1
|
Hoca M, Becer E, Vatansever HS. Carvacrol is potential molecule for diabetes treatment. Arch Physiol Biochem 2024; 130:823-830. [PMID: 38019023 DOI: 10.1080/13813455.2023.2288537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Diabetes is an important chronic disease that can lead to various negative consequences and complications. In recent years, several new alternative treatments have been developed to improve diabetes. Carvacrol found in essential oils of numerous plant species and has crucial potential effects on diabetes. The anti-diabetic effects of carvacrol have also been comprehensively studied in diabetic animal and cell models. In addition, carvacrol could improve diabetes through affecting diabetes-related enzymes, insulin resistance, insulin sensitivity, glucose uptake, anti-oxidant, and anti-inflammatory mechanisms. The use of carvacrol alone or in combination with anti-diabetic therapies could show a significant potential effect in the treatment of diabetes. This review contributes an overview of the effect of carvacrol in diabetes and anti-diabetic mechanisms.
Collapse
Affiliation(s)
- Mustafa Hoca
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Mersin, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Mersin, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, Mersin, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
2
|
Al-Kouh A, Babiker F. Nitric Oxide/Glucose Transporter Type 4 Pathway Mediates Cardioprotection against Ischemia/Reperfusion Injury under Hyperglycemic and Diabetic Conditions in Rats. J Vasc Res 2024; 61:179-196. [PMID: 38952123 DOI: 10.1159/000539461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION The comorbidities of ischemic heart disease (IHD) and diabetes mellitus (DM) compromise the protection of the diabetic heart from ischemia/reperfusion (I/R) injury. We hypothesized that manipulation of reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways might protect the diabetic heart, and intervention of these pathways could be a new avenue for potentially protecting the diabetic heart. METHODS All hearts were subjected to 30-min ischemia and 30-min reperfusion. During reperfusion, hearts were exposed to molecules proven to protect the heart from I/R injury. The hemodynamic data were collected using suitable software. The infarct size, troponin T levels, and protein levels in hearts were evaluated. RESULTS Both cyclosporine-A and nitric oxide donor (SNAP) infusion at reperfusion protected 4-week diabetic hearts from I/R injury. However, 6-week diabetic hearts were protected only by SNAP, but not cyclosporin-A. These treatments significantly (p < 0.05) improved cardiac hemodynamics and decreased infarct size. CONCLUSIONS The administration of SNAP to diabetic hearts protected both 4- and 6-week diabetic hearts; however, cyclosporine-A protected only the 4-week diabetic hearts. The eNOS/GLUT-4 pathway executed the SNAP-mediated cardioprotection.
Collapse
Affiliation(s)
- Aisha Al-Kouh
- Department of Physiology, College of Medicine, Kuwait University, Kuwait, Kuwait
| | - Fawzi Babiker
- Department of Physiology, College of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
3
|
Li Z, Chen J, Huang H, Zhan Q, Wang F, Chen Z, Lu X, Sun G. Post-translational modifications in diabetic cardiomyopathy. J Cell Mol Med 2024; 28:e18158. [PMID: 38494853 PMCID: PMC10945092 DOI: 10.1111/jcmm.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zhi Li
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Jie Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hailong Huang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qianru Zhan
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning ProvincePeople's Hospital of China Medical UniversityShenyangChina
| | - Zihan Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xinwei Lu
- Department of CardiologySiping Central People's HospitalSipingChina
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
4
|
Yang JP, Ullah A, Su YN, Otoo A, Adu-Gyamfi EA, Feng Q, Wang YX, Wang MJ, Ding YB. Glycyrrhizin ameliorates impaired glucose metabolism and ovarian dysfunction in a polycystic ovary syndrome mouse model. Biol Reprod 2023; 109:83-96. [PMID: 37115805 DOI: 10.1093/biolre/ioad048] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to determine the impact of glycyrrhizin, an inhibitor of high mobility group box 1, on glucose metabolic disorders and ovarian dysfunction in mice with polycystic ovary syndrome. We generated a polycystic ovary syndrome mouse model by using dehydroepiandrosterone plus high-fat diet. Glycyrrhizin (100 mg/kg) was intraperitoneally injected into the polycystic ovary syndrome mice and the effects on body weight, glucose tolerance, insulin sensitivity, estrous cycle, hormone profiles, ovarian pathology, glucolipid metabolism, and some molecular mechanisms were investigated. Increased number of cystic follicles, hormonal disorders, impaired glucose tolerance, and decreased insulin sensitivity in the polycystic ovary syndrome mice were reverted by glycyrrhizin. The increased high mobility group box 1 levels in the serum and ovarian tissues of the polycystic ovary syndrome mice were also reduced by glycyrrhizin. Furthermore, increased expressions of toll-like receptor 9, myeloid differentiation factor 88, and nuclear factor kappa B as well as reduced expressions of insulin receptor, phosphorylated protein kinase B, and glucose transporter type 4 were restored by glycyrrhizin in the polycystic ovary syndrome mice. Glycyrrhizin could suppress the polycystic ovary syndrome-induced upregulation of high mobility group box 1, several inflammatory marker genes, and the toll-like receptor 9/myeloid differentiation factor 88/nuclear factor kappa B pathways, while inhibiting the insulin receptor/phosphorylated protein kinase B/glucose transporter type 4 pathways. Hence, glycyrrhizin is a promising therapeutic agent against polycystic ovary syndrome.
Collapse
Affiliation(s)
- Jun-Pu Yang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Amin Ullah
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ya-Nan Su
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Antonia Otoo
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | - Qian Feng
- Department of Obstetrics and Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ying-Xiong Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Mei-Jiao Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Toxicology, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| |
Collapse
|
5
|
Yi G, Sang X, Zhu Y, Zhou D, Yang S, Huo Y, Liu Y, Safdar B, Bu X. The SWGEDWGEIW from Soybean Peptides Reduces Insulin Resistance in 3T3-L1 Adipocytes by Activating p-Akt/GLUT4 Signaling Pathway. Molecules 2023; 28:molecules28073001. [PMID: 37049764 PMCID: PMC10096037 DOI: 10.3390/molecules28073001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with anti-diabetic properties. Notably, the protective mechanism of the single peptide SWGEDWGEIW (TSP) from soybean peptides (SBPs) on insulin resistance of adipocytes in an inflammatory state was investigated by detecting the lipolysis and glucose absorption and utilization of adipocytes. The results showed that different concentrations of TSP (5, 10, 20 µg/mL) intervention can reduce 3T3-L1 adipocytes’ insulin resistance induced by inflammatory factors in a dose-dependent manner and increase glucose utilization by 34.2 ± 4.6%, 74.5 ± 5.2%, and 86.7 ± 6.1%, respectively. Thus, TSP can significantly alleviate the lipolysis of adipocytes caused by inflammatory factors. Further mechanism analysis found that inflammatory factors significantly reduced the phosphorylation (p-Akt) of Akt, two critical proteins of glucose metabolism in adipocytes, and the expression of GLUT4 protein downstream, resulting in impaired glucose utilization, while TSP intervention significantly increased the expression of these two proteins. After pretreatment of adipocytes with PI3K inhibitor (LY294002), TSP failed to reduce the inhibition of p-Akt and GLUT4 expression in adipocytes. Meanwhile, the corresponding significant decrease in glucose absorption and the increase in the fat decomposition of adipocytes indicated that TSP reduced 3T3-L1 adipocytes’ insulin resistance by specifically activating the p-Akt/GLUT4 signal pathway. Therefore, TSP has the potential to prevent obesity-induced adipose inflammation and insulin resistance.
