1
|
Hutton P, Lendvai ÁZ, Németh J, McGraw KJ. Urban house finches are more resistant to the effects of artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174525. [PMID: 38972420 DOI: 10.1016/j.scitotenv.2024.174525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Rapid urbanization of habitats alters the physical, chemical, auditory, and photic environments of human and wild animal inhabitants. One of the most widespread transformations is caused by artificial light at night (ALAN), but it is not clear the extent to which individuals acclimate to such rapid environmental change. Here, we tested the hypothesis that urban birds show increased resistance to harmful behavioral, parasitological, and physiological effects of ALAN. We captured house finches (Haemorhous mexicanus), a bird that commonly inhabits cities and their natural surroundings, from two urban and two rural sites in Phoenix, Arizona, USA, which differ by both degree of urbanization and by multiple orders of magnitude in ALAN intensity, and placed them in a common garden laboratory setting. We exposed half of the birds from each habitat type to ecologically relevant levels of night lighting during the subjective night and found that, while ALAN exposure reduced sleep in both urban and rural birds, ALAN-exposed urban birds were able to sleep longer than ALAN-exposed rural birds. We also found that ALAN exposure increased the proliferation rate of an intestinal coccidian parasite (Isospora spp.) in both urban and rural birds, but that the rate of proliferation was lower in urban relative to rural birds. We found that night lighting suppressed titers of feather corticosterone in rural but not urban birds, suggesting that light impairs HPA function through chronic stress or suppression of its circadian rhythmicity, and that urban birds were again resistant to this effect. Mediation analyses show that the effect of ALAN exposure in rural birds was significantly sleep-mediated for feather corticosterone but not coccidiosis, suggesting a diversity of mechanisms by which ALAN alters physiology. We contribute further evidence that animals from night-lit habitats can develop resistance to ALAN and its detrimental effects.
Collapse
Affiliation(s)
- Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Jószef Németh
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Bauhus MB, Mews S, Kurtz J, Brinker A, Peuß R, Anaya-Rojas JM. Tapeworm infection affects sleep-like behavior in three-spined sticklebacks. Sci Rep 2024; 14:23395. [PMID: 39379533 PMCID: PMC11461891 DOI: 10.1038/s41598-024-73992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Sleep is a complex and conserved biological process that affects several body functions and behaviors. Evidence suggests that there is a reciprocal interaction between sleep and immunity. For instance, fragmented sleep can increase the probability of parasitic infections and reduce the ability to fight infections. Moreover, viral and bacterial infections alter the sleep patterns of infected individuals. However, the effects of macro-parasitic infections on sleep remain largely unknown, and measuring sleep in non-model organisms remains challenging. In this study, we investigated whether macro-parasite infections could alter sleep-like behavior of their hosts. We experimentally infected three-spined sticklebacks (Gasterosteus aculeatus), a freshwater fish, with the tapeworm Schistocephalus solidus and used a hidden Markov model to characterize sleep-like behavior in sticklebacks. One to four days after parasite exposure, infected fish showed no difference in sleep-like behavior compared with non-exposed fish, and fish that were exposed-but-not-infected only showed a slight reduction in sleep-like behavior during daytime. Twenty-nine to 32 days after exposure, infected fish showed more sleep-like behavior than control fish, while exposed-but-not-infected fish showed overall less sleep-like behavior. Using brain transcriptomics, we identified immune- and sleep-associated genes that potentially underlie the observed behavioral changes. These results provide insights into the complex association between macro-parasite infection, immunity, and sleep in fish and may thus contribute to a better understanding of reciprocal interactions between sleep and immunity.
Collapse
Affiliation(s)
- Marc B Bauhus
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Sina Mews
- Department of Business Administration and Economics, Bielefeld University, Universitätsstraße 25, 33614, Bielefeld, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster, Bielefeld, Germany
| | - Alexander Brinker
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085, Langenargen, Germany
- Institute for Limnology, University of Constance, Mainaustraße 252, 78464, Constance, Germany
| | - Robert Peuß
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany.
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster, Bielefeld, Germany.
| | - Jaime M Anaya-Rojas
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster, Bielefeld, Germany
| |
Collapse
|
3
|
Omond SET, Lesku JA. Why study sleep in flatworms? J Comp Physiol B 2024; 194:233-239. [PMID: 36899149 PMCID: PMC11233290 DOI: 10.1007/s00360-023-01480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
The behaviors that characterize sleep have been observed across a broad range of different species. While much attention has been placed on vertebrates (mostly mammals and birds), the grand diversity of invertebrates has gone largely unexplored. Here, we introduce the intrigue and special value in the study of sleeping platyhelminth flatworms. Flatworms are closely related to annelids and mollusks, and yet are comparatively simple. They lack a circulatory system, respiratory system, endocrine glands, a coelom, and an anus. They retain a central and peripheral nervous system, various sensory systems, and an ability to learn. Flatworms sleep, like other animals, a state which is regulated by prior sleep/wake history and by the neurotransmitter GABA. Furthermore, they possess a remarkable ability to regenerate from a mere fragment of the original animal. The regenerative capabilities of flatworms make them a unique bilaterally symmetric animal to study a link between sleep and neurodevelopment. Lastly, the recent applications of tools for probing the flatworm genome, metabolism, and brain activity make their entrance into the field of sleep research all the more timely.
Collapse
Affiliation(s)
- Shauni E T Omond
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, Australia.
| | - John A Lesku
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, Australia.
| |
Collapse
|
4
|
Omond SET, Barker RG, Sanislav O, Fisher PR, Annesley SJ, Lesku JA. Oxygen consumption rate of flatworms under the influence of wake- and sleep-promoting neurotransmitters. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 38801005 DOI: 10.1002/jez.2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Flatworms are among the best studied animal models for regeneration; however, they also represent an emerging opportunity to investigate other biological processes as well. For instance, flatworms are nocturnal and sleep during the day, a state that is regulated by sleep/wake history and the action of the sleep-promoting neurotransmitter gamma-aminobutyric acid (or GABA). Sleep is widespread across the animal kingdom, where it serves many nonexclusive functions. Notably, sleep saves energy by reducing metabolic rate and by not doing something more energetically taxing. Whether the conservation of energy is apparent in sleeping flatworms is unclear. We measured the oxygen consumption rate (OCR) of flatworms dosed with either (1) GABA (n = 29) which makes flatworms inactive or (2) dopamine (n = 20) which stimulates flatworms to move, or (3) day and night neurotransmitter-free controls (n = 28 and 27, respectively). While OCR did not differ between the day and night, flatworms treated with GABA used less oxygen than those treated with dopamine, and less than the day-time control. Thus, GABA affected flatworm physiology, ostensibly by enforcing energy-conserving sleep. Evidence that dopamine increased metabolism was less strong. This work broadens our understanding of flatworm physiology and expands the phylogenetic applicability of energy conservation as a function of sleep.
Collapse
Affiliation(s)
- Shauni E T Omond
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Robert G Barker
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Oana Sanislav
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Paul R Fisher
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Sarah J Annesley
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| |
Collapse
|
5
|
Arapi EA, Reynolds M, Ellison AR, Cable J. Restless nights when sick: ectoparasite infections alter rest-activity cycles of diurnal fish hosts. Parasitology 2024; 151:251-259. [PMID: 38372138 PMCID: PMC11007282 DOI: 10.1017/s0031182023001324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Circadian rhythms are timekeeping mechanisms responsible for an array of biological processes. Disruption of such cycles can detrimentally affect animal health. Circadian rhythms are critical in the co-evolution of host–parasite systems, as synchronization of parasite rhythms to the host can influence infection dynamics and transmission potential. This study examines the circadian rhythms in behaviour and activity of a model fish species (Poecilia reticulata) in isolation and in shoals, both when uninfected and infected with an ectoparasite (Gyrodactylus turnbulli). Additionally, the rhythmical variance of parasite activity under different light conditions as well as rhythmical variance in parasite transmissibility was explored. Overall, infection alters the circadian rhythm of fish, causing nocturnal restlessness. Increased activity of gyrodactylids on the host's skin at night could potentially contribute to this elevated host activity. Whilst migration of gyrodactylids across the host's skin may have caused irritation to the host resulting in nocturnal restlessness, the disruption in guppy activity rhythm caused by the expression of host innate immunity cannot be excluded. We discuss the wider repercussions such behavioural responses to infection have for host health, the implications for animal behaviour studies of diurnal species as well as the application of chronotherapeutic approaches to aquaculture.
