1
|
Vergou GA, Bajhaiya AK, Corredor L, Lema Asqui S, Timmerman E, Impens F, Funk C. In vivo proteolytic profiling of the type I and type II metacaspases in Chlamydomonas reinhardtii exposed to salt stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14401. [PMID: 38899462 DOI: 10.1111/ppl.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Metacaspases are cysteine proteases present in plants, fungi and protists. While the association of metacaspases with cell death is studied in a range of organisms, their native substrates are largely unknown. Here, we explored the in vivo proteolytic landscape of the two metacaspases, CrMCA-I and CrMCA-II, present in the green freshwater alga Chlamydomonas reinhardtii, using mass spectrometry-based degradomics approach, during control conditions and salt stress. Comparison between the cleavage events of CrMCA-I and CrMCA-II in metacaspase mutants revealed unique cleavage preferences and substrate specificity. Degradome analysis demonstrated the relevance of the predicted metacaspase substrates to the physiology of C. reinhardtii cells and its adaptation during salt stress. Functional enrichment analysis indicated an involvement of CrMCA-I in the catabolism of carboxylic acids, while CrMCA-II plays an important role in photosynthesis and translation. Altogether, our findings suggest distinct cellular functions of the two metacaspases in C. reinhardtii during salt stress response.
Collapse
Affiliation(s)
| | | | | | | | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | | |
Collapse
|
2
|
Plouviez M, Dubreucq E. Key Proteomics Tools for Fundamental and Applied Microalgal Research. Proteomes 2024; 12:13. [PMID: 38651372 PMCID: PMC11036299 DOI: 10.3390/proteomes12020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Microscopic, photosynthetic prokaryotes and eukaryotes, collectively referred to as microalgae, are widely studied to improve our understanding of key metabolic pathways (e.g., photosynthesis) and for the development of biotechnological applications. Omics technologies, which are now common tools in biological research, have been shown to be critical in microalgal research. In the past decade, significant technological advancements have allowed omics technologies to become more affordable and efficient, with huge datasets being generated. In particular, where studies focused on a single or few proteins decades ago, it is now possible to study the whole proteome of a microalgae. The development of mass spectrometry-based methods has provided this leap forward with the high-throughput identification and quantification of proteins. This review specifically provides an overview of the use of proteomics in fundamental (e.g., photosynthesis) and applied (e.g., lipid production for biofuel) microalgal research, and presents future research directions in this field.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
- The Cawthron Institute, Nelson 7010, New Zealand
| | - Eric Dubreucq
- Agropolymer Engineering and Emerging Technologies, L’Institut Agro Montpellier, 34060 Montpellier, France;
| |
Collapse
|
3
|
Haq SAU, Bashir T, Roberts TH, Husaini AM. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches. Mol Biol Rep 2023; 51:41. [PMID: 38158512 DOI: 10.1007/s11033-023-09042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
While global climate change poses a significant environmental threat to agriculture, the increasing population is another big challenge to food security. To address this, developing crop varieties with increased productivity and tolerance to biotic and abiotic stresses is crucial. Breeders must identify traits to ensure higher and consistent yields under inconsistent environmental challenges, possess resilience against emerging biotic and abiotic stresses and satisfy customer demands for safer and more nutritious meals. With the advent of omics-based technologies, molecular tools are now integrated with breeding to understand the molecular genetics of genotype-based traits and develop better climate-smart crops. The rapid development of omics technologies offers an opportunity to generate novel datasets for crop species. Identifying genes and pathways responsible for significant agronomic traits has been made possible by integrating omics data with genetic and phenotypic information. This paper discusses the importance and use of omics-based strategies, including genomics, transcriptomics, proteomics and phenomics, for agricultural and horticultural crop improvement, which aligns with developing better adaptability in these crop species to the changing climate conditions.
Collapse
Affiliation(s)
- Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Thomas H Roberts
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Eveleigh, Australia
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
4
|
Naseema Rasheed R, Pourbakhtiar A, Mehdizadeh Allaf M, Baharlooeian M, Rafiei N, Alishah Aratboni H, Morones-Ramirez JR, Winck FV. Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges. Front Bioeng Biotechnol 2023; 11:1193424. [PMID: 37799812 PMCID: PMC10548143 DOI: 10.3389/fbioe.2023.1193424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
The burgeoning human population has resulted in an augmented demand for raw materials and energy sources, which in turn has led to a deleterious environmental impact marked by elevated greenhouse gas (GHG) emissions, acidification of water bodies, and escalating global temperatures. Therefore, it is imperative that modern society develop sustainable technologies to avert future environmental degradation and generate alternative bioproduct-producing technologies. A promising approach to tackling this challenge involves utilizing natural microbial consortia or designing synthetic communities of microorganisms as a foundation to develop diverse and sustainable applications for bioproduct production, wastewater treatment, GHG emission reduction, energy crisis alleviation, and soil fertility enhancement. Microalgae, which are photosynthetic microorganisms that inhabit aquatic environments and exhibit a high capacity for CO2 fixation, are particularly appealing in this context. They can convert light energy and atmospheric CO2 or industrial flue gases into valuable biomass and organic chemicals, thereby contributing to GHG emission reduction. To date, most microalgae cultivation studies have focused on monoculture systems. However, maintaining a microalgae monoculture system can be challenging due to contamination by other microorganisms (e.g., yeasts, fungi, bacteria, and other microalgae species), which can lead to low productivity, culture collapse, and low-quality biomass. Co-culture systems, which produce robust microorganism consortia or communities, present a compelling strategy for addressing contamination problems. In recent years, research and development of innovative co-cultivation techniques have substantially increased. Nevertheless, many microalgae co-culturing technologies remain in the developmental phase and have yet to be scaled and commercialized. Accordingly, this review presents a thorough literature review of research conducted in the last few decades, exploring the advantages and disadvantages of microalgae co-cultivation systems that involve microalgae-bacteria, microalgae-fungi, and microalgae-microalgae/algae systems. The manuscript also addresses diverse uses of co-culture systems, and growing methods, and includes one of the most exciting research areas in co-culturing systems, which are omic studies that elucidate different interaction mechanisms among microbial communities. Finally, the manuscript discusses the economic viability, future challenges, and prospects of microalgal co-cultivation methods.
Collapse
Affiliation(s)
| | - Asma Pourbakhtiar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Nahid Rafiei
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Hossein Alishah Aratboni
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Jose Ruben Morones-Ramirez
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Universidad Autonoma de Nuevo Leon (UANL), Av Universidad s/n, CD. Universitaria, San Nicolás de los Garza, Nuevo León, Mexico
| | - Flavia Vischi Winck
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
5
|
Devadasu E, Kanna SD, Neelam S, Yadav RM, Nama S, Akhtar P, Polgár TF, Ughy B, Garab G, Lambrev PH, Subramanyam R. Long- and short-term acclimation of the photosynthetic apparatus to salinity in Chlamydomonas reinhardtii. The role of Stt7 protein kinase. FRONTIERS IN PLANT SCIENCE 2023; 14:1051711. [PMID: 37089643 PMCID: PMC10113551 DOI: 10.3389/fpls.2023.1051711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Salt stress triggers an Stt7-mediated LHCII-phosphorylation signaling mechanism similar to light-induced state transitions. However, phosphorylated LHCII, after detaching from PSII, does not attach to PSI but self-aggregates instead. Salt is a major stress factor in the growth of algae and plants. Here, our study mainly focuses on the organization of the photosynthetic apparatus to the long-term responses of Chlamydomonas reinhardtii to elevated NaCl concentrations. We analyzed the physiological effects of salt treatment at a cellular, membrane, and protein level by microscopy, protein profile analyses, transcripts, circular dichroism spectroscopy, chlorophyll fluorescence transients, and steady-state and time-resolved fluorescence spectroscopy. We have ascertained that cells that were grown in high-salinity medium form palmelloids sphere-shaped colonies, where daughter cells with curtailed flagella are enclosed within the mother cell walls. Palmelloid formation depends on the presence of a cell wall, as it was not observed in a cell-wall-less mutant CC-503. Using the stt7 mutant cells, we show Stt7 kinase-dependent phosphorylation of light-harvesting complex II (LHCII) in both short- and long-term treatments of various NaCl concentrations-demonstrating NaCl-induced state transitions that are similar to light-induced state transitions. The grana thylakoids were less appressed (with higher repeat distances), and cells grown in 150 mM NaCl showed disordered structures that formed diffuse boundaries with the flanking stroma lamellae. PSII core proteins were more prone to damage than PSI. At high salt concentrations (100-150 mM), LHCII aggregates accumulated in the thylakoid membranes. Low-temperature and time-resolved fluorescence spectroscopy indicated that the stt7 mutant was more sensitive to salt stress, suggesting that LHCII phosphorylation has a role in the acclimation and protection of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sai Divya Kanna
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Satyabala Neelam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Parveen Akhtar
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Petar H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: Rajagopal Subramanyam,
| |
Collapse
|
6
|
Bender ML, Zhu XG, Falkowski P, Ma F, Griffin K. On the rate of phytoplankton respiration in the light. PLANT PHYSIOLOGY 2022; 190:267-279. [PMID: 35652738 PMCID: PMC9434318 DOI: 10.1093/plphys/kiac254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The rate of algal and cyanobacterial respiration in the light is an important ecophysiological term that remains to be completely characterized and quantified. To address this issue, we exploited process-specific decarboxylation rates from flux balance analysis and isotopically nonstationary metabolic flux analysis. Our study, based on published data, suggested that decarboxylation is about 22% of net CO2 assimilation when the tricarboxylic acid cycle is completely open (characterized by the commitment of alpha ketoglutarate to amino acid synthesis and very low rates of succinate formation). This estimate was supported by calculating the decarboxylation rates required to synthesize the major components of biomass (proteins, lipids, and carbohydrates) at their typical abundance. Of the 22 CO2 molecules produced by decarboxylation (normalized to net assimilation = 100), approximately 13 were from pyruvate and 3 were from isocitrate. The remaining six units of decarboxylation were in the amino acid synthesis pathways outside the tricarboxylic acid cycle. A small additional flux came from photorespiration, decarboxylations of six phosphogluconate in the oxidative pentose phosphate pathway, and decarboxylations in the syntheses of lower-abundance compounds, including pigments and ribonucleic acids. This general approach accounted for the high decarboxylation rates in algae and cyanobacteria compared to terrestrial plants. It prompts a simple speculation for the origin of the Kok effect and helps constrain the photoautotrophic respiration rate, in the light, in the euphotic zone of the ocean and lakes.