Collapse
|
6
|
Jung F, Braune S, Jung CHG, Krüger-Genge A, Waldeck P, Petrick I, Küpper JH. Lipophilic and Hydrophilic Compounds from Arthrospira platensis and Its Effects on Tissue and Blood Cells-An Overview. Life (Basel) 2022; 12:1497. [PMID: 36294932 PMCID: PMC9605678 DOI: 10.3390/life12101497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 09/14/2024] Open
Abstract
The cyanobacterium Arthrospira platensis (Spirulina platensis) is a natural source of considerable amounts of ingredients that are relevant for nutra- and pharmaceutical uses. Different hydrophilic and hydrophobic substances can be obtained by extraction from the biomass. The respective extraction techniques determine the composition of substances in the extract and thus its biological activity. In this short review, we provide an overview of the hydrophilic compounds (phenols, phycobiliproteins, polysaccharides, and vitamins) and lipophilic ingredients (chlorophylls, vitamins, fatty acids, and glycolipids) of Arthrospira platensis. The principal influences of these substances on blood and tissue cells are briefly summarized.
Collapse
Affiliation(s)
- Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Steffen Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | | | - Anne Krüger-Genge
- Department of Healthcare, Biomaterials and Cosmeceuticals, Fraunhofer-Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany
| | - Peter Waldeck
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Ingolf Petrick
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Carbon Biotech Social Enterprise AG, 01968 Senftenberg, Germany
| |
Collapse
|
7
|
Young WJ, Lahrouchi N, Isaacs A, Duong T, Foco L, Ahmed F, Brody JA, Salman R, Noordam R, Benjamins JW, Haessler J, Lyytikäinen LP, Repetto L, Concas MP, van den Berg ME, Weiss S, Baldassari AR, Bartz TM, Cook JP, Evans DS, Freudling R, Hines O, Isaksen JL, Lin H, Mei H, Moscati A, Müller-Nurasyid M, Nursyifa C, Qian Y, Richmond A, Roselli C, Ryan KA, Tarazona-Santos E, Thériault S, van Duijvenboden S, Warren HR, Yao J, Raza D, Aeschbacher S, Ahlberg G, Alonso A, Andreasen L, Bis JC, Boerwinkle E, Campbell A, Catamo E, Cocca M, Cutler MJ, Darbar D, De Grandi A, De Luca A, Ding J, Ellervik C, Ellinor PT, Felix SB, Froguel P, Fuchsberger C, Gögele M, Graff C, Graff M, Guo X, Hansen T, Heckbert SR, Huang PL, Huikuri HV, Hutri-Kähönen N, Ikram MA, Jackson RD, Junttila J, Kavousi M, Kors JA, Leal TP, Lemaitre RN, Lin HJ, Lind L, Linneberg A, Liu S, MacFarlane PW, Mangino M, Meitinger T, Mezzavilla M, Mishra PP, Mitchell RN, Mononen N, Montasser ME, Morrison AC, Nauck M, Nauffal V, Navarro P, Nikus K, Pare G, Patton KK, Pelliccione G, Pittman A, Porteous DJ, Pramstaller PP, Preuss MH, Raitakari OT, Reiner AP, Ribeiro ALP, Rice KM, Risch L, Schlessinger D, Schotten U, Schurmann C, Shen X, Shoemaker MB, Sinagra G, Sinner MF, Soliman EZ, Stoll M, Strauch K, Tarasov K, Taylor KD, Tinker A, Trompet S, Uitterlinden A, Völker U, Völzke H, Waldenberger M, Weng LC, Whitsel EA, Wilson JG, Avery CL, Conen D, Correa A, Cucca F, Dörr M, Gharib SA, Girotto G, Grarup N, Hayward C, Jamshidi Y, Järvelin MR, Jukema JW, Kääb S, Kähönen M, Kanters JK, Kooperberg C, Lehtimäki T, Lima-Costa MF, Liu Y, Loos RJF, Lubitz SA, Mook-Kanamori DO, Morris AP, O'Connell JR, Olesen MS, Orini M, Padmanabhan S, Pattaro C, Peters A, Psaty BM, Rotter JI, Stricker B, van der Harst P, van Duijn CM, Verweij N, Wilson JF, Arking DE, Ramirez J, Lambiase PD, Sotoodehnia N, Mifsud B, Newton-Cheh C, Munroe PB. Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways. Nat Commun 2022; 13:5144. [PMID: 36050321 PMCID: PMC9436946 DOI: 10.1038/s41467-022-32821-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.
Collapse
Affiliation(s)
- William J Young
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS trust, London, UK
| | - Najim Lahrouchi
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron Isaacs
- Deptartment of Physiology, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, The Netherlands
- Maastricht Center for Systems Biology MaCSBio, Maastricht University, Maastricht, The Netherlands
| | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luisa Foco
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
| | - Farah Ahmed
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Reem Salman
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
| | - Raymond Noordam
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan-Walter Benjamins
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Linda Repetto
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marten E van den Berg
- Department of Epidemiology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Stefan Weiss
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Antoine R Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Daniel S Evans
- California Pacific Medical Center, Research Institute, San Francisco, CA, USA
| | - Rebecca Freudling
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Oliver Hines
- Genetics Research Centre, St George's University of London, London, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Jonas L Isaksen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Honghuang Lin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics IMBEI, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Casia Nursyifa
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yong Qian
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, US
| | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Carolina Roselli
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Kathleen A Ryan
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eduardo Tarazona-Santos
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte/Minas Gerais, Brazil
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
| | - Stefan van Duijvenboden
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Helen R Warren
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dania Raza
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Brighton and Sussex Medical School, Brighton, UK
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gustav Ahlberg
- Laboratory for Molecular Cardiology, The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Laura Andreasen
- Laboratory for Molecular Cardiology, The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Archie Campbell
- Usher Institute, University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, UK
- Health Data Research UK, University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Eulalia Catamo
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Dawood Darbar
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Alessandro De Grandi
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
| | - Antonio De Luca
- Cardiothoracovascular Department, ASUGI, University of Trieste, Trieste, Italy
| | - Jun Ding
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, US
| | - Christina Ellervik
- Department of Data and Data Support, Region Zealand, 4180, Sorø, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Stephan B Felix
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald, Greifswald, Germany
| | - Philippe Froguel
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- University of Lille Nord de France, Lille, France
- CNRS UMR8199, Institut Pasteur de Lille, Lille, France
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, USA
| | - Martin Gögele
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
| | - Claus Graff
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology/University of Washington, Seattle, WA, USA
| | - Paul L Huang
- Cardiology Division and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Heikki V Huikuri
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and University Hospital of Oulu, Oulu, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Department of Pediatrics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Centre for Skills Training and Simulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Rebecca D Jackson
- Center for Clinical and Translational Science, Ohio State Medical Center, Columbus, OH, USA
| | - Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and University Hospital of Oulu, Oulu, Finland
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Jan A Kors
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, NL, The Netherlands
| | - Thiago P Leal
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte/Minas Gerais, Brazil
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Henry J Lin
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lars Lind
- Deptartment of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simin Liu
- Center for Global Cardiometabolic Health, Departments of Epidemiology, Medicine and Surgery, Brown University, Providence, USA
| | - Peter W MacFarlane
- Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Thomas Meitinger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
| | - Massimo Mezzavilla
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rebecca N Mitchell
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Matthias Nauck
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Victor Nauffal
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Guillaume Pare
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Kristen K Patton
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Giulia Pelliccione
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alan Pittman
- Genetics Research Centre, St George's University of London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Alexander P Reiner
- Department of Epidemiology/University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Antonio Luiz P Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Brazil, Belo Horizonte, Minas Gerais, Brazil
- Cardiology Service and Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, Belo Horizonte, Minas Gerais, Brazil
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lorenz Risch
- Labormedizinisches zentrum Dr. Risch, Vaduz, Liechtenstein
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Inselspital, Bern, Switzerland
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institute of Health, Baltimore, US
| | - Ulrich Schotten
- Deptartment of Physiology, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, The Netherlands
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xia Shen
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Greater Bay Area Institute of Precision Medicine Guangzhou, Fudan University, Nansha District, Guangzhou, China
| | - M Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Arrhythmia Section, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, ASUGI, University of Trieste, Trieste, Italy
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center EPICARE, Wake Forest School of Medicine, Winston Salem, USA
| | - Monika Stoll
- Maastricht Center for Systems Biology MaCSBio, Maastricht University, Maastricht, The Netherlands
- Dept. of Biochemistry, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, NL, The Netherlands
- Institute of Human Genetics, Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics IMBEI, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Kirill Tarasov
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, US
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew Tinker
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stella Trompet
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Uwe Völker
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, USA
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Adolfo Correa
- Departments of Medicine, Pediatrics and Population Health Science, University of Mississippi Medical Center, Jackson, USA
| | - Francesco Cucca
- Institute of Genetic and Biomedical Rsearch, Italian National Research Council, Monserrato, Italy
| | - Marcus Dörr
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald, Greifswald, Germany
| | - Sina A Gharib
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Yalda Jamshidi
- Genetics Research Centre, St George's University of London, London, UK
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Stefan Kääb
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Yongmei Liu
- Department of Medicine, Duke University, Durham, NC, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew P Morris
- Department of Health Data Science, University of Liverpool, Liverpool, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Michele Orini
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS trust, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
| | - Annette Peters
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology/University of Washington, Seattle, WA, USA
- Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/Harbor-UCLA Medical Center, Torrance, CA, USA
- Departments of Pediatrics and Human Genetics/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bruno Stricker
- Department of Epidemiology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
- Department of Cardiology, Heart and Lung Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia Ramirez
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS trust, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Borbala Mifsud
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Patricia B Munroe
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK.