Collapse
Affiliation(s)
| | | | - Amy R. Ellison
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
6
|
Smeltzer EA, Stead SM, Li MF, Samson D, Kumpan LT, Teichroeb JA. Social sleepers: The effects of social status on sleep in terrestrial mammals. Horm Behav 2022; 143:105181. [PMID: 35594742 DOI: 10.1016/j.yhbeh.2022.105181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
Social status among group-living mammals can impact access to resources, such as water, food, social support, and mating opportunities, and this differential access to resources can have fitness consequences. Here, we propose that an animal's social status impacts their access to sleep opportunities, as social status may predict when an animal sleeps, where they sleep, who they sleep with, and how well they sleep. Our review of terrestrial mammals examines how sleep architecture and intensity may be impacted by (1) sleeping conditions and (2) the social experience during wakefulness. Sleeping positions vary in thermoregulatory properties, protection from predators, and exposure to parasites. Thus, if dominant individuals have priority of access to sleeping positions, they may benefit from higher quality sleeping conditions and, in turn, better sleep. With respect to waking experiences, we discuss the impacts of stress on sleep, as it has been established that specific social statuses can be characterized by stress-related physiological profiles. While much research has focused on how dominance hierarchies impact access to resources like food and mating opportunities, differential access to sleep opportunities among mammals has been largely ignored despite its potential fitness consequences.
Collapse
Affiliation(s)
- E A Smeltzer
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - S M Stead
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| | - M F Li
- Department of Anthropology, University of Toronto, 19 Russell St., Toronto, Ontario M5S 2S2, Canada
| | - D Samson
- Department of Anthropology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada
| | - L T Kumpan
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - J A Teichroeb
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
7
|
Mohanty NP, Wagener C, Herrel A, Thaker M. The ecology of sleep in non-avian reptiles. Biol Rev Camb Philos Soc 2021; 97:505-526. [PMID: 34708504 DOI: 10.1111/brv.12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023]
Abstract
Sleep is ubiquitous in the animal kingdom and yet displays considerable variation in its extent and form in the wild. Ecological factors, such as predation, competition, and microclimate, therefore are likely to play a strong role in shaping characteristics of sleep. Despite the potential for ecological factors to influence various aspects of sleep, the ecological context of sleep in non-avian reptiles remains understudied and without systematic direction. In this review, we examine multiple aspects of reptilian sleep, including (i) habitat selection (sleep sites and their spatio-temporal distribution), (ii) individual-level traits, such as behaviour (sleep postures), morphology (limb morphometrics and body colour), and physiology (sleep architecture), as well as (iii) inter-individual interactions (intra- and inter-specific). Throughout, we discuss the evidence of predation, competition, and thermoregulation in influencing sleep traits and the possible evolutionary consequences of these sleep traits for reptile sociality, morphological specialisation, and habitat partitioning. We also review the ways in which sleep ecology interacts with urbanisation, biological invasions, and climate change. Overall, we not only provide a systematic evaluation of the conceptual and taxonomic biases in the existing literature on reptilian sleep, but also use this opportunity to organise the various ecological hypotheses for sleep characteristics. By highlighting the gaps and providing a prospectus of research directions, our review sets the stage for understanding sleep ecology in the natural world.
Collapse
Affiliation(s)
- Nitya P Mohanty
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| | - Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa
| | - Anthony Herrel
- Département Adaptations du Vivant, MECADEV UMR7179 CNRS/MNHN, Paris, France
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
8
|
Abstract
The human sleep pattern is paradoxical. Sleep is vital for optimal physical and cognitive performance, yet humans sleep the least of all primates. In addition, consolidated and continuous monophasic sleep is evidently advantageous, yet emerging comparative data sets from small-scale societies show that the phasing of the human pattern of sleep–wake activity is highly variable and characterized by significant nighttime activity. To reconcile these phenomena, the social sleep hypothesis proposes that extant traits of human sleep emerged because of social and technological niche construction. Specifically, sleep sites function as a type of social shelter by way of an extended structure of social groups that increases fitness. Short, high-quality, and flexibly timed sleep likely originated as a response to predation risks while sleeping terrestrially. This practice may have been a necessary preadaptation for migration out of Africa and for survival in ecological niches that penetrate latitudes with the greatest seasonal variation in light and temperature on the planet.
Collapse
Affiliation(s)
- David R. Samson
- Department of Anthropology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
9
|
Reyes KR, Patel UA, Nunn CL, Samson DR. Gibbon sleep quantified: the influence of lunar phase and meteorological variables on activity in Hylobates moloch and Hylobates pileatus. Primates 2021; 62:749-759. [PMID: 34052907 DOI: 10.1007/s10329-021-00920-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
Sleep in the primate order remains understudied, with quantitative estimates of sleep duration available for less than 10% of primate species. Even fewer species have had their sleep synchronously quantified with meteorological data, which have been shown to influence sleep-wake regulatory behaviors. We report the first sleep duration estimates in two captive gibbon species, the Javan gibbon (Hylobates moloch) and the pileated gibbon (Hylobates pileatus) (N = 52 nights). We also investigated how wind speed, humidity, temperature, lunar phase, and illumination from moonlight influence sleep-wake regulation, including sleep duration, sleep fragmentation, and sleep efficiency. Gibbons exhibited strict diurnal behavior with little nighttime activity and mean total average sleep duration of 11 h and 53 min for Hylobates moloch and 12 h and 29 min for Hylobates pileatus. Gibbons had notably high sleep efficiency (i.e., time score asleep divided by the time they spent in their sleeping site, mean of 98.3%). We found illumination from moonlight in relation to lunar phase and amount of wind speed to be the strongest predictors of sleep duration and high-quality sleep, with increased moonlight and increased wind causing more fragmentation and less sleep efficiency. We conclude that arousal threshold is sensitive to nighttime illumination and wind speed. Sensitivity to wind speed may reflect adaptations to counter the risk of falling during arboreal sleep.
Collapse
Affiliation(s)
- Kaleigh R Reyes
- Department of Anthropology, University of Toronto Mississauga, 19 Russell Street, Mississauga, ON, M5S 2S2, Canada.
| | - Ujas A Patel
- Department of Anthropology, University of Toronto Mississauga, 19 Russell Street, Mississauga, ON, M5S 2S2, Canada
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham North Carolina, USA
| | - David R Samson
- Department of Anthropology, University of Toronto Mississauga, 19 Russell Street, Mississauga, ON, M5S 2S2, Canada
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This article outlines the neurocircuitry underlying sleep-wake and circadian physiology with a focus on the fundamental roles that sleep and circadian health play in optimal neurologic function. RECENT FINDINGS The foundation of sleep and wake promotion is laid primarily by the "fast-acting" neurotransmitters: γ-aminobutyric acid (GABA) for sleep and glutamate for wake. External to these primary systems are a host of modulatory systems that are characterized by two flip-flop switches of mutually inhibitory neurotransmitter systems that facilitate transitions between wake and sleep as well as non-rapid eye movement (non-REM) and REM sleep. Additional mechanisms are in place to help coordinate the sleep-wake states with environmental, metabolic, and behavioral demands. The complexity of the evolutionarily preserved sleep-wake and circadian systems, the proportion of the day dedicated to the natural sleeping period, as well as the neurocognitive dysfunction and neurodegeneration caused by deficient sleep highlight the importance of defining, assessing, and optimizing the sleep health of our patients and ourselves. SUMMARY Exciting discoveries continue to elucidate the underlying mechanisms of sleep and wake state coordination, reinforcing fundamental healthy practices and paving the way for new interventions that preserve and promote optimal neurologic health.
