1
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Tang P, Huang J, Wang J, Wang M, Huang Q, Pan L, Liu F. Genome-wide identification of CaWD40 proteins reveals the involvement of a novel complex (CaAN1-CaDYT1-CaWD40-91) in anthocyanin biosynthesis and genic male sterility in Capsicum annuum. BMC Genomics 2024; 25:851. [PMID: 39261781 PMCID: PMC11389352 DOI: 10.1186/s12864-024-10681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.
Collapse
Affiliation(s)
- Peng Tang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jingcai Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Meiqi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Qing Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Luzhao Pan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
3
|
Abbas W, Shalmani A, Zhang J, Sun Q, Zhang C, Li W, Cui Y, Xiong M, Li Y. The GW5-WRKY53-SGW5 module regulates grain size variation in rice. THE NEW PHYTOLOGIST 2024; 242:2011-2025. [PMID: 38519445 DOI: 10.1111/nph.19704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Grain size is a crucial agronomic trait that affects stable yield, appearance, milling quality, and domestication in rice. However, the molecular and genetic relationships among QTL genes (QTGs) underlying natural variation for grain size remain elusive. Here, we identified a novel QTG SGW5 (suppressor of gw5) by map-based cloning using an F2 segregation population by fixing same genotype of the master QTG GW5. SGW5 positively regulates grain width by influencing cell division and cell size in spikelet hulls. Two nearly isogenic lines exhibited a significant differential expression of SGW5 and a 12.2% increase in grain yield. Introducing the higher expression allele into the genetic background containing the lower expression allele resulted in increased grain width, while its knockout resulted in shorter grain hulls and dwarf plants. Moreover, a cis-element variation in the SGW5 promoter influenced its differential binding affinity for the WRKY53 transcription factor, causing the differential SGW5 expression, which ultimately leads to grain size variation. GW5 physically and genetically interacts with WRKY53 to suppress the expression of SGW5. These findings elucidated a new pathway for grain size regulation by the GW5-WRKY53-SGW5 module and provided a novel case for generally uncovering QTG interactions underlying the genetic diversity of an important trait in crops.
Collapse
Affiliation(s)
- Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Abdullah Shalmani
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jian Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Qi Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yana Cui
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Meng Xiong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
4
|
Meng L, Su H, Qu Z, Lu P, Tao J, Li H, Zhang J, Zhang W, Liu N, Cao P, Jin J. Genome-wide identification and analysis of WD40 proteins reveal that NtTTG1 enhances drought tolerance in tobacco (Nicotiana tabacum). BMC Genomics 2024; 25:133. [PMID: 38302866 PMCID: PMC10835901 DOI: 10.1186/s12864-024-10022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND WD40 proteins, which are highly prevalent in eukaryotes, play important roles in plant development and stress responses. However, systematic identification and exploration of WD40 proteins in tobacco have not yet been conducted. RESULTS In this study, a total of 399 WD40 regulatory genes were identified in common tobacco (Nicotiana tabacum). Gene structure and motif analysis revealed structural and functional diversity among different clades of tobacco WD40 regulatory genes. The expansion of tobacco WD40 regulatory genes was mainly driven by segmental duplication and purifying selection. A potential regulatory network of NtWD40s suggested that NtWD40s might be regulated by miRNAs and transcription factors in various biological processes. Expression pattern analysis via transcriptome analysis and qRT-PCR revealed that many NtWD40s exhibited tissue-specific expression patterns and might be involved in various biotic and abiotic stresses. Furthermore, we have validated the critical role of NtTTG1, which was located in the nuclei of trichome cells, in enhancing the drought tolerance of tobacco plants. CONCLUSIONS Our study provides comprehensive information to better understand the evolution of WD40 regulatory genes and their roles in different stress responses in tobacco.
Collapse
Grants
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
Collapse
Affiliation(s)
- Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Huan Su
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - He Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| |
Collapse
|
5
|
Ke S, Jiang Y, Zhou M, Li Y. Genome-Wide Identification, Evolution, and Expression Analysis of the WD40 Subfamily in Oryza Genus. Int J Mol Sci 2023; 24:15776. [PMID: 37958759 PMCID: PMC10648978 DOI: 10.3390/ijms242115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The WD40 superfamily is widely found in eukaryotes and has essential subunits that serve as scaffolds for protein complexes. WD40 proteins play important regulatory roles in plant development and physiological processes, such as transcription regulation and signal transduction; it is also involved in anthocyanin biosynthesis. In rice, only OsTTG1 was found to be associated with anthocyanin biosynthesis, and evolutionary analysis of the WD40 gene family in multiple species is less studied. Here, a genome-wide analysis of the subfamily belonging to WD40-TTG1 was performed in nine AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, Oryza glumaepatula, Oryza nivara, and Oryza longistaminata. In this study, 383 WD40 genes in the Oryza genus were identified, and they were classified into four groups by phylogenetic analysis, with most members in group C and group D. They were found to be unevenly distributed across 12 chromosomes. A total of 39 collinear gene pairs were identified in the Oryza genus, and all were segmental duplications. WD40s had similar expansion patterns in the Oryza genus. Ka/Ks analyses indicated that they had undergone mainly purifying selection during evolution. Furthermore, WD40s in the Oryza genus have similar evolutionary patterns, so Oryza sativa ssp. indica was used as a model species for further analysis. The cis-acting elements analysis showed that many genes were related to jasmonic acid and light response. Among them, OsiWD40-26/37/42 contained elements of flavonoid synthesis, and OsiWD40-15 had MYB binding sites, indicating that they might be related to anthocyanin synthesis. The expression profile analysis at different stages revealed that most OsiWD40s were expressed in leaves, roots, and panicles. The expression of OsiWD40s was further analyzed by qRT-PCR in 9311 (indica) under various hormone treatments and abiotic stresses. OsiWD40-24 was found to be responsive to both phytohormones and abiotic stresses, suggesting that it might play an important role in plant stress resistance. And many OsiWD40s might be more involved in cold stress tolerance. These findings contribute to a better understanding of the evolution of the WD40 subfamily. The analyzed candidate genes can be used for the exploration of practical applications in rice, such as cultivar culture for colored rice, stress tolerance varieties, and morphological marker development.
Collapse
Affiliation(s)
| | | | | | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.K.); (Y.J.); (M.Z.)
| |
Collapse
|
6
|
Shan C, Zhang L, Chen L, Li S, Zhang Y, Ye L, Lin Y, Kuang W, Shi X, Ma J, Adnan M, Sun X, Cui R. Interaction of negative regulator OsWD40-193 with OseEF1A1 inhibits Oryza sativa resistance to Hirschmanniella mucronata infection. Int J Biol Macromol 2023; 248:125841. [PMID: 37479204 DOI: 10.1016/j.ijbiomac.2023.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Rice is a crucial food crop worldwide, but it is highly susceptible to Hirschmanniella mucronata, a migratory parasitic nematode. No rice variety has been identified that could resist H. mucronata infection. Therefore, it is very important to study the interaction between rice and H. mucronata to breed resistant rice varieties. Here, we demonstrated that protein OsWD40-193 interacted with the extension factor OseEF1A1 and both were negative regulators inhibiting rice resistance to H. mucronata infection. Overexpression of either OsWD40-193 or OseEF1A1 led to enhance susceptibility to H. mucronata, whereas the absence of OsWD40-193 or OseEF1A1 led to resistance. Further transcriptomic analysis showed that OseEF1A1 deletion altered the expression of genes association with salicylic acid, jasmonic acid and abolic acid signaling pathways and increased the accumulation of secondary metabolites to enhance resistance in rice. Our study showed that H. mucronata infection affected the expression of negative regulators in rice and inhibited rice resistance, which was conducive to the infection of nematode. Together, our data showed that H. mucronata affected the expression of negative regulators to facilitate its infection and provided potential target genes to engineering resistance germplasm via gene editing of the negative regulators.
Collapse
Affiliation(s)
- Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Lanlan Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
7
|
Wang C, Tang Y, Li Y, Hu C, Li J, Lyu A. Genome-wide identification and bioinformatics analysis of the WD40 transcription factor family and candidate gene screening for anthocyanin biosynthesis in Rhododendron simsii. BMC Genomics 2023; 24:488. [PMID: 37633914 PMCID: PMC10463391 DOI: 10.1186/s12864-023-09604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
WD40 transcription factors (TFs) constitute a large gene family in eukaryotes, playing diverse roles in cellular processes. However, their functions in the major ornamental plant, Rhododendron simsii, remain poorly understood. In this study, we identified 258 WD40 proteins in the R. simsii genome, which exhibited an uneven distribution across chromosomes. Based on domain compositions and phylogenetic analysis, we classified these 258 RsWD40 proteins into 42 subfamilies and 47 clusters. Comparative genomic analysis suggested that the expansion of the WD40 gene family predates the divergence of green algae and higher plants, indicating an ancient origin. Furthermore, by analyzing the duplication patterns of RsWD40 genes, we found that transposed duplication played a major role in their expansion. Notably, the majority of RsWD40 gene duplication pairs underwent purifying selection during evolution. Synteny analysis identified significant orthologous gene pairs between R. simsii and Arabidopsis thaliana, Oryza sativa, Vitis vinifera, and Malus domestica. We also investigated potential candidate genes involved in anthocyanin biosynthesis during different flower development stages in R. simsii using RNA-seq data. Specifically, we identified 10 candidate genes during the bud stage and 7 candidate genes during the full bloom stage. GO enrichment analysis of these candidate genes revealed the potential involvement of the ubiquitination process in anthocyanin biosynthesis. Overall, our findings provide a valuable foundation for further investigation and functional analysis of WD40 genes, as well as research on the molecular mechanisms underlying anthocyanin biosynthesis in Rhododendron species.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yafang Tang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai, 264200, China
| | - Chao Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Jingyi Li
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Ang Lyu
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Science, Wuhan, 430064, China.