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
8
|
Adoga JO, Channa ML, Nadar A. Type-2 diabetic rat heart: The effect of kolaviron on mTOR-1, P70S60K, PKC-α, NF-kB, SOD-2, NRF-2, eNOS, AKT-1, ACE, and P38 MAPK gene expression profile. Biomed Pharmacother 2022; 148:112736. [PMID: 35202911 DOI: 10.1016/j.biopha.2022.112736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/02/2022] Open
Abstract
It has been established that genetic factors partially contribute to type-2 diabetes and vascular disease development. This study determined the effect of kolaviron on the expression profile of genes associated with the insulin signaling pathway and involved in regulating glucose and lipid metabolism, oxidative stress, inflammation, vascular functions, pro-survival and the apoptosis pathway in the heart of type-2 diabetic rats. After induction and confirmation of type-2 diabetes seven days after, the rats were treated with kolaviron for twenty-eight days before being euthanized. Organs were harvested and stored at - 80 °C in a biofreezer. Total RNA was extracted from the ventricle, reverse transcribed to cDNA followed by a real-time quantitative polymerase chain reaction (RT-qPCR) analysis of the expression of mTOR-1, P70S60K, PKC-α, NF-kB, SOD-2, NRF-2, eNOS, AKT-1, ACE, p38 MAPK and the reference gene (GAPDH), after which they were normalized/standardized. The results show an increase in the relative mRNA expression of mTOR/P70S60K/PKCα /P38MAPK/NF-KB/ACE and a decrease in the relative mRNA expression of NRF2/SOD/AKT/eNOS in the heart of the diabetic rats. Nevertheless, kolaviron modulated the expression profile of these genes, which suggest a therapeutic effect and target for vascular dysfunction and complications in type-2 diabetes through the activation of the NRF-2/AKT-1/eNOS signaling pathway and suppression of the NF-kB/PKC signaling pathway.
Collapse
Affiliation(s)
- Jeffrey O Adoga
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Mahendra L Channa
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Anand Nadar
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
9
|
Feng H, Shen H, Robeson MJ, Wu YH, Wu HK, Chen GJ, Zhang S, Xie P, Jin L, He Y, Wang Y, Lv F, Hu X, Zhang Y, Xiao RP. MG53 E3 Ligase-Dead Mutant Protects Diabetic Hearts From Acute Ischemic/Reperfusion Injury and Ameliorates Diet-Induced Cardiometabolic Damage. Diabetes 2022; 71:298-314. [PMID: 34844991 PMCID: PMC8914286 DOI: 10.2337/db21-0322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/14/2021] [Indexed: 01/08/2023]
Abstract
Cardiometabolic diseases, including diabetes and its cardiovascular complications, are the global leading causes of death, highlighting a major unmet medical need. Over the past decade, mitsugumin 53 (MG53), also called TRIM72, has emerged as a powerful agent for myocardial membrane repair and cardioprotection, but its therapeutic value is complicated by its E3 ligase activity, which mediates metabolic disorders. Here, we show that an E3 ligase-dead mutant, MG53-C14A, retains its cardioprotective function without causing metabolic adverse effects. When administered in normal animals, both the recombinant human wild-type MG53 protein (rhMG53-WT) and its E3 ligase-dead mutant (rhMG53-C14A) protected the heart equally from myocardial infarction and ischemia/reperfusion (I/R) injury. However, in diabetic db/db mice, rhMG53-WT treatment markedly aggravated hyperglycemia, cardiac I/R injury, and mortality, whereas acute and chronic treatment with rhMG53-C14A still effectively ameliorated I/R-induced myocardial injury and mortality or diabetic cardiomyopathy, respectively, without metabolic adverse effects. Furthermore, knock-in of MG53-C14A protected the mice from high-fat diet-induced metabolic disorders and cardiac damage. Thus, the E3 ligase-dead mutant MG53-C14A not only protects the heart from acute myocardial injury but also counteracts metabolic stress, providing a potentially important therapy for the treatment of acute myocardial injury in metabolic disorders, including diabetes and obesity.