Collapse
|
11
|
Zhang Y, Wu Y, Xu D, Xiao P, Xie B, Huang H, Shang Y, Yuan S, Zhang J. Very-Short-Term Sleep Deprivation Slows Early Recovery of Lymphocytes in Septic Patients. Front Med (Lausanne) 2021; 8:656615. [PMID: 34109195 PMCID: PMC8180857 DOI: 10.3389/fmed.2021.656615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Sleep plays an important role in immune function. However, the effects of very-short-term sleep deprivation on the early recovery of immune function after sepsis remain unclear. This study was conducted in the intensive care unit to investigate the effects of 2 consecutive days of sleep deprivation (SD) on lymphocyte recovery over the following few days in septic patients who were recovering from a critical illness. The patients' self-reports of sleep quality was assessed using the Richards–Campbell Sleep Questionnaire at 0 and 24 h after inclusion. The demographic, clinical, laboratory, treatment, and outcome data were collected and compared between the good sleep group and poor sleep group. We found that 2 consecutive days of SD decreased the absolute lymphocyte count (ALC) and ALC recovery at 3 days after SD. Furthermore, post-septic poor sleep decreased the plasma levels of atrial natriuretic peptide (ANP) immediately after 2 consecutive days of SD. The ANP levels at 24 h after inclusion were positively correlated with ALC recovery, the number of CD3+ T cells, or the number of CD3+ CD4+ cells in the peripheral blood on day 5 after inclusion. Our data suggested that very-short-term poor sleep quality could slow down lymphocyte recovery over the following few days in septic patients who were recovering from a critical illness. Our results underscore the significance of very-short-term SD on serious negative effects on the immune function. Therefore, it is suggested that continuous SD or several short-term SD with short intervals should be avoided in septic patients.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuming Wu
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Xu
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xiao
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xie
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Huang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Wyse C, O'Malley G, Coogan AN, McConkey S, Smith DJ. Seasonal and daytime variation in multiple immune parameters in humans: Evidence from 329,261 participants of the UK Biobank cohort. iScience 2021; 24:102255. [PMID: 33817568 PMCID: PMC8010467 DOI: 10.1016/j.isci.2021.102255] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
Seasonal disease outbreaks are perennial features of human infectious disease but the factors generating these patterns are unclear. Here we investigate seasonal and daytime variability in multiple immune parameters in 329,261 participants in UK Biobank and test for associations with a wide range of environmental and lifestyle factors, including changes in day length, outdoor temperature and vitamin D at the time the blood sample was collected. Seasonal patterns were evident in lymphocyte and neutrophil counts, and C-reactive protein CRP, but not monocytes, and these were independent of lifestyle, demographic, and environmental factors. All the immune parameters assessed demonstrated significant daytime variation that was independent of confounding factors. At a population level, human immune parameters vary across season and across time of day, independent of multiple confounding factors. Both season and time of day are fundamental dimensions of immune function that should be considered in all studies of immuno-prophylaxis and disease transmission.
Collapse
Affiliation(s)
- Cathy Wyse
- School of Physiotherapy, Division of Population Health Sciences, Royal College of Surgeons in Ireland, Beaux Lane House, Mercer Street Lower, Dublin, Ireland
| | - Grace O'Malley
- School of Physiotherapy, Division of Population Health Sciences, Royal College of Surgeons in Ireland, Beaux Lane House, Mercer Street Lower, Dublin, Ireland
| | - Andrew N. Coogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland
| | - Sam McConkey
- Royal College of Surgeons in Ireland: University of Medicine and Health Science, Dublin, Ireland
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
13
|
Sarikaya DP, Cridland J, Tarakji A, Sheehy H, Davis S, Kochummen A, Hatmaker R, Khan N, Chiu J, Begun DJ. Phenotypic coupling of sleep and starvation resistance evolves in D. melanogaster. BMC Evol Biol 2020; 20:126. [PMID: 32962630 PMCID: PMC7507639 DOI: 10.1186/s12862-020-01691-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND One hypothesis for the function of sleep is that it serves as a mechanism to conserve energy. Recent studies have suggested that increased sleep can be an adaptive mechanism to improve survival under food deprivation in Drosophila melanogaster. To test the generality of this hypothesis, we compared sleep and its plastic response to starvation in a temperate and tropical population of Drosophila melanogaster. RESULTS We found that flies from the temperate population were more starvation resistant, and hypothesized that they would engage in behaviors that are considered to conserve energy, including increased sleep and reduced movement. Surprisingly, temperate flies slept less and moved more when they were awake compared to tropical flies, both under fed and starved conditions, therefore sleep did not correlate with population-level differences in starvation resistance. In contrast, total sleep and percent change in sleep when starved were strongly positively correlated with starvation resistance within the tropical population, but not within the temperate population. Thus, we observe unexpectedly complex relationships between starvation and sleep that vary both within and across populations. These observations falsify the simple hypothesis of a straightforward relationship between sleep and energy conservation. We also tested the hypothesis that starvation is correlated with metabolic phenotypes by investigating stored lipid and carbohydrate levels, and found that stored metabolites partially contributed towards variation starvation resistance. CONCLUSIONS Our findings demonstrate that the function of sleep under starvation can rapidly evolve on short timescales and raise new questions about the physiological correlates of sleep and the extent to which variation in sleep is shaped by natural selection.
Collapse
Affiliation(s)
- Didem P Sarikaya
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA.
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, USA.
| | - Julie Cridland
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Adam Tarakji
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Hayley Sheehy
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Sophia Davis
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Ashley Kochummen
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Ryan Hatmaker
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Nossin Khan
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Joanna Chiu
- Department of Nematology and Entomology, University of California Davis, Davis, California, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| |
Collapse
|
14
|
Nava-Castro KE, Cortes C, Eguibar JR, Del Rio-Araiza VH, Hernández-Bello R, Morales-Montor J. The deficiency of myelin in the mutant taiep rat induces a differential immune response related to protection from the human parasite Trichinella spiralis. PLoS One 2020; 15:e0231803. [PMID: 32817660 PMCID: PMC7444528 DOI: 10.1371/journal.pone.0231803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Taiep rat is a myelin mutant with a progressive motor syndrome characterized by tremor, ataxia, immobility episodes, epilepsy and paralysis of the hindlimbs. Taiep had an initial hypomyelination followed by a progressive demyelination associated with an increased expression of some interleukins and their receptors. The pathology correlated with an increase in nitric oxide activity and lipoperoxidation. In base of the above evidences taiep rat is an appropriate model to study neuroimmune interactions. The aim of this study was to analyze the immune responses in male taiep rats after acute infection with Trichinella spiralis. Our results show that there is an important decrease in the number of intestinal larvae in the taiep rat with respect to Sprague-Dawley control rats. We also found differences in the percentage of innate and adaptive immune cell profile in the mesenteric lymphatic nodes and the spleen that correlated with the demyelination process that took place on taiep subjects. Finally, a clear pro-inflammatory cytokine pattern was seen on infected taiep rats, that could be responsible of the decrement in the number of larvae number. These results sustain the theory that neuroimmune interaction is a fundamental process capable of modulating the immune response, particularly against the parasite Trichinella spiralis in an animal model of progressive demyelination due to tubulinopathy, that could be an important mechanism for the clinical course of autoimmune diseases associated with parasite infection.
Collapse
Affiliation(s)
- Karen Elizabeth Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Departamento de Genotoxicología y Medicina Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen Cortes
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
- * E-mail: , (JM-M); (CC)
| | - José Ramón Eguibar
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Research Office of the Vice-Rectory of Research and Postgraduate Studies, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Víctor Hugo Del Rio-Araiza
- Departamento de Parasitología, Facultad de Veterinaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Romel Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail: , (JM-M); (CC)
| |
Collapse
|
15
|
Why We Sleep: A Hypothesis for an Ultimate or Evolutionary Origin for Sleep and Other Physiological Rhythms. J Circadian Rhythms 2020; 18:2. [PMID: 32269596 PMCID: PMC7120898 DOI: 10.5334/jcr.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although sleep is ubiquitous, its evolutionary purpose remains elusive. Though every species of animal, as well as many plants sleep, theories of its origin are purely physiological, e.g. to conserve energy, make repairs or to consolidate learning. An evolutionary reason for sleep would answer one of biology’s fundamental unanswered questions. When environmental conditions change on a periodic basis (winter/summer, day/night) organisms must somehow confront the change or else be less able to compete in either niche. Seasonal adaptation includes the migration of birds, changes in honeybee physiology and winter abscission in plants. Diurnal adaptation must be more rapid, forcing changes in behavior in addition to physiology. Since organisms must exist in both environments, evolution has created a way to force a change in behavior, in effect creating “different” organisms (one awake, one asleep) adapted separately to two distinct niches. We sleep to allow evolving into two competing niches. The physiology of sleep forces a change to a different state for the second niche. The physiological needs for sleep are mechanisms that have evolved to achieve this goal.