Collapse
Affiliation(s)
| | - Xin-Guang Zhu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Paul Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Kevin Griffin
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York 10964, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA
| |
Collapse
|
7
|
Wu Y, Huang Z, Zhang C, Shi C, Lyu L, Li W, Wu W. Comparative Analysis of the Morphological, Physiological, Proteomic, and Metabolic Mechanisms of the "Biloxi" Blueberry Response to Shade Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:877789. [PMID: 35592566 PMCID: PMC9111170 DOI: 10.3389/fpls.2022.877789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 05/03/2023]
Abstract
Blueberry is an important small berry crop in economic forests. In hot summers, the top tip of blueberry often burns and withers due to water loss. Therefore, this study subjected blueberry to shading treatment in the summer to study the effects of different shading treatments on the growth, morphology, physiology and protein levels of the plant. The results showed that the 50% shading (T1) treatment yielded the highest average increases in plant height, crown width, and ground diameter of blueberry. Under the 80% shading (T2) treatment, the cells of the leaves dissolved, the morphology was incomplete, the vascular bundles disappeared, and no supporting skeleton was detected. As demonstrated by physiological and biochemical data and the proteome expression levels, the T1 shading treatment was beneficial to the growth of blueberry and significantly enriched the photosynthetic pathway and flavonoid biosynthesis. An analysis of the interaction network of differentially expressed proteins indicated that trans-cinnamate 4-monooxygenase (C4H, CYP73A), naringenin 3-dioxygenase (F3H) and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) exhibited high connectivity and mutual regulation. In short, 50% shading can improve the growth index of blueberry and lead to an enrichment of flavonoid biosynthesis. This study provides a scientific basis for the breeding and summer protection of blueberry seedlings.
Collapse
Affiliation(s)
- Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zhengjin Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chong Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
8
|
Yang H, Hu C. Soil Chemistry and Nutrients Influence the Distribution of Aerobic Anoxygenic Phototrophic Bacteria and Eukaryotic Phototrophic Microorganisms of Physical Soil Crusts at Different Elevations on the Tibetan Plateau. MICROBIAL ECOLOGY 2022; 83:100-113. [PMID: 33733304 DOI: 10.1007/s00248-021-01734-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic microorganisms are widely distributed in the soil and play an important role in plant-free soil crusts. However, the distribution and environmental drivers of phototrophic microbial communities in physical soil crusts, where the abundance of cyanobacteria is low, are scarcely understood. Here, we performed high-throughput sequencing of pufM and 18S rRNA genes in soil crusts at different elevations on the Tibetan Plateau and used the data combined with environmental variables to analyze the diversity and structure of phototrophic microbial communities. We found that the dominant taxa of aerobic anoxygenic phototrophic bacteria (AAPB) and eukaryotic phototrophic microorganisms (EPM) were shown to shift with elevation. The phototrophic microbial diversity showed a single-peak pattern, with the lowest diversity of AAPB and highest diversity of EPM at middle elevations. Moreover, the elevation and soil property determined the phototrophic microbial community. Soil salts, especially Cl-, were the most important for AAPB. Likewise, soil nutrients, especially carbon, were the most important for EPM. The relationship between high-abundance taxa and environmental variables showed that Rhizobiales was significantly negatively correlated with salt ions and positively correlated with chlorophyll. Rhodobacterales showed the strongest and significant positive associations with Cl-. Chlorophyceae and Bacillariophyceae were positively correlated with CO32-. These results indicated that salinity and soil nutrients affected the diversity and structure of microbial communities. This study contributes to our understanding of the diversity, composition, and structure of photosynthetic microorganisms in physical soil crusts and helps in developing new approaches for controlling desertification and salinization and improving the desert ecological environment.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
9
|
Kaur B, Sandhu KS, Kamal R, Kaur K, Singh J, Röder MS, Muqaddasi QH. Omics for the Improvement of Abiotic, Biotic, and Agronomic Traits in Major Cereal Crops: Applications, Challenges, and Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1989. [PMID: 34685799 PMCID: PMC8541486 DOI: 10.3390/plants10101989] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
Omics technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, are becoming an integral part of virtually every commercial cereal crop breeding program, as they provide substantial dividends per unit time in both pre-breeding and breeding phases. Continuous advances in omics assure time efficiency and cost benefits to improve cereal crops. This review provides a comprehensive overview of the established omics methods in five major cereals, namely rice, sorghum, maize, barley, and bread wheat. We cover the evolution of technologies in each omics section independently and concentrate on their use to improve economically important agronomic as well as biotic and abiotic stress-related traits. Advancements in the (1) identification, mapping, and sequencing of molecular/structural variants; (2) high-density transcriptomics data to study gene expression patterns; (3) global and targeted proteome profiling to study protein structure and interaction; (4) metabolomic profiling to quantify organ-level, small-density metabolites, and their composition; and (5) high-resolution, high-throughput, image-based phenomics approaches are surveyed in this review.