Collapse
Affiliation(s)
- Han Feng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Hao Shen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Matthew J. Robeson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Yue-Han Wu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Hong-Kun Wu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Geng-Jia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Shuo Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Peng Xie
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yanyun He
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yingfan Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Institute of Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Corresponding authors: Rui-Ping Xiao, , and Yan Zhang,
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Peking University–Nanjing Joint Institute of Translational Medicine, Nanjing, China
- Corresponding authors: Rui-Ping Xiao, , and Yan Zhang,
| |
Collapse
|
10
|
Huang K, Luo X, Zhong Y, Deng L, Feng J. New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect 2022; 10:e00904. [PMID: 35005848 PMCID: PMC8929360 DOI: 10.1002/prp2.904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiovascular complications and impaired cardiac function are considered to be the main causes of death in diabetic patients worldwide, especially patients with type 2 diabetes mellitus (T2DM). An increasing number of studies have shown that melatonin, as the main product secreted by the pineal gland, plays a vital role in the occurrence and development of diabetes. Melatonin improves myocardial cell metabolism, reduces vascular endothelial cell death, reverses microcirculation disorders, reduces myocardial fibrosis, reduces oxidative and endoplasmic reticulum stress, regulates cell autophagy and apoptosis, and improves mitochondrial function, all of which are the characteristics of diabetic cardiomyopathy (DCM). This review focuses on the role of melatonin in DCM. We also discuss new molecular findings that might facilitate a better understanding of the underlying mechanism. Finally, we propose potential new therapeutic strategies for patients with T2DM.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Liu XS, Zeng J, Yang YX, Qi CL, Xiong T, Wu GZ, Zeng CY, Wang DX. DRD4 Mitigates Myocardial Ischemia/Reperfusion Injury in Association With PI3K/AKT Mediated Glucose Metabolism. Front Pharmacol 2021; 11:619426. [PMID: 33584304 PMCID: PMC7873565 DOI: 10.3389/fphar.2020.619426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion (I/R) could cause heart irreversible damage, which is tightly combined with glucose metabolism disorder. It is demonstrated that GLUT4 (glucose transporter 4) translocation is critical for glucose metabolism in the cardiomyocytes under I/R injury. Moreover, DRD4 (dopamine receptor D4) modulate glucose metabolism, and protect neurocytes from anoxia/reoxygenation (A/R) injury. Thus, DRD4 might regulate myocardial I/R injury in association with GLUT4-mediated glucose metabolism. However, the effects and mechanisms are largely unknown. In the present study, the effect of DRD4 in heart I/R injury were studied ex vivo and in vitro. For I/R injury ex vivo, DRD4 agonist (PD168077) was perfused by Langendorff system in the isolated rat heart. DRD4 activated by PD168077 improved cardiac function in the I/R-injured heart as determined by the left ventricular developed pressure (LVDP), +dp/dt, and left ventricular end diastolic pressure (LVEDP), and reduced heart damage evidenced by infarct size, the release of troponin T (TNT) and lactate dehydrogenase (LDH). DRD4 activation diminished I/R injury induced apoptosis and enhanced cell viability impaired by I/R injury in cardiomyocyte, showed by TUNEL staining, flow cytometer and CCK8 assay. Furthermore, DRD4 activation did not change total GULT4 protein expression level but increased the membrane GULT4 localization determined by western blot. In terms of mechanism, DRD4 activation increased pPI3K/p-AKT but not the total PI3K/AKT during anoxia/reoxygenation (A/R) injury in vitro. Interestingly, PI3K inhibitor, Wortmannin, blocked PI3K/AKT pathway and depleted the membrane GULT4, and further promoted apoptosis showed by TUNEL staining, flow cytometer, western blot of cleaved caspase 3, BAX and BCL2 expression. Thus, DRD4 activation exerted a protective effect against I/R injury by promoting GLUT4 translocation depended on PI3K/AKT pathway, which enhanced the ability of glucose uptake, and ultimately reduced the apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Xue-Song Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yu-Xue Yang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Chun-Lei Qi
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ting Xiong
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Geng-Ze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Chun-Yu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Da-Xin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou people's Hospital), Taizhou, China
| |
Collapse
|
12
|
Hesperidin ameliorates signs of the metabolic syndrome and cardiac dysfunction via IRS/Akt/GLUT4 signaling pathway in a rat model of diet-induced metabolic syndrome. Eur J Nutr 2020; 60:833-848. [PMID: 32462317 DOI: 10.1007/s00394-020-02291-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hesperidin has been reported to have biological activities such as antihypertensive, hypoglycemic, and antioxidant effects. This study investigated whether hesperidin could improve signs of the metabolic syndrome and cardiac function in a high-fat diet (HFD) induced metabolic syndrome (MS) in rats. METHODS Male Sprague-Dawley rats were fed HFD and 15% fructose for 16 weeks and treated with hesperidin (15 or 30 mg/kg, based on signs of MS from a preliminary study) or metformin, a positive control agent, (100 mg/kg) for the final four weeks. Cardiac function, blood pressure, fasting blood glucose, oral glucose tolerance, serum insulin, and lipid profiles were measured. Histomorphometrics of left ventricles, epidydimal fat pads and liver were evaluated. Expressions of phosphorylate insulin receptor substrate1(p-IRS1), p-Akt and GLUT4 in cardiac tissue were determined. RESULTS Hesperidin and metformin attenuated MS in HFD rats (p < 0.05). The accumulation of visceral fat pads and fatty liver associated with increases in liver lipid contents and liver enzymes were found in MS rats that were alleviated in hesperidin or metformin-treated groups (p < 0.05). Hesperidin and metformin improved cardiac dysfunction and hypertrophy observed in MS rats (p < 0.05). Restoration of the insulin signaling pathway, IRS/Akt/GLUT4 protein expression, was demonstrated in hesperidin and metformin-treated groups (p < 0.05). Hesperidin (30 mg/kg) was more effective than the lower dose. CONCLUSION Hesperidin was effective in reducing signs of MS and alterations of LV hypertrophy and function. These beneficial effects on the heart were associated with the restoration of the cardiac insulin signaling pathway in MS rats.
Collapse
|
13
|
Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2020; 117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Myu Mai Ja Kp
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Yong Loo Lin Medical School, National University of Singapore, 10 Medical Drive, Singapore 11759, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, Bloomsbury, London WC1E 6HX, UK.,Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, No. 500, Liufeng Road, Wufeng District, Taichung City 41354,Taiwan
| |
Collapse
|
14
|
Hou N, Mai Y, Qiu X, Yuan W, Li Y, Luo C, Liu Y, Zhang G, Zhao G, Luo JD. Carvacrol Attenuates Diabetic Cardiomyopathy by Modulating the PI3K/AKT/GLUT4 Pathway in Diabetic Mice. Front Pharmacol 2019; 10:998. [PMID: 31572181 PMCID: PMC6751321 DOI: 10.3389/fphar.2019.00998] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus, eventually leads to heart failure. Carvacrol is a food additive with diverse bioactivities. We aimed to study the protective effects and mechanisms of carvacrol in DCM. Methods: We used a streptozotocin-induced and db/db mouse model of types 1 and 2 diabetes mellitus (T1DM and T2DM), respectively. Both study groups received daily intraperitoneal injections of carvacrol for 6 weeks. Cardiac remodeling was evaluated by histological analysis. We determined gene expression of cardiac remodeling markers (Nppa and Myh7) by quantitative real-time PCR and cardiac function by echocardiography. Changes of PI3K/AKT signaling were determined with Western blotting. GLUT4 translocation was evaluated by Western blotting and immunofluorescence staining. Results: Compared with control mice, both T1DM and T2DM mice showed cardiac remodeling and left ventricular dysfunction. Carvacrol significantly reduced blood glucose levels and suppressed cardiac remodeling in mice with T1DM and T2DM. At the end of the treatment period, both T1DM and T2DM mice showed lesser cardiac hypertrophy, Nppa and Myh7 mRNA expressions, and cardiac fibrosis, compared to mice administered only the vehicle. Moreover, carvacrol significantly restored PI3K/AKT signaling, which was impaired in mice with T1DM and T2DM. Carvacrol increased levels of phosphorylated PI3K, PDK1, AKT, and AS160 and inhibited PTEN phosphorylation in mice with T1DM and T2DM. Carvacrol treatment promoted GLUT4 membrane translocation in mice with T1DM and T2DM. Metformin was used as the positive drug control in T2DM mice, and carvacrol showed comparable effects to that of metformin on cardiac remodeling and modulation of signaling pathways. Conclusion: Carvacrol protected against DCM in mice with T1DM and T2DM by restoring PI3K/AKT signaling-mediated GLUT4 membrane translocation and is a potential treatment of DCM.
Collapse
Affiliation(s)
- Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunpei Mai
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Medical Technology, Forevergen Biosciences Center, Guangzhou, China
| | - Xiaoxia Qiu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenchang Yuan
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengfeng Luo
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guiping Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ganjiang Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Dong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Percentage of Time in Range 70 to 139 mg/dL Is Associated With Reduced Mortality Among Critically Ill Patients Receiving IV Insulin Infusion. Chest 2019; 156:878-886. [PMID: 31201784 DOI: 10.1016/j.chest.2019.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In addition to hyperglycemia, hypoglycemia, and glycemic variability, reduced time in targeted blood glucose range (TIR) is associated with increased risk of death in critically ill patients. This relation between TIR and mortality may be confounded by diabetic status and antecedent glycemic control. METHODS This study retrospectively analyzed critically ill patients managed with the same IV insulin protocol at multiple centers. The percentage of TIR between 70 and 139 mg/dL was calculated. Patients with diabetic ketoacidosis, patients who had < 10 blood glucose readings, and patients with repeat admissions were excluded. The highest recorded glycosylated hemoglobin value in the preceding 3 months or up to 1 month following admission were used as a surrogate for the patient's preexisting glucose control. Stratified regression analyses were performed for 30-day mortality, with covariates of age, sex, TIR ≥ 80%, Acute Physiology Score, and Charlson Comorbidity Index. RESULTS A total of 9,028 patients, 53.2% of whom had diabetes, were studied. Median TIR was 84.1% for nondiabetic patients and 64.5% for patients with diabetes. Mortality was lower in those with TIR > 80% compared with those with TIR ≤ 80% (12.4% vs 19.2%; P < .001). TIR > 80% was independently associated with reduced mortality in nondiabetic patients (OR, 0.52; P < .001), patients with diabetes (OR, 0.69; P = .001), and patients with well-controlled disease (OR, 0.50; P < .001) but not in patients with poorly controlled disease (OR, 0.86; P = .40). CONCLUSIONS TIR was independently associated with mortality in critically ill patients, particularly those with good antecedent glucose control.