Collapse
|
16
|
Takagi N, Saito M, Ito H, Tanaka M, Yamanashi Y. Sleep-related behaviors in zoo-housed giraffes (Giraffa camelopardalis reticulata): Basic characteristics and effects of season and parturition. Zoo Biol 2019; 38:490-497. [PMID: 31389632 DOI: 10.1002/zoo.21511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/13/2019] [Accepted: 07/26/2019] [Indexed: 11/06/2022]
Abstract
Despite increasing interest in the behavior of zoo animals, studies of nocturnal behavior of zoo animals are limited. In this study, we investigated the relationship between parturition, season, and the sleep-related behaviors in captive reticulated giraffes to better understand the nocturnal life in giraffes. The subjects were two adult reticulated giraffes living in Kyoto City Zoo, Japan. Observations were made via an infrared camera that was mounted in the indoor enclosure between June 2007 and August 2009. We analyzed video clips that were recorded between 16:30 and 09:00 the next morning, over a total of 199 days. Sleep-related behaviors were classified into two categories based on the posture of the giraffes; recumbent posture and paradoxical sleep. We also recorded the laterality of recumbent posture, which was coded based on the direction of the legs against the torso (right or left). Seasonal differences in sleep behaviors between summer and winter were observed in both individuals. They tended to start to lie down earlier in the winter than in the summer. Parturition also affected the behaviors as both individuals decreased the behaviors before and after the parturition of the female. Additionally, the female lay on her left side less frequently than her right when resuming a recumbent posture in the pre-parturition period, while such laterality was not observed in the baseline and post-parturition period. These results suggested that season and parturition are important factors for determining the sleep-related behaviors in giraffes. Further studies are needed to understand how these changes in sleep affect other welfare parameters.
Collapse
Affiliation(s)
- Naoko Takagi
- Center for Research and Education of Wildlife, Kyoto City Zoo, Kyoto, Japan
| | - Miho Saito
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Hideyuki Ito
- Center for Research and Education of Wildlife, Kyoto City Zoo, Kyoto, Japan.,Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Masayuki Tanaka
- Center for Research and Education of Wildlife, Kyoto City Zoo, Kyoto, Japan.,Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Yumi Yamanashi
- Center for Research and Education of Wildlife, Kyoto City Zoo, Kyoto, Japan.,Wildlife Research Center, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Lazarus M, Oishi Y, Bjorness TE, Greene RW. Gating and the Need for Sleep: Dissociable Effects of Adenosine A 1 and A 2A Receptors. Front Neurosci 2019; 13:740. [PMID: 31379490 PMCID: PMC6650574 DOI: 10.3389/fnins.2019.00740] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
Roughly one-third of the human lifetime is spent in sleep, yet the reason for sleep remains unclear. Understanding the physiologic function of sleep is crucial toward establishing optimal health. Several proposed concepts address different aspects of sleep physiology, including humoral and circuit-based theories of sleep-wake regulation, the homeostatic two-process model of sleep regulation, the theory of sleep as a state of adaptive inactivity, and observations that arousal state and sleep homeostasis can be dissociated in pathologic disorders. Currently, there is no model that places the regulation of arousal and sleep homeostasis in a unified conceptual framework. Adenosine is well known as a somnogenic substance that affects normal sleep-wake patterns through several mechanisms in various brain locations via A1 or A2A receptors (A1Rs or A2ARs). Many cells and processes appear to play a role in modulating the extracellular concentration of adenosine at neuronal A1R or A2AR sites. Emerging evidence suggests that A1Rs and A2ARs have different roles in the regulation of sleep. In this review, we propose a model in which A2ARs allow the brain to sleep, i.e., these receptors provide sleep gating, whereas A1Rs modulate the function of sleep, i.e., these receptors are essential for the expression and resolution of sleep need. In this model, sleep is considered a brain state established in the absence of arousing inputs.
Collapse
Affiliation(s)
- Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Theresa E Bjorness
- Research and Development, VA North Texas Health Care System, Dallas, TX, United States.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert W Greene
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
18
|
Besedovsky L, Lange T, Haack M. The Sleep-Immune Crosstalk in Health and Disease. Physiol Rev 2019; 99:1325-1380. [PMID: 30920354 PMCID: PMC6689741 DOI: 10.1152/physrev.00010.2018] [Citation(s) in RCA: 681] [Impact Index Per Article: 136.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Tanja Lange
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Monika Haack
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
19
|
Ghanem E, Al Bitar S, Dib R, Kabrita CS. Sleep restriction alters the temporal expression of major histocompatibility complex class II molecules in murine lymphoid tissues. Behav Brain Res 2019; 362:152-159. [DOI: 10.1016/j.bbr.2019.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/27/2023]
|
20
|
Corona CC, Zhang M, Wadhawan A, Daue ML, Groer MW, Dagdag A, Lowry CA, Hoisington AJ, Ryan KA, Stiller JW, Fuchs D, Mitchell BD, Postolache TT. Toxoplasma gondii IgG associations with sleep-wake problems, sleep duration and timing. Pteridines 2019; 30:1-9. [PMID: 30918422 PMCID: PMC6433149 DOI: 10.1515/pteridines-2019-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Evidence links Toxoplasmagondii (T. gondii), a neurotropic parasite, with schizophrenia, mood disorders and suicidal behavior, all of which are associated and exacerbated by disrupted sleep. Moreover, low-grade immune activation and dopaminergic overstimulation, which are consequences of T. gondii infection, could alter sleep patterns and duration. Methods: Sleep data on 833 Amish participants [mean age (SD) = 44.28 (16.99) years; 59.06% women] were obtained via self-reported questionnaires that assessed sleep problems, duration and timing. T. gondii IgG was measured with ELISA. Data were analyzed using multivariable logistic regressions and linear mixed models, with adjustment for age, sex and family structure. Results: T. gondii seropositives reported less sleep problems (p < 0.005) and less daytime problems due to poor sleep (p < 0.005). Higher T. gondii titers were associated with longer sleep duration (p < 0.05), earlier bedtime (p< 0.005) earlier mid-sleep time (p < 0.05). Conclusions: It seems unlikely that sleep mediates the previously reported associations between T. gondii and mental illness. Future longitudinal studies with objective measures are necessary to replicate our findings.
Collapse
Affiliation(s)
- Celine C Corona
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Man Zhang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimers, MD 21201, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA, Saint Elizabeths Hospital, Psychiatry Residency Program, Washington, DC 20032, USA
| | - Melanie L Daue
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimers, MD 21201, USA, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA, Geriatrics Research and Education Clinical Center, Veteran Affairs Medical Center, Baltimore, MD 21201, USA
| | - Maureen W Groer
- College of Nursing, University of South Florida College of Nursing, Tampa, FL 33612, USA
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA, Psychiatry Adult Inpatient & Behavioral Health, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran. Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO80 045, USA
| | - Andrew J Hoisington
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran. Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO80 045, USA, Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA
| | - Kathleen A Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimers, Md 21201, USA, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA, Saint Elizabeths Hospital, Department of Neurology, Washington DC 20032, USA; Maryland State Athletic Commission, Baltimore, MD 21202, USA
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimers, MD 21201, USA, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA, Geriatrics Research and Education Clinical Center, Veteran Affairs Medical Center, Baltimore, MD 21201, USA
| | | |
Collapse
|
21
|
|
22
|
Managing nocturia: The multidisciplinary approach. Maturitas 2018; 116:123-129. [PMID: 30244773 DOI: 10.1016/j.maturitas.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023]
Abstract
Nocturia, defined as waking at night to pass urine, is a common condition which increases with age. Whilst nocturia is known to have an important effect on quality of life, more recent evidence has linked the symptom with significant morbidity and mortality due to the effects of sleep deprivation on glucose metabolism and the immune system. The causes of nocturia are multifactorial and may be related to urine overproduction, storage disorders and primary sleep disorders. The commonest underlying pathology, however, is nocturnal polyuria, which may be associated with a number of medical conditions. This review explores the underlying causes of nocturia and nocturnal polyuria and, by doing so, describes a multidisciplinary approach to managing patients effectively.