Collapse
Affiliation(s)
- Balwinder Kaur
- Everglades Research and Education Center, University of Florida, 3200 E. Palm Beach Rd., Belle Glade, FL 33430, USA;
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Kawalpreet Kaur
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Jagmohan Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Quddoos H. Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| |
Collapse
|
10
|
Abu-Ghosh S, Iluz D, Dubinsky Z, Miller G. Exogenous Abscisic Acid Confers Salinity Tolerance in Chlamydomonas reinhardtii During Its Life Cycle. JOURNAL OF PHYCOLOGY 2021; 57:1323-1334. [PMID: 33963561 DOI: 10.1111/jpy.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The plant hormone abscisic acid (ABA) coordinates responses to environmental signals with developmental changes and is important for stress resilience and crop yield. However, fundamental questions remain about how this phytohormone affects microalgal growth and stress regulation throughout the different stages of their life cycle. In this study, the effects of ABA on the physiology of the freshwater microalga Chlamydomonas reinhardtii at its different life cycle stages were investigated. Exogenously added ABA enhanced the growth and photosynthesis of C. reinhardtii during the vegetative stage. The hormone also increased the tolerance of this alga to high-salinity stress during gamete formation under nutrient depletion, as well as it extended their survival. We show that the level of reactive oxygen species (ROS) generated in the ABA-treated cells was significantly less than that in the untreated cells under inhibiting NaCl concentrations. Cell size examination showed that ABA prevents cells from forming palmella when exposed to high salinity. All together, these results suggest that ABA can support the vitality and survival of C. reinhardtii under high salt conditions.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - David Iluz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Environmental Sciences and Agriculture, Beit Berl Academic College, Kfar Saba, Israel
- Deptartment of science, Talpiot Academic College, Holon, Israel
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
11
|
Hounslow E, Evans CA, Pandhal J, Sydney T, Couto N, Pham TK, Gilmour DJ, Wright PC. Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:121. [PMID: 34022944 PMCID: PMC8141184 DOI: 10.1186/s13068-021-01970-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/13/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is a model green alga strain for molecular studies; its fully sequenced genome has enabled omic-based analyses that have been applied to better understand its metabolic responses to stress. Here, we characterised physiological and proteomic changes between a low-starch C. reinhardtii strain and the snow alga Chlamydomonas nivalis, to reveal insights into their contrasting responses to salinity stress. RESULTS Each strain was grown in conditions tailored to their growth requirements to encourage maximal fatty acid (as a proxy measure of lipid) production, with internal controls to allow comparison points. In 0.2 M NaCl, C. nivalis accumulates carbohydrates up to 10.4% DCW at 80 h, and fatty acids up to 52.0% dry cell weight (DCW) over 12 days, however, C. reinhardtii does not show fatty acid accumulation over time, and shows limited carbohydrate accumulation up to 5.5% DCW. Analysis of the C. nivalis fatty acid profiles showed that salt stress improved the biofuel qualities over time. Photosynthesis and respiration rates are reduced in C. reinhardtii relative to C. nivalis in response to 0.2 M NaCl. De novo sequencing and homology matching was used in conjunction with iTRAQ-based quantitative analysis to identify and relatively quantify proteomic alterations in cells exposed to salt stress. There were abundance differences in proteins associated with stress, photosynthesis, carbohydrate and lipid metabolism proteins. In terms of lipid synthesis, salt stress induced an increase in dihydrolipoyl dehydrogenase in C. nivalis (1.1-fold change), whilst levels in C. reinhardtii remained unaffected; this enzyme is involved in acetyl CoA production and has been linked to TAG accumulation in microalgae. In salt-stressed C. nivalis there were decreases in the abundance of UDP-sulfoquinovose (- 1.77-fold change), which is involved in sulfoquinovosyl diacylglycerol metabolism, and in citrate synthase (- 2.7-fold change), also involved in the TCA cycle. Decreases in these enzymes have been shown to lead to increased TAG production as fatty acid biosynthesis is favoured. Data are available via ProteomeXchange with identifier PXD018148. CONCLUSIONS These differences in protein abundance have given greater understanding of the mechanism by which salt stress promotes fatty acid accumulation in the un-sequenced microalga C. nivalis as it switches to a non-growth state, whereas C. reinhardtii does not have this response.
Collapse
Affiliation(s)
- E Hounslow
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - C A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - J Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T Sydney
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - N Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T K Pham
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - D James Gilmour
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - P C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
12
|
Karlsen J, Asplund-Samuelsson J, Jahn M, Vitay D, Hudson EP. Slow Protein Turnover Explains Limited Protein-Level Response to Diurnal Transcriptional Oscillations in Cyanobacteria. Front Microbiol 2021; 12:657379. [PMID: 34194405 PMCID: PMC8237939 DOI: 10.3389/fmicb.2021.657379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Metabolically engineered cyanobacteria have the potential to mitigate anthropogenic CO2 emissions by converting CO2 into renewable fuels and chemicals. Yet, better understanding of metabolic regulation in cyanobacteria is required to develop more productive strains that can make industrial scale-up economically feasible. The aim of this study was to find the cause for the previously reported inconsistency between oscillating transcription and constant protein levels under day-night growth conditions. To determine whether translational regulation counteracts transcriptional changes, Synechocystis sp. PCC 6803 was cultivated in an artificial day-night setting and the level of transcription, translation and protein was measured across the genome at different time points using mRNA sequencing, ribosome profiling and quantitative proteomics. Furthermore, the effect of protein turnover on the amplitude of protein oscillations was investigated through in silico simulations using a protein mass balance model. Our experimental analysis revealed that protein oscillations were not dampened by translational regulation, as evidenced by high correlation between translational and transcriptional oscillations (r = 0.88) and unchanged protein levels. Instead, model simulations showed that these observations can be attributed to a slow protein turnover, which reduces the effect of protein synthesis oscillations on the protein level. In conclusion, these results suggest that cyanobacteria have evolved to govern diurnal metabolic shifts through allosteric regulatory mechanisms in order to avoid the energy burden of replacing the proteome on a daily basis. Identification and manipulation of such mechanisms could be part of a metabolic engineering strategy for overproduction of chemicals.
Collapse
Affiliation(s)
- Jan Karlsen
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Johannes Asplund-Samuelsson
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Michael Jahn
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Dóra Vitay
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden.,Biosyntia ApS, Copenhagen, Denmark
| | - Elton P Hudson
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
13
|
Ves-Urai P, Krobthong S, Thongsuk K, Roytrakul S, Yokthongwattana C. Comparative secretome analysis between salinity-tolerant and control Chlamydomonas reinhardtii strains. PLANTA 2021; 253:68. [PMID: 33594587 DOI: 10.1007/s00425-021-03583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Secretome analysis of a salt-tolerant and control Chlamydomonas reinhardtii revealed 514 differentially expressed proteins. Membrane transport and trafficking, signal transduction and channel proteins were up-regulated in the ST secretome. Salinity is a major abiotic stress that limits crop production worldwide. Multiple adverse effects have been reported in many living organisms exposed to high-saline concentrations. Chlamydomonas reinhardtii is known for secreting proteins in response to many environmental stresses. A salinity-tolerant (ST) strain of Chlamydomonas has been developed, whose cells were able to grow at 300 mM NaCl. The current study analyzed the secretomes of ST grown in TAP medium supplemented with 300 mM NaCl and the laboratory strain CC-503 grown in TAP medium without NaCl supplement. In total, 514 secreted proteins were identified of which 203 were up-regulated and 110 were down-regulated. Bioinformatic analysis predicted 168 proteins to be secreted or in the conventional secretory pathway. Out of these, 70 were up-regulated, while 51 proteins were down-regulated. Proteins involved in membrane transport and trafficking, signal transduction and channel proteins were altered in their expression in the ST secretome, suggesting the response of saline stress acts toward not only the intracellular pool of proteins but also the extracellular proteins. This also suggested that the secreted proteins might have roles in the extracellular space. Signal peptide (SP) prediction revealed that almost 40% of the predicted secreted proteins contained a signal peptide; however, a high proportion of proteins lacked an SP, suggesting that these proteins might be secreted through an unconventional protein secretion pathway.
Collapse
Affiliation(s)
- Parthompong Ves-Urai
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sucheewin Krobthong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Karnpitcha Thongsuk
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
14
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
15
|
Bandehagh A, Taylor NL. Can Alternative Metabolic Pathways and Shunts Overcome Salinity Induced Inhibition of Central Carbon Metabolism in Crops? FRONTIERS IN PLANT SCIENCE 2020; 11:1072. [PMID: 32849676 PMCID: PMC7417600 DOI: 10.3389/fpls.2020.01072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/30/2020] [Indexed: 05/25/2023]
Abstract
The annual cost of lost crop production from exposure to salinity has major impacts on food security in all parts of the world. Salinity stress disturbs energy metabolism and knowledge of the impacts on critical processes controlling plant energy production is key to successfully breeding salt tolerant crops. To date, little progress has been achieved using classic breeding approaches to develop salt tolerance. The hope of some salinity researchers is that through a better understanding of the metabolic responses and adaptation to salinity exposure, new breeding targets can be suggested to help develop salt tolerant crops. Plants sense and react to salinity through a complex system of sensors, receptor systems, transporters, signal transducers, and gene expression regulators in order to control the uptake of salts and to induce tolerant metabolism that jointly leads to changes in growth rate and biomass production. During this response, there must be a balance between supply of energy from mitochondria and chloroplasts and energy demands for water and ion transport, growth, and osmotic adjustment. The photosynthetic response to salinity has been thoroughly researched and generally we see a sharp drop in photosynthesis after exposure to salinity. However, less attention has been given to the effect of salt stress on plant mitochondrial respiration and the metabolic processes that influence respiratory rate. A further complication is the wide range of respiratory responses that have been observed in different plant species, which have included major and minor increases, decreases, and no change in respiratory rate after salt exposure. In this review, we begin by considering physiological and biochemical impacts of salinity on major crop plants. We then summarize and consider recent advances that have characterized changes in abundance of metabolites that are involved in respiratory pathways and their alternative routes and shunts in terms of energy metabolism in crop plants. We will consider the diverse molecular responses of cellular plant metabolism during salinity exposure and suggest how these metabolic responses might aid in salinity tolerance. Finally, we will consider how this commonality and diversity should influence how future research of the salinity responses of crops plants should proceed.
