine, University of California, San Francisco
| | - Edward H. Yelin
- Department of Medicine, University of California, San Francisco
| | - Gabriela Schmajuk
- Department of Medicine, University of California, San Francisco
- Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
23
|
Tasaka S, Ohshimo S, Takeuchi M, Yasuda H, Ichikado K, Tsushima K, Egi M, Hashimoto S, Shime N, Saito O, Matsumoto S, Nango E, Okada Y, Hayashi K, Sakuraya M, Nakajima M, Okamori S, Miura S, Fukuda T, Ishihara T, Kamo T, Yatabe T, Norisue Y, Aoki Y, Iizuka Y, Kondo Y, Narita C, Kawakami D, Okano H, Takeshita J, Anan K, Okazaki SR, Taito S, Hayashi T, Mayumi T, Terayama T, Kubota Y, Abe Y, Iwasaki Y, Kishihara Y, Kataoka J, Nishimura T, Yonekura H, Ando K, Yoshida T, Masuyama T, Sanui M. ARDS Clinical Practice Guideline 2021. J Intensive Care 2022; 10:32. [PMID: 35799288 PMCID: PMC9263056 DOI: 10.1186/s40560-022-00615-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The joint committee of the Japanese Society of Intensive Care Medicine/Japanese Respiratory Society/Japanese Society of Respiratory Care Medicine on ARDS Clinical Practice Guideline has created and released the ARDS Clinical Practice Guideline 2021. METHODS The 2016 edition of the Clinical Practice Guideline covered clinical questions (CQs) that targeted only adults, but the present guideline includes 15 CQs for children in addition to 46 CQs for adults. As with the previous edition, we used a systematic review method with the Grading of Recommendations Assessment Development and Evaluation (GRADE) system as well as a degree of recommendation determination method. We also conducted systematic reviews that used meta-analyses of diagnostic accuracy and network meta-analyses as a new method. RESULTS Recommendations for adult patients with ARDS are described: we suggest against using serum C-reactive protein and procalcitonin levels to identify bacterial pneumonia as the underlying disease (GRADE 2D); we recommend limiting tidal volume to 4-8 mL/kg for mechanical ventilation (GRADE 1D); we recommend against managements targeting an excessively low SpO2 (PaO2) (GRADE 2D); we suggest against using transpulmonary pressure as a routine basis in positive end-expiratory pressure settings (GRADE 2B); we suggest implementing extracorporeal membrane oxygenation for those with severe ARDS (GRADE 2B); we suggest against using high-dose steroids (GRADE 2C); and we recommend using low-dose steroids (GRADE 1B). The recommendations for pediatric patients with ARDS are as follows: we suggest against using non-invasive respiratory support (non-invasive positive pressure ventilation/high-flow nasal cannula oxygen therapy) (GRADE 2D), we suggest placing pediatric patients with moderate ARDS in the prone position (GRADE 2D), we suggest against routinely implementing NO inhalation therapy (GRADE 2C), and we suggest against implementing daily sedation interruption for pediatric patients with respiratory failure (GRADE 2D). CONCLUSIONS This article is a translated summary of the full version of the ARDS Clinical Practice Guideline 2021 published in Japanese (URL: https://www.jsicm.org/publication/guideline.html ). The original text, which was written for Japanese healthcare professionals, may include different perspectives from healthcare professionals of other countries.
Collapse
Affiliation(s)
- Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan.