Collapse
|
23
|
Samson DR, Bray J, Nunn CL. The cost of deep sleep: Environmental influences on sleep regulation are greater for diurnal lemurs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:578-589. [DOI: 10.1002/ajpa.23455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/30/2022]
Affiliation(s)
- David R. Samson
- Department of Anthropology; University of Toronto; Mississauga
- Evolutionary Anthropology; Duke University; Tempe AZ
| | - Joel Bray
- School of Human Evolution and Social Change; Arizona State University
| | - Charles L. Nunn
- Evolutionary Anthropology; Duke University; Tempe AZ
- Duke Global Health Institute, Duke University
| |
Collapse
|
24
|
Rattenborg NC, de la Iglesia HO, Kempenaers B, Lesku JA, Meerlo P, Scriba MF. Sleep research goes wild: new methods and approaches to investigate the ecology, evolution and functions of sleep. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0251. [PMID: 28993495 DOI: 10.1098/rstb.2016.0251] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 11/12/2022] Open
Abstract
Despite being a prominent aspect of animal life, sleep and its functions remain poorly understood. As with any biological process, the functions of sleep can only be fully understood when examined in the ecological context in which they evolved. Owing to technological constraints, until recently, sleep has primarily been examined in the artificial laboratory environment. However, new tools are enabling researchers to study sleep behaviour and neurophysiology in the wild. Here, we summarize the various methods that have enabled sleep researchers to go wild, their strengths and weaknesses, and the discoveries resulting from these first steps outside the laboratory. The initial studies to 'go wild' have revealed a wealth of interindividual variation in sleep, and shown that sleep duration is not even fixed within an individual, but instead varies in response to an assortment of ecological demands. Determining the costs and benefits of this inter- and intraindividual variation in sleep may reveal clues to the functions of sleep. Perhaps the greatest surprise from these initial studies is that the reduction in neurobehavioural performance resulting from sleep loss demonstrated in the laboratory is not an obligatory outcome of reduced sleep in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | | | - Bart Kempenaers
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 Groningen, The Netherlands
| | - Madeleine F Scriba
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Nunn CL, Samson DR. Sleep in a comparative context: Investigating how human sleep differs from sleep in other primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:601-612. [PMID: 29446072 DOI: 10.1002/ajpa.23427] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Primates vary in their sleep durations and, remarkably, humans sleep the least per 24-hr period of the 30 primates that have been studied. Using phylogenetic methods that quantitatively situate human phenotypes within a broader primate comparative context, we investigated the evolution of human sleep architecture, focusing on: total sleep duration, rapid eye movement (REM) sleep duration, non-rapid eye movement (NREM) sleep duration, and proportion of sleep in REM. MATERIALS AND METHODS We used two different Bayesian methods: phylogenetic prediction based on phylogenetic generalized least squares and a multistate Onrstein-Uhlenbeck (OU) evolutionary model of random drift and stabilizing selection. RESULTS Phylogenetic prediction confirmed that humans sleep less than predicted for a primate of our body mass, predation risk, brain size, foraging needs, sexual selection, and diet. These analyses further revealed that humans pack an unexpectedly higher proportion of REM sleep within a shorter overall sleep duration, and do so by reducing NREM sleep (rather than increasing REM). The OU model generally confirmed these findings, with shifts along the human lineage inferred for TST, NREM, and proportion of REM, but not for REM. DISCUSSION We propose that the risks and opportunity costs of sleep are responsible for shorter sleep durations in humans, with risks arising from terrestrial sleep involving threats from predators and conspecifics, and opportunity costs because time spent sleeping could be used for learning, creating material objects, and socializing.
Collapse
Affiliation(s)
- Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Duke Global Health Institute, Duke University, Durham, North Carolina
| | - David R Samson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Department of Anthropology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
26
|
Asif N, Iqbal R, Nazir CF. Human immune system during sleep. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2017; 6:92-96. [PMID: 29348984 PMCID: PMC5768894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
A joint function of tissues, organs and cells for the protection of body develops immune system. The human immune response against various infections during sleep, its mechanism, neuroimmune interactions, immunoregulatory effect of sleep along with sleep deprivation and role of cytokines in sleep deprivation were addressed. It is revealed that human immune system and sleep both are associated and influenced by each other. Sleep deprivation makes a living body susceptible to many infectious agents. In the result, immune system of human body is altered by releasing immunomodulators in the response of infections as reported by various researchers. Basic reasons and mechanisms of most of the poor sleep networks and release of proinflammatory modulators are still uncertain. The current situation requires improved sleep habits to make immune system efficient for a healthy life.
Collapse
Affiliation(s)
- Nayyab Asif
- Department of Zoology, University of Gujrat, Hafiz Hayat CampusGujrat, Pakistan
| | - Razia Iqbal
- Department of Zoology, University of Gujrat, Hafiz Hayat CampusGujrat, Pakistan
| | | |
Collapse
|
27
|
Antonovics J. Transmission dynamics: critical questions and challenges. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0087. [PMID: 28289255 DOI: 10.1098/rstb.2016.0087] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 11/12/2022] Open
Abstract
This article overviews the dynamics of disease transmission in one-host-one-parasite systems. Transmission is the result of interacting host and pathogen processes, encapsulated with the environment in a 'transmission triangle'. Multiple transmission modes and their epidemiological consequences are often not understood because the direct measurement of transmission is difficult. However, its different components can be analysed using nonlinear transmission functions, contact matrices and networks. A particular challenge is to develop such functions for spatially extended systems. This is illustrated for vector transmission where a 'perception kernel' approach is developed that incorporates vector behaviour in response to host spacing. A major challenge is understanding the relative merits of the large number of approaches to quantifying transmission. The evolution of transmission mode itself has been a rather neglected topic, but is important in the context of understanding disease emergence and genetic variation in pathogens. Disease impacts many biological processes such as community stability, the evolution of sex and speciation, yet the importance of different transmission modes in these processes is not understood. Broader approaches and ideas to disease transmission are important in the public health realm for combating newly emerging infections.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
28
|
Hayward A, Tsuboi M, Owusu C, Kotrschal A, Buechel SD, Zidar J, Cornwallis CK, Løvlie H, Kolm N. Evolutionary associations between host traits and parasite load: insights from Lake Tanganyika cichlids. J Evol Biol 2017; 30:1056-1067. [DOI: 10.1111/jeb.13053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/27/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Affiliation(s)
- A. Hayward
- Centre for Ecology and Conservation; University of Exeter; Penryn UK
| | - M. Tsuboi
- Department of Animal Ecology; Uppsala University; Uppsala Sweden
| | - C. Owusu
- Department of Animal Ecology; Uppsala University; Uppsala Sweden
| | - A. Kotrschal
- Department of Zoology; Stockholm University; Stockholm Sweden
| | - S. D. Buechel
- Department of Zoology; Stockholm University; Stockholm Sweden
| | - J. Zidar
- IFM Biology; Linköping University; Linköping Sweden
| | | | - H. Løvlie
- IFM Biology; Linköping University; Linköping Sweden
| | - N. Kolm
- Department of Zoology; Stockholm University; Stockholm Sweden
| |
Collapse
|
29
|
Nunn CL, Samson DR, Krystal AD. Shining evolutionary light on human sleep and sleep disorders. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:227-43. [PMID: 27470330 PMCID: PMC4972941 DOI: 10.1093/emph/eow018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022]
Abstract
Sleep is essential to cognitive function and health in humans, yet the ultimate reasons for sleep—i.e. ‘why’ sleep evolved—remain mysterious. We integrate findings from human sleep studies, the ethnographic record, and the ecology and evolution of mammalian sleep to better understand sleep along the human lineage and in the modern world. Compared to other primates, sleep in great apes has undergone substantial evolutionary change, with all great apes building a sleeping platform or ‘nest’. Further evolutionary change characterizes human sleep, with humans having the shortest sleep duration, yet the highest proportion of rapid eye movement sleep among primates. These changes likely reflect that our ancestors experienced fitness benefits from being active for a greater portion of the 24-h cycle than other primates, potentially related to advantages arising from learning, socializing and defending against predators and hostile conspecifics. Perspectives from evolutionary medicine have implications for understanding sleep disorders; we consider these perspectives in the context of insomnia, narcolepsy, seasonal affective disorder, circadian rhythm disorders and sleep apnea. We also identify how human sleep today differs from sleep through most of human evolution, and the implications of these changes for global health and health disparities. More generally, our review highlights the importance of phylogenetic comparisons in understanding human health, including well-known links between sleep, cognitive performance and health in humans.
Collapse
Affiliation(s)
- Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA Duke Global Health Institute, Durham, North Carolina 27710, USA Triangle Center for Evolutionary Medicine, Durham, NC 27708, USA
| | - David R Samson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
| | - Andrew D Krystal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
30
|
Holdgate MR, Meehan CL, Hogan JN, Miller LJ, Rushen J, de Passillé AM, Soltis J, Andrews J, Shepherdson DJ. Recumbence Behavior in Zoo Elephants: Determination of Patterns and Frequency of Recumbent Rest and Associated Environmental and Social Factors. PLoS One 2016; 11:e0153301. [PMID: 27414809 PMCID: PMC4945027 DOI: 10.1371/journal.pone.0153301] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
Resting behaviors are an essential component of animal welfare but have received little attention in zoological research. African savanna elephant (Loxodonta africana) and Asian elephant (Elephas maximus) rest includes recumbent postures, but no large-scale investigation of African and Asian zoo elephant recumbence has been previously conducted. We used anklets equipped with accelerometers to measure recumbence in 72 adult female African (n = 44) and Asian (n = 28) elephants housed in 40 North American zoos. We collected 344 days of data and determined associations between recumbence and social, housing, management, and demographic factors. African elephants were recumbent less (2.1 hours/day, S.D. = 1.1) than Asian elephants (3.2 hours/day, S.D. = 1.5; P < 0.001). Nearly one-third of elephants were non-recumbent on at least one night, suggesting this is a common behavior. Multi-variable regression models for each species showed that substrate, space, and social variables had the strongest associations with recumbence. In the African model, elephants who spent any amount of time housed on all-hard substrate were recumbent 0.6 hours less per day than those who were never on all-hard substrate, and elephants who experienced an additional acre of outdoor space at night increased their recumbence by 0.48 hours per day. In the Asian model, elephants who spent any amount of time housed on all-soft substrate were recumbent 1.1 hours more per day more than those who were never on all-soft substrate, and elephants who spent any amount of time housed alone were recumbent 0.77 hours more per day than elephants who were never housed alone. Our results draw attention to the significant interspecific difference in the amount of recumbent rest and in the factors affecting recumbence; however, in both species, the influence of flooring substrate is notably important to recumbent rest, and by extension, zoo elephant welfare.