Collapse
|
16
|
Hersh AM, Hirshberg EL, Wilson EL, Orme JF, Morris AH, Lanspa MJ. Lower Glucose Target Is Associated With Improved 30-Day Mortality in Cardiac and Cardiothoracic Patients. Chest 2018; 154:1044-1051. [PMID: 29705217 DOI: 10.1016/j.chest.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Practice guidelines recommend against intensive insulin therapy in patients who are critically ill based on trials that had high rates of severe hypoglycemia. Intermountain Healthcare uses a computerized IV insulin protocol that allows choice of blood glucose (BG) targets (80-110 vs 90-140 mg/dL) and has low rates of severe hypoglycemia. We sought to study the effects of BG target on mortality in adult patients in cardiac ICUs that have very low rates of severe hypoglycemia. METHODS Critically ill patients receiving IV insulin were treated with either of two BG targets (80-110 vs 90-140 mg/dL). We created a propensity score for BG target using factors thought to have influenced clinicians' choice, and then we performed a propensity score-adjusted regression analysis for 30-day mortality. RESULTS There were 1,809 patients who met inclusion criteria. Baseline patient characteristics were similar. Median glucose was lower in the 80-110 mg/dL group (104 vs 122 mg/dL, P < .001). Severe hypoglycemia occurred at very low rates in both groups (1.16% vs 0.35%, P = .051). Unadjusted 30-day mortality was lower in the 80-110 mg/dL group (4.3% vs 9.2%, P < .001). This remained after propensity score-adjusted regression (OR, 0.65; 95% CI, 0.43-0.98; P = .04). CONCLUSIONS Tight glucose control can be achieved with low rates of severe hypoglycemia and is associated with decreased 30-day mortality in a cohort of largely patients in cardiac ICUs. Although such findings should not be used to guide clinical practice at present, the use of tight glucose control should be reexamined using a protocol that has low rates of severe hypoglycemia.
Collapse
Affiliation(s)
- Andrew M Hersh
- Division of Pulmonary and Critical Care, San Antonio Military Medical Center, Fort Sam Houston, TX; Division of Pulmonary and Critical Care, Intermountain Medical Center, Murray, UT.
| | - Eliotte L Hirshberg
- Division of Pulmonary and Critical Care, Intermountain Medical Center, Murray, UT; Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT; Division of Pediatric Critical Care, Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Emily L Wilson
- Division of Pulmonary and Critical Care, Intermountain Medical Center, Murray, UT
| | - James F Orme
- Division of Pulmonary and Critical Care, Intermountain Medical Center, Murray, UT; Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT
| | - Alan H Morris
- Division of Pulmonary and Critical Care, Intermountain Medical Center, Murray, UT; Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT
| | - Michael J Lanspa
- Division of Pulmonary and Critical Care, Intermountain Medical Center, Murray, UT; Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
17
|
Tate M, Deo M, Cao AH, Hood SG, Huynh K, Kiriazis H, Du XJ, Julius TL, Figtree GA, Dusting GJ, Kaye DM, Ritchie RH. Insulin replacement limits progression of diabetic cardiomyopathy in the low-dose streptozotocin-induced diabetic rat. Diab Vasc Dis Res 2017; 14:423-433. [PMID: 28565941 DOI: 10.1177/1479164117710390] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diabetic cardiomyopathy is a major contributor to the increasing burden of heart failure globally. Effective therapies remain elusive, in part due to the incomplete understanding of the mechanisms underlying diabetes-induced myocardial injury. The objective of this study was to assess the direct impact of insulin replacement on left ventricle structure and function in a rat model of diabetes. Male Sprague-Dawley rats were administered streptozotocin (55 mg/kg i.v.) or citrate vehicle and were followed for 8 weeks. A subset of diabetic rats were allocated to insulin replacement (6 IU/day insulin s.c.) for the final 4 weeks of the 8-week time period. Diabetes induced the characteristic systemic complications of diabetes (hyperglycaemia, polyuria, kidney hypertrophy) and was accompanied by marked left ventricle remodelling (cardiomyocyte hypertrophy, left ventricle collagen content) and diastolic dysfunction (transmitral E/A, left ventricle-dP/dt). Importantly, these systemic and cardiac impairments were ameliorated markedly following insulin replacement, and moreover, markers of the diabetic cardiomyopathy phenotype were significantly correlated with the extent of hyperglycaemia. In summary, these data suggest that poor glucose control directly contributes towards the underlying features of experimental diabetic cardiomyopathy, at least in the early stages, and that adequate replacement ameliorates this.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Disease Progression
- Fibrosis
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Male
- Myocarditis/pathology
- Myocarditis/physiopathology
- Myocarditis/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Streptozocin
- Time Factors
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Mitchel Tate
- 1 Heart Failure Pharmacology Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- 1 Heart Failure Pharmacology Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Anh H Cao
- 1 Heart Failure Pharmacology Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
- 2 Centre for Inflammatory Diseases, Monash University and Monash Medical Centre, Clayton, VIC, Australia
| | - Sally G Hood
- 3 The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Karina Huynh
- 1 Heart Failure Pharmacology Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Helen Kiriazis
- 4 Experimental Cardiology Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Xiao-Jun Du
- 4 Experimental Cardiology Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Tracey L Julius
- 1 Heart Failure Pharmacology Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Gemma A Figtree
- 5 North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Gregory J Dusting
- 6 Centre for Eye Research Australia, University of Melbourne, East Melbourne, VIC, Australia
| | - David M Kaye
- 7 Heart Failure Research Group, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
- 8 Department of Medicine, Monash University, Clayton, VIC, Australia
| | - Rebecca H Ritchie
- 1 Heart Failure Pharmacology Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
- 8 Department of Medicine, Monash University, Clayton, VIC, Australia
| |
Collapse
|
18
|
Schaun MI, Marschner RA, Peres TR, Markoski MM, Lehnen AM. Aerobic training prior to myocardial infarction increases cardiac GLUT4 and partially preserves heart function in spontaneously hypertensive rats. Appl Physiol Nutr Metab 2017; 42:334-337. [PMID: 28177731 DOI: 10.1139/apnm-2016-0439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
We assessed cardiac function (echocardiographic) and glucose transporter 4 (GLUT4) expression (Western blot) in response to 10 weeks of aerobic training (treadmill) prior to acute myocardial infarction (AMI) by ligation of the left coronary artery in spontaneously hypertensive rats. Animals were allocated to sedentary+sham, sedentary+AMI, training+sham, and training+AMI. Aerobic training prior to AMI partially preserves heart function. AMI and/or aerobic training increased GLUT4 expression. However, those animals trained prior to AMI showed a greater increase in GLUT4 in cardiomyocytes.