Collapse
Affiliation(s)
- Ali Bandehagh
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nicolas L. Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
16
|
Shiny Matilda C, Madhusudan I, Gaurav Isola R, Shanthi C. Potential of proteomics to probe microbes. J Basic Microbiol 2020; 60:471-483. [PMID: 32212201 DOI: 10.1002/jobm.201900628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 01/05/2023]
Abstract
An organism exposed to a plethora of environmental perturbations undergoes proteomic changes which enable the characterization of total proteins in it. Much of the proteomic information is obtained from genomic data. Additional information on the proteome such as posttranslational modifications, protein-protein interactions, protein localization, metabolic pathways, and so on are deduced using proteomic tools which genomics and transcriptomics fail to offer. The proteomic analysis allows identification of precise changes in proteins, which in turn solve the complexity of microbial population providing insights into the microbial metabolism, cellular pathways, and behavior of microorganisms in new environments. Furthermore, they provide clues for the exploitation of their special features for biotechnological applications. Numerous techniques for the analysis of microbial proteome such as electrophoretic, chromatographic, mass spectrometric-based methods as well as quantitative proteomics are available which facilitate protein separation, expression, identification, and quantification of proteins. An understanding of the potential of each of the proteomic tools has created a significant impact on diverse microbiological aspects and the same has been discussed in this review.
Collapse
Affiliation(s)
- Chellaiah Shiny Matilda
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Iyengar Madhusudan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Ravi Gaurav Isola
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Chittibabu Shanthi
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| |
Collapse
|
17
|
You Z, Zhang Q, Peng Z, Miao X. Lipid Droplets Mediate Salt Stress Tolerance in Parachlorella kessleri. PLANT PHYSIOLOGY 2019; 181:510-526. [PMID: 31341003 PMCID: PMC6776852 DOI: 10.1104/pp.19.00666] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
Microalgae are known to respond to salinity stress via mechanisms that include accumulation of compatible solutes and synthesis of antioxidants. Here, we describe a salinity-tolerance mechanism mediated by lipid droplets (LDs). In the alga Parachlorella kessleri grown under salt-stress conditions, we observed significant increases in cell size and LD content. LDs that were closely grouped along the plasma membrane shrank as the plasma membrane expanded, and some LDs were engulfed by vacuoles. Transcriptome analysis showed that genes encoding lysophospholipid acyltransferases (LPLATs) and phospholipase A2 were significantly up-regulated following salt stress. Diacylglycerol kinase and LPLAT were identified in the proteome of salt-induced LDs, alongside vesicle trafficking and plastidial proteins and histone H2B. Analysis of fatty acid composition revealed an enrichment of C18:1 and C18:2 at the expense of C18:3 in response to salt stress. Pulse-chase experiments further suggested that variations of fatty acid composition were associated with LDs. Acetate stimulation research further confirmed a positive role of LDs in cell growth under salt stress. These results suggest that LDs play important roles in salt-stress tolerance, through harboring proteins, participating in cytoplasmic component recycling, and providing materials and enzymes for membrane modification and expansion.
Collapse
Affiliation(s)
- Zaizhi You
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhou Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Majeran W, Wostrikoff K, Wollman FA, Vallon O. Role of ClpP in the Biogenesis and Degradation of RuBisCO and ATP Synthase in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2019; 8:E191. [PMID: 31248038 PMCID: PMC6681370 DOI: 10.3390/plants8070191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) associates a chloroplast- and a nucleus-encoded subunit (LSU and SSU). It constitutes the major entry point of inorganic carbon into the biosphere as it catalyzes photosynthetic CO2 fixation. Its abundance and richness in sulfur-containing amino acids make it a prime source of N and S during nutrient starvation, when photosynthesis is downregulated and a high RuBisCO level is no longer needed. Here we show that translational attenuation of ClpP1 in the green alga Chlamydomonas reinhardtii results in retarded degradation of RuBisCO during S- and N-starvation, suggesting that the Clp protease is a major effector of RubisCO degradation in these conditions. Furthermore, we show that ClpP cannot be attenuated in the context of rbcL point mutations that prevent LSU folding. The mutant LSU remains in interaction with the chloroplast chaperonin complex. We propose that degradation of the mutant LSU by the Clp protease is necessary to prevent poisoning of the chaperonin. In the total absence of LSU, attenuation of ClpP leads to a dramatic stabilization of unassembled SSU, indicating that Clp is responsible for its degradation. In contrast, attenuation of ClpP in the absence of SSU does not lead to overaccumulation of LSU, whose translation is controlled by assembly. Altogether, these results point to RuBisCO degradation as one of the major house-keeping functions of the essential Clp protease. In addition, we show that non-assembled subunits of the ATP synthase are also stabilized when ClpP is attenuated. In the case of the atpA-FUD16 mutation, this can even allow the assembly of a small amount of CF1, which partially restores phototrophy.
Collapse
Affiliation(s)
- Wojciech Majeran
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-Diderot, Université Paris-Sud, INRA, Université Evry, Université Paris-Saclay, Rue de Noetzlin, 91190 Gif-sur-Yvette, France.
| | - Katia Wostrikoff
- UMR7141 CNRS/Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Francis-André Wollman
- UMR7141 CNRS/Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Olivier Vallon
- UMR7141 CNRS/Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
20
|
The dynamin-like protein Fzl promotes thylakoid fusion and resistance to light stress in Chlamydomonas reinhardtii. PLoS Genet 2019; 15:e1008047. [PMID: 30875368 PMCID: PMC6436760 DOI: 10.1371/journal.pgen.1008047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/27/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Large GTPases of the Dynamin Related Proteins (DRP) family shape lipid bilayers through membrane fission or fusion processes. Despite the highly organized photosynthetic membranes of thylakoids, a single DRP is known to be targeted inside the chloroplast. Fzl from the land plant Arabidopsis thaliana is inserted in the inner envelope and thylakoid membranes to regulate their morphology. Fzl may promote the fusion of thylakoids but this remains to be proven. Moreover, the physiological requirement for fusing thylakoids is currently unknown. Here, we find that the unicellular microalga Chlamydomonas reinhardtii encodes an Fzl ortholog (CrFzl) that is localized in the chloroplast where it is soluble. To explore its function, the CRISPR/Cas9 technology was employed to generate multiple CrFzl knock out strains. Phenotypic analyzes revealed a specific requirement of CrFzl for survival upon light stress. Consistent with this, strong irradiance lead to increased photoinhibition of photosynthesis in mutant cells. Fluorescence and electron microscopy analysis demonstrated that upon exposure to high light, CrFzl mutants show defects in chloroplast morphology but also large cytosolic vacuoles in close contact with the plastid. We further observe that strong irradiance induces an increased recruitment of the DRP to thylakoid membranes. Most importantly, we show that CrFzl is required for the fusion of thylakoids during mating. Together, our results suggest that thylakoids fusion may be necessary for resistance to light stress. All eukaryotic cells are composed of compartments with defined functions. Among those, mitochondria generate the main source of energy in human and animal cells. Their capacity to generate and diffuse energy in the cell is regulated by fusion and fragmentation processes. Together with mitochondria that produce energy from oxygen, plant cells include an additional compartment called the chloroplast that produces energy from light. The machinery that converts light into energy is more precisely located inside the chloroplast within stacks of membranes called the thylakoids. Here, we elucidate the function of CrFzl, a previously uncharacterized protein encoded by the genome of the unicellular alga Chlamydomonas reinhardtii. Algal cells that do not contain CrFzl are impaired in their capacity to grow when they receive too much light and our results indicate that CrFzl promotes the fusion of thylakoids during mating. These results suggest that membrane fusion is an essential tool for energy production in stress conditions by living organisms.
Collapse
|
21
|
Analysis of bZIP Transcription Factor Family and Their Expressions under Salt Stress in Chlamydomonas reinhardtii. Int J Mol Sci 2018; 19:ijms19092800. [PMID: 30227676 PMCID: PMC6164503 DOI: 10.3390/ijms19092800] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
The basic leucine-region zipper (bZIP) transcription factors (TFs) act as crucial regulators in various biological processes and stress responses in plants. Currently, bZIP family members and their functions remain elusive in the green unicellular algae Chlamydomonas reinhardtii, an important model organism for molecular investigation with genetic engineering aimed at increasing lipid yields for better biodiesel production. In this study, a total of 17 C. reinhardtii bZIP (CrebZIP) TFs containing typical bZIP structure were identified by a genome-wide analysis. Analysis of the CrebZIP protein physicochemical properties, phylogenetic tree, conserved domain, and secondary structure were conducted. CrebZIP gene structures and their chromosomal assignment were also analyzed. Physiological and photosynthetic characteristics of C. reinhardtii under salt stress were exhibited as lower cell growth and weaker photosynthesis, but increased lipid accumulation. Meanwhile, the expression profiles of six CrebZIP genes were induced to change significantly during salt stress, indicating that certain CrebZIPs may play important roles in mediating photosynthesis and lipid accumulation of microalgae in response to stresses. The present work provided a valuable foundation for functional dissection of CrebZIPs, benefiting the development of better strategies to engineer the regulatory network in microalgae for enhancing biofuel and biomass production.