| |
Collapse
|
8
|
Aslam MM, Fritschi FB, Di Z, Wang G, Li H, Lam HM, Waseem M, Weifeng X, Zhang J. Overexpression of LaGRAS enhances phosphorus acquisition via increased root growth of phosphorus-deficient white lupin. PHYSIOLOGIA PLANTARUM 2023; 175:e13962. [PMID: 37343119 DOI: 10.1111/ppl.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
The GRAS transcription factors play an indispensable role in plant growth and responses to environmental stresses. The GRAS gene family has extensively been explored in various plant species; however, the comprehensive investigation of GRAS genes in white lupin remains insufficient. In this study, bioinformatics analysis of white lupin genome revealed 51 LaGRAS genes distributed into 10 distinct phylogenetic clades. Gene structure analyses revealed that LaGRAS proteins were considerably conserved among the same subfamilies. Notably, 25 segmental duplications and a single tandem duplication showed that segmental duplication was the major driving force for the expansion of GRAS genes in white lupin. Moreover, LaGRAS genes exhibited preferential expression in young cluster root and mature cluster roots and may play key roles in nutrient acquisition, particularly phosphorus (P). To validate this, RT-qPCR analysis of white lupin plants grown under +P (normal P) and -P (P deficiency) conditions elucidated significant differences in the transcript level of GRAS genes. Among them, LaGRAS38 and LaGRAS39 were identified as potential candidates with induced expression in MCR under -P. Additionally, white lupin transgenic hairy root overexpressing OE-LaGRAS38 and OE-LaGRAS39 showed increased root growth, and P concentration in root and leaf compared to those with empty vector control, suggesting their role in P acquisition. We believe this comprehensive analysis of GRAS members in white lupin is a first step in exploring their role in the regulation of root growth, tissue development, and ultimately improving P use efficiency in legume crops under natural environments.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Felix B Fritschi
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Zhang Di
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Muhammad Waseem
- College of Horticulture, Hainan University, Haikou, China
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Xu Weifeng
- College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
9
|
Wu Z, Zhang T, Li J, Chen S, Grin IR, Zharkov DO, Yu B, Li H. Genome-wide analysis of WD40 protein family and functional characterization of BvWD40-82 in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1185440. [PMID: 37332716 PMCID: PMC10272600 DOI: 10.3389/fpls.2023.1185440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sugar beet is one of the most important sugar crops in the world. It contributes greatly to the global sugar production, but salt stress negatively affects the crop yield. WD40 proteins play important roles in plant growth and response to abiotic stresses through their involvement in a variety of biological processes, such as signal transduction, histone modification, ubiquitination, and RNA processing. The WD40 protein family has been well-studied in Arabidopsis thaliana, rice and other plants, but the systematic analysis of the sugar beet WD40 proteins has not been reported. In this study, a total of 177 BvWD40 proteins were identified from the sugar beet genome, and their evolutionary characteristics, protein structure, gene structure, protein interaction network and gene ontology were systematically analyzed to understand their evolution and function. Meanwhile, the expression patterns of BvWD40s under salt stress were characterized, and a BvWD40-82 gene was hypothesized as a salt-tolerant candidate gene. Its function was further characterized using molecular and genetic methods. The result showed that BvWD40-82 enhanced salt stress tolerance in transgenic Arabidopsis seedlings by increasing the contents of osmolytes and antioxidant enzyme activities, maintaining intracellular ion homeostasis and increasing the expression of genes related to SOS and ABA pathways. The result has laid a foundation for further mechanistic study of the BvWD40 genes in sugar beet tolerance to salt stress, and it may inform biotechnological applications in improving crop stress resilience.
Collapse
Affiliation(s)
- Zhirui Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tingyue Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jinna Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Inga R. Grin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
10
|
Chen L, Cui Y, Yao Y, An L, Bai Y, Li X, Yao X, Wu K. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.). BMC Genomics 2023; 24:166. [PMID: 37016311 PMCID: PMC10074677 DOI: 10.1186/s12864-023-09240-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND WD40 transcription factors, a large gene family in eukaryotes, are involved in a variety of growth regulation and development pathways. WD40 plays an important role in the formation of MYB-bHLH-WD (MBW) complexes associated with anthocyanin synthesis, but studies of Qingke barley are lacking. RESULTS In this study, 164 barley HvWD40 genes were identified in the barley genome and were analyzed to determine their relevant bioinformatics. The 164 HvWD40 were classified into 11 clusters and 14 subfamilies based on their structural and phylogenetic protein profiles. Co-lineage analysis revealed that there were 43 pairs between barley and rice, and 56 pairs between barley and maize. Gene ontology (GO) enrichment analysis revealed that the molecular function, biological process, and cell composition were enriched. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that the RNA transport pathway was mainly enriched. Based on the identification and analysis of the barley WD40 family and the transcriptome sequencing (RNA-seq) results, we found that HvWD40-140 (WD40 family; Gene ID: r1G058730), HvANT1 (MYB family; Gene ID: HORVU7Hr1G034630), and HvANT2 (bHLH family; Gene ID: HORVU2Hr1G096810) were important components of the MBW complex related to anthocyanin biosynthesis in Qingke, which was verified via quantitative real-time fluorescence polymerase chain reaction (qRT-PCR), subcellular location, yeast two-hybrid (Y2H), and bimolecular fluorescent complimentary (BiFC) and dual-luciferase assay analyses. CONCLUSIONS In this study, we identified 164 HvWD40 genes in barley and found that HvnANT1, HvnANT2, and HvWD40-140 can form an MBW complex and regulate the transcriptional activation of the anthocyanin synthesis related structural gene HvDFR. The results of this study provide a theoretical basis for further study of the mechanism of HvWD40-140 in the MBW complex related to anthocyanin synthesis in Qingke.
Collapse
Affiliation(s)
- Lin Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| |
Collapse
|
11
|
Identification and co-expression network analysis of plumule-preferentially expressed genes in Oryza sativa. Genes Genomics 2023; 45:319-336. [PMID: 36708499 DOI: 10.1007/s13258-023-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND The seedling establishment is controlled by the programmed expression of sets of genes at the specific tissues of seed, abundance and environment. Plumule is an important part of the seed embryo and expresses the suits of genes to exert distinct functions during seed germination. Although rice genomic resources are available and developed rapidly, thousands of transcripts have not previously been located in the plumule of rice. OBJECTIVE This study was performed to identify plumule-preferentially expressed (OsPluP) genes in rice and determine the expression profiles and functions of OsPluP genes. METHODS We identified the OsPluP genes through Affymetrix microarray data. Meanwhile, qRT-PCR was performed to validate the expression pattern, also found that OsPluP genes were regulated by dark/light treatment. The cis-acting regulatory elements were analyzed in the promoters' regions of OsPluP genes. The T-DNA mutant of the OsPluP seed was used to reveal the function in seed germination. RESULTS In this study, a genomic survey of OsPluP genes was performed, and we identified 88 OsPluP genes based on Affymetrix microarray data. The expression profiles of 88 OsPluP members in 24 representative tissues covering rice whole life cycle can be roughly classified into three major groups, suggesting functional divergence of OsPluP genes in seed germination. The microarray data, qRT-PCR, and promoter analysis results demonstrated that transcripts of more than half OsPluPs (54 genes) could be enhanced in the darkness and respond to phytohormone. Gene Ontology (GO)and Kyoto encyclopedia of genes and genomes (KEGG) analysis demonstrated that OsPluP and their co-expressed genes were highly enriched in fatty acid metabolism. Moreover, OsPluP82 T-DNA mutant seeds displayed short plumule length and storage lipid accumulation. CONCLUSION This study would enable the functions of OsPluP genes during seed germination and contribute to the goal of molecular regulatory networks that lay the foundation for further studies of seedling growth.
Collapse
|
12
|
Ji XL, Zhang M, Wang D, Li Z, Lang S, Song XS. Genome-wide identification of WD40 superfamily in Cerasus humilis and functional characteristics of ChTTG1. Int J Biol Macromol 2023; 225:376-388. [PMID: 36402390 DOI: 10.1016/j.ijbiomac.2022.11.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The WD40 superfamily plays an important role in a wide range of developmental and physiological processes. It is a large gene family in eukaryotes. Unfortunately, the research on the WD40 superfamily genes in Cerasus humilis has not been reported. 198 ChWD40s were identified and analyzed in the present study, along with evolutionary relationships, gene structure, chromosome distribution, and collinearity. Then, 5 pairs of tandem duplication and 17 pairs of segmental duplication were found. Based on RNA-Seq data analysis, we screened 31 candidate genes whose expression was up-regulated during the four developmental stages of fruit peel. In addition, we also demonstrated that ChWD40-140, namely ChTTG1, located in the nucleus, cytoplasm, and cytomembrane, has transcriptional activation activity and can form homodimers. ChTTG1 is involved in anthocyanin biosynthesis through heterologous overexpression in Arabidopsis. These research results provide a reference for a comprehensive analysis of the functions of WD40 in the future.
Collapse
Affiliation(s)
- Xiao Long Ji
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Di Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhe Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shaoyu Lang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xing Shun Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
13
|
Chen C, Yang Y, Pan L, Xia W, Xu L, Hua B, Zhang Z, Miao M. Genome-Wide Identification of WD40 Proteins in Cucurbita maxima Reveals Its Potential Functions in Fruit Development. Genes (Basel) 2023; 14:genes14010220. [PMID: 36672961 PMCID: PMC9859561 DOI: 10.3390/genes14010220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
WD40 proteins, a super gene family in eukaryotes, are involved in multiple biological processes. Members of this family have been identified in several plants and shown to play key roles in various development processes, including acting as scaffolding molecules with other proteins. However, WD40 proteins have not yet been systematically analyzed and identified in Cucurbita maxima. In this study, 231 WD40 proteins (CmWD40s) were identified in C. maxima and classified into five clusters. Eleven subfamilies were identified based on different conserved motifs and gene structures. The CmWD40 genes were distributed in 20 chromosomes; 5 and 33 pairs of CmWD40s were distinguished as tandem and segmental duplications, respectively. Overall, 58 pairs of orthologous WD40 genes in C. maxima and Arabidopsis thaliana, and 56 pairs of orthologous WD40 genes in C. maxima and Cucumis sativus were matched. Numerous CmWD40s had diverse expression patterns in fruits, leaf, stem, and root. Several genes were involved in responses to NaCl. The expression pattern of CmWD40s suggested their key role in fruit development and abiotic stress response. Finally, we identified 14 genes which might be involved in fruit development. Our results provide valuable basis for further functional verification of CmWD40s in C. maxima.