Collapse
Affiliation(s)
- Maximiliano Isoppo Schaun
- a Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, RS, 90620-001, Brazil
| | - Rafael Aguiar Marschner
- a Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, RS, 90620-001, Brazil
| | - Thiago Rodrigues Peres
- a Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, RS, 90620-001, Brazil
| | - Melissa Medeiros Markoski
- a Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, RS, 90620-001, Brazil
| | - Alexandre Machado Lehnen
- a Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, RS, 90620-001, Brazil
- b Faculdade Sogipa de Educação Física, Porto Alegre, Rio Grande do Sul, 90550-003, Brazil
| |
Collapse
|
19
|
Han S, Park JS, Lee S, Jeong AL, Oh KS, Ka HI, Choi HJ, Son WC, Lee WY, Oh SJ, Lim JS, Lee MS, Yang Y. CTRP1 protects against diet-induced hyperglycemia by enhancing glycolysis and fatty acid oxidation. J Nutr Biochem 2016; 27:43-52. [DOI: 10.1016/j.jnutbio.2015.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/25/2022]
|
20
|
Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria. PLoS One 2015; 10:e0146033. [PMID: 26720696 PMCID: PMC4697822 DOI: 10.1371/journal.pone.0146033] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/12/2015] [Indexed: 01/14/2023] Open
Abstract
Although diabetes has been identified as a major risk factor for atrial fibrillation, little is known about glucose metabolism in the healthy and diabetic atria. Glucose transport into the cell, the rate-limiting step of glucose utilization, is regulated by the Glucose Transporters (GLUTs). Although GLUT4 is the major isoform in the heart, GLUT8 has recently emerged as a novel cardiac isoform. We hypothesized that GLUT-4 and -8 translocation to the atrial cell surface will be regulated by insulin and impaired during insulin-dependent diabetes. GLUT protein content was measured by Western blotting in healthy cardiac myocytes and type 1 (streptozotocin-induced, T1Dx) diabetic rodents. Active cell surface GLUT content was measured using a biotinylated photolabeled assay in the perfused heart. In the healthy atria, insulin stimulation increased both GLUT-4 and -8 translocation to the cell surface (by 100% and 240%, respectively, P<0.05). Upon insulin stimulation, we reported an increase in Akt (Th308 and s473 sites) and AS160 phosphorylation, which was positively (P<0.05) correlated with GLUT4 protein content in the healthy atria. During diabetes, active cell surface GLUT-4 and -8 content was downregulated in the atria (by 70% and 90%, respectively, P<0.05). Akt and AS160 phosphorylation was not impaired in the diabetic atria, suggesting the presence of an intact insulin signaling pathway. This was confirmed by the rescued translocation of GLUT-4 and -8 to the atrial cell surface upon insulin stimulation in the atria of type 1 diabetic subjects. In conclusion, our data suggest that: 1) both GLUT-4 and -8 are insulin-sensitive in the healthy atria through an Akt/AS160 dependent pathway; 2) GLUT-4 and -8 trafficking is impaired in the diabetic atria and rescued by insulin treatment. Alterations in atrial glucose transport may induce perturbations in energy production, which may provide a metabolic substrate for atrial fibrillation during diabetes.
Collapse
|
21
|
Drosatos K, Pollak NM, Pol CJ, Ntziachristos P, Willecke F, Valenti MC, Trent CM, Hu Y, Guo S, Aifantis I, Goldberg IJ. Cardiac Myocyte KLF5 Regulates Ppara Expression and Cardiac Function. Circ Res 2015; 118:241-53. [PMID: 26574507 DOI: 10.1161/circresaha.115.306383] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
RATIONALE Fatty acid oxidation is transcriptionally regulated by peroxisome proliferator-activated receptor (PPAR)α and under normal conditions accounts for 70% of cardiac ATP content. Reduced Ppara expression during sepsis and heart failure leads to reduced fatty acid oxidation and myocardial energy deficiency. Many of the transcriptional regulators of Ppara are unknown. OBJECTIVE To determine the role of Krüppel-like factor 5 (KLF5) in transcriptional regulation of Ppara. METHODS AND RESULTS We discovered that KLF5 activates Ppara gene expression via direct promoter binding. This is blocked in hearts of septic mice by c-Jun, which binds an overlapping site on the Ppara promoter and reduces transcription. We generated cardiac myocyte-specific Klf5 knockout mice that showed reduced expression of cardiac Ppara and its downstream fatty acid metabolism-related targets. These changes were associated with reduced cardiac fatty acid oxidation, ATP levels, increased triglyceride accumulation, and cardiac dysfunction. Diabetic mice showed parallel changes in cardiac Klf5 and Ppara expression levels. CONCLUSIONS Cardiac myocyte KLF5 is a transcriptional regulator of Ppara and cardiac energetics.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.).
| | - Nina M Pollak
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Christine J Pol
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Panagiotis Ntziachristos
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Florian Willecke
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Mesele-Christina Valenti
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Chad M Trent
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Yunying Hu
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Shaodong Guo
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Iannis Aifantis
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Ira J Goldberg
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| |
Collapse
|
22
|
Jackson EE, Rendina-Ruedy E, Smith BJ, Lacombe VA. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet. PLoS One 2015; 10:e0142077. [PMID: 26539824 PMCID: PMC4634760 DOI: 10.1371/journal.pone.0142077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.
Collapse
Affiliation(s)
- Ellen E. Jackson
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Elisabeth Rendina-Ruedy
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Brenda J. Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Veronique A. Lacombe
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
23
|
Waller AP, Kalyanasundaram A, Hayes S, Periasamy M, Lacombe VA. Sarcoplasmic reticulum Ca2+ ATPase pump is a major regulator of glucose transport in the healthy and diabetic heart. Biochim Biophys Acta Mol Basis Dis 2015; 1852:873-81. [PMID: 25615793 DOI: 10.1016/j.bbadis.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/18/2014] [Accepted: 01/14/2015] [Indexed: 01/12/2023]
Abstract
Despite intensive research, the pathways that mediate calcium (Ca(2+))-stimulated glucose transport in striated muscle remain elusive. Since the sarcoplasmic reticulum calcium ATPase (SERCA) pump tightly regulates cytosolic [Ca(2+)], we investigated whether the SERCA pump is a major regulator of cardiac glucose transport. We used healthy and insulin-deficient diabetic transgenic (TG) mice expressing SERCA1a in the heart. Active cell surface glucose transporter (GLUT)-4 was measured by a biotinylated photolabeled assay in the intact perfused myocardium and isolated myocytes. In healthy TG mice, cardiac-specific SERCA1a expression increased active cell-surface GLUT4 and glucose uptake in the myocardium, as well as whole body glucose tolerance. Diabetes reduced active cell-surface GLUT4 content and glucose uptake in the heart of wild type mice, all of which were preserved in diabetic TG mice. Decreased basal AS160 and increased proportion of calmodulin-bound AS160 paralleled the increase in cell surface GLUT4 content in the heart of TG mice, suggesting that AS160 regulates GLUT trafficking by a Ca(2+)/calmodulin dependent pathway. In addition, cardiac-specific SERCA1a expression partially rescues hyperglycemia during diabetes. Collectively, these data suggested that the SERCA pump is a major regulator of cardiac glucose transport by an AS160 dependent mechanism during healthy and insulin-deficient state. Our data further indicated that cardiac-specific SERCA overexpression rescues diabetes induced-alterations in cardiac glucose transport and improves whole body glucose homeostasis. Therefore, findings from this study provide novel mechanistic insights linking upregulation of the SERCA pump in the heart as a potential therapeutic target to improve glucose metabolism during diabetes.