Collapse
|
22
|
Fields FJ, Ostrand JT, Mayfield SP. Fed-batch mixotrophic cultivation of Chlamydomonas reinhardtii for high-density cultures. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Arora N, Pienkos PT, Pruthi V, Poluri KM, Guarnieri MT. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol Adv 2018; 36:1274-1292. [PMID: 29678388 DOI: 10.1016/j.biotechadv.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023]
Abstract
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Philip T Pienkos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Michael T Guarnieri
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
24
|
de Jaeger L, Carreres BM, Springer J, Schaap PJ, Eggink G, Martins Dos Santos VAP, Wijffels RH, Martens DE. Neochloris oleoabundans is worth its salt: Transcriptomic analysis under salt and nitrogen stress. PLoS One 2018; 13:e0194834. [PMID: 29652884 PMCID: PMC5898717 DOI: 10.1371/journal.pone.0194834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 11/19/2022] Open
Abstract
Neochloris oleoabundans is an oleaginous microalgal species that can be cultivated in fresh water as well as salt water. Using salt water gives the opportunity to reduce production costs and the fresh water footprint for large scale cultivation. Production of triacylglycerols (TAG) usually includes a biomass growth phase in nitrogen-replete conditions followed by a TAG accumulation phase under nitrogen-deplete conditions. This is the first report that provides insight in the saline resistance mechanism of a fresh water oleaginous microalgae. To better understand the osmoregulatory mechanism of N. oleoabundans during growth and TAG accumulating conditions, the transcriptome was sequenced under four different conditions: fresh water nitrogen-replete and -deplete conditions, and salt water (525 mM dissolved salts, 448mM extra NaCl) nitrogen-replete and -deplete conditions. In this study, several pathways are identified to be responsible for salt water adaptation of N. oleoabundans under both nitrogen-replete and -deplete conditions. Proline and the ascorbate-glutathione cycle seem to be of importance for successful osmoregulation in N. oleoabundans. Genes involved in Proline biosynthesis were found to be upregulated in salt water. This was supported by Nuclear magnetic resonance (NMR) spectroscopy, which indicated an increase in proline content in the salt water nitrogen-replete condition. Additionally, the lipid accumulation pathway was studied to gain insight in the gene regulation in the first 24 hours after nitrogen was depleted. Oil accumulation is increased under nitrogen-deplete conditions in a comparable way in both fresh and salt water. The mechanism behind the biosynthesis of compatible osmolytes can be used to improve N. oleoabundans and other industrially relevant microalgal strains to create a more robust and sustainable production platform for microalgae derived products in the future.
Collapse
Affiliation(s)
- Lenny de Jaeger
- Bioprocess Engineering and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| | - Benoit M. Carreres
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan Springer
- Food and Biobased Research and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerrit Eggink
- Bioprocess Engineering and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
- Food and Biobased Research and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor A. P. Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Rene H. Wijffels
- Bioprocess Engineering and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
- Nord University, Bodø, Norway
| | - Dirk E. Martens
- Bioprocess Engineering and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Li X, Yuan Y, Cheng D, Gao J, Kong L, Zhao Q, Wei W, Sun Y. Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt. BIORESOURCE TECHNOLOGY 2018; 250:495-504. [PMID: 29197772 DOI: 10.1016/j.biortech.2017.11.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 05/10/2023]
Abstract
Enhancement of stress tolerance to high concentration of salt and CO2 is beneficial for CO2 capture by microalgae. Adaptive evolution was performed for improving the tolerance of a freshwater strain, Chlorella sp. AE10, to 30 g/L salt. A resulting strain denoted as Chlorella sp. S30 was obtained after 46 cycles (138 days). The stress tolerance mechanism was analyzed by comparative transcriptomic analysis. Although the evolved strain could tolerate 30 g/L salt, high salinity caused loss to photosynthesis, oxidative phosphorylation, fatty acid biosynthesis and tyrosine metabolism. The related genes of antioxidant enzymes, CO2 fixation, amino acid biosynthesis, central carbon metabolism and ABC transporter proteins were up-regulated. Besides the up-regulation of several genes in Calvin-Benson cycle, they were also identified in C4 photosynthetic pathway and crassulacean acid metabolism pathway. They were essential for the survival and CO2 fixation of Chlorella sp. S30 under 30 g/L salt and 10% CO2.
Collapse
Affiliation(s)
- Xuyang Li
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Yizhong Yuan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Dujia Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Juan Gao
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Lingzhao Kong
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Quanyu Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| | - Wei Wei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuhan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
26
|
Jiang Y, Xiao P, Shao Q, Qin H, Hu Z, Lei A, Wang J. Metabolic responses to ethanol and butanol in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:239. [PMID: 29075323 PMCID: PMC5646117 DOI: 10.1186/s13068-017-0931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Microalgae have been demonstrated to be among the most promising phototrophic species for producing renewable biofuels and chemicals. Ethanol and butanol are clean energy sources with good chemical and physical properties as alternatives to gasoline. However, biosynthesis of these two biofuels has not been achieved due to low tolerance of algal cells to ethanol or butanol. RESULTS With an eye to circumventing these problems in the future and engineering the robust alcohol-producing microalgal hosts, we investigated the metabolic responses of the model green alga Chlamydomonas reinhardtii to ethanol and butanol. Using a quantitative proteomics approach with iTRAQ-LC-MS/MS technologies, we detected the levels of 3077 proteins; 827 and 730 of which were differentially regulated by ethanol and butanol, respectively, at three time points. In particular, 41 and 59 proteins were consistently regulated during at least two sampling times. Multiple metabolic processes were affected by ethanol or butanol, and various stress-related proteins, transporters, cytoskeletal proteins, and regulators were induced as the major protection mechanisms against toxicity of the organic solvents. The most highly upregulated butanol response protein was Cre.770 peroxidase. CONCLUSIONS The study is the first comprehensive view of the metabolic mechanisms employed by C. reinhardtii to defend against ethanol or butanol toxicity. Moreover, the proteomic analysis provides a resource for investigating potential gene targets for engineering microalgae to achieve efficient biofuel production.
Collapse
Affiliation(s)
- Yongguang Jiang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Peng Xiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Qing Shao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen, 518060 People’s Republic of China
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
27
|
Proteomic Analysis of the Chlorophyta Dunaliella New Strain AL-1 Revealed Global Changes of Metabolism during High Carotenoid Production. Mar Drugs 2017; 15:md15090293. [PMID: 28930152 PMCID: PMC5618432 DOI: 10.3390/md15090293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 01/09/2023] Open
Abstract
The green microalgae Dunaliella genus is known for the production of high added value molecules. In this study, strain AL-1 was isolated from the Sebkha of Sidi El Hani (Sousse, Tunisia). This isolate was identified both morphologically and genetically via 18S rRNA gene sequence as a member of the genus Dunaliella. Strain AL-1 was found to be closely related to Dunaliella salina, Dunaliella quartolecta and Dunaliella polymorpha with more than 97% similarity. Response surface methodology was used to maximize carotenoid production by strain AL-1 by optimizing its growth conditions. The highest carotenoid content was obtained at salinity: 51, light intensity: 189.89 μmol photons·m-2·s-1, and nitrogen: 60 mg·L-1. Proteomic profiling, using two-dimensional gel electrophoresis, was performed from standard and optimized cultures. We detected 127 protein spots which were significantly differentially expressed between standard and optimized cultures. Among them 16 protein spots were identified with mass spectrometry and grouped into different functional categories using KEGG (Kyoto Encyclopedia of Genes and Genomes) such as photosynthetic Calvin cycle, regulation/defense, energy metabolism, glycolysis, and cellular processes. The current study could be of great interest in providing information on the effect of stressful conditions in microalgae carotenoid production.
Collapse
|
28
|
Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. MOLECULAR PLANT 2017; 10:1107-1125. [PMID: 28739495 DOI: 10.1016/j.molp.2017.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adeline Mauriès
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
29
|
Morales-Sánchez D, Kim Y, Terng EL, Peterson L, Cerutti H. A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1079-1092. [PMID: 28273364 DOI: 10.1111/tpj.13530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/06/2017] [Accepted: 02/28/2017] [Indexed: 05/20/2023]
Abstract
Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNA-mediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes.
