1
|
Thapa A, Hasan MR, Kabir AH. Trichoderma afroharzianum T22 Induces Rhizobia and Flavonoid-Driven Symbiosis to Promote Tolerance to Alkaline Stress in Garden Pea. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40298200 DOI: 10.1111/pce.15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Soil alkalinity is a limiting factor for crops, yet the role of beneficial fungi in mitigating this abiotic stress in garden pea is understudied. In this study, Trichoderma afroharzianum T22 colonised the roots of garden pea cultivars exposed to soil alkalinity in a host-specific manner. In alkaline-exposed Sugar Snap, T22 improved growth parameters, consistent with increased tissue mineral content, particularly Fe and Mn, as well as enhanced rhizosphere siderophore levels. The split-root assay demonstrated that the beneficial effects of T22 on alkaline stress mitigation are the result of a whole-plant association rather than localised root-specific effects. RNA-seq analysis showed 575 and 818 differentially expressed genes upregulated and downregulated in the roots inoculated with T22 under alkaline conditions. The upregulated genes were mostly involved in the flavonoid biosynthetic pathway (monooxygenase activity, ammonia-lyase activity, 4-coumarate-CoA ligase), along with genes related to mineral transport and redox homoeostasis. Further, a flavonoid precursor restored plant health even in the absence of T22, confirming the role of microbial symbiosis in mitigating alkaline stress. Interestingly, T22 restored the abundance of rhizobia, particularly Rhizobium leguminosarum and Rhizobium indicum, along with the induction of NifA, NifD, and NifH in nodules, suggesting a connection between T22 and rhizobia under soil alkalinity. Further, the elevated rhizosphere siderophore, root flavonoid, expression of PsCoA (4-coumarate-CoA ligase) as well as the relative abundance of TaAOX1 and R. leguminosarum diminished when T22 was substituted with exogenous Fe. This suggests that exogenous Fe eliminates the need for microbiome-driven mineral mobilisation, while T22-mediated alkaline stress mitigation depends on flavonoid-driven symbiosis and R. leguminosarum abundance. It was further supported by the positive interaction of T22 on R. leguminosarum growth in alkaline media. Thus, the beneficial effect of T22 on rhizobia likely stems from their interactions, not solely from the improved mineral status, particularly Fe, in plants. This study provides the first mechanistic insights into T22 interactions with host and rhizobia, advancing microbiome strategies to alleviate soil alkalinity in peas and other legumes.
Collapse
Affiliation(s)
- Asha Thapa
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Md Rokibul Hasan
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| |
Collapse
|
2
|
Fan S, Jia L, Wu J, Zhao Y. Harnessing the Potential of CRISPR/Cas in Targeted Alfalfa Improvement for Stress Resilience. Int J Mol Sci 2025; 26:3311. [PMID: 40244221 PMCID: PMC11989513 DOI: 10.3390/ijms26073311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Alfalfa (Medicago sativa), recognized as the most valuable legume feed crop, faces significant challenges in enhancing both qualitative and quantitative production amidst the pressures of climate change. This review highlights these challenges, including the underutilization of genomic and genetic resources, while proposing potential solutions through genome editing. Our focus is on leveraging CRISPR/Cas technology in conjunction with decades of advancements in conventional breeding to expedite the improvement of alfalfa. By adopting this approach, we aim to overcome the limitations of traditional alfalfa improvement approaches and accelerate the development of improved cultivars capable of thriving in changing climates. Key candidate traits for CRISPR/Cas genome editing, as reviewed in the latest literature, include nutrient use efficiency, freezing tolerance, and resistance to pests and diseases. We dissect literature on potential gene pathways associated with these traits, providing molecular breeders with valuable insights for utilizing CRISPR/Cas genome editing. Furthermore, we propose editing modalities to expedite the development of stress-resilient, genome-edited alfalfa that can effectively cope with climate change.
Collapse
Affiliation(s)
- Shugao Fan
- School of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, China; (S.F.); (J.W.)
| | - Linyan Jia
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China;
| | - Jiawei Wu
- School of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, China; (S.F.); (J.W.)
| | - Ying Zhao
- School of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, China; (S.F.); (J.W.)
| |
Collapse
|
3
|
Lodovici A, Buoso S, Miras-Moreno B, Lucini L, Tomasi N, García-Pérez P, Pinton R, Zanin L. A multi-omics insight on the interplay between iron deficiency and N forms in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1408141. [PMID: 39479546 PMCID: PMC11521840 DOI: 10.3389/fpls.2024.1408141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024]
Abstract
Introduction Nitrogen (N) and iron (Fe) are involved in several biochemical processes in living organisms, and their limited bioavailability is a strong constraint for plant growth and yield. This work investigated the interplay between Fe and N nutritional pathways in tomato plants kept under N and Fe deficiency and then resupplied with Fe and N (as nitrate, ammonium, or urea) through a physiological, metabolomics and gene expression study. Results After 24 hours of Fe resupply, the Fe concentration in Fe-deficient roots was dependent on the applied N form (following the pattern: nitrate > urea > ammonium > Fe-deficient control), and whereas in leaves of urea treated plants the Fe concentration was lower in comparison to the other N forms. Untargeted metabolomics pointed out distinctive modulations of plant metabolism in a treatment-dependent manner. Overall, N-containing metabolites were affected by the treatments in both leaves and roots, while N form significantly shaped the phytohormone profile. Moreover, the simultaneous application of Fe with N to Fe-deficient plants elicited secondary metabolites' accumulation, such as phenylpropanoids, depending on the applied N form (mainly by urea, followed by nitrate and ammonium). After 4 hours of treatment, ammonium- and urea-treated roots showed a reduction of enzymatic activity of Fe(III)-chelate reductase (FCR), compared to nitrate or N-depleted plants (maintained in Fe deficiency, where FCR was maintained at high levels). The response of nitrate-treated plants leads to the improvement of Fe concentration in tomato roots and the increase of Fe(II) transporter (IRT1) gene expression in tomato roots. Conclusions Our results strengthen and improve the understanding about the interaction between N and Fe nutritional pathways, thinning the current knowledge gap.
Collapse
Affiliation(s)
- Arianna Lodovici
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Sara Buoso
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Plant Biology, University of Murcia, Murcia, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Nicola Tomasi
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Roberto Pinton
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Laura Zanin
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
4
|
Kumar GA, Kumar S, Bhardwaj R, Swapnil P, Meena M, Seth CS, Yadav A. Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions. FRONTIERS IN PLANT SCIENCE 2024; 14:1297706. [PMID: 38250451 PMCID: PMC10796613 DOI: 10.3389/fpls.2023.1297706] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
The rhizosphere consists of a plethora of microbes, interacting with each other as well as with the plants present in proximity. The root exudates consist of a variety of secondary metabolites such as strigolactones and other phenolic compounds such as coumarin that helps in facilitating communication and forming associations with beneficial microbes in the rhizosphere. Among different secondary metabolites flavonoids (natural polyphenolic compounds) continuously increasing attention in scientific fields for showing several slews of biological activities. Flavonoids possess a benzo-γ-pyrone skeleton and several classes of flavonoids have been reported on the basis of their basic structure such as flavanones, flavonols, anthocyanins, etc. The mutualistic association between plant growth-promoting rhizobacteria (PGPR) and plants have been reported to help the host plants in surviving various biotic and abiotic stresses such as low nitrogen and phosphorus, drought and salinity stress, pathogen attack, and herbivory. This review sheds light upon one such component of root exudate known as flavonoids, which is well known for nodulation in legume plants. Apart from the well-known role in inducing nodulation in legumes, this group of compounds has anti-microbial and antifungal properties helping in establishing defensive mechanisms and playing a major role in forming mycorrhizal associations for the enhanced acquisition of nutrients such as iron and phosphorus. Further, this review highlights the role of flavonoids in plants for recruiting non-mutualistic microbes under stress and other important aspects regarding recent findings on the functions of this secondary metabolite in guiding the plant-microbe interaction and how organic matter affects its functionality in soil.
Collapse
Affiliation(s)
- Gokul Anil Kumar
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | - Rupesh Bhardwaj
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Prashant Swapnil
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | | | - Ankush Yadav
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| |
Collapse
|
5
|
Guo G, Yu T, Zhang H, Chen M, Dong W, Zhang S, Tang X, Liu L, Heng W, Zhu L, Jia B. Evidence That PbrSAUR72 Contributes to Iron Deficiency Tolerance in Pears by Facilitating Iron Absorption. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112173. [PMID: 37299155 DOI: 10.3390/plants12112173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Iron is an essential trace element for plants; however, low bioactive Fe in soil continuously places plants in an Fe-deficient environment, triggering oxidative damage. To cope with this, plants make a series of alterations to increase Fe acquisition; however, this regulatory network needs further investigation. In this study, we found notably decreased indoleacetic acid (IAA) content in chlorotic pear (Pyrus bretschneideri Rehd.) leaves caused by Fe deficiency. Furthermore, IAA treatment slightly induced regreening by increasing chlorophyll synthesis and Fe2+ accumulation. At that point, we identified PbrSAUR72 as a key negative effector output of auxin signaling and established its close relationship to Fe deficiency. Furthermore, the transient PbrSAUR72 overexpression could form regreening spots with increased IAA and Fe2+ content in chlorotic pear leaves, whereas its transient silencing does the opposite in normal pear leaves. In addition, cytoplasm-localized PbrSAUR72 exhibits root expression preferences and displays high homology to AtSAUR40/72. This promotes salt tolerance in plants, indicating a putative role for PbrSAUR72 in abiotic stress responses. Indeed, transgenic plants of Solanum lycopersicum and Arabidopsis thaliana overexpressing PbrSAUR72 displayed less sensitivity to Fe deficiency, accompanied by substantially elevated expression of Fe-induced genes, such as FER/FIT, HA, and bHLH39/100. These result in higher ferric chelate reductase and root pH acidification activities, thereby hastening Fe absorption in transgenic plants under an Fe-deficient condition. Moreover, the ectopic overexpression of PbrSAUR72 inhibited reactive oxygen species production in response to Fe deficiency. These findings contribute to a new understanding of PbrSAURs and its involvement in Fe deficiency, providing new insights for the further study of the regulatory mechanisms underlying the Fe deficiency response.