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Hideto Yasuda
- Department of Emergency and Critical Care Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kazuya Ichikado
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Kenji Tsushima
- International University of Health and Welfare, Tokyo, Japan
| | - Moritoki Egi
- Department of Anesthesiology, Kobe University Hospital, Hyogo, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Osamu Saito
- Department of Pediatric Emergency and Critical Care Medicine, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Shotaro Matsumoto
- Division of Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Eishu Nango
- Department of Family Medicine, Seibo International Catholic Hospital, Tokyo, Japan
| | - Yohei Okada
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichiro Hayashi
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hiroshima, Japan
| | - Mikio Nakajima
- Emergency and Critical Care Center, Tokyo Metropolitan Hiroo Hospital, Tokyo, Japan
| | - Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Miura
- Paediatric Intensive Care Unit, The Royal Children's Hospital, Melbourne, Australia
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Urayasu Hospital, Juntendo University, Chiba, Japan
| | - Tetsuro Kamo
- Department of Critical Care Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Tomoaki Yatabe
- Department of Anesthesiology, Nishichita General Hospital, Tokai, Japan
| | | | - Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yusuke Iizuka
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Chihiro Narita
- Department of Emergency Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Daisuke Kawakami
- Department of Anesthesia and Critical Care, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Hiromu Okano
- Department of Critical Care and Emergency Medicine, National Hospital Organization Yokohama Medical Center, Kanagawa, Japan
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Keisuke Anan
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, Kyoto, Japan
| | | | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Takuya Hayashi
- Pediatric Emergency and Critical Care Center, Saitama Children's Medical Center, Saitama, Japan
| | - Takuya Mayumi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takero Terayama
- Department of Psychiatry, School of Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshifumi Kubota
- Kameda Medical Center Department of Infectious Diseases, Chiba, Japan
| | - Yoshinobu Abe
- Division of Emergency and Disaster Medicine Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Yudai Iwasaki
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yuki Kishihara
- Department of Emergency Medicine, Japanese Red Cross Musashino Hospital, Tokyo, Japan
| | - Jun Kataoka
- Department of Critical Care Medicine, Nerima Hikarigaoka Hospital, Tokyo, Japan
| | - Tetsuro Nishimura
- Department of Traumatology and Critical Care Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Yonekura
- Department of Anesthesiology and Pain Medicine, Fujita Health University Bantane Hospital, Aichi, Japan
| | - Koichi Ando
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takuo Yoshida
- Intensive Care Unit, Department of Anesthesiology, Jikei University School of Medicine, Tokyo, Japan
| | - Tomoyuki Masuyama
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masamitsu Sanui
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
24
|
Akiyama M, Kaneko Y. Pathogenesis, clinical features, and treatment strategy for rheumatoid arthritis-associated interstitial lung disease. Clin Exp Rheumatol 2022; 21:103056. [PMID: 35121155 DOI: 10.1016/j.autrev.2022.103056] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis is an autoimmune disease that primarily affects the joints. The emergence of highly effective anti-rheumatic drugs such as biologic agents and janus kinase inhibitors has dramatically improved the management of the disease by preventing irreversible joint destruction and disability. This disease can manifest the serious extra-articular involvements including interstitial lung disease, which has the significant impact on the patients' morbidity and mortality. However, treatment strategy specific for rheumatoid arthritis-associated interstitial lung disease (RA-ILD) has not been yet established. Therefore, understanding the pathogenesis and clinical features of RA-ILD is critical to provide the better management and improve the prognosis of the patients. Accumulation of evidence suggest that it is essentially important to achieve remission or at least low disease activity of arthritis to prevent new emergence, progression, or acute exacerbation of RA-ILD. RA-ILD patients frequently show high titers of autoantibodies including rheumatoid factor and anti-CCP antibody, and the excessive formation of tertiary lymphoid organs is found in the local affected lungs, indicating the adaptive immune response as a key pathogenic inducer. In this regard, non-TNF inhibitors targeting adaptive immune responses such as abatacept and rituximab were reported to be promising for the stabilization and improvement of RA-ILD. Nintedanib, an anti-fibrotic agent, was shown to be effective for reducing the decline of forced vital capacity in RA-ILD. In this review, we summarized the current evidence in the pathogenesis, clinical features, and treatments for RA-ILD and provide future prospects.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 1608582 Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 1608582 Tokyo, Japan.
| |
Collapse
|