Collapse
Affiliation(s)
- Daniela Morales-Sánchez
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yeongho Kim
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ee Leng Terng
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Laura Peterson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
30
|
A Method for Microalgae Proteomics Analysis Based on Modified Filter-Aided Sample Preparation. Appl Biochem Biotechnol 2017; 183:923-930. [DOI: 10.1007/s12010-017-2473-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
31
|
Rai V, Muthuraj M, Gandhi MN, Das D, Srivastava S. Real-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae. Sci Rep 2017; 7:45732. [PMID: 28378827 PMCID: PMC5381106 DOI: 10.1038/srep45732] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
To understand the post-transcriptional molecular mechanisms attributing to oleaginousness in microalgae challenged with nitrogen starvation (N-starvation), the longitudinal proteome dynamics of Chlorella sp. FC2 IITG was investigated using multipronged quantitative proteomics and multiple reaction monitoring assays. Physiological data suggested a remarkably enhanced lipid accumulation with concomitant reduction in carbon flux towards carbohydrate, protein and chlorophyll biosynthesis. The proteomics-based investigations identified the down-regulation of enzymes involved in chlorophyll biosynthesis (porphobilinogen deaminase) and photosynthetic carbon fixation (sedoheptulose-1,7 bisphosphate and phosphoribulokinase). Profound up-regulation of hydroxyacyl-ACP dehydrogenase and enoyl-ACP reductase ascertained lipid accumulation. The carbon skeletons to be integrated into lipid precursors were regenerated by glycolysis, β-oxidation and TCA cycle. The enhanced expression of glycolysis and pentose phosphate pathway enzymes indicates heightened energy needs of FC2 cells for the sustenance of N-starvation. FC2 cells strategically reserved nitrogen by incorporating it into the TCA-cycle intermediates to form amino acids; particularly the enzymes involved in the biosynthesis of glutamate, aspartate and arginine were up-regulated. Regulation of arginine, superoxide dismutase, thioredoxin-peroxiredoxin, lipocalin, serine-hydroxymethyltransferase, cysteine synthase, and octanoyltransferase play a critical role in maintaining cellular homeostasis during N-starvation. These findings may provide a rationale for genetic engineering of microalgae, which may enable synchronized biomass and lipid synthesis.
Collapse
Affiliation(s)
- Vineeta Rai
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Muthusivaramapandian Muthuraj
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mayuri N. Gandhi
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debasish Das
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| |
Collapse
|
32
|
Vidal-Meireles A, Neupert J, Zsigmond L, Rosado-Souza L, Kovács L, Nagy V, Galambos A, Fernie AR, Bock R, Tóth SZ. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase. THE NEW PHYTOLOGIST 2017; 214:668-681. [PMID: 28112386 DOI: 10.1111/nph.14425] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/04/2016] [Indexed: 05/22/2023]
Abstract
Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and 1 O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.
Collapse
Affiliation(s)
- André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Anikó Galambos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
33
|
Wei S, Bian Y, Zhao Q, Chen S, Mao J, Song C, Cheng K, Xiao Z, Zhang C, Ma W, Zou H, Ye M, Dai S. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics. FRONTIERS IN PLANT SCIENCE 2017; 8:810. [PMID: 28588593 PMCID: PMC5441111 DOI: 10.3389/fpls.2017.00810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/30/2017] [Indexed: 05/05/2023]
Abstract
Palmella stage is critical for some unicellular algae to survive in extreme environments. The halotolerant algae Dunaliella salina is a good single-cell model for studying plant adaptation to high salinity. To investigate the molecular adaptation mechanism in salinity shock-induced palmella formation, we performed a comprehensive physiological, proteomics and phosphoproteomics study upon palmella formation of D. salina using dimethyl labeling and Ti4+-immobilized metal ion affinity chromatography (IMAC) proteomic approaches. We found that 151 salinity-responsive proteins and 35 salinity-responsive phosphoproteins were involved in multiple signaling and metabolic pathways upon palmella formation. Taken together with photosynthetic parameters and enzyme activity analyses, the patterns of protein accumulation and phosphorylation level exhibited the mechanisms upon palmella formation, including dynamics of cytoskeleton and cell membrane curvature, accumulation and transport of exopolysaccharides, photosynthesis and energy supplying (i.e., photosystem II stability and activity, cyclic electron transport, and C4 pathway), nuclear/chloroplastic gene expression regulation and protein processing, reactive oxygen species homeostasis, and salt signaling transduction. The salinity-responsive protein-protein interaction (PPI) networks implied that signaling and protein synthesis and fate are crucial for modulation of these processes. Importantly, the 3D structure of phosphoprotein clearly indicated that the phosphorylation sites of eight proteins were localized in the region of function domain.
Collapse
Affiliation(s)
- Sijia Wei
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Alkali Soil Natural Environmental Science Center, Ministry of Education, Northeast Forestry UniversityHarbin, China
| | - Yangyang Bian
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Qi Zhao
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, Unites States
| | - Jiawei Mao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Chunxia Song
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Kai Cheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Zhen Xiao
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Chuanfang Zhang
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Weimin Ma
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Mingliang Ye
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
- *Correspondence: Mingliang Ye
| | - Shaojun Dai
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Alkali Soil Natural Environmental Science Center, Ministry of Education, Northeast Forestry UniversityHarbin, China
- College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
- Shaojun Dai
| |
Collapse
|
34
|
Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: Technologies and Their Applications. J Chromatogr Sci 2016; 55:182-196. [PMID: 28087761 DOI: 10.1093/chromsci/bmw167] [Citation(s) in RCA: 483] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 07/25/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Proteomics involves the applications of technologies for the identification and quantification of overall proteins present content of a cell, tissue or an organism. It supplements the other "omics" technologies such as genomic and transcriptomics to expound the identity of proteins of an organism, and to cognize the structure and functions of a particular protein. Proteomics-based technologies are utilized in various capacities for different research settings such as detection of various diagnostic markers, candidates for vaccine production, understanding pathogenicity mechanisms, alteration of expression patterns in response to different signals and interpretation of functional protein pathways in different diseases. Proteomics is practically intricate because it includes the analysis and categorization of overall protein signatures of a genome. Mass spectrometry with LC-MS-MS and MALDI-TOF/TOF being widely used equipment is the central among current proteomics. However, utilization of proteomics facilities including the software for equipment, databases and the requirement of skilled personnel substantially increase the costs, therefore limit their wider use especially in the developing world. Furthermore, the proteome is highly dynamic because of complex regulatory systems that control the expression levels of proteins. This review efforts to describe the various proteomics approaches, the recent developments and their application in research and analysis.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Madiha Basit
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan .,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
35
|
Ahmad P, Abdel Latef AAH, Rasool S, Akram NA, Ashraf M, Gucel S. Role of Proteomics in Crop Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1336. [PMID: 27660631 PMCID: PMC5014855 DOI: 10.3389/fpls.2016.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Plants often experience various biotic and abiotic stresses during their life cycle. The abiotic stresses include mainly drought, salt, temperature (low/high), flooding and nutritional deficiency/excess which hamper crop growth and yield to a great extent. In view of a projection 50% of the crop loss is attributable to abiotic stresses. However, abiotic stresses cause a myriad of changes in physiological, molecular and biochemical processes operating in plants. It is now widely reported that several proteins respond to these stresses at pre- and post-transcriptional and translational levels. By knowing the role of these stress inducible proteins, it would be easy to comprehensively expound the processes of stress tolerance in plants. The proteomics study offers a new approach to discover proteins and pathways associated with crop physiological and stress responses. Thus, studying the plants at proteomic levels could help understand the pathways involved in stress tolerance. Furthermore, improving the understanding of the identified key metabolic proteins involved in tolerance can be implemented into biotechnological applications, regarding recombinant/transgenic formation. Additionally, the investigation of identified metabolic processes ultimately supports the development of antistress strategies. In this review, we discussed the role of proteomics in crop stress tolerance. We also discussed different abiotic stresses and their effects on plants, particularly with reference to stress-induced expression of proteins, and how proteomics could act as vital biotechnological tools for improving stress tolerance in plants.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, Sri Pratap CollegeSrinagar, India
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| | - Arafat A. H. Abdel Latef
- Department of Botany, Faculty of Science, South Valley UniversityQena, Egypt
- Department of Biology, College of Applied Medical Sciences, Taif UniversityTurubah, Saudi Arabia
| | | | - Nudrat A. Akram
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
36
|
Batista Silva W, Daloso DM, Fernie AR, Nunes-Nesi A, Araújo WL. Can stable isotope mass spectrometry replace radiolabelled approaches in metabolic studies? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:59-69. [PMID: 27297990 DOI: 10.1016/j.plantsci.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 05/03/2023]
Abstract
Metabolic pathways and the key regulatory points thereof can be deduced using isotopically labelled substrates. One prerequisite is the accurate measurement of the labeling pattern of targeted metabolites. The subsequent estimation of metabolic fluxes following incubation in radiolabelled substrates has been extensively used. Radiolabelling is a sensitive approach and allows determination of total label uptake since the total radiolabel content is easy to detect. However, the incubation of cells, tissues or the whole plant in a stable isotope enriched environment and the use of either mass spectrometry or nuclear magnetic resonance techniques to determine label incorporation within specific metabolites offers the possibility to readily obtain metabolic information with higher resolution. It additionally also offers an important complement to other post-genomic strategies such as metabolite profiling providing insights into the regulation of the metabolic network and thus allowing a more thorough description of plant cellular function. Thus, although safety concerns mean that stable isotope feeding is generally preferred, the techniques are in truth highly complementary and application of both approaches in tandem currently probably provides the best route towards a comprehensive understanding of plant cellular metabolism.