Collapse
Affiliation(s)
- Matthew R. Holdgate
- Department of Biology, Portland State University, Portland, Oregon, United States of America
- Conservation Research Division, Oregon Zoo, Portland, Oregon, United States of America
- * E-mail:
| | | | | | - Lance J. Miller
- Chicago Zoological Society—Brookfield Zoo, Brookfield, Illinois, United States of America
| | - Jeff Rushen
- Dairy Education and Research Centre, University of British Columbia, Agassiz, Canada
| | | | - Joseph Soltis
- Department of Education & Science, Disney’s Animal Kingdom, Lake Buena Vista, Florida, United States of America
| | - Jeff Andrews
- Zoological Operations, Busch Gardens, Tampa, Florida, United States of America
| | - David J. Shepherdson
- Department of Biology, Portland State University, Portland, Oregon, United States of America
- Conservation Research Division, Oregon Zoo, Portland, Oregon, United States of America
| |
Collapse
|
31
|
Berticat C, Thomas F, Dauvilliers Y, Jaussent I, Ritchie K, Helmer C, Tzourio C, Raymond M, Artero S. Excessive daytime sleepiness and antipathogen drug consumption in the elderly: a test of the immune theory of sleep. Sci Rep 2016; 6:23574. [PMID: 26996205 PMCID: PMC4800730 DOI: 10.1038/srep23574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 01/14/2023] Open
Abstract
The evolutionary reasons for sleep remain controversial. The immune theory of sleep suggests that sleep is essential to the immune system, allowing organisms to allocate more energy to their immunity. This hypothesis was tested by exploring the links between excessive daytime sleepiness (EDS) and vulnerability to infectious diseases in a large (n = 9294) cohort of elderly individuals, with information on socio-demographics, daily habits, and medical characteristics. At the two-year and four-year follow-ups, we obtained individual data from the national healthcare insurance about all medications prescribed to the participants between 2001 and 2003 (n = 2865). We found an independent positive association between EDS and the consumption of some anti-pathogen drugs. This relationship was mostly explained by fungal and parasitic infections rather than by viral and bacterial ones. These results, although based on correlations, are consistent with the idea that EDS as a proxy of altered sleep quality/quantity may affect the efficiency of the immune system, and hence vulnerability to infections.
Collapse
Affiliation(s)
- Claire Berticat
- Institute of Evolutionary Sciences, University of Montpellier, Montpellier, France. (CNRS UMR 5554, IRD, EPHE)
| | | | - Yves Dauvilliers
- Centre de Référence Maladies Rares Narcolepsie et Hypersomnie Idiopathique, Service de Neurologie, Unité des Troubles du Sommeil, Hôpital Gui-de-Chauliac, CHU Montpellier, France.,INSERM U1061, La Colombière Hospital, University of Montpellier, Montpellier, France
| | - Isabelle Jaussent
- INSERM U1061, La Colombière Hospital, University of Montpellier, Montpellier, France
| | - Karen Ritchie
- INSERM U1061, La Colombière Hospital, University of Montpellier, Montpellier, France.,Faculty of Medicine, Imperial College, St Mary's Hospital, London, United Kingdom
| | | | - Christophe Tzourio
- INSERM, Neuroepidemiology, UMR897,University of Bordeaux, Bordeaux, France
| | - Michel Raymond
- Institute of Evolutionary Sciences, University of Montpellier, Montpellier, France. (CNRS UMR 5554, IRD, EPHE)
| | - Sylvaine Artero
- INSERM U1061, La Colombière Hospital, University of Montpellier, Montpellier, France
| |
Collapse
|
32
|
Tissot T, Arnal A, Jacqueline C, Poulin R, Lefèvre T, Mery F, Renaud F, Roche B, Massol F, Salzet M, Ewald P, Tasiemski A, Ujvari B, Thomas F. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications. Bioessays 2016; 38:276-85. [PMID: 26849295 DOI: 10.1002/bies.201500163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research.
Collapse
Affiliation(s)
- Tazzio Tissot
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | - Audrey Arnal
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | | | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Frédéric Mery
- Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, University of Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Benjamin Roche
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France.,Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes, (UMI IRD/UPMC UMMISCO), BondyCedex, France
| | - François Massol
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) INSERM U1192, Université Lille, Lille, France
| | - Paul Ewald
- Department of Biology and the Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Aurélie Tasiemski
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
33
|
Heistermann M, Higham JP. Urinary neopterin, a non-invasive marker of mammalian cellular immune activation, is highly stable under field conditions. Sci Rep 2015; 5:16308. [PMID: 26549509 PMCID: PMC4637859 DOI: 10.1038/srep16308] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/12/2015] [Indexed: 01/02/2023] Open
Abstract
Studying immunity and immune function in ecology and evolution requires field studies, but there has been a dearth of non-invasive markers of immune activation available for studying large wild mammals. Recently, we analytically and biologically validated the measurement of urinary neopterin (NEO), a biomarker of cellular immune activation, in captive macaques. However, applying this to free-ranging settings is complicated by issues involving sample collection, processing, storage, and transport. Here, we collected urine samples from captive macaques and undertook experiments simulating common field issues. We tested the effects on urinary NEO sample measurements following: dirt and faecal contamination; storage at room temperature; differences in processing and long-term storage methods (freezing, lyophilising, blotting onto filter paper); and freeze-thaw cycles. Our results show that concentrations of urinary NEO are highly stable--they are not affected by soil or faecal contamination, can be collected on filter paper and stored for many months frozen or lyophilised with minimal effect, and are resistant to multiple 24 hr freeze-thaws. With the addition of a biocidal preservative, concentrations are even stable at room temperature for long periods. Urinary NEO is remarkably resilient, and is highly suitable for non-invasive field studies of cellular immune responses in wild large mammals.
Collapse
Affiliation(s)
- Michael Heistermann
- Endocrinology Laboratory, German Primate Centre, Leibniz Institute for Primate Research, Goettingen, Germany
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
| |
Collapse
|
34
|
The Bidirectional Relationship between Sleep and Immunity against Infections. J Immunol Res 2015; 2015:678164. [PMID: 26417606 PMCID: PMC4568388 DOI: 10.1155/2015/678164] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/24/2014] [Indexed: 12/31/2022] Open
Abstract
Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.
Collapse
|
35
|
Opp MR, Krueger JM. Sleep and immunity: A growing field with clinical impact. Brain Behav Immun 2015; 47:1-3. [PMID: 25849976 PMCID: PMC4685944 DOI: 10.1016/j.bbi.2015.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/21/2015] [Indexed: 01/03/2023] Open
Affiliation(s)
- Mark R. Opp
- Department of Anesthesiology & Pain Medicine, and Graduate Program in Neuroscience, University of Washington, Seattle, WA
| | - James M. Krueger
- College of Medical Sciences, Washington State University – Spokane, Spokane, WA
| |
Collapse
|
36
|
Ibarra-Coronado EG, Velazquéz-Moctezuma J, Diaz D, Becerril-Villanueva LE, Pavón L, Morales-Montor J. Sleep deprivation induces changes in immunity in Trichinella spiralis-infected rats. Int J Biol Sci 2015; 11:901-12. [PMID: 26157345 PMCID: PMC4495408 DOI: 10.7150/ijbs.11907] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/10/2015] [Indexed: 11/18/2022] Open
Abstract
Sleep is considered an important predictor of immunity. A lack of sleep may reduce immunity, which increases susceptibility to any type of infection. Moreover, sleep deprivation in humans produces changes in both, the percent of circulating immune cells (T cells and NK cells) and cytokine levels (IL-1, IFNγ, TNΦ-αα, IL-6 and IL-17). The aim of our study was to investigate whether sleep deprivation produces deregulation on immune variables during the immune response generated against the helminth parasite Trichinella spiralis. Because sleep deprivation is stressful per se, we designed another experiments to compared stress alone (consisting in movement restriction and single housing) with sleep deprivation, in both control (uninfected) and experimental (infected) rats. Our results demonstrate that the sleep deprivation and stress have a differential effect in mesenteric lymph nodes (MLN) and spleen. In uninfected rats sleep deprivation alone produces an increase in natural killer cells (NK+) and B cells (CD45+), accompanied by a decrease in cytotoxic T cells (CD3+CD8+) in spleen; while, in MLN, produces only an increase in natural killer cells (NK+). Both, SD and stress, produce an increased percentage of total T cells (CD3+) in spleen. In the MLN both are also associated to an increase in cytotoxic T cells (CD3+CD8+) and B cells (CD45+). In the spleens of parasitized rats, cell populations did not change. In spleens of both, sleep-deprived and stressed infected rats, we observed an increase in B cells (CD45+). In infected rats, sleep deprivation alone produced an increase in NK cells (NK+). In mesenteric node cell populations of parasitized rats, we observed a decrease in NK cells and an increase in T helper (CD4+) cells in both SD and stressed rats. Rats that were only subjected to stress showed a decrease in B cells (CD45+). These findings suggest that the immune response generated against infection caused by T. spiralis is affected when the sleep pattern is disrupted. These results support the notion that sleep is a fundamental process for an adequate and strong immune response generated against this parasite.