Collapse
Affiliation(s)
- Chen Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yating Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Liu Pan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wenhao Xia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lanruoyan Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
14
|
Javid S, Bihamta MR, Omidi M, Abbasi AR, Alipour H, Ingvarsson PK. Genome-Wide Association Study (GWAS) and genome prediction of seedling salt tolerance in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:581. [PMID: 36513980 PMCID: PMC9746167 DOI: 10.1186/s12870-022-03936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salinity tolerance in wheat is imperative for improving crop genetic capacity in response to the expanding phenomenon of soil salinization. However, little is known about the genetic foundation underlying salinity tolerance at the seedling growth stage of wheat. Herein, a GWAS analysis was carried out by the random-SNP-effect mixed linear model (mrMLM) multi-locus model to uncover candidate genes responsible for salt tolerance at the seedling stage in 298 Iranian bread wheat accessions, including 208 landraces and 90 cultivars. RESULTS A total of 29 functional marker-trait associations (MTAs) were detected under salinity, 100 mM NaCl (sodium chloride). Of these, seven single nucleotide polymorphisms (SNPs) including rs54146, rs257, rs37983, rs18682, rs55629, rs15183, and rs63185 with R2 ≥ 10% were found to be linked with relative water content, root fresh weight, root dry weight, root volume, shoot high, proline, and shoot potassium (K+), respectively. Further, a total of 27 candidate genes were functionally annotated to be involved in response to the saline environment. Most of these genes have key roles in photosynthesis, response to abscisic acid, cell redox homeostasis, sucrose and carbohydrate metabolism, ubiquitination, transmembrane transport, chromatin silencing, and some genes harbored unknown functions that all together may respond to salinity as a complex network. For genomic prediction (GP), the genomic best linear unbiased prediction (GBLUP) model reflected genetic effects better than both bayesian ridge regression (BRR) and ridge regression-best linear unbiased prediction (RRBLUP), suggesting GBLUP as a favorable tool for wheat genomic selection. CONCLUSION The SNPs and candidate genes identified in the current work can be used potentially for developing salt-tolerant varieties at the seedling growth stage by marker-assisted selection.
Collapse
Affiliation(s)
- Saeideh Javid
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | | | - Mansour Omidi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Ali Reza Abbasi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Kuzbakova M, Khassanova G, Oshergina I, Ten E, Jatayev S, Yerzhebayeva R, Bulatova K, Khalbayeva S, Schramm C, Anderson P, Sweetman C, Jenkins CLD, Soole KL, Shavrukov Y. Height to first pod: A review of genetic and breeding approaches to improve combine harvesting in legume crops. FRONTIERS IN PLANT SCIENCE 2022; 13:948099. [PMID: 36186054 PMCID: PMC9523450 DOI: 10.3389/fpls.2022.948099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Height from soil at the base of plant to the first pod (HFP) is an important trait for mechanical harvesting of legume crops. To minimise the loss of pods, the HFP must be higher than that of the blades of most combine harvesters. Here, we review the genetic control, morphology, and variability of HFP in legumes and attempt to unravel the diverse terminology for this trait in the literature. HFP is directly related to node number and internode length but through different mechanisms. The phenotypic diversity and heritability of HFP and their correlations with plant height are very high among studied legumes. Only a few publications describe a QTL analysis where candidate genes for HFP with confirmed gene expression have been mapped. They include major QTLs with eight candidate genes for HFP, which are involved in auxin transport and signal transduction in soybean [Glycine max (L.) Merr.] as well as MADS box gene SOC1 in Medicago trancatula, and BEBT or WD40 genes located nearby in the mapped QTL in common bean (Phaseolus vulgaris L.). There is no information available about simple and efficient markers associated with HFP, which can be used for marker-assisted selection for this trait in practical breeding, which is still required in the nearest future. To our best knowledge, this is the first review to focus on this significant challenge in legume-based cropping systems.
Collapse
Affiliation(s)
- Marzhan Kuzbakova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Irina Oshergina
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Raushan Yerzhebayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Kulpash Bulatova
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Sholpan Khalbayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
16
|
Afza F, Singh N, Shriya S, Bisoyi P, Kashyap AK, Jain BP. Genome wide identification and analysis of WD40 domain containing proteins in Danio rerio. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Genome Wide Identification and Characterization of Apple WD40 Proteins and Expression Analysis in Response to ABA, Drought, and Low Temperature. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basic WD40 proteins, which are characterized by a conserved WD40 domain, comprise a superfamily of regulatory proteins in plants and play important roles in plant growth and development. However, WD40 genes have been rarely studied in apple (Malus × domestica Borkh.). In this study, 346 WD40 genes classified in 12 subfamilies, were identified in the apple genome. Evolutionary analysis of WD40 proteins in apple and Arabidopsis revealed that the genes were classifiable into 14 groups, and the exon/intron structure of each group showed a similar structure. Analysis of collinearity showed that the large-scale amplification of WD40 genes in apple was largely attributable to recent whole-genome replication events. Nineteen candidate stress-related genes, selected by GO annotation and comparison with Arabidopsis homologs, showed different expression profiles in six organs at different developmental stages in response to exogenous abscisic acid (ABA), drought, and low temperature. Eight genes (MdWD40-17, 24, 70, 74, 219, 256, 283, and 307) showed a distinct response to one or more treatments (ABA, drought, and low temperature) as indicated by quantitative real-time PCR analysis. Taken together, these data provide rich resources for further study of MdWD40 genes and their potential roles in stress responses in apple.
Collapse
|
18
|
Swetha C, Narjala A, Pandit A, Tirumalai V, Shivaprasad PV. Degradome comparison between wild and cultivated rice identifies differential targeting by miRNAs. BMC Genomics 2022; 23:53. [PMID: 35031003 PMCID: PMC8759253 DOI: 10.1186/s12864-021-08288-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/23/2021] [Indexed: 11/14/2022] Open
Abstract
Background Small non-coding (s)RNAs are involved in the negative regulation of gene expression, playing critical roles in genome integrity, development and metabolic pathways. Targeting of RNAs by ribonucleoprotein complexes of sRNAs bound to Argonaute (AGO) proteins results in cleaved RNAs having precise and predictable 5` ends. While tools to study sliced bits of RNAs to confirm the efficiency of sRNA-mediated regulation are available, they are sub-optimal. In this study, we provide an improvised version of a tool with better efficiency to accurately validate sRNA targets. Results Here, we improvised the CleaveLand tool to identify additional micro (mi)RNA targets that belong to the same family and also other targets within a specified free energy cut-off. These additional targets were otherwise excluded during the default run. We employed these tools to understand the sRNA targeting efficiency in wild and cultivated rice, sequenced degradome from two rice lines, O. nivara and O. sativa indica Pusa Basmati-1 and analyzed variations in sRNA targeting. Our results indicate the existence of multiple miRNA-mediated targeting differences between domesticated and wild species. For example, Os5NG4 was targeted only in wild rice that might be responsible for the poor secondary wall formation when compared to cultivated rice. We also identified differential mRNA targets of secondary sRNAs that were generated after miRNA-mediated cleavage of primary targets. Conclusions We identified many differentially targeted mRNAs between wild and domesticated rice lines. In addition to providing a step-wise guide to generate and analyze degradome datasets, we showed how domestication altered sRNA-mediated cascade silencing during the evolution of indica rice. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08288-5.
Collapse
Affiliation(s)
- Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India.,SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India.,SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Varsha Tirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India.,SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
19
|
Beena R, Kirubakaran S, Nithya N, Manickavelu A, Sah RP, Abida PS, Sreekumar J, Jaslam PM, Rejeth R, Jayalekshmy VG, Roy S, Manju RV, Viji MM, Siddique KHM. Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces. BMC PLANT BIOLOGY 2021; 21:484. [PMID: 34686134 PMCID: PMC8539776 DOI: 10.1186/s12870-021-03272-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Asian cultivars were predominantly represented in global rice panel selected for sequencing and to identify novel alleles for drought tolerance. Diverse genetic resources adapted to Indian subcontinent were not represented much in spite harboring useful alleles that could improve agronomic traits, stress resilience and productivity. These rice accessions are valuable genetic resource in developing rice varieties suited to different rice ecosystem that experiences varying drought stress level, and at different crop stages. A core collection of rice germplasm adapted to Southwestern Indian peninsular genotyped using SSR markers and characterized by contrasting water regimes to associate genomic regions for physiological, root traits and yield related traits. Genotyping-By-Sequencing of selected accessions within the diverse panel revealed haplotype variation in genic content within genomic regions mapped for physiological, morphological and root traits. RESULTS Diverse rice panel (99 accessions) were evaluated in field and measurements on plant physiological, root traits and yield related traits were made over five different seasons experiencing varying drought stress intensity at different crop stages. Traits like chlorophyll stability index, leaf rolling, days to 50% flowering, chlorophyll content, root volume and root biomass were identified as best predictors of grain yield under stress. Association mapping revealed genetic variation among accessions and revealed 14 genomic targets associated with different physiological, root and plant production traits. Certain accessions were found to have beneficial allele to improve traits, plant height, root length and spikelet fertility, that contribute to the grain yield under stress. Genomic characterization of eleven accessions revealed haplotype variation within key genomic targets on chromosomes 1, 4, 6 and 11 for potential use as molecular markers to combine drought avoidance and tolerance traits. Genes mined within the genomic QTL intervals identified were prioritized based on tissue specific expression level in publicly available rice transcriptome data. CONCLUSION The genetic and genomic resources identified will enable combining traits with agronomic value to optimize yield under stress and hasten trait introgression into elite cultivars. Alleles associated with plant height, specific leaf area, root length from PTB8 and spikelet fertility and grain weight from PTB26 can be harnessed in future rice breeding program.