Collapse
Affiliation(s)
- Guoling Guo
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Tao Yu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Agricultural Experimental Center of Guiyang, Guiyang Agriculture and Rural Bureau, Guiyang 550018, China
| | - Haiyan Zhang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Meng Chen
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Singleron Biotechnology Co., Ltd., Nanjing 210000, China
| | - Weiyu Dong
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuqin Zhang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaomei Tang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lun Liu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wei Heng
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Liwu Zhu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Bing Jia
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Xu J, Xu W, Chen X, Zhu H, Fu X, Yu F. Genome-Wide Association Analysis Reveals the Genetic Basis of Iron-Deficiency Stress Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:878809. [PMID: 35720580 PMCID: PMC9202619 DOI: 10.3389/fpls.2022.878809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) is an essential trace element for almost all organisms and is often the major limiting nutrient for normal growth. Fe deficiency is a worldwide agricultural problem, which affects crop productivity and product quality. Understanding the Fe-deficiency response in plants is necessary for improving both plant health and the human diet. In this study, Fe-efficient (Ye478) and Fe-inefficient maize inbred lines (Wu312) were used to identify the genotypic difference in response to low Fe stress during different developmental stages and to further determine the optimal Fe-deficient Fe(II) supply level which leads to the largest phenotypic difference between Ye478 and Wu312. Then, genome-wide association analysis was performed to further identify candidate genes associated with the molecular mechanisms under different Fe nutritional statuses. Three candidate genes involved in Fe homeostasis of strategy II plants (strategy II genes) were identified, including ZmDMAS1, ZmNAAT1, and ZmYSL11. Furthermore, candidate genes ZmNAAT1, ZmDMAS1, and ZmYSL11 were induced in Fe-deficient roots and shoots, and the expression of ZmNAAT1 and ZmDMAS1 responded to Fe deficiency more in shoots than in roots. Beyond that, several genes that may participate in Fe homeostasis of strategy I plants (strategy I genes) were identified, which were either encoding Fe transporters (ZmIRT1 and ZmZIP4), or acting as essential ethylene signal transducers (ZmEBF1). Interestingly, ZmIRT1, ZmZIP4, and ZmEBF1 were significantly upregulated under low Fe stress, suggesting that these genes may be involved in Fe-deficiency tolerance in maize which is considered as strategy II plant. This study demonstrates the use of natural variation in the association population to identify important genes associated with Fe-deficiency tolerance and may further provide insights for understanding the molecular mechanism underlying the tolerance to Fe-deficiency stress in maize.
Collapse
Affiliation(s)
- Jianqin Xu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Weiya Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Xulei Chen
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Huaqing Zhu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiuyi Fu
- Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
| | - Futong Yu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Buoso S, Zamboni A, Franco A, Commisso M, Guzzo F, Varanini Z, Pinton R, Tomasi N, Zanin L. Nodulating white lupins take advantage of the reciprocal interplay between N and P nutritional responses. PHYSIOLOGIA PLANTARUM 2022; 174:e13607. [PMID: 34837246 PMCID: PMC9303408 DOI: 10.1111/ppl.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The low bioavailability of nutrients, especially nitrogen (N) and phosphorus (P), is one of the most limiting factors for crop production. In this study, under N- and P-free nutrient solution (-N-P), nodulating white lupin plants developed some nodules and analogous cluster root structures characterized by different morphological, physiological, and molecular responses than those observed upon single nutrient deficiency (strong acidification of external media, a better nutritional status than -N+P and +N-P plants). The multi-elemental analysis highlighted that the concentrations of nutrients in white lupin plants were mainly affected by P availability. Gene-expression analyses provided evidence of interconnections between N and P nutritional pathways that are active to promote N and P balance in plants. The root exudome was mainly characterized by N availability in nutrient solution, and, in particular, the absence of N and P in the nutrient solution triggered a high release of phenolic compounds, nucleosides monophosphate and saponines by roots. These morphological, physiological, and molecular responses result from a close interplay between N and P nutritional pathways. They contribute to the good development of nodulating white lupin plants when grown on N- and P-free media. This study provides evidence that limited N and P availability in the nutrient solution can promote white lupin-Bradyrhizobium symbiosis, which is favourable for the sustainability of legume production.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Anita Zamboni
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Alessandro Franco
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Mauro Commisso
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Flavia Guzzo
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Zeno Varanini
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Roberto Pinton
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Nicola Tomasi
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Laura Zanin
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| |
Collapse
|
8
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
9
|
Ustabas Kahraman F, Çakir FB, Buhur Pirimoglu M, Torun E, Ergen HA, Doğan Demir A. Association of Myeloperoxidase Gene Polymorphism With Iron Deficiency Anemia in Turkish Children. J Pediatr Hematol Oncol 2021; 43:e941-e945. [PMID: 33661166 DOI: 10.1097/mph.0000000000002125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/21/2021] [Indexed: 11/26/2022]
Abstract
This study was performed to investigate the gene polymorphisms of the myeloperoxidase (MPO) enzyme and to determine whether MPO gene polymorphisms influence the response to iron therapy in pediatric patients with iron deficiency anemia (IDA). In this case-control study, 50 Turkish children with IDA and 50 healthy controls were enrolled. Three MPO gene alleles were selected for genotyping in the study: GG, AG, and AA. The relationships of alleles with IDA were analyzed and compared in patients and controls. Pretreatment and posttreatment laboratory parameters and gene polymorphisms were compared in the patient group. There was a significant difference between patients with IDA and controls regarding genotype frequencies of the AA, GG, and AG alleles (P=0.005). However, the AG allele was found to be associated with variations in hemoglobin, red blood cell, hematocrit, mean corpuscular volumes, and mean corpuscular Hb concentrations levels. The frequency of AA, GG, and AG alleles of the MPO gene was potentially associated with changes in iron metabolism and the AG allele led to variations in various hemogram parameters.
Collapse
Affiliation(s)
| | - Fatma Betül Çakir
- Pediatric Hematology-Oncology, Bezmialem Vakif University, Faculty of Medicine
| | | | | | - Hayriye Arzu Ergen
- Department of Moleculer Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul
| | | |
Collapse
|
10
|
Wang M, Gong J, Bhullar NK. Iron deficiency triggered transcriptome changes in bread wheat. Comput Struct Biotechnol J 2020; 18:2709-2722. [PMID: 33101609 PMCID: PMC7550799 DOI: 10.1016/j.csbj.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
A series of complex transport, storage and regulation mechanisms control iron metabolism and thereby maintain iron homeostasis in plants. Despite several studies on iron deficiency responses in different plant species, these mechanisms remain unclear in the allohexaploid wheat, which is the most widely cultivated commercial crop. We used RNA sequencing to reveal transcriptomic changes in the wheat flag leaves and roots, when subjected to iron limited conditions. We identified 5969 and 2591 differentially expressed genes (DEGs) in the flag leaves and roots, respectively. Genes involved in the synthesis of iron ligands i.e., nicotianamine (NA) and deoxymugineic acid (DMA) were significantly up-regulated during iron deficiency. In total, 337 and 635 genes encoding transporters exhibited altered expression in roots and flag leaves, respectively. Several genes related to MAJOR FACILITATOR SUPERFAMILY (MFS), ATP-BINDING CASSETTE (ABC) transporter superfamily, NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN (NRAMP) family and OLIGOPEPTIDE TRANSPORTER (OPT) family were regulated, indicating their important roles in combating iron deficiency stress. Among the regulatory factors, the genes encoding for transcription factors of BASIC HELIX-LOOP-HELIX (bHLH) family were highly up-regulated in both roots and the flag leaves. The jasmonate biosynthesis pathway was significantly altered but with notable expression differences between roots and flag leaves. Homoeologs expression and induction bias analysis revealed subgenome specific differential expression. Our findings provide an integrated overview on regulated molecular processes in response to iron deficiency stress in wheat. This information could potentially serve as a guideline for breeding iron deficiency stress tolerant crops as well as for designing appropriate wheat iron biofortification strategies.