Collapse
Affiliation(s)
- Elizabeth G Ibarra-Coronado
- 1. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México D.F. 04510, México
| | - Javier Velazquéz-Moctezuma
- 2. Area de Neurociencias, Departamento de Biología de la Reproducción, CBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico, DF, México
| | - Daniel Diaz
- 3. Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., México
| | | | - Lenin Pavón
- 4. Departamento de Psicoinmunología, Instituto Nacional de Psiquiatria "Ramón de la Fuente," Mexico City, Mexico
| | - Jorge Morales-Montor
- 1. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México D.F. 04510, México
| |
Collapse
|
37
|
Morand S. (macro-) Evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification. Int J Parasitol Parasites Wildl 2015; 4:80-7. [PMID: 25830109 PMCID: PMC4356877 DOI: 10.1016/j.ijppaw.2015.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/03/2015] [Accepted: 01/06/2015] [Indexed: 11/27/2022]
Abstract
The present review summarized the factors or determinants that may explain parasite diversity among host species and the consequences of this parasite diversity on the evolution of host-life history traits. As host-parasite interactions are asymmetrical exploited-exploiter relationships, ecological and epidemiological theories produce hypotheses to find the potential determinants of parasite species richness, while life-history theory helps for testing potential consequences on parasite diversity on the evolution of hosts. This review referred only to studies that have specifically controlled or took into account phylogenetic information illustrated with parasites of mammals. Several points needing more investigation were identified with a special emphasis to develop the metabolic theory of epidemiology.
Collapse
Affiliation(s)
- Serge Morand
- CNRS ISEM – CIRAD AGIRs, Centre d'Infectiologie Christophe Mérieux du Laos, Vientiane, Lao Democratic People's Republic
| |
Collapse
|
38
|
Downs CT, Awuah A, Jordaan M, Magagula L, Mkhize T, Paine C, Raymond-Bourret E, Hart LA. Too hot to sleep? Sleep behaviour and surface body temperature of Wahlberg's Epauletted Fruit Bat. PLoS One 2015; 10:e0119419. [PMID: 25775371 PMCID: PMC4361190 DOI: 10.1371/journal.pone.0119419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
The significance of sleep and factors that affect it have been well documented, however, in light of global climate change the effect of temperature on sleep patterns has only recently gained attention. Unlike many mammals, bats (order: Chiroptera) are nocturnal and little is known about their sleep and the effects of ambient temperature (Ta) on their sleep. Consequently we investigated seasonal temperature effects on sleep behaviour and surface body temperature of free-ranging Wahlberg’s epauletted fruit bat, Epomophorus wahlbergi, at a tree roost. Sleep behaviours of E. wahlbergi were recorded, including: sleep duration and sleep incidences (i.e. one eye open and both eyes closed). Sleep differed significantly across all the individuals in terms of sleep duration and sleep incidences. Individuals generally spent more time awake than sleeping. The percentage of each day bats spent asleep was significantly higher during winter (27.6%), compared with summer (15.6%). In summer, 20.7% of the sleeping bats used one eye open sleep, and this is possibly the first evidence of one-eye-sleep in non-marine mammals. Sleep duration decreased with extreme heat as bats spent significantly more time trying to cool by licking their fur, spreading their wings and panting. Skin temperatures of E. wahlbergi were significantly higher when Ta was ≥35°C and no bats slept at these high temperatures. Consequently extremely hot days negatively impact roosting fruit bats, as they were forced to be awake to cool themselves. This has implications for these bats given predicted climate change scenarios.
Collapse
Affiliation(s)
- Colleen T. Downs
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
- * E-mail:
| | - Adwoa Awuah
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Maryna Jordaan
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Londiwe Magagula
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Truth Mkhize
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Christine Paine
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Esmaella Raymond-Bourret
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Lorinda A. Hart
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
39
|
|
40
|
Zuppa C, Prado CH, Wieck A, Zaparte A, Barbosa A, Bauer ME. Acupuncture for sleep quality, BDNF levels and immunosenescence: A randomized controlled study. Neurosci Lett 2015; 587:35-40. [DOI: 10.1016/j.neulet.2014.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/25/2014] [Accepted: 12/10/2014] [Indexed: 12/25/2022]
|
41
|
The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 2014; 47:122-53. [DOI: 10.1016/j.neubiorev.2014.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/27/2014] [Accepted: 08/02/2014] [Indexed: 12/14/2022]
|
42
|
Kuo TH, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. Sleep 2014; 37:859-69. [PMID: 24790264 DOI: 10.5665/sleep.3648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. SETTING Laboratory. PARTICIPANTS Drosophila melanogaster. METHODS AND RESULTS Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. CONCLUSIONS Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection.
Collapse
Affiliation(s)
- Tzu-Hsing Kuo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Julie A Williams
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
43
|
Idzikowski C. The pharmacology of human sleep, a work in progress? Curr Opin Pharmacol 2014; 14:90-6. [PMID: 24524996 DOI: 10.1016/j.coph.2014.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/24/2022]
Abstract
More is now known about the human pharmacology of sleep than a decade ago, but there are still enormous gaps in our understanding and there is still a lack of effective, specific, goal-directed therapeutic agents. Perhaps this is not surprising considering sleep's plurality its patterns and internal structure varying across animal species and humans (changes through life span, variations across cultures and historical differences), not understanding the function or functions of sleep and the risk-aversive regulatory frameworks currently in place.
Collapse
Affiliation(s)
- Chris Idzikowski
- Sleep Assessment & Advisory Service (C. Idzikowski & Co), Holywood House, 1 Innis Court, Holywood, Co Down BT18 9HF, UK.
| |
Collapse
|
44
|
Fruth B, Ikombe NB, Matshimba GK, Metzger S, Muganza DM, Mundry R, Fowler A. New evidence for self-medication in bonobos: Manniophyton fulvum leaf- and stemstrip-swallowing from LuiKotale, Salonga National Park, DR Congo. Am J Primatol 2013; 76:146-58. [PMID: 24105933 DOI: 10.1002/ajp.22217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 01/15/2023]
Abstract
The swallowing of entire leaves by apes across Africa without chewing has been observed for over 40 plant species. Here we add evidence for (a) a new site, LuiKotale where leaf-swallowing of Manniophyton fulvum (Euphorbiaceae) is observed in bonobos, (b) a so far unreported ingestion of unchewed stemstrips of M. fulvum, we name stemstrip-swallowing; and (c) a test of some of the requirements put forward by Huffman for the assessment of plants ingested for medical purpose. As ecological correlates we analyzed M. fulvum phenological data and examined 1,094 dung piles collected between 2002 and 2009. By that we assessed availability and choice of leaves. In addition, we provide the first full description of the behavior related to this plant species' use by chimpanzees or bonobos using 56 bouts of M. fulvum ingestion observed between October 2007 and February 2010. With these data we tested and met 4 of the 6 requirements given by Huffman, supporting ingestion of this species as self-medication. Despite species' year-round availability and abundance, M. fulvum was ingested only at specific times, in very small amounts, and by a small proportion of individuals per party. In the absence of our own parasitological data, we used M. fulvum swallowing as evidence for parasite infestation, and seasonality as a proxy for stressors underlying seasonal fluctuation and impacting immune responses. Using these indirect factors available, we investigated conditions for a parasite to develop to its infective stage as well as conditions for the host to cope with infections. Both rain and temperature were good predictors for M. fulvum ingestion. We discuss the use of M. fulvum with respect to its hispidity and subsequent purging properties and provide insight into its ethnomedicinal uses by humans, stimulating speculations about potentially additional pharmacological effects.