Collapse
Affiliation(s)
- Willian Batista Silva
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Adriano Nunes-Nesi
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| |
Collapse
|
37
|
Rai V, Karthikaichamy A, Das D, Noronha S, Wangikar PP, Srivastava S. Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:387-99. [DOI: 10.1089/omi.2016.0065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vineeta Rai
- Department of Biosciences and Bioengineering, Proteomics Laboratory, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Debasish Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
| | - Santosh Noronha
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pramod P. Wangikar
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Proteomics Laboratory, Indian Institute of Technology Bombay, Mumbai, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
38
|
Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Zaffagnini M, De Mia M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P. Protein S-nitrosylation in photosynthetic organisms: A comprehensive overview with future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:952-66. [PMID: 26861774 DOI: 10.1016/j.bbapap.2016.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The free radical nitric oxide (NO) and derivative reactive nitrogen species (RNS) play essential roles in cellular redox regulation mainly through protein S-nitrosylation, a redox post-translational modification in which specific cysteines are converted to nitrosothiols. SCOPE OF VIEW This review aims to discuss the current state of knowledge, as well as future perspectives, regarding protein S-nitrosylation in photosynthetic organisms. MAJOR CONCLUSIONS NO, synthesized by plants from different sources (nitrite, arginine), provides directly or indirectly the nitroso moiety of nitrosothiols. Biosynthesis, reactivity and scavenging systems of NO/RNS, determine the NO-based signaling including the rate of protein nitrosylation. Denitrosylation reactions compete with nitrosylation in setting the levels of nitrosylated proteins in vivo. GENERAL SIGNIFICANCE Based on a combination of proteomic, biochemical and genetic approaches, protein nitrosylation is emerging as a pervasive player in cell signaling networks. Specificity of protein nitrosylation and integration among different post-translational modifications are among the major challenges for future experimental studies in the redox biology field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- M Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - M De Mia
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S Morisse
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - N Di Giacinto
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - C H Marchand
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - A Maes
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S D Lemaire
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - P Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
40
|
Turnover rates in microorganisms by laser ablation electrospray ionization mass spectrometry and pulse-chase analysis. Anal Chim Acta 2015; 902:1-7. [PMID: 26703248 DOI: 10.1016/j.aca.2015.08.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 12/20/2022]
Abstract
Biochemical processes rely on elaborate networks containing thousands of compounds participating in thousands of reaction. Rapid turnover of diverse metabolites and lipids in an organism is an essential part of homeostasis. It affects energy production and storage, two important processes utilized in bioengineering. Conventional approaches to simultaneously quantify a large number of turnover rates in biological systems are currently not feasible. Here we show that pulse-chase analysis followed by laser ablation electrospray ionization mass spectrometry (LAESI-MS) enable the simultaneous and rapid determination of metabolic turnover rates. The incorporation of ion mobility separation (IMS) allowed an additional dimension of analysis, i.e., the detection and identification of isotopologs based on their collision cross sections. We demonstrated these capabilities by determining metabolite, lipid, and peptide turnover in the photosynthetic green algae, Chlamydomonas reinhardtii, in the presence of (15)N-labeled ammonium chloride as the main nitrogen source. Following the reversal of isotope patterns in the chase phase by LAESI-IMS-MS revealed the turnover rates and half-lives for biochemical species with a wide range of natural concentrations, e.g., chlorophyll metabolites, lipids, and peptides. For example, the half-lives of lyso-DGTS(16:0) and DGTS(18:3/16:0), t1/2 = 43.6 ± 4.5 h and 47.6 ± 2.2 h, respectively, provided insight into lipid synthesis and degradation in this organism. Within the same experiment, half-lives for chlorophyll a, t1/2 = 24.1 ± 2.2 h, and a 2.8 kDa peptide, t1/2 = 10.4 ± 3.6 h, were also determined.
Collapse
|
41
|
Raven JA. Implications of mutation of organelle genomes for organelle function and evolution. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5639-50. [PMID: 26077836 DOI: 10.1093/jxb/erv298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Organelle genomes undergo more variation, including that resulting from damage, than eukaryotic nuclear genomes, or bacterial genomes, under the same conditions. Recent advances in characterizing the changes to genomes of chloroplasts and mitochondria of Zea mays should, when applied more widely, help our understanding of how damage to organelle genomes relates to how organelle function is maintained through the life of individuals and in succeeding generations. Understanding of the degree of variation in the changes to organelle DNA and its repair among photosynthetic organisms might help to explain the variations in the rate of nucleotide substitution among organelle genomes. Further studies of organelle DNA variation, including that due to damage and its repair might also help us to understand why the extent of DNA turnover in the organelles is so much greater than that in their bacterial (cyanobacteria for chloroplasts, proteobacteria for mitochondria) relatives with similar rates of production of DNA-damaging reactive oxygen species. Finally, from the available data, even the longest-lived organelle-encoded proteins, and the RNAs needed for their synthesis, are unlikely to maintain organelle function for much more than a week after the complete loss of organelle DNA.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK †School of Plant Biology, University of Western Australia, M048, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
42
|
Ishihara H, Obata T, Sulpice R, Fernie AR, Stitt M. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein. PLANT PHYSIOLOGY 2015; 168:74-93. [PMID: 25810096 PMCID: PMC4424029 DOI: 10.1104/pp.15.00209] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/25/2015] [Indexed: 05/07/2023]
Abstract
Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied (13)CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%-4% d(-1)), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
43
|
Takouridis SJ, Tribe DE, Gras SL, Martin GJO. The selective breeding of the freshwater microalga Chlamydomonas reinhardtii for growth in salinity. BIORESOURCE TECHNOLOGY 2015; 184:18-22. [PMID: 25466995 DOI: 10.1016/j.biortech.2014.10.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 05/13/2023]
Abstract
The potential for Chlamydomonas reinhardtii to be utilized for biofuel production was strengthened by developing it for growth in elevated salinity via the selective breeding method of genome shuffling. A population was constructed via random mutagenesis and subjected to multiple rounds of sex and growth in increasing salinity. This sexual line was capable of growth in up to 700 mM NaCl, unlike its progenitor, which could only grow in 300 mM NaCl. An asexual control line was capable of growth in 500 mM NaCl. Palmelloid aggregations increased in size and the concentration of final biomass decreased as a function of NaCl concentration, which poses considerations for future strain development. The sexual line maintained sexual efficiencies of up to 50% over the course of selection. This investigation achieved significant strain improvement of C. reinhardtii and demonstrated the clear advantage of its ability to participate in laboratory controlled and reproducible high efficiency sex.
Collapse
Affiliation(s)
- Simon J Takouridis
- Department of Chemical and Biomolecular Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - David E Tribe
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sally L Gras
- Department of Chemical and Biomolecular Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia; The ARC Dairy Innovation Hub and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Department of Chemical and Biomolecular Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Kuich PHJL, Hoffmann N, Kempa S. Maui-VIA: A User-Friendly Software for Visual Identification, Alignment, Correction, and Quantification of Gas Chromatography-Mass Spectrometry Data. Front Bioeng Biotechnol 2015; 2:84. [PMID: 25654076 PMCID: PMC4301187 DOI: 10.3389/fbioe.2014.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/17/2014] [Indexed: 02/01/2023] Open
Abstract
A current bottleneck in GC–MS metabolomics is the processing of raw machine data into a final datamatrix that contains the quantities of identified metabolites in each sample. While there are many bioinformatics tools available to aid the initial steps of the process, their use requires both significant technical expertise and a subsequent manual validation of identifications and alignments if high data quality is desired. The manual validation is tedious and time consuming, becoming prohibitively so as sample numbers increase. We have, therefore, developed Maui-VIA, a solution based on a visual interface that allows experts and non-experts to simultaneously and quickly process, inspect, and correct large numbers of GC–MS samples. It allows for the visual inspection of identifications and alignments, facilitating a unique and, due to its visualization and keyboard shortcuts, very fast interaction with the data. Therefore, Maui-Via fills an important niche by (1) providing functionality that optimizes the component of data processing that is currently most labor intensive to save time and (2) lowering the threshold of expertise required to process GC–MS data. Maui-VIA projects are initiated with baseline-corrected raw data, peaklists, and a database of metabolite spectra and retention indices used for identification. It provides functionality for retention index calculation, a targeted library search, the visual annotation, alignment, correction interface, and metabolite quantification, as well as the export of the final datamatrix. The high quality of data produced by Maui-VIA is illustrated by its comparison to data attained manually by an expert using vendor software on a previously published dataset concerning the response of Chlamydomonas reinhardtii to salt stress. In conclusion, Maui-VIA provides the opportunity for fast, confident, and high-quality data processing validation of large numbers of GC–MS samples by non-experts.