Collapse
Affiliation(s)
- Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | | | - Narayanan Nithya
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Alagu Manickavelu
- Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala India
| | - Rameshwar Prasad Sah
- Indian Council of Agricultural Research (ICAR)-Central Rice Research Institute, currently named National Rice Research Institute (NRRI), Cuttack, Odisha India
| | - Puthenpeedikal Salim Abida
- Regional Agricultural Research Station, Pattambi, Kerala Agricultural University, Palakkad, Kerala India
| | - Janardanan Sreekumar
- Indian Council of Agricultural Research (ICAR)-Central Tuber Crops Research Institute, Sreekaryam, Thiruvananthapuram, Kerala India
| | | | - Rajendrakumar Rejeth
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Vijayalayam Gengamma Jayalekshmy
- Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Stephen Roy
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Ramakrishnan Vimala Manju
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Mariasoosai Mary Viji
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | | |
Collapse
|
20
|
Wang Y, Tian H, Wang W, Wang X, Zheng K, Hussain S, Lin R, Wang T, Wang S. The Carboxyl-Terminus of TRANSPARENT TESTA GLABRA1 Is Critical for Its Functions in Arabidopsis. Int J Mol Sci 2021; 22:ijms221810039. [PMID: 34576199 PMCID: PMC8467004 DOI: 10.3390/ijms221810039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
The Arabidopsis WD40 repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulates cell fate determination, including trichome initiation and root hair formation, as well as secondary metabolism such as flavonoid biosynthesis and seed coat mucilage production. TTG1 regulates different processes via regulating the expression of its downstream target genes by forming MYB-bHLH-WD40 (MBW) activator complexes with different R2R3 MYB and bHLH transcription factors. Here, we report the identification of the carboxyl (C)-terminus as a critical domain for TTG1′s functions in Arabidopsis. We found that the ttg1Δ15aa mutant shows pleiotropic phenotypes identical to a TTG1 loss-of-function mutant. Gene sequencing indicates that a single nucleotide substitution in TTG1 led to a premature stop at the W327 residue, leading to the production of a truncated TTG1 protein with a deletion of the last 15 C-terminal amino acids. The expression of TTG1 under the control of its native promoter fully restored the ttg1Δ15aa mutant phenotypes. Consistent with these observations, the expression levels of TTG1 downstream genes such as GLABRA2 (GL2) and CAPRICE (CPC) were reduced in the ttg1Δ15aa mutant. Assays in Arabidopsis protoplast show that TTG1Δ15aa failed to interact with the bHLH transcription factor GL3, and the deletion of the last 3 C-terminal amino acids or the 339L amino acid alone fully abolished the interaction of TTG1 with GL3. Furthermore, the expression of TTG1Δ3aa under the control of TTG1 native promoter failed to restore the ttg1Δ15aa mutant phenotypes. Taken together, our results suggest that the C-terminal domain of TTG1 is required for its proper function in Arabidopsis.
Collapse
Affiliation(s)
- Yating Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
- Correspondence:
| |
Collapse
|
21
|
Yang X, Wang J, Xia X, Zhang Z, He J, Nong B, Luo T, Feng R, Wu Y, Pan Y, Xiong F, Zeng Y, Chen C, Guo H, Xu Z, Li D, Deng G. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:198-214. [PMID: 33884679 DOI: 10.1111/tpj.15285] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins play an important role in the growth of plants, and are beneficial to human health. In plants, the MYB-bHLH-WD40 (MBW) complex activates the genes for anthocyanin biosynthesis. However, in rice, the WD40 regulators remain to be conclusively identified. Here, a crucial anthocyanin biosynthesis gene was fine mapped to a 43.4-kb genomic region on chromosome 2, and a WD40 gene OsTTG1 (Oryza sativa TRANSPARENT TESTA GLABRA1) was identified as ideal candidate gene. Subsequently, a homozygous mutant (osttg1) generated by CRISPR/Cas9 showed significantly decreased anthocyanin accumulation in various rice organs. OsTTG1 was highly expressed in various rice tissues after germination, and it was affected by light and temperature. OsTTG1 protein was localized to the nucleus, and can physically interact with Kala4, OsC1, OsDFR and Rc. Furthermore, a total of 59 hub transcription factor genes might affect rice anthocyanin biosynthesis, and LOC_Os01g28680 and LOC_Os02g32430 could have functional redundancy with OsTTG1. Phylogenetic analysis indicated that directional selection has driven the evolutionary divergence of the indica and japonica OsTTG1 alleles. Our results suggest that OsTTG1 is a vital regulator of anthocyanin biosynthesis, and an important gene resource for the genetic engineering of anthocyanin biosynthesis in rice and other plants.
Collapse
Affiliation(s)
- Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Junrui Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, 530007, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jie He
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yanyan Wu
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yu Zeng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhijian Xu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|
22
|
Soni P, Shivhare R, Kaur A, Bansal S, Sonah H, Deshmukh R, Giri J, Lata C, Ram H. Reference gene identification for gene expression analysis in rice under different metal stress. J Biotechnol 2021; 332:83-93. [PMID: 33794279 DOI: 10.1016/j.jbiotec.2021.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Real-time quantitative polymerase chain reaction (RT-qPCR) is the most common approach to quantify changes in gene expression. Appropriate internal reference genes are essential for normalization of data of RT-qPCR. In the present study, we identified suitable reference genes for analysis of gene expression in rice seedlings subjected to different heavy metal stresses such as deficiencies of iron and zinc and toxicities of cobalt, cadmium and nickel. First, from publically available RNA-Seq data we identified 10 candidate genes having stable expression. We also included commonly used house-keeping gene OsUBQ5 (Ubiquitin 5) in our analysis. Expression stability of all the 11 genes was determined by two independent tools, NormFinder and geNorm. Our results show that selected candidate reference genes have higher stability in their expression compared to that of OsUBQ5. Genes with locus ID LOC_Os03g16690, encoding an oxysterol-binding protein (OsOBP) and LOC_Os01g56580, encoding Casein Kinase_1a.3 (OsCK1a.3) were identified to be the most stably expressed reference genes under most of the conditions tested. Finally, the study reveals that it is better to use a specific reference gene for a specific heavy metal stress condition rather than using a common reference gene for multiple heavy metal stress conditions. The reference genes identified here would be very useful for gene expression studies under heavy metal stresses in rice.
Collapse
Affiliation(s)
- Praveen Soni
- Department of Botany, University of Rajasthan, Jaipur, 302004, India
| | - Radha Shivhare
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Amandeep Kaur
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Sakshi Bansal
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Charu Lata
- CSIR-National Institute of Science Communication and Information Resources, New Delhi, 110067, India.
| | - Hasthi Ram
- National Agri-Food Biotechnology Institute, Mohali, 140308, India; National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
23
|
Kim YJ, Kim MH, Hong WJ, Moon S, Kim EJ, Silva J, Lee J, Lee S, Kim ST, Park SK, Jung KH. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1645-1664. [PMID: 33345419 DOI: 10.1111/tpj.15139] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
Successful delivery of sperm cells to the embryo sac in higher plants is mediated by pollen tube growth. The molecular mechanisms underlying pollen germination and tube growth in crop plants remain rather unclear, although these mechanisms are crucial to plant reproduction and seed formation. By screening pollen-specific gene mutants in rice (Oryza sativa), we identified a T-DNA insertional mutant of Germinating modulator of rice pollen (GORI) that showed a one-to-one segregation ratio for wild type (WT) to heterozygous. GORI encodes a seven-WD40-motif protein that is homologous to JINGUBANG/REN4 in Arabidopsis. GORI is specifically expressed in rice pollen, and its protein is localized in the nucleus, cytosol and plasma membrane. Furthermore, a homozygous mutant, gori-2, created through CRISPR-Cas9 clearly exhibited male sterility with disruption of pollen tube germination and elongation. The germinated pollen tube of gori-2 exhibited decreased actin filaments and altered pectin distribution. Transcriptome analysis revealed that 852 pollen-specific genes were downregulated in gori-2 compared with the WT, and Gene Ontology enrichment analysis indicated that these genes are strongly associated with cell wall modification and clathrin coat assembly. Based on the molecular features of GORI, phenotypical observation of the gori mutant and its interaction with endocytic proteins and Rac GTPase, we propose that GORI plays key roles in forming endo-/exocytosis complexes that could mediate pollen tube growth in rice.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, 50463, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinwon Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
24
|
Tan L, Salih H, Htet NNW, Azeem F, Zhan R. Genomic analysis of WD40 protein family in the mango reveals a TTG1 protein enhances root growth and abiotic tolerance in Arabidopsis. Sci Rep 2021; 11:2266. [PMID: 33500544 PMCID: PMC7838414 DOI: 10.1038/s41598-021-81969-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
WD40 domain-containing proteins constitute one of the most abundant protein families in all higher plants and play vital roles in the regulation of plant growth and developmental processes. To date, WD40 protein members have been identified in several plant species, but no report is available on the WD40 protein family in mango (Mangifera indica L.). In this study, a total of 315 WD40 protein members were identified in mango and further divided into 11 subgroups according to the phylogenetic tree. Here, we reported mango TRANSPARENT TESTA GLABRA 1 (MiTTG1) protein as a novel factor that functions in the regulation of Arabidopsis root growth and development. Bimolecular fluorescence complementation (BiFC) assay in tobacco leaves revealed that MiTTG1 protein physically interacts with MiMYB0, MiTT8 and MibHLH1, implying the formation of a new ternary regulatory complex (MYB-bHLH-WD40) in mango. Furthermore, the MiTTG1 transgenic lines were more adapted to abiotic stresses (mannitol, salt and drought stress) in terms of promoted root hairs and root lengths. Together, our findings indicated that MiTTG1 functions as a novel factor to modulate protein-protein interactions and enhance the plants abilities to adjust different abiotic stress responses.