Collapse
Key Words
- 3-HMA, 3-hydroxymugineic acid
- ABC, ATP-BINDING CASSETTE
- ACC, 1-aminocyclopropane-1-carboxylate
- AEC, AUXIN EFFLUX CARRIER
- AOC, ALLENE OXIDE CYCLASE
- AOS, ALLENE OXIDE SYNTHASE
- AQP, AQUAPORIN
- AVA, avenic acid
- DEGs, differentially expressed genes
- DMA, deoxymugineic acid
- DMAS, DEOXYMUGINEIC ACID SYNTHASE
- DPA, days post anthesis
- ERF, ETHYLENE-RESPONSIVE FACTOR
- FAD, FATTY ACID DESATURASE
- FDR, false discovery rate
- FIT, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR
- FRO, FERRIC REDUCTASE OXIDASE
- GCN, gene co-expression network
- GO, Gene ontology
- GSH, GLUTATHIONE
- HC, high confidence
- HMA, HEAVY METAL-ASSOCIATED
- IDE, iron deficiency-responsive cis-acting element
- IDEF, IDE BINDING FACTOR
- IHW, independent hypothesis weighting
- ILR3, IAA‐LEUCINE RESISTANT3
- IREG/FPN, IRON REGULATED PROTEIN/FERROPORTIN
- IRT1, IRON-REGULATED TRANSPORTER
- Iron deficiency
- Iron, Fe
- JAs, jasmonates
- JMT, JASMONATE O-METHYLTRANSFERASE
- KAT, 3-KETOACYL-COA THIOLASE
- LOX, LIPOXYGENASE
- MA, mugineic acid
- MATE, MULTI ANTIMICROBIAL EXTRUSION PROTEIN
- MFS, MAJOR FACILITATOR SUPERFAMILY
- MRP, MULTIDRUG RESISTANCE PROTEIN
- MT, METALLOTHIONEIN
- NA, nicotianamine
- NAAT, NICOTIANAMINE AMINOTRANSFERASE
- NAC, NO APICAL MERISTEM (NAM)/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF)/CUP-SHAPED COTYLEDON (CUC)
- NAS, NICOTIANAMINE SYNTHASE
- NRAMP, NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN
- NRT1/PTR, NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER
- OPCL, 4-COUMARATE COA LIGASE
- OPR, 12-OXOPHYTODIENOATE REDUCTASE
- OPT, OLIGOPEPTIDE TRANSPORTER
- PDR, PLEIOTROPIC DRUG RESISTANCE
- PLA, PHOSPHOLIPASE A1
- PRI, POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE
- PSs, phytosiderophores
- PT, peptide transport
- PYE, POPEYE
- RNA sequencing
- SAM, S-adenosyl-L-methionine
- SAMS, S-ADENOSYL-L-METHIONINE SYNTHETASE
- SLC40A1, SOLUTE CARRIER FAMILY 40 MEMBER 1
- SWEET, SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS
- TOM, TRANSPORTER OF MUGINEIC ACID
- Transcriptomic profiles
- VIT, VACUOLAR IRON TRANSPORTER
- Wheat
- YSL, YELLOW STRIPE LIKE
- ZIFL, ZINC INDUCED FACILITATOR-LIKE
- ZIP, ZINC/IRON PERMEASE
- bHLH, BASIC HELIX-LOOP-HELIX
- bZIP, BASIC LEUCINE ZIPPER
- epiHDMA, 3-epihydroxy-2′-deoxymugineic acid
- epiHMA, 3-epihydroxymugineic acid
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Jiazhen Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Navreet K. Bhullar
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
11
|
Islas-Valdez S, López-Rayo S, Arcos J, Menéndez N, Lucena JJ. Effect of Fe:ligand ratios on hydroponic conditions and calcareous soil in Solanum lycopersicum L. and Glycine max L. fertilized with heptagluconate and gluconate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1106-1117. [PMID: 31667842 DOI: 10.1002/jsfa.10119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/16/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The environmental risk from the application of synthetic chelates has led to the use of biodegradable complexes to correct Fe deficiency in plants. In this article, the Fe oxidation state, the Fe:ligand ratio, and the molecular weight distribution for heptagluconate (G7) and gluconate (G6) are considered as key factors for the efficacy of complexes as fertilizers. Complexes with different Fe:ligand ratios were prepared and analyzed by gel filtration chromatography (GFC). The ability of Fe:ligand ratios to provide Fe to tomato in hydroponics and soybean in calcareous soil was tested and compared with synthetic chelates (Fe3+ :HBED and Fe3+ :EDTA). RESULTS G7 presented greater capacity to complex both Fe(II) and Fe(III) than G6, but the Fe(II) complexes exhibited poor stability at pH 9 and oxidation in solution. Gel filtration chromatography demonstrated the polynuclear nature of the Fe3+ :G7 at various ratios. The effectiveness of the Fe fertilizers depend on the Fe3+ :ligand ratio and the ligand type, the Fe3+ :G7 (1:1 and 1:2) being the most effective. Fe3+ :G7 (1:1) also presented a better response for the uptake of other micronutrients. CONCLUSION Fe3+ :G7 molar ratios have been shown to be critical for plant Fe uptake under hydroponic conditions and with calcareous soil. Thus, the Fe3+ :G7 at equimolar ratio and 1:2 molar ratio can be an environmentally friendly alternative to less degradable synthetic chelates to correct Fe chlorosis in strategy I plants. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Samira Islas-Valdez
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra López-Rayo
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jessica Arcos
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nieves Menéndez
- Department of Applied Physical-Chemistry, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan J Lucena
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Valentinuzzi F, Venuti S, Pii Y, Marroni F, Cesco S, Hartmann F, Mimmo T, Morgante M, Pinton R, Tomasi N, Zanin L. Common and specific responses to iron and phosphorus deficiencies in roots of apple tree (Malus × domestica). PLANT MOLECULAR BIOLOGY 2019; 101:129-148. [PMID: 31267256 DOI: 10.1007/s11103-019-00896-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 06/24/2019] [Indexed: 05/22/2023]
Abstract
Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for fruit tree cultivation such as apple (Malus × domestica) leading very often to a decrease of fruit productivity and quality worsening. Aim of this study was to characterize common and specific features of plant response to Fe and P deficiencies by ionomic, transcriptomic and exudation profiling of apple roots. Under P deficiency, the root release of oxalate and flavonoids increased. Genes encoding for transcription factors and transporters involved in the synthesis and release of root exudates were upregulated by P-deficient roots, as well as those directly related to P acquisition. In Fe-deficiency, plants showed an over-accumulation of P, Zn, Cu and Mn and induced the transcription of those genes involved in the mechanisms for the release of Fe-chelating compounds and Fe mobilization inside the plants. The intriguing modulation in roots of some transcription factors, might indicate that, in this condition, Fe homeostasis is regulated by a FIT-independent pathway. In the present work common and specific features of apple response to Fe and P deficiency has been reported. In particular, data indicate similar modulation of a. 230 genes, suggesting the occurrence of a crosstalk between the two nutritional responses involving the transcriptional regulation, shikimate pathway, and the root release of exudates.
Collapse
Affiliation(s)
- Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Silvia Venuti
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Fabio Marroni
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Felix Hartmann
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Michele Morgante
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Roberto Pinton
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, University of Udine, via delle Scienze 206, 33100, Udine, Italy.
| | - Laura Zanin
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
13
|
Venuti S, Zanin L, Marroni F, Franco A, Morgante M, Pinton R, Tomasi N. Physiological and transcriptomic data highlight common features between iron and phosphorus acquisition mechanisms in white lupin roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:110-121. [PMID: 31203875 DOI: 10.1016/j.plantsci.2019.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 05/20/2023]
Abstract
In agricultural soil, the bioavailability of iron (Fe) and phosphorus (P) is often below the plant's requirement causing nutritional deficiency in crops. Under P-limiting conditions, white lupin (Lupinus albus L.) activates mechanisms that promote P solubility in the soil through morphological, physiological and molecular adaptations. Similar changes occur also in Fe-deficient white lupin roots; however, no information is available on the molecular bases of the response. In the present work, responses to Fe and P deficiency and their reciprocal interactions were studied. Transcriptomic analyses indicated that white lupin roots upregulated Fe-responsive genes ascribable to Strategy-I response, this behaviour was mainly evident in cluster roots. The upregulation of some components of Fe-acquisition mechanism occurred also in P-deficient cluster roots. Concerning P acquisition, some P-responsive genes (as phosphate transporters and transcription factors) were upregulated by P deficiency as well by Fe deficiency. These data indicate a strong cross-connection between the responses activated under Fe or P deficiency in white lupin. The activation of Fe- and P-acquisition mechanisms might play a crucial role to enhance the plant's capability to mobilize both nutrients in the rhizosphere, especially P from its associated metal cations.
Collapse
Affiliation(s)
- Silvia Venuti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Laura Zanin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Fabio Marroni
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Alessandro Franco
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Michele Morgante
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Roberto Pinton
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| | - Nicola Tomasi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100 Udine, Italy.
| |
Collapse
|
14
|
Rothan C, Diouf I, Causse M. Trait discovery and editing in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:73-90. [PMID: 30417464 DOI: 10.1111/tpj.14152] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Tomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop species that is the top ranked vegetable produced over the world. Tomato is also a model species for research in genetics, fruit development and disease resistance. Genetic resources available in public repositories comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants. In addition, high quality genome sequences are available for cultivated tomato and for several wild relatives, hundreds of accessions have been sequenced, and databases gathering sequence data together with genetic and phenotypic data are accessible to the tomato community. Major breeding goals are productivity, resistance to biotic and abiotic stresses, and fruit sensorial and nutritional quality. New traits, including resistance to various biotic and abiotic stresses and root architecture, are increasingly being studied. Several major mutations and quantitative trait loci (QTLs) underlying traits of interest in tomato have been uncovered to date and, thanks to new populations and advances in sequencing technologies, the pace of trait discovery has considerably accelerated. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing (GE) already proved its remarkable efficiency in tomato for engineering favorable alleles and for creating new genetic diversity by gene disruption, gene replacement, and precise base editing. Here, we provide insight into the major tomato traits and underlying causal genetic variations discovered so far and review the existing genetic resources and most recent strategies for trait discovery in tomato. Furthermore, we explore the opportunities offered by CRISPR/Cas9 and their exploitation for trait editing in tomato.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Isidore Diouf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| |
Collapse
|
15
|
Grillet L, Lan P, Li W, Mokkapati G, Schmidt W. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. NATURE PLANTS 2018; 4:953-963. [PMID: 30323182 DOI: 10.1038/s41477-018-0266-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/28/2018] [Indexed: 05/09/2023]
Abstract
Iron (Fe) is an essential mineral nutrient that severely affects the growth, yield and nutritional quality of plants if not supplied in sufficient quantities. Here, we report that a short C-terminal amino-acid sequence consensus motif (IRON MAN; IMA) conserved across numerous, highly diverse peptides in angiosperms is essential for Fe uptake in plants. Overexpression of the IMA sequence in Arabidopsis induced Fe uptake genes in roots, causing accumulation of Fe and manganese in all plant parts including seeds. Silencing of all eight IMA genes harboured in the Arabidopsis genome abolished Fe uptake and caused severe chlorosis; increasing the Fe supply or expressing IMA1 restored the wild-type phenotype. IMA1 is predominantly expressed in the phloem, preferentially in leaves, and reciprocal grafting showed that IMA1 peptides in shoots positively regulate Fe uptake in roots. IMA homologues are highly responsive to the Fe status and functional when heterologously expressed across species. IMA constitutes a novel family of peptides that are critical for the acquisition and cellular homeostasis of Fe across land plants.
Collapse
Affiliation(s)
- Louis Grillet
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ping Lan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenfeng Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Girish Mokkapati
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Molecular Biology and Agricultural Sciences Program, Taiwan International Graduate program, Academia Sinica and National ChungHsing University, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Hu Y, Zhu YF, Guo AX, Jia XM, Cheng L, Zhao T, Wang YX. Transcriptome analysis in Malus halliana roots in response to iron deficiency reveals insight into sugar regulation. Mol Genet Genomics 2018; 293:1523-1534. [PMID: 30101382 DOI: 10.1007/s00438-018-1479-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Iron (Fe) deficiency is a frequent nutritional problem limiting apple production in calcareous soils. The utilization of rootstock that is resistant to Fe deficiency is an effective way to solve this problem. Malus halliana is an Fe deficiency-tolerant rootstock; however, few molecular studies have been conducted on M. halliana. In the present work, a transcriptome analysis was combined with qRT-PCR and sugar measurements to investigate Fe deficiency responses in M. halliana roots at 0 h (T1), 12 h (T2) and 72 h (T3) after Fe deficiency stress. Total of 2473, 661, and 776 differentially expressed genes (DEGs) were identified in the pairs of T2 vs. T1, T3 vs. T1, and T3 vs. T2, respectively. Several DEGs were enriched in the photosynthesis, glycolysis and gluconeogenesis, tyrosine metabolism and fatty acid degradation pathways. The glycolysis and photosynthesis pathways were upregulated under Fe deficiency. In this experiment, sucrose accumulated in Fe-deficient roots and leaves. However, the glucose content significantly decreased in the roots, while the fructose content significantly decreased in the leaves. Additionally, 15 genes related to glycolysis and sugar synthesis and sugar transport were selected to validate the accuracy of the transcriptome data by qRT-PCR. Overall, these results indicated that sugar synthesis and metabolism in the roots were affected by Fe deficiency. Sugar regulation is a way by which M. halliana responds to Fe deficiency stress.