Collapse
Affiliation(s)
- P Henning J L Kuich
- Integrative Proteomics and Metabolomics, Berlin Institute of Health , Berlin , Germany
| | - Nils Hoffmann
- Genome Informatics, Faculty of Technology, CeBiTec, Bielefeld University , Bielefeld , Germany
| | - Stefan Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute of Health , Berlin , Germany ; Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology/Max Delbrück Center for Molecular Medicine , Berlin , Germany
| |
Collapse
|
45
|
Recuenco-Muñoz L, Offre P, Valledor L, Lyon D, Weckwerth W, Wienkoop S. Targeted quantitative analysis of a diurnal RuBisCO subunit expression and translation profile in Chlamydomonas reinhardtii introducing a novel Mass Western approach. J Proteomics 2014; 113:143-53. [PMID: 25301535 DOI: 10.1016/j.jprot.2014.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 01/12/2023]
Abstract
UNLABELLED RuBisCO catalyzes the rate-limiting step of CO2 fixation in photosynthesis. Hypothetical mechanisms for the regulation of rbcL and rbcS gene expression assume that both large (LSU) and small (SSU) RuBisCO subunit proteins (RSUs) are present in equimolar amounts to fit the 1:1 subunit stoichiometry of the holoenzyme. However, the actual quantities of the RSUs have never been determined in any photosynthetic organism. In this study the absolute amount of rbc transcripts and RSUs was quantified in Chlamydomonas reinhardtii grown during a diurnal light/dark cycle. A novel approach utilizing more reliable protein stoichiometry quantification is introduced. The rbcL:rbcS transcript and protein ratios were both 5:1 on average during the diurnal time course, indicating that SSU is the limiting factor for the assembly of the holoenzyme. The oscillation of the RSUs was 9h out of phase relative to the transcripts. The amount of rbc transcripts was at its maximum in the dark while that of RSUs was at its maximum in the light phase suggesting that translation of the rbc transcripts is activated by light as previously hypothesized. A possible post-translational regulation that might be involved in the accumulation of a 37-kDa N-terminal LSU fragment during the light phase is discussed. BIOLOGICAL SIGNIFICANCE A novel MS based approach enabling the exact stoichiometric analysis and absolute quantification of protein complexes is presented in this article. The application of this method revealed new insights in RuBisCO subunit dynamics.
Collapse
Affiliation(s)
- Luis Recuenco-Muñoz
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Pierre Offre
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Luis Valledor
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David Lyon
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
46
|
Hemamalini R, Khare S. A proteomic approach to understand the role of the outer membrane porins in the organic solvent-tolerance of Pseudomonas aeruginosa PseA. PLoS One 2014; 9:e103788. [PMID: 25089526 PMCID: PMC4121210 DOI: 10.1371/journal.pone.0103788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/07/2014] [Indexed: 01/09/2023] Open
Abstract
Solvent-tolerant microbes have the unique ability to thrive in presence of organic solvents. The present study describes the effect of increasing hydrophobicity (log Pow values) of organic solvents on the outer membrane proteome of the solvent-tolerant Pseudomonas aeruginosa PseA cells. The cells were grown in a medium containing 33% (v/v) alkanes of increasing log Pow values. The outer membrane proteins were extracted by alkaline extraction from the late log phase cells and changes in the protein expression were studied by 2-D gel electrophoresis. Seven protein spots showed significant differential expression in the solvent exposed cells. The tryptic digest of the differentially regulated proteins were identified by LC-ESI MS/MS. The identity of these proteins matched with porins OprD, OprE, OprF, OprH, Opr86, LPS assembly protein and A-type flagellin. The reported pI values of these proteins were in the range of 4.94-8.67 and the molecular weights were in the range of 19.5-104.5 kDa. The results suggest significant down-regulation of the A-type flagellin, OprF and OprD and up-regulation of OprE, OprH, Opr86 and LPS assembly protein in presence of organic solvents. OprF and OprD are implicated in antibiotic uptake and outer membrane stability, whereas A-type flagellin confers motility and chemotaxis. Up-regulated OprE is an anaerobically-induced porin while Opr86 is responsible for transport of small molecules and assembly of the outer membrane proteins. Differential regulation of the above porins clearly indicates their role in adaptation to solvent exposure.
Collapse
Affiliation(s)
- R. Hemamalini
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Sunil Khare
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
- * E-mail:
| |
Collapse
|
47
|
Wang Y, Wang N, Hao H, Guo Y, Zhen Y, Shi J, Wu R. A computational algorithm for functional clustering of proteome dynamics during development. Curr Genomics 2014; 15:237-43. [PMID: 24955031 PMCID: PMC4064563 DOI: 10.2174/1389202915666140407212147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/27/2013] [Accepted: 04/05/2014] [Indexed: 12/29/2022] Open
Abstract
Phenotypic traits, such as seed development, are a consequence of complex biochemical interactions among genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner remain elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during the course of trait development. The algorithm is built within the mixture-model framework in which each mixture component is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait development. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics during early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that coordinate with each other to determine seed development in this forest tree commercially and environmentally important to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any other biological processes in which protein abundance plays a key role.
Collapse
Affiliation(s)
- Yaqun Wang
- Center for Statistical Genetics, Pennsylvania State University, Hershey, PA 17033, USA
| | - Ningtao Wang
- Center for Statistical Genetics, Pennsylvania State University, Hershey, PA 17033, USA
| | - Han Hao
- Center for Statistical Genetics, Pennsylvania State University, Hershey, PA 17033, USA
| | - Yunqian Guo
- Center for Computational Biology, Beijing Forestry University, Beijing 100083, China
| | - Yan Zhen
- Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing 210037, China
| | - Rongling Wu
- Center for Statistical Genetics, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
48
|
Veyel D, Erban A, Fehrle I, Kopka J, Schroda M. Rationales and approaches for studying metabolism in eukaryotic microalgae. Metabolites 2014; 4:184-217. [PMID: 24957022 PMCID: PMC4101502 DOI: 10.3390/metabo4020184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 11/16/2022] Open
Abstract
The generation of efficient production strains is essential for the use of eukaryotic microalgae for biofuel production. Systems biology approaches including metabolite profiling on promising microalgal strains, will provide a better understanding of their metabolic networks, which is crucial for metabolic engineering efforts. Chlamydomonas reinhardtii represents a suited model system for this purpose. We give an overview to genetically amenable microalgal strains with the potential for biofuel production and provide a critical review of currently used protocols for metabolite profiling on Chlamydomonas. We provide our own experimental data to underpin the validity of the conclusions drawn.
Collapse
Affiliation(s)
- Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany.
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany.
| | - Ines Fehrle
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany.
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany.
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, Technical University of Kaiserslautern, Paul-Ehrlich-Str. 23, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
49
|
Stitt M, Gibon Y. Why measure enzyme activities in the era of systems biology? TRENDS IN PLANT SCIENCE 2014; 19:256-65. [PMID: 24332227 DOI: 10.1016/j.tplants.2013.11.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 05/22/2023]
Abstract
Information about the abundance and biological activities of proteins is essential to reveal how genes affect phenotypes. Over the past decade, mass spectrometry (MS)-based proteomics has revolutionized the identification and quantification of proteins, and the detection of post-translational modifications. Interpretation of proteomics data depends on information about the biological activities of proteins, which has created a bottleneck in research. This review focuses on enzymes in central metabolism. We examine the methods used for measuring enzyme activities, and discuss how these methods provide information about the kinetic and regulatory properties of enzymes, their turnover, and how this information can be integrated into metabolic models. We also discuss how robotized assays could enable the genetic networks that control enzyme abundance to be analyzed.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Yves Gibon
- INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, F-33883 Villenave d'Ornon, France
| |
Collapse
|
50
|
Nelson CJ, Li L, Millar AH. Quantitative analysis of protein turnover in plants. Proteomics 2014; 14:579-92. [DOI: 10.1002/pmic.201300240] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/02/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Clark J. Nelson
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| |
Collapse
|