Collapse
Affiliation(s)
- Lin Tan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Haron Salih
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,grid.442436.30000 0004 0447 7877Crop Sciences, Faculty of Agriculture, Zalingei University, Central Darfur, Sudan
| | - Nwe Ni Win Htet
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,Microbiology Laboratory, Biotechnology Research Department, Kyaukse, 05151 Myanmar
| | - Farrukh Azeem
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Rulin Zhan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| |
Collapse
|
25
|
Sun YB, Zhang XJ, Zhong MC, Dong X, Yu DM, Jiang XD, Wang D, Cui WH, Chen JH, Hu JY. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae. PLANT MOLECULAR BIOLOGY 2020; 104:81-95. [PMID: 32621166 DOI: 10.1007/s11103-020-01026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Genome-wide identification of WD40-like genes reveals a duplication of COP1-like genes, one of the key players involved in regulation of flowering time and photomorphogenesis, with strong functional diversification in Rosaceae. WD40 proteins play crucial roles in a broad spectrum of developmental and physiological processes. Here, we conducted a systematic characterization of this family of genes in Rosa chinensis 'Old Blush' (OB), a founder genotype for modern rose domestication. We identified 187 rose WD40 genes and classified them into 5 clusters and 15 subfamilies with 11 of RcWD40s presumably generated via tandem duplication. We found RcWD40 genes were expressed differentially following stages of vegetative and reproductive development. We detected a duplication of CONSTITUTIVE PHOTOMORPHOGENIC1-like genes in rose (RcCOP1 and RcCOP1L) and other Rosaceae plants. Featuring a distinct expression pattern and a different profile of cis-regulatory-elements in the transcriptional regulatory regions, RcCOP1 seemed being evolutionarily conserved while RcCOP1L did not dimerize with RcHY5 and RcSPA4. Our data thus reveals a functional diversification of COP1-like genes in Rosacaeae plants, and provides a valuable resource to explore the potential function and evolution of WD40-like genes in Rosaceae plants.
Collapse
Affiliation(s)
- Yi-Bo Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650223, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong-Mei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Hua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650223, Yunnan, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
26
|
Mistry BV, Alanazi M, Fitwi H, Al-Harazi O, Rajab M, Altorbag A, Almohanna F, Colak D, Assiri AM. Expression profiling of WD40 family genes including DDB1- and CUL4- associated factor (DCAF) genes in mice and human suggests important regulatory roles in testicular development and spermatogenesis. BMC Genomics 2020; 21:602. [PMID: 32867693 PMCID: PMC7457511 DOI: 10.1186/s12864-020-07016-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The WD40-repeat containing proteins, including DDB1-CUL4-associated factors (DCAFs), are abundant and conserved proteins that play important roles in different cellular processes including spermatogenesis. DCAFs are subset of WD40 family proteins that contain WDxR motif and have been proposed to function as substrate receptor for Cullin4-RING-based E3 ubiquitin ligase complexes to recruit diverse proteins for ubiquitination, a vital process in spermatogenesis. Large number of WD40 genes has been identified in different species including mouse and human. However, a systematic expression profiling of WD40 genes in different tissues of mouse and human has not been investigated. We hypothesize that large number of WD40 genes may express highly or specifically in the testis, where their expression is uniquely regulated during testis development and spermatogenesis. Therefore, the objective of this study is to mine and characterize expression patterns of WD40 genes in different tissues of mouse and human with particular emphasis on DCAF genes expressions during mouse testicular development. RESULTS Publically available RNA sequencing (RNA seq) data mining identified 347 and 349 WD40 genes in mouse and human, respectively. Hierarchical clustering and heat map analyses of RNA seq datasets revealed differential expression patterns of WD40 genes with around 60-73% of the genes were highly or specifically expressed in testis. Similarly, around 74-83% of DCAF genes were predominantly or specifically expressed in testis. Moreover, WD40 genes showed distinct expression patterns during embryonic and postnatal testis development in mice. Finally, different germ cell populations of testis showed specific patterns of WD40 genes expression. Predicted gene ontology analyses revealed more than 80% of these proteins are implicated in cellular, metabolic, biological regulation and cell localization processes. CONCLUSIONS We have identified large number of WD40 family genes that are highly or specifically expressed in the testes of mouse and human. Moreover, WD40 genes have distinct expression patterns during embryonic and postnatal development of the testis in mice. Further, different germ cell populations within the testis showed specific patterns of WD40 genes expression. These results provide foundation for further research towards understanding the functional genomics and molecular mechanisms of mammalian testis development and spermatogenesis.
Collapse
Affiliation(s)
- Bhavesh V Mistry
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Maha Alanazi
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hanae Fitwi
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Rajab
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Abdullah Altorbag
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Falah Almohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia. .,Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia. .,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
27
|
TRANSPARENT TESTA GLABRA1, a Key Regulator in Plants with Multiple Roles and Multiple Function Mechanisms. Int J Mol Sci 2020; 21:ijms21144881. [PMID: 32664363 PMCID: PMC7402295 DOI: 10.3390/ijms21144881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023] Open
Abstract
TRANSPARENT TESTA GLABRA1 (TTG1) is a WD40 repeat protein. The phenotypes caused by loss-of-function of TTG1 were observed about half a century ago, but the TTG1 gene was identified only about twenty years ago. Since then, TTG1 has been found to be a plant-specific regulator with multiple roles and multiple functional mechanisms. TTG1 is involved in the regulation of cell fate determination, secondary metabolisms, accumulation of seed storage reserves, plant responses to biotic and abiotic stresses, and flowering time in plants. In some processes, TTG1 may directly or indirectly regulate the expression of downstream target genes via forming transcription activator complexes with R2R3 MYB and bHLH transcription factors. Whereas in other processes, TTG1 may function alone or interact with other proteins to regulate downstream target genes. On the other hand, the studies on the regulation of TTG1 are very limited. So far, only the B3-domain family transcription factor FUSCA3 (FUS3) has been found to regulate the expression of TTG1, phosphorylation of TTG1 affects its interaction with bHLH transcription factor TT2, and TTG1 proteins can be targeted for degradation by the 26S proteasome. Here, we provide an overview of TTG1, including the identification of TTG1, the functions of TTG1, the possible function mechanisms of TTG1, and the regulation of TTG1. We also proposed potential research directions that may shed new light on the regulation and functional mechanisms of TTG1 in plants.
Collapse
|
28
|
Yang J, Liu S, Ji L, Tang X, Zhu Y, Xie G. Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice. JOURNAL OF PLANT PHYSIOLOGY 2020; 249:153165. [PMID: 32408008 DOI: 10.1016/j.jplph.2020.153165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 05/24/2023]
Abstract
Calmodulin-like proteins (CMLs) have been shown to play key regulatory roles in calcium signaling in plants. However, few bona-fide CMLs binding proteins have been characterized in rice, a monocot model plant. Here, through large-scale screening of a yeast-two hybrid (Y2H) cDNA library with OsCML16 as a bait, six new putative interacting partners of OsCML16 were discovered and confirmed by both pairwise Y2H and bimolecular fluorescence complementation (BiFC) assays. Interestingly, the in vitro peptide-binding assays manifested that OsERD2 could bind both OsCaM1 and OsCML16 whereas other five target proteins could specifically bind OsCML16 but not OsCaM1. Furthermore, Ca2+ and TFP, a calmodulin (CaM) antagonist, were involved in the ABA-induced transcription of OsCML16 and its target genes, and they were also obviously induced by cold, drought, and salt stresses. Taken together, our new findings have provided the basis for the novel signaling pathways of OsCML16 in the abiotic stress response in rice.
Collapse
Affiliation(s)
- Jun Yang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingxiao Ji
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianying Tang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yongsheng Zhu
- Institute of Crop Science, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Transcriptomic data-driven discovery of global regulatory features of rice seeds developing under heat stress. Comput Struct Biotechnol J 2020; 18:2556-2567. [PMID: 33033578 PMCID: PMC7522763 DOI: 10.1016/j.csbj.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Plants respond to abiotic stressors through a suite of strategies including differential regulation of stress-responsive genes. Hence, characterizing the influences of the relevant global regulators or on stress-related transcription factors is critical to understand plant stress response. Rice seed development is highly sensitive to elevated temperatures. To elucidate the extent and directional hierarchy of gene regulation in rice seeds under heat stress, we developed and implemented a robust multi-level optimization-based algorithm called Minimal Regulatory Network identifier (MiReN). MiReN could predict the minimal regulatory relationship between a gene and its potential regulators from our temporal transcriptomic dataset. MiReN predictions for global regulators including stress-responsive gene Slender Rice 1 (SLR1) and disease resistance gene XA21 were validated with published literature. It also predicted novel regulatory influences of other major regulators such as Kinesin-like proteins KIN12C and STD1, and WD repeat-containing protein WD40. Out of the 228 stress-responsive transcription factors identified, we predicted de novo regulatory influences on three major groups (MADS-box M-type, MYB, and bZIP) and investigated their physiological impacts during stress. Overall, MiReN results can facilitate new experimental studies to enhance our understanding of global regulatory mechanisms triggered during heat stress, which can potentially accelerate the development of stress-tolerant cultivars.
Collapse
|
30
|
Li W, Zhao D, Dong J, Kong X, Zhang Q, Li T, Meng Y, Shan W. AtRTP5 negatively regulates plant resistance to Phytophthora pathogens by modulating the biosynthesis of endogenous jasmonic acid and salicylic acid. MOLECULAR PLANT PATHOLOGY 2020; 21:95-108. [PMID: 31701600 PMCID: PMC6913198 DOI: 10.1111/mpp.12883] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants have evolved powerful immune systems to recognize pathogens and avoid invasions, but the genetic basis of plant susceptibility is less well-studied, especially to oomycetes, which cause disastrous diseases in many ornamental plants and food crops. In this research, we identified a negative regulator of plant immunity to the oomycete Phytophthora parasitica, AtRTP5 (Arabidopsis thaliana Resistant to Phytophthora 5), which encodes a WD40 repeat domain-containing protein. The AtRTP5 protein, which was tagged with green fluorescent protein (GFP), is localized in the nucleus and plasma membrane. Both the A. thaliana T-DNA insertion rtp5 mutants and the Nicotiana benthamiana RTP5 (NbRTP5) silencing plants showed enhanced resistance to P. parasitica, while overexpression of AtRTP5 rendered plants more susceptible. The transcriptomic analysis showed that mutation of AtRTP5 suppressed the biosynthesis of endogenous jasmonic acid (JA) and JA-dependent responses. In contrast, salicylic acid (SA) biosynthesis and SA-dependent responses were activated in the T-DNA insertion mutant rtp5-3. These results show that AtRTP5 acts as a conserved negative regulator of plant immunity to Phytophthora pathogens by interfering with JA and SA signalling pathways.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Dan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jingwen Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xianglan Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
31
|
Identification and characterization of WD40 superfamily genes in peach. Gene 2019; 710:291-306. [PMID: 31185283 DOI: 10.1016/j.gene.2019.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023]
Abstract
The WD40 transcription factor family is a superfamily found in all eukaryotes that plays important roles in regulating growth and development. To our knowledge, to date, WD40 superfamily genes have been identified and characterized in several plant species, but little information is available on the WD40 superfamily genes in peach. In this study, we identified 220 members of the WD40 superfamily in the peach genome, and these members were further classified into five subfamilies based on phylogenetic comparison with those in Arabidopsis. The members within each subfamily had conserved motifs and gene structures. The WD40 genes were unevenly distributed on chromosomes 1 to 8 of the peach genome. Additionally, 58 pairs of paralog WD40 members were found on eight chromosomes in peach, and 242 pairs of orthologous WD40 genes in peach and Arabidopsis were matched. The 54 selected putative WD40 genes in peach had diverse expression patterns in red-fleshed and white-fleshed peach fruits at five developmental stages. Prupe.6G211800.1 was located only on the cytomembrane, while Prupe.1G428200.1 and Prupe.I003200.1 were located on both the cytomembrane and in the nucleus; Prupe.1G558700.1 was densely localized around the nuclear rim but relatively faintly localized in the nucleoplasm; Prupe.5G116300.1 was located in the nucleus and cytomembrane with strong signals but showed weak signals in the cytoplasm; and Prupe.8G212400.1 and Prupe.1G053600.1 were located mainly in the nuclear envelope and cytomembrane but relatively faintly in the nucleoplasm. This study provides a foundation for the further functional verification of WD40 genes in peach.