Collapse
Affiliation(s)
- Barbara Fruth
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Our understanding on the functions of circadian clocks has deepened at a pace in recent years. Elucidation of the mechanisms of action might pave the way to a range of interventions of use in clinical practice in many fields of medicine.
Collapse
|
46
|
Porkka-Heiskanen T, Zitting KM, Wigren HK. Sleep, its regulation and possible mechanisms of sleep disturbances. Acta Physiol (Oxf) 2013; 208:311-28. [PMID: 23746394 DOI: 10.1111/apha.12134] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022]
Abstract
The state of sleep consists of different phases that proceed in successive, tightly regulated order through the night forming a physiological program, which for each individual is different but stabile from one night to another. Failure to accomplish this program results in feeling of unrefreshing sleep and tiredness in the morning. The program core is constructed by genetic factors but regulated by circadian rhythm and duration and intensity of day time brain activity. Many environmental factors modulate sleep, including stress, health status and ingestion of vigilance-affecting nutrients or medicines (e.g. caffeine). Acute sleep loss results in compromised cognitive performance, memory deficits, depressive mood and involuntary sleep episodes during the day. Moreover, prolonged sleep curtailment has many adverse health effects, as evidenced by both epidemiological and experimental studies. These effects include increased risk for depression, type II diabetes, obesity and cardiovascular diseases. In addition to voluntary restriction of sleep, shift work, irregular working hours, jet lag and stress are important factors that induce curtailed or bad quality sleep and/or insomnia. This review covers the current theories on the function of normal sleep and describes current knowledge on the physiologic effects of sleep loss. It provides insights into the basic mechanisms of the regulation of wakefulness and sleep creating a theoretical background for understanding different disturbances of sleep.
Collapse
Affiliation(s)
| | - K.-M. Zitting
- Institute of Biomedicine; University of Helsinki; Helsinki; Finland
| | - H.-K. Wigren
- Institute of Biomedicine; University of Helsinki; Helsinki; Finland
| |
Collapse
|
47
|
Seifert G, Kanitz JL, Pretzer K, Henze G, Witt K, Reulecke S, Voss A. Improvement of circadian rhythm of heart rate variability by eurythmy therapy training. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:564340. [PMID: 23533496 PMCID: PMC3603202 DOI: 10.1155/2013/564340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/29/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022]
Abstract
Background. Impairment of circadian rhythm is associated with various clinical problems. It not only has a negative impact on quality of life but can also be associated with a significantly poorer prognosis. Eurythmy therapy (EYT) is an anthroposophic movement therapy aimed at reducing fatigue symptoms and stress levels. Objective. This analysis of healthy subjects was conducted to examine whether the improvement in fatigue symptoms was accompanied by improvements in the circadian rhythm of heart rate variability (HRV). Design. Twenty-three women performed 10 hours of EYT over six weeks. Electrocardiograms (ECGs) were recorded before and after the EYT trial. HRV was quantified by parameters of the frequency and time domains and the nonlinear parameters of symbolic dynamics. Results. The day-night contrast with predominance of vagal activity at night becomes more pronounced after the EYT training, and with decreased Ultralow and very low frequencies, the HRV shows evidence of calmer sleep. During the night, the complexity of the HRV is significantly increased indicated by nonlinear parameters. Conclusion. The analysis of the circadian patterns of cardiophysiological parameters before and after EYT shows significant improvements in HRV in terms of greater day-night contrast caused by an increase of vagal activity and calmer and more complex HRV patterns during sleep.
Collapse
Affiliation(s)
- Georg Seifert
- Task Force Integrative Medicine in Pediatric Oncology, Department of Pediatric Oncology and Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jenny-Lena Kanitz
- Task Force Integrative Medicine in Pediatric Oncology, Department of Pediatric Oncology and Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kim Pretzer
- Task Force Integrative Medicine in Pediatric Oncology, Department of Pediatric Oncology and Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Günter Henze
- Task Force Integrative Medicine in Pediatric Oncology, Department of Pediatric Oncology and Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Witt
- Department of Medical Engineering, University of Applied Sciences Jena, 07745 Jena, Germany
| | - Sina Reulecke
- Department of Medical Engineering, University of Applied Sciences Jena, 07745 Jena, Germany
| | - Andreas Voss
- Department of Medical Engineering, University of Applied Sciences Jena, 07745 Jena, Germany
| |
Collapse
|
48
|
Kuo TH, Handa A, Williams JA. Quantitative measurement of the immune response and sleep in Drosophila. J Vis Exp 2012:e4355. [PMID: 23242373 DOI: 10.3791/4355] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A complex interaction between the immune response and host behavior has been described in a wide range of species. Excess sleep, in particular, is known to occur as a response to infection in mammals (1) and has also recently been described in Drosophila melanogaster(2). It is generally accepted that sleep is beneficial to the host during an infection and that it is important for the maintenance of a robust immune system(3,4). However, experimental evidence that supports this hypothesis is limited(4), and the function of excess sleep during an immune response remains unclear. We have used a multidisciplinary approach to address this complex problem, and have conducted studies in the simple genetic model system, the fruitfly Drosophila melanogaster. We use a standard assay for measuring locomotor behavior and sleep in flies, and demonstrate how this assay is used to measure behavior in flies infected with a pathogenic strain of bacteria. This assay is also useful for monitoring the duration of survival in individual flies during an infection. Additional measures of immune function include the ability of flies to clear an infection and the activation of NFκB, a key transcription factor that is central to the innate immune response in Drosophila. Both survival outcome and bacterial clearance during infection together are indicators of resistance and tolerance to infection. Resistance refers to the ability of flies to clear an infection, while tolerance is defined as the ability of the host to limit damage from an infection and thereby survive despite high levels of pathogen within the system(5). Real-time monitoring of NFκB activity during infection provides insight into a molecular mechanism of survival during infection. The use of Drosophila in these straightforward assays facilitates the genetic and molecular analyses of sleep and the immune response and how these two complex systems are reciprocally influenced.
Collapse
Affiliation(s)
- Tzu-Hsing Kuo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine
| | | | | |
Collapse
|
49
|
Samson DR, Muehlenbein MP, Hunt KD. Do chimpanzees (Pan troglodytes schweinfurthii) exhibit sleep related behaviors that minimize exposure to parasitic arthropods? A preliminary report on the possible anti-vector function of chimpanzee sleeping platforms. Primates 2012; 54:73-80. [DOI: 10.1007/s10329-012-0329-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
|
50
|
Nakanishi-Minami T, Kishida K, Funahashi T, Shimomura I. Sleep-wake cycle irregularities in type 2 diabetics. Diabetol Metab Syndr 2012; 4:18. [PMID: 22551206 PMCID: PMC3406980 DOI: 10.1186/1758-5996-4-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/02/2012] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The incidence of type 2 diabetes mellitus (T2DM) has been increasing in recent years. Sleep loss and circadian rhythm abnormalities are thought to be one of the underlying causes of adverse metabolic health. However, little is known about sleep-wake cycle irregularities in T2DM. The present study compared the bedtime, waking time, and estimated sleep duration between T2DM and non-T2DM subjects. METHODS The study subjects were 106 consecutive outpatients with lifestyle-related diseases (males/females = 56/50), who answered a questionnaire on sleep status. Subjects were divided into two groups; non-T2DM (n = 32) and T2DM (n = 74) subjects. RESULTS T2DM subjects retired to bed on weekdays and holidays significantly later than non-T2DM subjects (23:43 versus 22:52, p = 0.0032; 23:45 versus 22:53, p = 0.0038, respectively), and woke up significantly later on weekdays and holidays, compared with non-T2DM subjects (06:39 versus 06:08, p = 0.0325; 06:58 versus 06:24, p = 0.0450, respectively). There was no significant difference in the estimated sleep duration between the two groups. Daytime sleepiness was reported significantly more commonly by T2DM subjects than non-T2DM subjects (p = 0.0195). CONCLUSIONS Sleep-wake cycle irregularities are more common in T2DM subjects than non-T2DM. Confirmation that such irregularity plays a role in the metabolic abnormalities of T2DM requires further investigation in the future. TRIAL REGISTRATION UMIN 000002998.
Collapse
Affiliation(s)
- Tomoko Nakanishi-Minami
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken Kishida
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2 B-5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tohru Funahashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2 B-5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|