Collapse
Affiliation(s)
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, USA
| | - Summer Hayes
- College of Pharmacy, The Ohio State University, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, USA; Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
| | - Véronique A Lacombe
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
24
|
Coefficient of glucose variation is independently associated with mortality in critically ill patients receiving intravenous insulin. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R86. [PMID: 24886864 PMCID: PMC4075237 DOI: 10.1186/cc13851] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Both patient- and context-specific factors may explain the conflicting evidence regarding glucose control in critically ill patients. Blood glucose variability appears to correlate with mortality, but this variability may be an indicator of disease severity, rather than an independent predictor of mortality. We assessed blood glucose coefficient of variation as an independent predictor of mortality in the critically ill. METHODS We used eProtocol-Insulin, an electronic protocol for managing intravenous insulin with explicit rules, high clinician compliance, and reproducibility. We studied critically ill patients from eight hospitals, excluding patients with diabetic ketoacidosis and patients supported with eProtocol-insulin for < 24 hours or with < 10 glucose measurements. Our primary clinical outcome was 30-day all-cause mortality. We performed multivariable logistic regression, with covariates of age, gender, glucose coefficient of variation (standard deviation/mean), Charlson comorbidity score, acute physiology score, presence of diabetes, and occurrence of hypoglycemia < 60 mg/dL. RESULTS We studied 6101 critically ill adults. Coefficient of variation was independently associated with 30-day mortality (odds ratio 1.23 for every 10% increase, P < 0.001), even after adjustment for hypoglycemia, age, disease severity, and comorbidities. The association was higher in non-diabetics (OR = 1.37, P < 0.001) than in diabetics (OR 1.15, P = 0.001). CONCLUSIONS Blood glucose variability is associated with mortality and is independent of hypoglycemia, disease severity, and comorbidities. Future studies should evaluate blood glucose variability.
Collapse
|
25
|
Shi L, Ko ML, Huang CCY, Park SY, Hong MP, Wu C, Ko GYP. Chicken embryos as a potential new model for early onset type I diabetes. J Diabetes Res 2014; 2014:354094. [PMID: 25133191 PMCID: PMC4122024 DOI: 10.1155/2014/354094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness among the American working population. The purpose of this study is to establish a new diabetic animal model using a cone-dominant avian species to address the distorted color vision and altered cone pathway responses in prediabetic and early diabetic patients. Chicken embryos were injected with either streptozotocin (STZ), high concentration of glucose (high-glucose), or vehicle at embryonic day 11. Cataracts occurred in varying degrees in both STZ- and high glucose-induced diabetic chick embryos at E18. Streptozotocin-diabetic chicken embryos had decreased levels of blood insulin, glucose transporter 4 (Glut4), and phosphorylated protein kinase B (pAKT). In STZ-injected E20 embryos, the ERG amplitudes of both a- and b-waves were significantly decreased, the implicit time of the a-wave was delayed, while that of the b-wave was significantly increased. Photoreceptors cultured from STZ-injected E18 embryos had a significant decrease in L-type voltage-gated calcium channel (L-VGCC) currents, which was reflected in the decreased level of L-VGCCα1D subunit in the STZ-diabetic retinas. Through these independent lines of evidence, STZ-injection was able to induce pathological conditions in the chicken embryonic retina, and it is promising to use chickens as a potential new animal model for type I diabetes.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - So-Young Park
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Min-Pyo Hong
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843-4458, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
- Texas A&M Institute of Neuroscience, Texas A&M University, College Station, TX 77843-445, USA
- *Gladys Y.-P. Ko:
| |
Collapse
|
26
|
Nasu-Kawaharada R, Nakamura A, Kakarla SK, Blough ER, Kohama K, Kohama T. A maternal diet rich in fish oil may improve cardiac Akt-related signaling in the offspring of diabetic mother rats. Nutrition 2013; 29:688-92. [PMID: 23466053 DOI: 10.1016/j.nut.2012.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/22/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Newborns of diabetic mothers have abnormal circulatory organs, so in this study, we explore insulin signaling in the newborn rat heart. METHODS Pregnant rats were divided into streptozotocin-induced diabetic groups (DM) and control groups (CM). Rats were fed lard (21% fat), fish oil (21% fat), or a control diet (7% fat). To examine changes in insulin signaling in the hearts of infants of diabetic mothers (IDM) in relation to diet, we isolated the hearts from the IDM and control infants and determined the phosphorylation levels of Akt308, Akt473, p38, c-jun-NH2-terminal protein kinase (JNK), and extracellular signal-regulated protein kinase (ERK), and the expression levels of phosphoinositide-dependent protein kainase1 (PDK1) and mammalian target of rapamycin (mTOR). RESULTS The mean blood glucose levels in the DM group and their infants were significantly higher than those in the CM group (P < 0.05) and their infants (P < 0.05), but the mean blood glucose levels of all infants was normal on postnatal d 4. Phosphorylation levels of Akt (Thr 308) (P < 0.05) and Akt (Ser 473) and the expression levels of PDK1 and mTOR were lower in infants of diabetic mothers (IDM) than in control infants. The phosphorylation level of Akt (Ser 473) and the expression level of mTOR increased in IDM fed the fish oil diet compared with those fed the lard diet (P < 0.05). CONCLUSION A maternal diet rich in fish oil improves cardiac Akt-related signaling in the offspring of diabetic rats.
Collapse
Affiliation(s)
- Ritsuko Nasu-Kawaharada
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Lanspa MJ, Hirshberg EL, Phillips GD, Holmen J, Stoddard G, Orme J. Moderate glucose control is associated with increased mortality compared with tight glucose control in critically ill patients without diabetes. Chest 2013; 143:1226-1234. [PMID: 23238456 DOI: 10.1378/chest.12-2072] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Optimal glucose management in the ICU remains unclear. In 2009, many clinicians at Intermountain Healthcare selected a moderate glucose control (90-140 mg/dL) instead of tight glucose control (80-110 mg/dL). We hypothesized that moderate glucose control would affect patients with and without preexisting diabetes differently. METHODS We performed a retrospective cohort analysis of all patients treated with eProtocol-insulin from November 2006 to March 2011, stratifying for diabetes. We performed multivariate logistic regression for 30-day mortality with covariates of age, modified APACHE (Acute Physiology and Chronic Health Evaluation) II score, Charlson Comorbidity score, and target glucose. RESULTS We studied 3,529 patients in 12 different ICUs in eight different hospitals. Patients with diabetes had higher mean glucose (132 mg/dL vs 124 mg/dL) and greater glycemic variability (SD = 41 mg/dL vs 29 mg/dL) than did patients without diabetes (P < .01 for both comparisons). Tight glucose control was associated with increased frequency of moderate and severe hypoglycemia (30.3% and 3.6%) compared with moderate glucose control (14.3% and 2.0%, P < .01 for both). Multivariate analysis demonstrated that the moderate glucose target was independently associated with increased risk of mortality in patients without diabetes (OR, 1.36; 95% CI, 1.01-1.84; P = .05) but decreased risk of mortality in patients with diabetes (OR, 0.65; 95% CI, 0.45-0.93; P = .01). CONCLUSIONS Moderate glucose control (90-140 mg/dL) may confer greater mortality in critically ill patients without diabetes compared with tight glucose control (80-110 mg/dL). A single glucose target does not appear optimal for all critically ill patients. These data have important implications for the design of future interventional trials as well as for the glycemic management of critically ill patients.