Collapse
|
32
|
Zhang H, Mi L, Xu L, Yu C, Li C, Chen C. Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange (Citrus sinensis). Sci Rep 2019; 9:2156. [PMID: 30770885 PMCID: PMC6377710 DOI: 10.1038/s41598-018-38185-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
GRAS genes are suggested to be grouped into plant-specific transcriptional regulatory families that have been reported to participate in multiple processes, including plant development, phytohormone signaling, the formation of symbiotic relationships, and response to environmental signals. GRAS genes have been characterized in a number of plant species, but little is known about this gene family in Citrus sinensis. In this study, we identified a total of 50 GRAS genes and characterized the gene structures, conserved motifs, genome localizations and cis-elements within their promoter regions. According to their structural and phylogenetic features, the identified sweet orange GRAS members were divided into 11 subgroups, of which subfamily CsGRAS34 was sweet orange-specific. Based on publicly available RNA-seq data generated from callus, flower, leaf and fruit in sweet orange, we found that some sweet orange GRAS genes exhibited tissue-specific expression patterning. Three of the six members of subfamily AtSHR, particularly CsGRAS9, and two of the six members of subfamily AtPAT1 were preferentially expressed in leaf. Moreover, protein-protein interactions with CsGRAS were predicted. Gene expression analysis was performed under conditions of phosphate deficiency, and GA3 and NaCl treatment to identify the potential functions of GRAS members in regulating stress and hormone responses. This study provides the first comprehensive understanding of the GRAS gene family in the sweet orange genome. As such, the study generates valuable information for further gene function analysis and identifying candidate genes to improve abiotic stress tolerance in citrus plants.
Collapse
Affiliation(s)
- Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Limin Mi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxiu Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
33
|
Jain BP. Genome Wide Analysis of WD40 Proteins in Saccharomyces cerevisiae and Their Orthologs in Candida albicans. Protein J 2019; 38:58-75. [PMID: 30511317 DOI: 10.1007/s10930-018-9804-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The WD40 domain containing proteins are present in the lower organisms (Monera) to higher complex metazoans with involvement in diverse cellular processes. The WD40 repeats fold into β propeller structure due to which the proteins harbouring WD40 domains function as scaffold by offering platform for interactions, bring together diverse cellular proteins to form a single complex for mediating downstream effects. Multiple functions of WD40 domain containing proteins in lower eukaryote as in Fungi have been reported with involvement in vegetative and reproductive growth, virulence etc. In this article insilico analysis of the WDR proteins in the budding yeast Saccharomyces cerevisiae was performed. By WDSP software 83 proteins in S. cerevisiae were identified with at least one WD40 motif. WD40 proteins with 6 or more WD40 motifs were considered for further studies. The WD40 proteins in yeast which are involved in various biological processes show distribution on all chromosomes (16 chromosomes in yeast) except chromosome 1. Besides the WD40 domain some of these proteins also contain other protein domains which might be responsible for the diversity in the functions of WD40 proteins in the budding yeast. These proteins in budding yeast were analysed by DAVID and Blast2Go software for functional and domains categorization. Candida albicans, an opportunistic fungal pathogen also have orthologs of these WD40 proteins with possible similar functions. This is the first time genome wide analysis of WD40 proteins in lower eukaryote i.e. budding yeast. This data may be useful in further study of the functional diversity of yeast proteomes.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Bihar, Motihari, 845401, India.
| |
Collapse
|
34
|
Abstract
The WD40 domain is one of the most abundant and interacting domains in the eukaryotic genome. In proteins the WD domain folds into a β-propeller structure, providing a platform for the interaction and assembly of several proteins into a signalosome. WD40 repeats containing proteins, in lower eukaryotes, are mainly involved in growth, cell cycle, development and virulence, while in higher organisms, they play an important role in diverse cellular functions like signal transduction, cell cycle control, intracellular transport, chromatin remodelling, cytoskeletal organization, apoptosis, development, transcriptional regulation, immune responses. To play the regulatory role in various processes, they act as a scaffold for protein-protein or protein-DNA interaction. So far, no WD40 domain has been identified with intrinsic enzymatic activity. Several WD40 domain-containing proteins have been recently characterized in prokaryotes as well. The review summarizes the vast array of functions performed by different WD40 domain containing proteins, their domain organization and functional conservation during the course of evolution.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Shweta Pandey
- APSGMNS Govt P G College, Kawardha, Chhattisgarh, 491995, India
| |
Collapse
|
35
|
Hu R, Xiao J, Gu T, Yu X, Zhang Y, Chang J, Yang G, He G. Genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L.). BMC Genomics 2018; 19:803. [PMID: 30400808 PMCID: PMC6219084 DOI: 10.1186/s12864-018-5157-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WD40 domains are abundant in eukaryotes, and they are essential subunits of large multiprotein complexes, which serve as scaffolds. WD40 proteins participate in various cellular processes, such as histone modification, transcription regulation, and signal transduction. WD40 proteins are regarded as crucial regulators of plant development processes. However, the systematic identification and analysis of WD40 proteins have yet to be reported in wheat. RESULTS In this study, a total of 743 WD40 proteins were identified in wheat, and they were grouped into 5 clusters and 11 subfamilies. Their gene structures, chromosomal locations, and evolutionary relationships were analyzed. Among them, 39 and 46 pairs of TaWD40s were distinguished as tandem duplication and segmental duplication genes. The 123 OsWD40s were identified to exhibit synteny with TaWD40s. TaWD40s showed the specific characteristics at the reproductive developmental stage, and numerous TaWD40s were involved in responses to stresses, including cold, heat, drought, and powdery mildew infection pathogen, based on the result of RNA-seq data analysis. The expression profiles of some TaWD40s in wheat seed development were confirmed through qRT-PCR technique. CONCLUSION In this study, 743 TaWD40s were identified from the wheat genome. As the main driving force of evolution, duplication events were observed, and homologous recombination was another driving force of evolution. The expression profiles of TaWD40s revealed their importance for the growth and development of wheat and their response to biotic and abiotic stresses. Our study also provided important information for further functional characterization of some WD40 proteins in wheat.
Collapse
Affiliation(s)
- Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
36
|
Salih H, Gong W, Mkulama M, Du X. Genome-wide characterization, identification, and expression analysis of the WD40 protein family in cotton. Genome 2018; 61:539-547. [DOI: 10.1139/gen-2017-0237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
WD40 repeat proteins are largely distributed across the plant kingdom and play an important role in diverse biological activities. In this work, we performed genome-wide identification, characterization, and expression level analysis of WD40 genes in cotton. A total of 579, 318, and 313 WD40 genes were found in Gossypium hirsutum, G. arboreum, and G. raimondii, respectively. Based on phylogenetic tree analyses, WD40 genes were divided into 11 groups with high similarities in exon/intron features and protein domains within the group. Expression analysis of WD40 genes showed differential expression at different stages of cotton fiber development (0 and 8 DPA) and cotton stem. A number of miRNAs were identified to target WD40 genes that are significantly involved in cotton fiber development during the initiation and elongation stages. These include miR156, miR160, miR162, miR164, miR166, miR167, miR169, miR171, miR172, miR393, miR396, miR398, miR2950, and miR7505. The findings provide a stronger indication of WD40 gene function and their involvement in the regulation of cotton fiber development during the initiation and elongation stages.
Collapse
Affiliation(s)
- Haron Salih
- Institute of Cotton Research, Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Anyang 455000, China
- College of Life Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Zalingei University, Central Darfur, Sudan
| | - Wenfang Gong
- Institute of Cotton Research, Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Anyang 455000, China
| | - Mtawa Mkulama
- Institute of Cotton Research, Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Anyang 455000, China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Anyang 455000, China
| |
Collapse
|
37
|
Govender N, Senan S, Mohamed-Hussein ZA, Wickneswari R. A gene co-expression network model identifies yield-related vicinity networks in Jatropha curcas shoot system. Sci Rep 2018; 8:9211. [PMID: 29907786 PMCID: PMC6003958 DOI: 10.1038/s41598-018-27493-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.