Collapse
Affiliation(s)
- Ya Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730000, China.,Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Yan-Fang Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730000, China
| | - Ai-Xia Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730000, China
| | - Xu-Mei Jia
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730000, China
| | - Li Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730000, China
| | - Tong Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730000, China
| | - Yan-Xiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Ashrafi-Dehkordi E, Alemzadeh A, Tanaka N, Razi H. Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato. PeerJ 2018; 6:e4631. [PMID: 30038850 PMCID: PMC6054068 DOI: 10.7717/peerj.4631] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
A wide range of biotic stresses (BS) and abiotic stresses (AS) adversely affect plant growth and productivity worldwide. The study of individual genes cannot be considered as an effective approach for the understanding of tolerance mechanisms, since these stresses are frequent and often in combination with each other, and a large number of genes are involved in these mechanisms. The availability of high-throughput genomic data has enabled the discovery of the role of transcription factors (TFs) in regulatory networks. A meta-analysis of BS and AS responses was performed by analyzing a total of 391 microarray samples from 23 different experiments and 2,336 differentially expressed genes (DEGs) involved in multiple stresses were identified. We identified 1,862 genes differentially regulated in response to BS was much greater than that regulated by AS, 835 genes, and found 15.4% or 361 DEGs with the conserved expression between AS and BS. The greatest percent of genes related to the cellular process (>76% genes), metabolic process (>76% genes) and response to stimulus (>50%). About 4.2% of genes involved in BS and AS responses belonged to the TF families. We identified several genes, which encode TFs that play an important role in AS and BS responses. These proteins included Jasmonate Ethylene Response Factor 1 (JERF1), SlGRAS6, MYB48, SlERF4, EIL2, protein LATE ELONGATED HYPOCOTYL (LHY), SlERF1, WRKY 26, basic leucine zipper TF, inducer of CBF expression 1-like, pti6, EIL3 and WRKY 11. Six of these proteins, JERF1, MYB48, protein LHY, EIL3, EIL2 and SlGRAS6, play central roles in these mechanisms. This research promoted a new approach to clarify the expression profiles of various genes under different conditions in plants, detected common genes from differentially regulated in response to these conditions and introduced them as candidate genes for improving plant tolerance through genetic engineering approach.
Collapse
Affiliation(s)
- Elham Ashrafi-Dehkordi
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abbas Alemzadeh
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Nobukazu Tanaka
- Center of Gene Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Hooman Razi
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
18
|
Vigani G, Pii Y, Celletti S, Maver M, Mimmo T, Cesco S, Astolfi S. Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:86-96. [PMID: 29514113 DOI: 10.1016/j.plaphy.2018.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 05/24/2023]
Abstract
Within the last years, extensive information has been accumulated on the reciprocal influence between S and Fe nutrition at both physiological and molecular level in several plant species, but the mechanisms regulating S and Fe sensing and signaling are not fully understood. Fe and S interact for the building of Fe-S clusters, and mitochondria is one of the cellular compartments where Fe-S cluster assembly takes place. Therefore, it would be expected that mitochondria might play a central role in the regulation of Fe and S interaction. The Fe deficiency-induced alteration in the synthesis of mitochondria-derived carboxylic acids, such as citric acid, and the evidence that such molecules have already been identified as important players of metabolite signaling in several organisms, further support this hypothesis. Tomato plants were grown under single or combined Fe and S deficiency with the aim of verifying whether mitochondria activities played a role in Fe/S interaction. Both Fe and S deficiencies determined similar alteration of respiratory chain activity: a general decrease of Fe-S containing complexes as well as an increase of alternative NAD(P)H activities was observed in both Fe and S deficient-plants. However, the content of Krebs cycle-related organic acids in roots was substantially different in response to treatments, being the accumulation of citric acid always increased, while the others (i.e. succinic, malic, fumaric acids) always decreased. Interestingly, citric acid levels significantly correlated with the expression of some Fe and S deficiency induced genes. Our results contribute to existing knowledge on the complexity of the S/Fe interaction, suggesting a model in which endogenous alteration of citric acid content in plant tissues might act as signal molecule for the regulation of some nuclear-encoded and nutrient-responsive genes and also provide a basis for further study of the mechanism underlying S and Fe sensing and signalling.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dept Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy.
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | | | - Mauro Maver
- Dept Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy.
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | | |
Collapse
|
19
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF. Systems biology approach in plant abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:58-73. [PMID: 29096174 DOI: 10.1016/j.plaphy.2017.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/28/2017] [Accepted: 10/20/2017] [Indexed: 05/05/2023]
Abstract
Plant abiotic stresses are the major constraint on plant growth and development, causing enormous crop losses across the world. Plants have unique features to defend themselves against these challenging adverse stress conditions. They modulate their phenotypes upon changes in physiological, biochemical, molecular and genetic information, thus making them tolerant against abiotic stresses. It is of paramount importance to determine the stress-tolerant traits of a diverse range of genotypes of plant species and integrate those traits for crop improvement. Stress-tolerant traits can be identified by conducting genome-wide analysis of stress-tolerant genotypes through the highly advanced structural and functional genomics approach. Specifically, whole-genome sequencing, development of molecular markers, genome-wide association studies and comparative analysis of interaction networks between tolerant and susceptible crop varieties grown under stress conditions can greatly facilitate discovery of novel agronomic traits that protect plants against abiotic stresses.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Science, King Saud University, P.O. Box 24160, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
20
|
Martínez-Medina A, Van Wees SCM, Pieterse CMJ. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. PLANT, CELL & ENVIRONMENT 2017; 40:2691-2705. [PMID: 28667819 DOI: 10.1111/pce.13016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 05/05/2023]
Abstract
Root colonization by Trichoderma fungi can trigger induced systemic resistance (ISR). In Arabidopsis, Trichoderma-ISR relies on the transcription factor MYB72, which plays a dual role in the onset of ISR and the activation of Fe uptake responses. Volatile compounds (VCs) from rhizobacteria are important elicitors of MYB72 in Arabidopsis roots. Here, we investigated the mode of action of VCs from Trichoderma fungi in the onset of ISR and Fe uptake responses. VCs from Trichoderma asperellum and Trichoderma harzianum were applied in an in vitro split-plate system with Arabidopsis or tomato seedlings. Locally, Trichoderma-VCs triggered MYB72 expression and molecular, physiological and morphological Fe uptake mechanisms in Arabidopsis roots. In leaves, Trichoderma-VCs primed jasmonic acid-dependent defences, leading to an enhanced resistance against Botrytis cinerea. By using Arabidopsis micrografts of VCs-exposed rootstocks and non-exposed scions, we demonstrated that perception of Trichoderma-VCs by the roots leads to a systemic signal that primes shoots for enhanced defences. Trichoderma-VCs also elicited Fe deficiency responses and shoot immunity in tomato, suggesting that this phenomenon is expressed in different plant species. Our results indicate that Trichoderma-VCs trigger locally a readjustment of Fe homeostasis in roots, which links to systemic elicitation of ISR by priming of jasmonic acid-dependent defences.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Institute of Ecology, Friedrich Schiller University, Leipzig, 04103, Germany
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
21
|
Chen C, Xia S, Deng R, Liu C, Shi G. AhIRT1 and AhNRAMP1 metal transporter expression correlates with Cd uptake in peanuts under iron deficiency. PLoS One 2017; 12:e0185144. [PMID: 28981520 PMCID: PMC5628823 DOI: 10.1371/journal.pone.0185144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 09/07/2017] [Indexed: 12/03/2022] Open
Abstract
Fe deficiency may increase Cd accumulation in peanuts. However, the mechanisms are not yet fully understood. In the present study, two contrasting peanut cultivars, Luhua 8 (low seed-Cd cultivar) and Zhenghong 3 (high seed-Cd cultivar) were used to investigate the effect of Fe deficiency on the uptake and accumulation of cadmium (Cd) by hydroponic experiments. Under Fe-sufficient conditions, compared with Luhua 8, Zhenghong 3 had higher specific root length (SRL) and proportion of fine roots with a lower Km for Cd and showed slightly higher expression of AhIRT1 and AhNRAMP1 in the roots. These traits may be responsible for high capacity for Cd accumulation in Zhenghong 3. Under Fe deficiency, the increase of Cd accumulation was much larger in Zhenghong 3 than in Luhua 8. Kinetics studies revealed that the Vmax for Cd influx was 1.56-fold higher in Fe-deficient plants than in Fe-sufficient plants for Zhenghong 3, versus 0.48-fold higher for Luhua 8. Moreover, the increased expression levels of AhIRT1 and AhNRAMP1 induced by Fe deficiency was higher in Zhenghong 3 than in Luhua 8. Yeast complementation assays suggested that the AhIRT1 and AhNRAMP1 may function as transporters involved in Cd uptake. In conclusion, the different Cd accumulation between the two cultivars under Fe deficiency may be correlated with Vmax value for Cd uptake and the expression levels of AhIRT1 and AhNRAMP1 in the roots.