Collapse
Affiliation(s)
- Michael J Lanspa
- Division of Pulmonary and Critical Care Medicine, Salt Lake City, UT; Division of Pulmonary and Critical Care Medicine, Salt Lake City, UT.
| | - Eliotte L Hirshberg
- Division of Pulmonary and Critical Care Medicine, Salt Lake City, UT; Division of Pediatric Critical Care, Salt Lake City, UT; Division of Pulmonary and Critical Care Medicine, Salt Lake City, UT
| | | | - John Holmen
- Homer Warner Center, Intermountain Healthcare, Salt Lake City, UT
| | - Gregory Stoddard
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - James Orme
- Division of Pulmonary and Critical Care Medicine, Salt Lake City, UT; Division of Pulmonary and Critical Care Medicine, Salt Lake City, UT
| |
Collapse
|
28
|
Latha R, Shanthi P, Sachdanandam P. Kalpaamruthaa modulates oxidative stress in cardiovascular complication associated with type 2 diabetes mellitus through PKC-β/Akt signaling. Can J Physiol Pharmacol 2013; 91:901-12. [PMID: 24117257 DOI: 10.1139/cjpp-2012-0443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study aimed at investigating the efficacy of Kalpaamruthaa (KA) on cardiovascular damage (CVD) associated with type 2 diabetes mellitus in experimental rats by reducing oxidative stress and the modulation of the protein kinase C-β (PKC-β)/Akt signaling pathway. CVD-induced rats were treated with KA (200 mg·(kg body mass)(-1)·(day)(-1)) orally for 4 weeks. KA effectively reduced insulin resistance with alterations in blood glucose, hemoglobin, and glycosylated hemoglobin in CVD-induced rats. Elevated levels of lipids in CVD-induced rats were decreased upon KA administration. In CVD-induced rats the levels of lipoproteins were returned to normal by KA treatment. KA effectively reduced the lipid peroxidative product and protein carbonyl content in liver of CVD-induced rats. KA increased the activities and (or) levels of enzymatic and nonenzymatic antioxidants in liver of CVD-induced rats. KA treatment reduced the fatty inclusion and mast cell infiltration in liver of CVD-induced rats. Further, treatment with KA reduced the chromatin condensation and marginization in myocardium of CVD-induced rats. KA alters insulin signaling by decreasing PKC-β and increasing p-Akt and GLUT4 expressions in heart of CVD-induced rats. The above findings suggest that KA renders protection against CVD induced by type 2 diabetes mellitus by augmenting the cellular antioxidant defense capacity and modulating PKC-β and the p-Akt signaling pathway.
Collapse
Affiliation(s)
- Raja Latha
- a Department of Medical Biochemistry, Dr. A.L.M. Post-Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | | | | |
Collapse
|
29
|
GLUT12 functions as a basal and insulin-independent glucose transporter in the heart. Biochim Biophys Acta Mol Basis Dis 2012; 1832:121-7. [PMID: 23041416 DOI: 10.1016/j.bbadis.2012.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/31/2012] [Accepted: 09/28/2012] [Indexed: 01/08/2023]
Abstract
Glucose uptake from the bloodstream is the rate-limiting step in whole body glucose utilization, and is regulated by a family of membrane proteins called glucose transporters (GLUTs). Although GLUT4 is the predominant isoform in insulin-sensitive tissues, there is recent evidence that GLUT12 could be a novel second insulin-sensitive GLUT. However, its physiological role in the heart is not elucidated and the regulation of insulin-stimulated myocardial GLUT12 translocation is unknown. In addition, the role of GLUT12 has not been investigated in the diabetic myocardium. Thus, we hypothesized that, as for GLUT4, insulin regulates GLUT12 translocation to the myocardial cell surface, which is impaired during diabetes. Active cell surface GLUT (-4 and -12) content was quantified (before and after insulin stimulation) by a biotinylated photolabeled assay in both intact perfused myocardium and isolated cardiac myocytes of healthy and type 1 diabetic rodents. GLUT localization was confirmed by immunofluorescent confocal microscopy, and total GLUT protein expression was measured by Western blotting. Insulin stimulation increased translocation of GLUT-4, but not -12, in the healthy myocardium. Total GLUT4 content of the heart was decreased during diabetes, while there was no difference in total GLUT12. Active cell surface GLUT12 content was increased in the diabetic myocardium, potentially as a compensatory mechanism for the observed downregulation of GLUT4. Collectively, our data suggest that, in contrast to GLUT4, insulin does not mediate GLUT12 translocation, which may function as a basal GLUT located primarily at the cell surface in the myocardium.
Collapse
|
30
|
Afanasiev SA, Kondratyeva DS, Popov SV. Development of an experimental model of cardiac failure combined with type I diabetes mellitus. Bull Exp Biol Med 2012; 153:530-2. [PMID: 22977863 DOI: 10.1007/s10517-012-1759-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The doses and mode of streptozotocin injection for modeling heart failure combined with type 1 diabetes mellitus have been determined. Combined disease was induced in animals by injecting the selected streptozotocin dose (60 mg/kg intraperitoneally) at the stage of heart failure formation (2 weeks after coronary occlusion). This protocol of experiment led to development of hyperglycemia, body weight loss, and formation of myocardial cicatrix and hypertrophy corresponding to signs of heart failure paralleled by diabetes mellitus.
Collapse
Affiliation(s)
- S A Afanasiev
- Institute of Cardiology, Tomsk Research Center, Siberian Division of the Russian Academy of Medical Sciences, Russia
| | | | | |
Collapse
|
31
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LM. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol 2011; 50:1035-43. [DOI: 10.1016/j.yjmcc.2011.03.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/01/2011] [Indexed: 01/03/2023]
|
33
|
Abstract
Diabetes mellitus is one of the leading causes of death, and the majority of these deaths are associated with cardiovascular diseases. Development and progression of myocardial infarction leading to heart failure is much more complex and multifactorial in diabetics compared with non-diabetics. Despite significant advances in pharmacological interventions and surgical techniques, the disease progression leading to diabetic end-stage heart failure remains very high. Recently, cell therapy has gained much attention as an alternative approach to treat various heart diseases. However, transplanted stem cell studies in diabetic animal models are very limited. In this review, we discuss the pathogenesis of the diabetic infarcted heart and the potential of stem cell therapy to repair and regenerate.
Collapse
|
34
|
Huang JP, Huang SS, Deng JY, Chang CC, Day YJ, Hung LM. Insulin and resveratrol act synergistically, preventing cardiac dysfunction in diabetes, but the advantage of resveratrol in diabetics with acute heart attack is antagonized by insulin. Free Radic Biol Med 2010; 49:1710-21. [PMID: 20828608 DOI: 10.1016/j.freeradbiomed.2010.08.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 08/31/2010] [Indexed: 02/05/2023]
Abstract
Resveratrol (RSV), a natural phenolic compound, has been found to display cardiovascular protective and insulin-sensitizing properties. In this study, the effects of RSV and its combination with insulin on mortality, hemodynamics, insulin signaling, and nitrosative stress were compared in streptozotocin (STZ)-induced diabetic rats with or without acute myocardial ischemia/reperfusion (I/R) injury. Under normoxic conditions, cardiac systolic and diastolic functions and insulin-mediated Akt/GLUT4 (glucose transporter 4) activation were impaired in STZ-diabetic rats. The combination of RSV and insulin significantly prevented the above diabetes-associated abnormalities. Notwithstanding that, the diabetic state rendered the animals more susceptible to myocardial I/R injury, and the mortality rate and inducible nitric oxide synthase (iNOS)/nitrotyrosine protein expression and superoxide anion production were also further increased in I/R-injured diabetic hearts. In contrast, RSV treatment alone resulted in a lower mortality rate (from 62.5 to 18%) and better cardiac systolic function than its combination with insulin. RSV also inhibited iNOS/nitrotyrosine protein overexpression and superoxide anion overproduction in I/R-injured diabetic myocardium. Hyperglycemia, impairment of insulin signaling, overexpression of iNOS/nitrotyrosine, and superoxide anion overproduction were markedly rescued by the combination treatment, which did not show an improvement in mortality rate (30%) or cardiac performance over RSV treatment alone. These results indicate that insulin and RSV synergistically prevented cardiac dysfunction in diabetes and this may be in parallel with activation of the insulin-mediated Akt/GLUT4 signaling pathway. Although activation of the protective signal (Akt/GLUT4) and suppression of the adverse markers (iNOS, nitrotyrosine, and superoxide anion) were simultaneously observed in insulin and RSV combination treatment, insulin counteracted the advantage of RSV in diabetics with acute heart attack.
Collapse
Affiliation(s)
- Jiung-Pang Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|