Collapse
Affiliation(s)
- Nisha Govender
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
- Center for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Siju Senan
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Center for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Ratnam Wickneswari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
38
|
Genome-Wide Identification and Characterization of WD40 Protein Genes in the Silkworm, Bombyx mori. Int J Mol Sci 2018; 19:ijms19020527. [PMID: 29425159 PMCID: PMC5855749 DOI: 10.3390/ijms19020527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
WD40 proteins are scaffolding molecules in protein-protein interactions and play crucial roles in fundamental biological processes. Genome-wide characterization of WD40 proteins in animals has been conducted solely in humans. We retrieved 172 WD40 protein genes in silkworm (BmWD40s) and identified these genes in 7 other insects, 9 vertebrates and 5 nematodes. Comparative analysis revealed that the WD40 protein gene family underwent lineage-specific expansions during animal evolution, but did not undergo significant expansion during insect evolution. The BmWD40s were categorized into five clusters and 12 classes according to the phylogenetic classification and their domain architectures, respectively. Sequence analyses indicated that tandem and segmental duplication played minor roles in producing the current number of BmWD40s, and domain recombination events of multi-domain BmWD40s might have occurred mainly after gene duplication events. Gene Ontology (GO) analysis revealed that a higher proportion of BmWD40s was involved in processes, such as binding, transcription-regulation and cellular component biogenesis, compared to all silkworm genes annotated in GO. Microarray-based analysis demonstrated that many BmWD40s had tissue-specific expression and exhibited high and/or sex-related expression during metamorphosis. These findings contribute to a better understanding of the evolution of the animal WD40 protein family and assist the study of the functions of BmWD40s.
Collapse
|
39
|
Keith BK, Burns EE, Bothner B, Carey CC, Mazurie AJ, Hilmer JK, Biyiklioglu S, Budak H, Dyer WE. Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L. PEST MANAGEMENT SCIENCE 2017; 73:2267-2281. [PMID: 28485049 DOI: 10.1002/ps.4605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Intensive use of herbicides has led to the evolution of two multiple herbicide-resistant (MHR) Avena fatua (wild oat) populations in Montana that are resistant to members of all selective herbicide families available for A. fatua control in US small grain crops. We used transcriptome and proteome surveys to compare constitutive changes in MHR and herbicide-susceptible (HS) plants associated with non-target site resistance. RESULTS Compared to HS plants, MHR plants contained constitutively elevated levels of differentially expressed genes (DEGs) with functions in xenobiotic catabolism, stress response, redox maintenance and transcriptional regulation that are similar to abiotic stress-tolerant phenotypes. Proteome comparisons identified similarly elevated proteins including biosynthetic and multifunctional enzymes in MHR plants. Of 25 DEGs validated by RT-qPCR assay, differential regulation of 21 co-segregated with flucarbazone-sodium herbicide resistance in F3 families, and a subset of 10 of these were induced or repressed in herbicide-treated HS plants. CONCLUSION Although the individual and collective contributions of these DEGs and proteins to MHR remain to be determined, our results support the idea that intensive herbicide use has selected for MHR populations with altered, constitutively regulated patterns of gene expression that are similar to those in abiotic stress-tolerant plants. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Barbara K Keith
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Erin E Burns
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry Research, Montana State University, Bozeman, MT, USA
| | - Charles C Carey
- Research Cyberinfrastructure, Montana State University, Bozeman, MT, USA
| | - Aurélien J Mazurie
- Research Cyberinfrastructure, Montana State University, Bozeman, MT, USA
| | - Jonathan K Hilmer
- Information Technology Center, Montana State University, Bozeman, MT, USA
| | - Sezgi Biyiklioglu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - William E Dyer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
40
|
Bian S, Li X, Mainali H, Chen L, Dhaubhadel S. Genome-wide analysis of DWD proteins in soybean (Glycine max): Significance of Gm08DWD and GmMYB176 interaction in isoflavonoid biosynthesis. PLoS One 2017; 12:e0178947. [PMID: 28586359 PMCID: PMC5460815 DOI: 10.1371/journal.pone.0178947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/22/2017] [Indexed: 01/26/2023] Open
Abstract
A subset of WD40 proteins with DWD motif has been proposed to serve as substrate receptor of DDB-CUL4-ROC1 complex, thereby getting involved in protein degradation via ubiquitination pathway. Here, we identified a total of 161 potential DWD proteins in soybean (Glycine max) by searching DWD motif against the genome-wide WD40 repeats, and classified them into 20 groups on the basis of their functional domains and annotations. These putative DWD genes in soybean displayed tissue-specific expression patterns, and their genome localization and analysis of evolutionary relationship identified 48 duplicated gene pairs within 161 GmDWDs. Among the 161 soybean DWD proteins, Gm08DWD was previously found to interact with an isoflavonoid regulator, GmMYB176. Therefore, Gm08DWD and its homologue Gm05DWD were further investigated. Expression profile of both genes in different soybean tissues revealed that Gm08DWD was expressed higher in embryo, while Gm05DWD exhibited maximum transcript accumulation in leaf. Our protein-protein interaction studies demonstrated that Gm08DWD interacts with GmMYB176. Although Gm08DWD was localized both in nucleus and cytoplasm, the resulting complex of Gm08DWD and GmMYB176 was mainly observed in the nucleus. This finding is consistent with the functional localization of CUL4-E3 ligase complex. In conclusion, the survey on soybean potential DWD protein is useful reference for the further functional investigation of their DDB1-binding ability. Based on the functional investigation of Gm08DWD, we speculate that protein-protein interaction between Gm08DWD and GmMYB176 may lead to the degradation of GmMYB176 through CUL4-DDB1complex.
Collapse
Affiliation(s)
- Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Hemanta Mainali
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Ling Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Sangeeta Dhaubhadel
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
41
|
Yang W, Lu Z, Xiong Y, Yao J. Genome-wide identification and co-expression network analysis of the OsNF-Y gene family in rice. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2016.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Zou XD, Hu XJ, Ma J, Li T, Ye ZQ, Wu YD. Genome-wide Analysis of WD40 Protein Family in Human. Sci Rep 2016; 6:39262. [PMID: 27991561 PMCID: PMC5172248 DOI: 10.1038/srep39262] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023] Open
Abstract
The WD40 proteins, often acting as scaffolds to form functional complexes in fundamental cellular processes, are one of the largest families encoded by the eukaryotic genomes. Systematic studies of this family on genome scale are highly required for understanding their detailed functions, but are currently lacking in the animal lineage. Here we present a comprehensive in silico study of the human WD40 family. We have identified 262 non-redundant WD40 proteins, and grouped them into 21 classes according to their domain architectures. Among them, 11 animal-specific domain architectures have been recognized. Sequence alignment indicates the complicated duplication and recombination events in the evolution of this family. Through further phylogenetic analysis, we have revealed that the WD40 family underwent more expansion than the overall average in the evolutionary early stage, and the early emerged WD40 proteins are prone to domain architectures with fundamental cellular roles and more interactions. While most widely and highly expressed human WD40 genes originated early, the tissue-specific ones often have late origin. These results provide a landscape of the human WD40 family concerning their classification, evolution, and expression, serving as a valuable complement to the previous studies in the plant lineage.
Collapse
Affiliation(s)
- Xu-Dong Zou
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Jing Ma
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Tuan Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
43
|
Liu H, Dong S, Sun D, Liu W, Gu F, Liu Y, Guo T, Wang H, Wang J, Chen Z. CONSTANS-Like 9 (OsCOL9) Interacts with Receptor for Activated C-Kinase 1(OsRACK1) to Regulate Blast Resistance through Salicylic Acid and Ethylene Signaling Pathways. PLoS One 2016; 11:e0166249. [PMID: 27829023 PMCID: PMC5102437 DOI: 10.1371/journal.pone.0166249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
In a previous transcriptome analysis of early response genes in rice during Magnaporthe oryzae infection, we identified a CONSTANS-like (COL) gene OsCOL9. In the present study, we investigated the functional roles of OsCOL9 in blast resistance. OsCOL9 belonged to group II of the COL protein family, and it contained a BB-box and a C-terminal CCT (CONSTANS, COL and TOC1) domain. OsCOL9 was found in the nucleus of rice cells, and it exerted transcriptional activation activities through its middle region (MR). Magnaporthe oryzae infection induced OsCOL9 expression, and transgenic OsCOL9 knock-out rice plants showed increased pathogen susceptibility. OsCOL9 was a critical regulator of pathogen-related genes, especially PR1b, which were also activated by exogenous salicylic acid (SA) and 1-aminocyclopropane-1-carboxylicacid (ACC), the precursor of ethylene (ET). Further analysis indicated that OsCOL9 over-expression increased the expressions of phytohormone biosynthetic genes, NPR1, WRKY45, OsACO1 and OsACS1, which were related to SA and ET biosynthesis. Interestingly, we found that OsCOL9 physically interacted with the scaffold protein OsRACK1 through its CCT domain, and the OsRACK1 expression was induced in response to exogenous SA and ACC as well as M. oryzae infection. Taken together, these results indicated that the COL protein OsCOL9 interacted with OsRACK1, and it enhanced the rice blast resistance through SA and ET signaling pathways.
Collapse
Affiliation(s)
- Hao Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shuangyu Dong
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Dayuan Sun
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Wei Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Fengwei Gu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhu Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- * E-mail: (JW); (ZC)
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- * E-mail: (JW); (ZC)
| |
Collapse
|
44
|
Liu H, Gu F, Dong S, Liu W, Wang H, Chen Z, Wang J. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway. Biochem Biophys Res Commun 2016; 479:173-178. [PMID: 27620492 DOI: 10.1016/j.bbrc.2016.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
Flowering or heading is one of most important agronomic traits in rice. It has been characterized that CONSTANS (CO) and CONSTANS-like (COL) proteins are critical flowering regulators in response to photoperiodic stress in plants. We have previously identified that the COL family member OsCOL9 can positively enhance the rice blast resistance. In the present study, we aimed to explore the functional role of OsCOL9 in modulating the photoperiodic flowering. Our data showed that overexpression of OsCOL9 delayed the flowering time under both short-day (SD) and long-day (LD) conditions, leading to suppressed expressions of EHd1, RFT and Hd3a at the mRNA Level. OsCOL9 expression exhibited two types of circadian patterns under different daylight conditions, and it could delay the heading date by suppressing the Ehd1 photoperiodic flowering pathway. In contrast, the expressions of previously reported flowering regulators were not significantly changed in OsCOL9 transgenic plants, indicating that OsCOL9 functioned independently of other flowering pathways. In addition, OsCOL9 served as a potential yield gene, and its deficiency reduced the grain number of main panicle in plants. Furthermore, yeast two-hybrid assay indicated that OsCOL9 physically interacted with Receptor for Activated C-kinase 1 (OsRACK1). Rhythmic pattern analysis suggested that OsRACK1 responded to the change of daylight, which was regulated by the circadian clock. Taken together, our results revealed that OsCOL9 could delay the flowering time in rice by repressing the Ehd1 pathway.