Collapse
Affiliation(s)
- Chu Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, P. R., China
| | - Shenglan Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, P. R., China
| | - Rubo Deng
- College of Life Sciences, Huaibei Normal University, Huaibei, P. R., China
| | - Caifeng Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, P. R., China
| | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei, P. R., China
| |
Collapse
|
22
|
Boamponsem GA, Leung DWM, Lister C. Insights into Resistance to Fe Deficiency Stress from a Comparative Study of In Vitro-Selected Novel Fe-Efficient and Fe-Inefficient Potato Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1581. [PMID: 28955367 PMCID: PMC5601415 DOI: 10.3389/fpls.2017.01581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/29/2017] [Indexed: 05/29/2023]
Abstract
Iron (Fe) deficiency induces chlorosis (IDC) in plants and can result in reduced plant productivity. Therefore, development of Fe-efficient plants is of great interest. To gain a better understanding of the physiology of Fe-efficient plants, putative novel plant variants were regenerated from potato (Solanum tubersosum L. var. 'Iwa') callus cultures selected under Fe deficient or low Fe supply (0-5 μM Fe). Based on visual chlorosis rating (VCR), 23% of callus-derived regenerants were classified as Fe-efficient (EF) and 77% as Fe-inefficient (IFN) plant lines when they were grown under Fe deficiency conditions. Stem height was found to be highly correlated with internodal distance, leaf and root lengths in the EF plant lines grown under Fe deficiency conditions. In addition, compared to the IFN plant lines and control parental biotype, the EF plants including the lines named A1, B2, and B9, exhibited enhanced formation of lateral roots and root hairs as well as increased expression of ferritin (fer3) in the leaf and iron-regulated transporter (irt1) in the root. These morphological adaptations and changes in expression the fer3 and irt1 genes of the selected EF potato lines suggest that they are associated with resistance to low Fe supply stress.
Collapse
Affiliation(s)
| | - David W. M. Leung
- School of Biological Sciences, University of CanterburyChristchurch, New Zealand
| | - Carolyn Lister
- The New Zealand Institute for Plant and Food Research Limited, Canterbury Agriculture and Science CentreLincoln, New Zealand
| |
Collapse
|
23
|
Yu H, Yang J, Shi Y, Donelson J, Thompson SM, Sprague S, Roshan T, Wang DL, Liu J, Park S, Nakata PA, Connolly EL, Hirschi KD, Grusak MA, Cheng N. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1045. [PMID: 28674546 DOI: 10.3389/fpls.2017.01045/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 05/28/2023]
Abstract
Iron (Fe) is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS). Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17) plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.
Collapse
Affiliation(s)
- Han Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Jian Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Yafei Shi
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jimmonique Donelson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Sean M Thompson
- Department of Horticultural Sciences, Texas A&M University, College StationTX, United States
| | - Stuart Sprague
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Tony Roshan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Da-Li Wang
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jianzhong Liu
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Erin L Connolly
- Department of Plant Science, Penn State University, University ParkPA, United States
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- Vegetable and Fruit Improvement Center, Texas A&M University, College StationTX, United States
| | - Michael A Grusak
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- USDA/ARS Red River Valley Agricultural Research Center, FargoND, United States
| | - Ninghui Cheng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| |
Collapse
|
24
|
Zanin L, Venuti S, Zamboni A, Varanini Z, Tomasi N, Pinton R. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions. BMC Genomics 2017; 18:154. [PMID: 28193158 PMCID: PMC5307951 DOI: 10.1186/s12864-016-3478-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/29/2016] [Indexed: 12/28/2022] Open
Abstract
Background Under limited iron (Fe) availability maize, a Strategy II plant, improves Fe acquisition through the release of phytosiderophores (PS) into the rhizosphere and the subsequent uptake of Fe-PS complexes into root cells. Occurrence of Strategy-I-like components and interactions with phosphorous (P) nutrition has been hypothesized based on molecular and physiological studies in grasses. Results In this report transcriptomic analysis (NimbleGen microarray) of Fe deficiency response revealed that maize roots modulated the expression levels of 724 genes (508 up- and 216 down-regulated, respectively). As expected, roots of Fe-deficient maize plants overexpressed genes involved in the synthesis and release of 2’-deoxymugineic acid (the main PS released by maize roots). A strong modulation of genes involved in regulatory aspects, Fe translocation, root morphological modification, primary metabolic pathways and hormonal metabolism was induced by the nutritional stress. Genes encoding transporters for Fe2+ (ZmNRAMP1) and P (ZmPHT1;7 and ZmPHO1) were also up-regulated under Fe deficiency. Fe-deficient maize plants accumulated higher amounts of P than the Fe-sufficient ones, both in roots and shoots. The supply of 1 μM 59Fe, as soluble (Fe-Citrate and Fe-PS) or sparingly soluble (Ferrihydrite) sources to deficient plants, caused a rapid down-regulation of genes coding for PS and Fe(III)-PS transport, as well as of ZmNRAMP1 and ZmPHT1;7. Levels of 32P absorption essentially followed the rates of 59Fe uptake in Fe-deficient plants during Fe resupply, suggesting that P accumulation might be regulated by Fe uptake in maize plants. Conclusions The transcriptional response to Fe-deficiency in maize roots confirmed the modulation of known genes involved in the Strategy II and revealed the presence of Strategy I components usually described in dicots. Moreover, data here presented provide evidence of a close relationship between two essential nutrients for plants, Fe and P, and highlight a key role played by Fe and P transporters to preserve the homeostasis of these two nutrients in maize plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3478-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Zanin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100, Udine, Italy.
| | - Silvia Venuti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100, Udine, Italy
| | - Anita Zamboni
- Dipartimento di Biotecnologie, University of Verona, Ca' Vignal 1- Strada Le Grazie 15, I-37134, Verona, Italy
| | - Zeno Varanini
- Dipartimento di Biotecnologie, University of Verona, Ca' Vignal 1- Strada Le Grazie 15, I-37134, Verona, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100, Udine, Italy
| | - Roberto Pinton
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze 206, I-33100, Udine, Italy
| |
Collapse
|
25
|
Vannozzi A, Donnini S, Vigani G, Corso M, Valle G, Vitulo N, Bonghi C, Zocchi G, Lucchin M. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions. FRONTIERS IN PLANT SCIENCE 2017; 7:1994. [PMID: 28105035 PMCID: PMC5214570 DOI: 10.3389/fpls.2016.01994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/16/2016] [Indexed: 05/06/2023]
Abstract
Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as "Strategy I," characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis "ferrome" were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the "strategy I" mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed.
Collapse
Affiliation(s)
- Alessandro Vannozzi
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| | - Silvia Donnini
- Dipartimento di Scienze Agrarie e Ambientali, Università di MilanoMilano, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali, Università di MilanoMilano, Italy
| | - Massimiliano Corso
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| | - Giorgio Valle
- Centro di Ricerca Interdipartimentale per le Biotecnologie InnovativePadova, Italy
| | - Nicola Vitulo
- Centro di Ricerca Interdipartimentale per le Biotecnologie InnovativePadova, Italy
| | - Claudio Bonghi
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| | - Graziano Zocchi
- Dipartimento di Scienze Agrarie e Ambientali, Università di MilanoMilano, Italy
| | - Margherita Lucchin
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di PadovaLegnaro, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed EnologiaConegliano, Italy
| |
Collapse
|
26
|
Li W, Lan P. The Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches. FRONTIERS IN PLANT SCIENCE 2017; 8:40. [PMID: 28174585 PMCID: PMC5259694 DOI: 10.3389/fpls.2017.00040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/09/2017] [Indexed: 05/19/2023]
Abstract
Iron (Fe) is an essential plant micronutrient but is toxic in excess. Fe deficiency chlorosis is a major constraint for plant growth and causes severe losses of crop yields and quality. Under Fe deficiency conditions, plants have developed sophisticated mechanisms to keep cellular Fe homeostasis via various physiological, morphological, metabolic, and gene expression changes to facilitate the availability of Fe. Ethylene has been found to be involved in the Fe deficiency responses of plants through pharmacological studies or by the use of ethylene mutants. However, how ethylene is involved in the regulations of Fe starvation responses remains not fully understood. Over the past decade, omics approaches, mainly focusing on the RNA and protein levels, have been used extensively to investigate global gene expression changes under Fe-limiting conditions, and thousands of genes have been found to be regulated by Fe status. Similarly, proteome profiles have uncovered several hallmark processes that help plants adapt to Fe shortage. To find out how ethylene participates in the Fe deficiency response and explore putatively novel regulators for further investigation, this review emphasizes the integration of those genes and proteins, derived from omics approaches, regulated both by Fe deficiency, and ethylene into a systemic network by gene co-expression analysis.
Collapse
Affiliation(s)
- Wenfeng Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- *Correspondence: Ping Lan
| |
Collapse
|
27
|
Yu H, Yang J, Shi Y, Donelson J, Thompson SM, Sprague S, Roshan T, Wang DL, Liu J, Park S, Nakata PA, Connolly EL, Hirschi KD, Grusak MA, Cheng N. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1045. [PMID: 28674546 PMCID: PMC5474874 DOI: 10.3389/fpls.2017.01045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 05/08/2023]
Abstract
Iron (Fe) is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS). Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17) plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.
Collapse
Affiliation(s)
- Han Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Jian Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Yafei Shi
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jimmonique Donelson
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Sean M. Thompson
- Department of Horticultural Sciences, Texas A&M University, College StationTX, United States
| | - Stuart Sprague
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Tony Roshan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Da-Li Wang
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jianzhong Liu
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Paul A. Nakata
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Erin L. Connolly
- Department of Plant Science, Penn State University, University ParkPA, United States
| | - Kendal D. Hirschi
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- Vegetable and Fruit Improvement Center, Texas A&M University, College StationTX, United States
| | - Michael A. Grusak
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- USDA/ARS Red River Valley Agricultural Research Center, FargoND, United States
| | - Ninghui Cheng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- *Correspondence: Ninghui Cheng,
| |
Collapse
|
28
|
Zhou P, Su L, Lv A, Wang S, Huang B, An Y. Gene Expression Analysis of Alfalfa Seedlings Response to Acid-Aluminum. Int J Genomics 2016; 2016:2095195. [PMID: 28074175 PMCID: PMC5198156 DOI: 10.1155/2016/2095195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 11/27/2022] Open
Abstract
Acid-Aluminum (Al) is toxic to plants and greatly affects crop production worldwide. To understand the responses of plants to acid soils and Aluminum toxicity, we examined global gene expression using microarray data in alfalfa seedlings with the treatment of acid-Aluminum. 3,926 genes that were identified significantly up- or downregulated in response to Al3+ ions with pH 4.5 treatment, 66.33% of which were found in roots. Their functional categories were mainly involved with phytohormone regulation, reactive oxygen species, and transporters. Both gene ontology (GO) enrichment and KEGG analysis indicated that phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis played a critical role on defense to Aluminum stress in alfalfa. In addition, we found that transcription factors such as the MYB and WRKY family proteins may be also involved in the regulation of reactive oxygen species reactions and flavonoid biosynthesis. Thus, the finding of global gene expression profile provided insights into the mechanisms of plant defense to acid-Al stress in alfalfa. Understanding the key regulatory genes and pathways would be advantageous for improving crop production not only in alfalfa but also in other crops under acid-Aluminum stress.
Collapse
Affiliation(s)
- Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengyin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
29
|
Schenkeveld WDC, Wang Z, Giammar DE, Kraemer SM. Synergistic Effects between Biogenic Ligands and a Reductant in Fe Acquisition from Calcareous Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6381-6388. [PMID: 27218689 DOI: 10.1021/acs.est.6b01623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organisms have developed different strategies to cope with environmental conditions of low Fe availability based on the exudation of reducing, ligating, and acidifying compounds. In the context of Fe acquisition from soil, the effects of these reactive compounds have generally been considered independent and additive. However, highly efficient Fe acquisition strategies may rely on synergistic effects between reactive exudates. In the present study, we demonstrate that synergistic effects between biogenic ligands and a reductant (ascorbate) can occur in Fe mobilization from soil. Synergistic Fe mobilization was found for all ligands examined (desferrioxamine B (DFOB), 2'-deoxymugineic acid (DMA), esculetin, and citrate). The size and duration of the synergistic effect on Fe mobilization varied with ligand: larger effects were observed for the sideorphores compared to esculetin and citrate. For DFOB, the synergistic effect lasted for the 168 h duration of the experiment; for DMA, an initial synergistic effect turned into an antagonistic effect after 4 h because of enhanced mobilization of competing metals; and for esculetin and citrate, the synergistic effect was temporary (less than 24 h). Our results demonstrate that synergistic effects greatly enhance the reactivity of mixtures of compounds known to be exuded in response to Fe limitation. These synergistic effects could be decisive for the survival of plants and microorganisms under conditions of low Fe availability.
Collapse
Affiliation(s)
- Walter D C Schenkeveld
- Department of Environmental Geosciences and Environmental Science Research Network, University of Vienna , Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Zimeng Wang
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega Stanford, California 94305, United States
| | - Daniel E Giammar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis , 1 Brookings Drive, CB 1180, St. Louis, Missouri 63130, United States
| | - Stephan M Kraemer
- Department of Environmental Geosciences and Environmental Science Research Network, University of Vienna , Althanstraße 14 (UZA II), 1090 Vienna, Austria
| |
Collapse
|
30
|
Zamboni A, Zanin L, Tomasi N, Avesani L, Pinton R, Varanini Z, Cesco S. Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent. BMC Genomics 2016; 17:35. [PMID: 26742479 PMCID: PMC4705743 DOI: 10.1186/s12864-015-2331-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/17/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter. The use by roots of these three natural Fe sources (Fe-citrate, Fe-PS and Fe complexed to water-extractable humic substances, Fe-WEHS) have been already studied at physiological level but the knowledge about the transcriptomic aspects is still lacking. RESULTS The (59)Fe concentration recorded after 24 h in tissues of tomato Fe-deficient plants supplied with (59)Fe complexed to WEHS reached values about 2 times higher than those measured in response to the supply with Fe-citrate and Fe-PS. However, after 1 h no differences among the three Fe-chelates were observed considering the (59)Fe concentration and the root Fe(III) reduction activity. A large-scale transcriptional analysis of root tissue after 1 h of Fe supply showed that Fe-WEHS modulated only two transcripts leaving the transcriptome substantially identical to Fe-deficient plants. On the other hand, Fe-citrate and Fe-PS affected 728 and 408 transcripts, respectively, having 289 a similar transcriptional behaviour in response to both Fe sources. CONCLUSIONS The root transcriptional response to the Fe supply depends on the nature of chelating agents (WEHS, citrate and PS). The supply of Fe-citrate and Fe-PS showed not only a fast back regulation of molecular mechanisms modulated by Fe deficiency but also specific responses due to the uptake of the chelating molecule. Plants fed with Fe-WEHS did not show relevant changes in the root transcriptome with respect to the Fe-deficient plants, indicating that roots did not sense the restored cellular Fe accumulation.
Collapse
Affiliation(s)
- Anita Zamboni
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Laura Zanin
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Nicola Tomasi
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Roberto Pinton
- Department of Agriculture and Environmental Sciences, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | - Zeno Varanini
- Department of Biotechnology, University of Verona, via delle Grazie 15, 37134, Verona, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
31
|
Liu P, Chen K, Li G, Yang X, Long CA. Comparative transcriptional profiling of orange fruit in response to the biocontrol yeast Kloeckera apiculata and its active compounds. BMC Genomics 2016; 17:17. [PMID: 26725242 PMCID: PMC4698812 DOI: 10.1186/s12864-015-2333-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Background The yeast Kloeckera apiculata strain 34–9 is an antagonist that shows biological control activity against the postharvest fungal pathogens of citrus. An antifungal compound, 2-phenylethanol (PEA), has been identified from the extract of K. apiculata. To better understand the molecular processes underlying the response of citrus fruit tissue to K. apiculata, the extract and PEA, microarray analyses were performed on navel oranges using an Affymetrix Citrus GeneChip. Results As many as 801, 339 and 608 differentially expressed genes (DEGs) were identified after the application of K. apiculata, the extract and PEA, respectively. In general, K. apiculata induced the expression of defence-related genes. In addition to chitinase and β-1,3-glucanase, genes involved in ethylene (ET), jasmonic acid (JA), calcium signalling, MAPK signalling and phenylalanine metabolism were induced. In contrast, monodehydroascorbate reductase, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and carotenoid biosynthesis genes were down-regulated. The expression profiles for the extract- and PEA-treated samples were similar to that found for yeast (sharing 57.4 % DEGs), with a significant increase in the transcript levels of defence-related genes. Conclusion This study provides a global picture of the gene expression changes in navel oranges after the application of the antagonist yeast K. apiculata, its extract and PEA. The interpretation of the DEGs revealed new insight into the molecular processes that regulate the defence responses in orange tissue. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2333-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pu Liu
- Key Laboratory of Pomology, Anhui Agricultural University, Hefei, 230036, P. R. China. .,Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Kai Chen
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Guofeng Li
- Key Laboratory of Pomology, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Xiaoping Yang
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, 430064, P. R. China.
| | - Chao-An Long
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
32
|
Lucena C, Romera FJ, García MJ, Alcántara E, Pérez-Vicente R. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1056. [PMID: 26640474 PMCID: PMC4661236 DOI: 10.3389/fpls.2015.01056] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.
Collapse
Affiliation(s)
- Carlos Lucena
- Department of Agronomy, University of CórdobaCórdoba, Spain
| | | | - María J. García
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| | | | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| |
Collapse
|
33
|
Li W, Lan P. Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots. BMC Res Notes 2015; 8:555. [PMID: 26459023 PMCID: PMC4604098 DOI: 10.1186/s13104-015-1524-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 11/28/2022] Open
Abstract
Background Iron (Fe) and phosphorus (P) are essential mineral nutrients in plants. Knowledge regarding global changes in the abundance of Fe-responsive genes under Pi deficiency as well as the processes these genes are involved in remains largely unavailable at the genome level. In the current study, we comparatively analyzed RNA sequencing data sets relative to Fe deficiency (NCBI: SRP044814) and Pi starvation (NCBI: SRA050356.1). Results Analysis showed a total of 579 overlapping genes that are responsible for both Fe deficiency and Pi starvation in Arabidopsis roots. A subset of 137 genes had greater than twofold changes in transcript abundant as a result of the treatments. Gene ontology (GO) analysis showed that the stress-related processes ‘response to salt stress’, ‘response to oxidative stress’, and ‘response to zinc ion’ were enriched in the 579 genes, while Fe response-related processes, including ‘cellular response to nitric oxide’, ‘cellular response to iron ion’, and ‘cellular iron ion homeostasis’, were also enriched in the subset of 137 genes. Co-expression analysis of the 579 genes using the MACCU toolbox yielded a network consisting of 292 nodes (genes). Further analysis revealed that a subset of 90 genes were up-regulated under Fe shortage, but down-regulated under Pi starvation. GO analysis in this group of genes revealed an increased cellular response to iron ion/nitric oxide/ethylene stimuli. Promoter analysis was performed in 35 of the 90 genes with a 1.5-fold or greater change in abundance, showing that 12 genes contained the PHOSPHATE STARVATION RESPONSE1-binding GNATATNC cis-element within their promoter regions. Quantitative real-time PCR showed that the decreased abundance of Fe acquisition genes under Pi deficiency exclusively relied on Fe concentration in Pi-deficient media. Conclusions Comprehensive analysis of the overlapping genes derived from Fe deficiency and Pi starvation provides more information to understand the link between Pi and Fe homeostasis. Gene clustering and root-specific co-expression analysis revealed several potentially important genes which likely function as putative novel players in response to Fe and Pi deficiency or in cross-talk between Fe-deficient responses and Pi-deficient signaling. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1524-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenfeng Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
34
|
Pii Y, Cesco S, Mimmo T. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:48-56. [PMID: 26004913 DOI: 10.1016/j.plaphy.2015.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/02/2015] [Indexed: 05/18/2023]
Abstract
The elemental composition of a tissue or organism is defined as ionome. However, the combined effects on the shoot ionome determined by the taxonomic character, the nutrient status and different substrates have not been investigated. This study tests the hypothesis that phylogenetic variation of monocots and dicots grown in iron deficiency can be distinguished by the shoot ionome. We analyzed 18 elements in barley, cucumber and tomato and in two substrates (hydroponic vs soil) with different nutritional regimes. Multivariate analysis evidenced a clear separation between the species. In hydroponic conditions the main drivers separating the species are non essential-nutrients as Ti, Al, Na and Li, which were positively correlated with macro- (P, K) and micronutrients (Fe, Zn, Mo, B). The separation between species is confirmed when plants are grown on soil, but the distribution is determined especially by macronutrients (S, P, K, Ca, Mg) and micronutrients (B). A number of macro (Mg, Ca, S, P, K) and micronutrients (Fe, Mn, Zn, Cu, Mo, B) contribute to plant growth and several other important physiological and metabolic plant activities. The results reported here confirmed that the synergism and antagonism between them and other non-essential elements (Ti, Al, Si, Na) define the plant taxonomic character. The ionome profile might thus be exploited as a tool for the diagnosis of plants physiological/nutritional status but also in defining biofortification strategies to optimize both mineral enrichment of staple food crops and the nutrient input as fertilizers.