Collapse
Affiliation(s)
- Hao Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fengwei Gu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shuangyu Dong
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Wei Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
45
|
Huang X, Lu Z, Wang X, Ouyang Y, Chen W, Xie K, Wang D, Luo M, Luo J, Yao J. Imprinted gene OsFIE1 modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:305-17. [PMID: 27133784 DOI: 10.1111/tpj.13202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 05/06/2023]
Abstract
Imprinted Polycomb group (PcG) genes play a critical role in seed development in Arabidopsis. However, the role of the imprinted gene in cereal plants remains obscure. Here, a transgenic approach was conducted to study the function of the imprinted gene Oryza sativa Fertilization-Independent Endosperm 1 (OsFIE1) during seed development in rice (Oryza sativa ssp. japonica 'ZhongHua11'). RNAi of OsFIE1 and homozygous T-DNA insertion mutant osfie1 led to smaller seeds, delayed embryo development, smaller aleurone layer cells, and decreased seed set rate. OsFIE1 was specifically expressed in endosperm, and mRNA of OsFIE1 was also enriched in the inner seed coat together with the corresponding PcG members OsiEZ1 and OsCLF. Meanwhile, the contents of seed storage proteins and Ile, Leu, and Val were decreased, accompanied by the down-regulation of multiple transcription factors, storage protein synthesis and amino acid metabolism-related genes in OsFIE1-RNAi lines and osfie1. Western blot analysis showed that the complex OsFIE1-PcG in endosperm regulated the expression of target genes by genome H3K27me3 modification. We conclude that the OsFIE1-PcG complex, which was enriched in the inner seed coat and endosperm linked the development of embryo and endosperm by influencing transcription factors and nutrient metabolism and induced a highly differential effect when compared with the OsFIE2-PcG complex.
Collapse
Affiliation(s)
- Xiaolong Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Zhanhua Lu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Koulong Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongying Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Luo
- CSIRO Plant Industry, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
46
|
Miller JC, Chezem WR, Clay NK. Ternary WD40 Repeat-Containing Protein Complexes: Evolution, Composition and Roles in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 6:1108. [PMID: 26779203 PMCID: PMC4703829 DOI: 10.3389/fpls.2015.01108] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/23/2015] [Indexed: 05/18/2023]
Abstract
Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect "non-self," "damaged-self," and "altered-self"- associated molecular patterns and translate these "danger" signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.
Collapse
Affiliation(s)
- Jimi C. Miller
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - William R. Chezem
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| | - Nicole K. Clay
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
47
|
Chen L, Zhuo D, Chen J, Yuan H. Screening feature genes of lung carcinoma with DNA microarray analysis. Int J Clin Exp Med 2015; 8:12161-12171. [PMID: 26550126 PMCID: PMC4612811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/11/2015] [Indexed: 06/05/2023]
Abstract
Lung carcinoma is the most common and aggressive malignant tumor with poor clinical outcome. Identification of new marker of lung cancer is essential for the diagnosis and prognosis of the disease. To identify differentially expressed genes (DEGs) and find associated pathways that may function as targets of lung cancer. Gene expression profiling of GSE40791 were downloaded from GEO (Gene Expression Omnibus), including 100 normal specimens and 94 lung cancer samples. The DEGs were screened out by LIMMA package in R language. Besides, novel genes associated with lung cancer were identified by co-expression analysis. Then, GO enrichment and transcription binding site analysis were performed on these DEGs, and novel genes were predicted using DAVID. Finally, PPI network was constructed by String software in order to get the hub codes involved in cancer carcinoma. A total of 541 DEGs were filtered out between normal samples and patients with lung carcinoma, including 155 up-regulated genes and 386 down-regulated genes. Additionally, nine novel genes, CA4, CDC20, CHRDL1, DLGAP5, EMCN, GPM6A, NUSAP1, S1PR1 and TCF21, were figured out. The transcription biding site analysis showed that these genes were regulated by LHX3, HNF3B, CDP, HFH1, FOXO4, STAT, SOX5, MEF2, FOXO3 and SRY. Hub codes as BUB1B, MAD2L and TOP2A may play as target genes in lung carcinoma in the result of PPI network analysis. Newly predicted genes and hub codes can perform as target genes for diagnose and clinical therapy of lung cancer.
Collapse
Affiliation(s)
- Liangdong Chen
- Department of Oncology, Zhongnan Hospital, Wuhan University Wuhan 430071, PR China
| | - Deqiang Zhuo
- Department of Oncology, Zhongnan Hospital, Wuhan University Wuhan 430071, PR China
| | - Jiakuan Chen
- Department of Oncology, Zhongnan Hospital, Wuhan University Wuhan 430071, PR China
| | - Hongyin Yuan
- Department of Oncology, Zhongnan Hospital, Wuhan University Wuhan 430071, PR China
| |
Collapse
|
48
|
Genome-Wide Collation of the Plasmodium falciparum WDR Protein Superfamily Reveals Malarial Parasite-Specific Features. PLoS One 2015; 10:e0128507. [PMID: 26043001 PMCID: PMC4456382 DOI: 10.1371/journal.pone.0128507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/29/2015] [Indexed: 01/10/2023] Open
Abstract
Despite a significant drop in malaria deaths during the past decade, malaria continues to be one of the biggest health problems around the globe. WD40 repeats (WDRs) containing proteins comprise one of the largest and functionally diverse protein superfamily in eukaryotes, acting as scaffolds for assembling large protein complexes. In the present study, we report an extensive in silico analysis of the WDR gene family in human malaria parasite Plasmodium falciparum. Our genome-wide identification has revealed 80 putative WDR genes in P. falciparum (PfWDRs). Five distinct domain compositions were discovered in Plasmodium as compared to the human host. Notably, 31 PfWDRs were annotated/re-annotated on the basis of their orthologs in other species. Interestingly, most PfWDRs were larger as compared to their human homologs highlighting the presence of parasite-specific insertions. Fifteen PfWDRs appeared specific to the Plasmodium with no assigned orthologs. Expression profiling of PfWDRs revealed a mixture of linear and nonlinear relationships between transcriptome and proteome, and only nine PfWDRs were found to be stage-specific. Homology modeling identified conservation of major binding sites in PfCAF-1 and PfRACK. Protein-protein interaction network analyses suggested that PfWDRs are highly connected proteins with ~1928 potential interactions, supporting their role as hubs in cellular networks. The present study highlights the roles and relevance of the WDR family in P. falciparum, and identifies unique features that lay a foundation for further experimental dissection of PfWDRs.
Collapse
|
49
|
Wang L, Zhang H. Genomewide survey and characterization of metacaspase gene family in rice (Oryza sativa). J Genet 2015; 93:93-102. [PMID: 24840826 DOI: 10.1007/s12041-014-0343-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metacaspases (MCs), which are cysteine-dependent proteases found in plants, fungi, and protozoa, may be involved in programmed cell death processes, being distant relatives of metazoan caspases. In this study, we analysed the structures, phylogenetic relationship, genome localizations, expression patterns and domestic selections of eight MC genes identified in rice (OsMC). Alignment analysis of the corresponding protein sequences suggested OsMC proteins can be classified into two subtypes. The expression profiles of eight OsMC genes were analysed in 27 tissues covering the whole life cycle of rice. There are four OsMC genes uniquely expressed in mature tissues, indicating that these genes might play certain roles in senescence. Under abiotic and biotic stresses, four OsMC genes were expressed with treatments of one or more of Magnaporthe oryzae (M. oryzae) infected, pest damaged, cold stress and drought stress, indicating they might be involved in plant defense. In addition, gene trees and genetic diversity (π) were performed to measure whether candidate genes were selected during rice domestication. The results suggested that all the type I genes could not be domestication genes. However, two of five type II OsMC genes showed strong evidence for selective sweep, suggesting that these genes might be involved in cultivated rice domestication. These results provide a foundation for future functional genomic studies of this family in rice.
Collapse
Affiliation(s)
- Likai Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, People's Republic of China.
| | | |
Collapse
|
50
|
Kong D, Li M, Dong Z, Ji H, Li X. Identification of TaWD40D, a wheat WD40 repeat-containing protein that is associated with plant tolerance to abiotic stresses. PLANT CELL REPORTS 2015; 34:395-410. [PMID: 25447637 DOI: 10.1007/s00299-014-1717-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE TaWD40D that encodes a member of WD40 family proteins is a novel gene involved in the wheat response to abiotic stress. TaWD40D functions as a positive regulator of plant responses to salt stress and osmotic stress in plant. Abiotic stresses can severely affect plant growth and crop productivity. WD40 repeat-containing proteins play a key role in protein-protein or protein-DNA interactions by acting as scaffolding molecules and promoting protein activity. In this study, a stress-inducible gene, TaWD40D, was identified from Chinese spring wheat (Triticum aestivum L.). TaWD40D encodes a protein containing seven WD40 domains. Subcellular localization in Nicotiana benthamiana mesophyll cells and Arabidopsis root cells showed the presence of TaWD40D in the cytoplasm and nucleus. Heterologous overexpression of TaWD40D in Arabidopsis greatly increased plant tolerance to abscisic acid (ABA), salt stress, and osmotic stress during seed germination and seedling development. The expression patterns of two genes from the SOS pathway (SOS2 and SOS3) and three ABA genes (ABI2, RAB18 and DREB2A) functioning in ABA-dependent and ABA-independent pathways were altered in the transgenic lines overexpressing TaWD40D under the treatments. Notably, the basal level of the ABI2 expression was substantially increased in the TaWD40D overexpression lines. The down-regulation of TaWD40D in wheat by virus-induced gene silencing resulted in a decreased relative water content and less vigorous growth compared to non-silenced lines. Our results suggest that TaWD40D functions as a positive regulator of plant responses to salt stress and osmotic stress that could be utilized for the genetic improvement of stress tolerance in crop plants.
Collapse
Affiliation(s)
- Dejing Kong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China
| | | | | | | | | |
Collapse
|