Collapse
Affiliation(s)
- Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, I-39100 Bolzano, Italy
| |
Collapse
|
35
|
Hirooka K. Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Biosci Biotechnol Biochem 2015; 78:1471-84. [PMID: 25209494 DOI: 10.1080/09168451.2014.943689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bacillus subtilis collectively inhabits the rhizosphere, where it contributes to the promotion of plant growth, although it does not have a direct symbiotic relationship to plants as observed in the case of rhizobia between leguminous plants. As rhizobia sense the flavonoids released from their host roots through the NodD transcriptional factor, which triggers transcription of the nod genes involved in the symbiotic processes, we supposed that B. subtilis utilizes certain flavonoids as signaling molecules to perceive and adapt to the rhizospheric environment that it is in. Our approaches to identify the flavonoid-responsive transcriptional regulatory system from B. subtilis resulted in the findings that three transcriptional factors (LmrA/QdoR, YetL, and Fur) are responsive to flavonoids, with the modes of action being different from each other. We also revealed a unique regulatory system by two transcriptional factors, YcnK and CsoR, for copper homeostasis in B. subtilis. In this review, we summarize the molecular mechanisms of these regulatory systems with the relevant information and discuss their physiological significances in the mutually beneficial interaction between B. subtilis and plants, considering the possibility of their application for plant cultivation.
Collapse
Affiliation(s)
- Kazutake Hirooka
- a Department of Biotechnology, Faculty of Life Science and Biotechnology , Fukuyama University , Fukuyama , Hiroshima , Japan
| |
Collapse
|
36
|
Zanin L, Tomasi N, Rizzardo C, Gottardi S, Terzano R, Alfeld M, Janssens K, De Nobili M, Mimmo T, Cesco S. Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes. PHYSIOLOGIA PLANTARUM 2015; 154:82-94. [PMID: 25288471 DOI: 10.1111/ppl.12296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/27/2014] [Accepted: 09/24/2014] [Indexed: 05/10/2023]
Abstract
Iron (Fe) sources available for plants in the rhizospheric solution are mainly a mixture of complexes between Fe and organic ligands, including phytosiderophores (PS) and water-extractable humic substances (WEHS). In comparison with the other Fe sources, Fe-WEHS are more efficiently used by plants, and experimental evidences show that Fe translocation contributes to this better response. On the other hand, very little is known on the mechanisms involved in Fe allocation in leaves. In this work, physiological and molecular processes involved in Fe distribution in leaves of Fe-deficient Cucumis sativus supplied with Fe-PS or Fe-WEHS up to 5 days were studied combining different techniques, such as radiochemical experiments, synchrotron micro X-ray fluorescence, real-time reverse transcription polymerase chain reaction and in situ hybridization. In Fe-WEHS-fed plants, Fe was rapidly (1 day) allocated into the leaf veins, and after 5 days, Fe was completely transferred into interveinal cells; moreover, the amount of accumulated Fe was much higher than with Fe-PS. This redistribution in Fe-WEHS plants was associated with an upregulation of genes encoding a ferric(III) -chelate reductase (FRO), a Fe(2+) transporter (IRT1) and a natural resistance-associated macrophage protein (NRAMP). The localization of FRO and IRT1 transcripts next to the midveins, beside that of NRAMP in the interveinal area, may suggest a rapid and efficient response induced by the presence of Fe-WEHS in the extra-radical solution for the allocation in leaves of high amounts of Fe. In conclusion, Fe is more efficiently used when chelated to WEHS than PS and seems to involve Fe distribution and gene regulation of Fe acquisition mechanisms operating in leaves.
Collapse
Affiliation(s)
- Laura Zanin
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, I-33100, Udine, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li H, Wang L, Yang ZM. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency. Gene 2014; 554:16-24. [PMID: 25300251 DOI: 10.1016/j.gene.2014.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
Iron (Fe) is an essential element for plant growth and development. Iron deficiency results in abnormal metabolisms from respiration to photosynthesis. Exploration of Fe-deficient responsive genes and their networks is critically important to understand molecular mechanisms leading to the plant adaptation to soil Fe-limitation. Co-expression genes are a cluster of genes that have a similar expression pattern to execute relatively biological functions at a stage of development or under a certain environmental condition. They may share a common regulatory mechanism. In this study, we investigated Fe-starved-related co-expression genes from Arabidopsis. From the biological process GO annotation of TAIR (The Arabidopsis Information Resource), 180 iron-deficient responsive genes were detected. Using ATTED-II database, we generated six gene co-expression networks. Among these, two modules of PYE and IRT1 were successfully constructed. There are 30 co-expression genes that are incorporated in the two modules (12 in PYE-module and 18 in IRT1-module). Sixteen of the co-expression genes were well characterized. The remaining genes (14) are poorly or not functionally identified with iron stress. Validation of the 14 genes using real-time PCR showed differential expression under iron-deficiency. Most of the co-expression genes (23/30) could be validated in pye and fit mutant plants with iron-deficiency. We further identified iron-responsive cis-elements upstream of the co-expression genes and found that 22 out of 30 genes contain the iron-responsive motif IDE1. Furthermore, some auxin and ethylene-responsive elements were detected in the promoters of the co-expression genes. These results suggest that some of the genes can be also involved in iron stress response through the phytohormone-responsive pathways.
Collapse
Affiliation(s)
- Hua Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Science, College of Life Science, Henan Agricultural University, Henan 450002, China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Li Y, Wang N, Zhao F, Song X, Yin Z, Huang R, Zhang C. Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress. PLANT MOLECULAR BIOLOGY 2014; 85:349-63. [PMID: 24648157 DOI: 10.1007/s11103-014-0189-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/06/2014] [Indexed: 05/21/2023]
Abstract
Plants are often subjected to iron (Fe)-deficiency stress because of its low solubility. Plants have evolved two distinct strategies to solubilize and transport Fe to acclimate to this abiotic stress condition. Transcriptomic profiling analysis was performed using Illumina digital gene expression to understand the mechanism underlying resistance responses of roots to Fe starvation in maize, an important Strategy II plant. A total of 3,427, 4,069, 4,881, and 2,610 genes had significantly changed expression levels after Fe-deficiency treatments of 1, 2, 4 or 7 days, respectively. Genes involved in 2'-deoxymugineic acid (DMA) synthesis, secretion, and Fe(III)-DMA uptake were significantly induced. Many genes related to plant hormones, protein kinases, and protein phosphatases responded to Fe-deficiency stress, suggesting their regulatory roles in response to the Fe-deficiency stress. Functional annotation clustering analysis, using the Database for Annotation, Visualization and Integrated Discovery, revealed maize root responses to Fe starvation. This resulted in 38 functional annotation clusters: 25 for up-regulated genes, and 13 for down-regulated ones. These included genes encoding enzymes involved in the metabolism of carboxylic acids, isoprenoids and aromatic compounds, transporters, and stress response proteins. Our work provides integrated information for understanding maize response to Fe-deficiency stress.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Crop Biology, Shandong Cooperative Innovation Center of Efficient Production with High Annual Yield of Wheat and Corn, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot JD. Physiology of iron metabolism. Transfus Med Hemother 2014; 41:213-21. [PMID: 25053935 DOI: 10.1159/000362888] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022] Open
Abstract
A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism.
Collapse
Affiliation(s)
| | - Gérard Waeber
- Service de médecine interne, CHUV, Lausanne, Switzerland
| | | | | | | | - Bernard Favrat
- Department of Ambulatory Care and Community Medicine, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Service régional vaudois de transfusion sanguine, Epalinges, Switzerland
| |
Collapse
|
40
|
Slatni T, Ben Salah I, Kouas S, Abdelly C. The role of nodules in the tolerance of common bean to iron deficiency. JOURNAL OF PLANT RESEARCH 2014; 127:455-465. [PMID: 24718900 DOI: 10.1007/s10265-014-0632-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Iron is vital for the establishment and function of symbiotic root nodules of legumes. Although abundant in the environment, Fe is often a limiting nutrient for plant growth due to its low solubility and availability in some soils. We have studied the mechanism of iron uptake in the root nodules of common bean to evaluate the role of nodules in physiological responses to iron deficiency. Based on experiments using full or partial submergence of nodulated roots in the nutrient solution, our results show that the nodules were affected only slightly under iron deficiency, especially when the nodules were submerged in nutrient solution in the tolerant cultivar. In addition, fully submerged root nodules showed enhanced acidification of the nutrient solution and showed higher ferric chelate reductase activity than that of partially submerged roots in plants cultivated under Fe deficiency. The main results obtained in this work suggest that in addition to preferential Fe allocation from the root system to the nodules, this symbiotic organ probably develops some mechanisms to respond to iron deficiency. These mechanisms were implied especially in nodule Fe absorption efficiency and in the ability of this organ to take up Fe directly from the medium.
Collapse
Affiliation(s)
- Tarek Slatni
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia,
| | | | | | | |
Collapse
|
41
|
Gholami A, De Geyter N, Pollier J, Goormachtig S, Goossens A. Natural product biosynthesis in Medicago species. Nat Prod Rep 2014; 31:356-80. [PMID: 24481477 DOI: 10.1039/c3np70104b] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The genus Medicago, a member of the legume (Fabaceae) family, comprises 87 species of flowering plants, including the forage crop M. sativa (alfalfa) and the model legume M. truncatula (barrel medic). Medicago species synthesize a variety of bioactive natural products that are used to engage into symbiotic interactions but also serve to deter pathogens and herbivores. For humans, these bioactive natural products often possess promising pharmaceutical properties. In this review, we focus on the two most interesting and well characterized secondary metabolite classes found in Medicago species, the triterpene saponins and the flavonoids, with a detailed overview of their biosynthesis, regulation, and profiling methods. Furthermore, their biological role within the plant as well as their potential utility for human health or other applications is discussed. Finally, we give an overview of the advances made in metabolic engineering in Medicago species and how the development of novel molecular and omics toolkits can influence a better understanding of this genus in terms of specialized metabolism and chemistry. Throughout, we critically analyze the current bottlenecks and speculate on future directions and opportunities for research and exploitation of Medicago metabolism.
Collapse
Affiliation(s)
- Azra Gholami
- Department of Plant Systems Biology, VIB, Ghent University, Technologiepark 927, B-9052 Gent, Belgium.
| | | | | | | | | |
Collapse
|
42
|
Urbany C, Benke A, Marsian J, Huettel B, Reinhardt R, Stich B. Ups and downs of a transcriptional landscape shape iron deficiency associated chlorosis of the maize inbreds B73 and Mo17. BMC PLANT BIOLOGY 2013; 13:213. [PMID: 24330725 PMCID: PMC3881016 DOI: 10.1186/1471-2229-13-213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/03/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Improving nutrient homeostasis is a major challenge of a sustainable maize cultivation, and cornerstone to ensure food supply for a growing world population. Although, iron constitutes an important nutrient, iron availability is limited. In this respect, iron deficiency associated chlorosis causes severe yield losses every year. Natural variation of the latter trait has yet not been addressed in maize and was therefore studied in the present analysis. RESULTS In this study, we i) report about the contrasting chlorosis phenotypes of the inbreds B73 and Mo17 at 10 and 300 μM iron regime, ii) identified over 400 significantly regulated transcripts (FDR < 0.05) within both inbreds at these growth conditions by deep RNA-Sequencing, iii) linked the gained knowledge with QTL information about iron deficiency related traits within the maize intermated B73 by Mo17 (IBM) population, and iv) highlighted contributing molecular pathways. In this respect, several genes within methionine salvage pathway and phytosiderophore synthesis were found to present constitutively high expression in Mo17, even under sufficient iron supply. Moreover, the same expression pattern could be observed for two putative bHLH transcription factors. In addition, a number of differentially expressed genes showed a co-localisation with QTL confidence intervals for iron deficiency related traits within the IBM population. CONCLUSIONS Our study highlights differential iron deficiency associated chlorosis between B73 and Mo17 and represents a valuable resource for differentially expressed genes upon iron limitation and chlorosis response. Besides identifying two putative bHLH transcription factors, we propose that methionine salvage pathway and sterol metabolism amongst others; underlie the contrasting iron deficiency related chlorosis phenotype of both inbreds. Altogether, this study emphasizes a contribution of selected genes and pathways on natural trait variation within the IBM population.
Collapse
Affiliation(s)
- Claude Urbany
- Max Planck Institute for Plant Breeding Research, Quantitative Crop Genetics, 50829 Cologne, Germany
| | - Andreas Benke
- Max Planck Institute for Plant Breeding Research, Quantitative Crop Genetics, 50829 Cologne, Germany
| | - Johanna Marsian
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, 50829 Cologne, Germany
| | | | - Benjamin Stich
- Max Planck Institute for Plant Breeding Research, Quantitative Crop Genetics, 50829 Cologne, Germany
| |
Collapse
|
43
|
Santos CS, Silva AI, Serrão I, Carvalho AL, Vasconcelos MW. Transcriptomic analysis of iron deficiency related genes in the legumes. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Zargar SM, Kurata R, Inaba S, Fukao Y. Unraveling the iron deficiency responsive proteome in Arabidopsis shoot by iTRAQ-OFFGEL approach. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.26892. [PMID: 24494240 PMCID: PMC4091060 DOI: 10.4161/psb.26892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Iron (Fe) is required by plants for basic redox reactions in photosynthesis and respiration, and for many other key enzymatic reactions in biological processes. Fe homeostatic mechanisms have evolved in plants to enable the uptake and sequestration of Fe in cells. To elucidate the network of proteins that regulate Fe homeostasis and transport, we optimized the iTRAQ-OFFGEL method to identify and quantify the number of proteins that respond to Fe deficiency in the model plant Arabidopsis. In this study, Fe deficiency was created using Fe-deficient growth conditions, excess zinc (Zn), and use of the irt1-1 mutant in which the IRT1 Fe transporter is disrupted. Using the iTRAQ-OFFGEL approach, we identified 1139 proteins, including novel Fe deficiency-responsive proteins, in microsomal fractions isolated from 3 different types of Fe-deficient shoots compared with just 233 proteins identified using conventional iTRAQ-CEX. Further analysis showed that greater numbers of low-abundance proteins could be identified using the iTRAQ-OFFGEL method and that proteins could be identified from numerous cellular compartments. The improved iTRAQ-OFFGEL method used in this study provided an efficient means for identifying greater numbers of proteins from microsomal fractions of Arabidopsis shoots. The proteome identified in this study provides new insight into the regulatory cross talk between Fe-deficient and excess Zn conditions.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Plant Global Educational Project; Nara Institute of Science and Technology; Ikoma, Japan
- School of Biotechnology; S K University of Agricultural Sciences and Technology; Chatha, Jammu, Jammu and Kashmir, India
| | - Rie Kurata
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Ikoma, Japan
| | - Shoko Inaba
- Plant Global Educational Project; Nara Institute of Science and Technology; Ikoma, Japan
| | - Yoichiro Fukao
- Plant Global Educational Project; Nara Institute of Science and Technology; Ikoma, Japan
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Ikoma, Japan
- Correspondence to: Yoichiro Fukao,
| |
Collapse
|
45
|
Samira R, Stallmann A, Massenburg LN, Long TA. Ironing out the issues: integrated approaches to understanding iron homeostasis in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:250-9. [PMID: 23849132 DOI: 10.1016/j.plantsci.2013.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 05/09/2023]
Abstract
Plants initialize responses to environmental changes at all levels, from signaling to translation and beyond. Such is the case for fluctuations in the availability of iron (Fe), one of the most critical micronutrients for plants. The results of these responses are physiological and morphological changes that lead to increased iron uptake from the rhizosphere, and recycling and reallocation of Fe, which must be properly localized within specific cells and cellular compartment for use. The use of reductionist approaches, in combination with in vivo and in situ Fe localization tools, has been able to shed light on critical signaling molecules, transcriptional regulators, transporters and other proteins involved in Fe homeostasis. Recent advances in elemental distribution and speciation analysis now enable detection and measurement of Fe and other elements at resolutions never seen before. Moreover, increasing use of systems biology approaches provide a substantially broader perspective of how Fe availability affects processes at many levels. This review highlights the latest in vivo and in situ iron localization approaches and some of the recent advances in understanding mechanisms that control Fe translocation. A broad perspective of how Fe localization data might one day be integrated with large-scale data to create models for Fe homeostasis is presented.
Collapse
Affiliation(s)
- Rozalynne Samira
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
46
|
Pujar A, Menda N, Bombarely A, Edwards JD, Strickler SR, Mueller LA. From manual curation to visualization of gene families and networks across Solanaceae plant species. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat028. [PMID: 23681907 PMCID: PMC3655285 DOI: 10.1093/database/bat028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-quality manual annotation methods and practices need to be scaled to the increased rate of genomic data production. Curation based on gene families and gene networks is one approach that can significantly increase both curation efficiency and quality. The Sol Genomics Network (SGN; http://solgenomics.net) is a comparative genomics platform, with genetic, genomic and phenotypic information of the Solanaceae family and its closely related species that incorporates a community-based gene and phenotype curation system. In this article, we describe a manual curation system for gene families aimed at facilitating curation, querying and visualization of gene interaction patterns underlying complex biological processes, including an interface for efficiently capturing information from experiments with large data sets reported in the literature. Well-annotated multigene families are useful for further exploration of genome organization and gene evolution across species. As an example, we illustrate the system with the multigene transcription factor families, WRKY and Small Auxin Up-regulated RNA (SAUR), which both play important roles in responding to abiotic stresses in plants. Database URL:http://solgenomics.net/
Collapse
Affiliation(s)
- Anuradha Pujar
- Boyce Thompson Institute for Plant Research, 533, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
47
|
Muccilli V, Licciardello C, Fontanini D, Cunsolo V, Capocchi A, Saletti R, Torrisi B, Foti S. Root protein profiles of two citrus rootstocks grown under iron sufficiency/deficiency conditions. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2013; 19:305-24. [PMID: 24575629 DOI: 10.1255/ejms.1230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two citrus rootstocks, one sensitive to iron deficiency (Swingle Citrumelo (SCO)) and the other tolerant (Carrizo Citrange, (CC)), were studied to characterize variation in their root protein profile induced by iron-deficient conditions. Plants of both rootstocks were grown in two different soils, one volcanic (v) and the other calcareous (c), containing 0% and 10% active Lime, respectively. To evaluate the effects of the calcareous soil on the protein accumulation of both rootstocks, the root protein profiles (SCc vs. SCv and CCc vs. CCv) were characterized by two-dimensional gel electrophoresis, thus obtaining, for the first time, a reference map of this previously uncharacterized proteome. A total of 219 spots, significantly changed in abundance, were analyzed by high-performance Liquid chromatography nano electrospray ionization tandem mass spectrometry. The identified proteins were classified according to their putative function and known biosynthetic pathways. Principal component analysis, comparing the four sets of data, indicated that each group clustered together with low variance and that CCv and CCc data sets were well differentiated, whereas SCv and SCc were similar.
Collapse
Affiliation(s)
- Vera Muccilli
- Dipartimento di Scienze Chimiche, Università di Catania, Viate A. Doria 6, 95125 Catania, Italy.
| | - Concetta Licciardello
- Consiglio per la Ricerca e Sperimentazione in Agricoltura (CRA-ACM), Corso Savoia 190, 95024 Acireale, Catania, Italy
| | - Debora Fontanini
- Dipartimento di Biologia, Università di Pisa, Via L, Ghini 5, 56126 Pisa, Italy
| | - Vincenzo Cunsolo
- Dipartimento di Scienze Chimiche, Università di Catania, Viate A. Doria 6, 95125 Catania, Italy
| | - Antonella Capocchi
- Dipartimento di Biologia, Università di Pisa, Via L, Ghini 5, 56126 Pisa, Italy
| | - Rosaria Saletti
- Dipartimento di Scienze Chimiche, Università di Catania, Viate A. Doria 6, 95125 Catania, Italy
| | - Biagio Torrisi
- Consiglio per la Ricerca e Sperimentazione in Agricoltura (CRA-ACM), Corso Savoia 190, 95024 Acireale, Catania, Italy
| | - Salvatore Foti
- Dipartimento di Scienze Chimiche, Università di Catania, Viate A. Doria 6, 95125 Catania, Italy
| |
Collapse
|