1
|
Zheng W, Chen Y, Wang Y, Chen S, Xu XW. Genome-Wide Identification and Involvement in Response to Biotic and Abiotic Stresses of lncRNAs in Turbot ( Scophthalmus maximus). Int J Mol Sci 2023; 24:15870. [PMID: 37958851 PMCID: PMC10648414 DOI: 10.3390/ijms242115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in a variety of biological processes, including stress response. However, the number, characteristics and stress-related expression of lncRNAs in turbot are still largely unknown. In this study, a total of 12,999 lncRNAs were identified at the genome-wide level of turbot for the first time using 24 RNA-seq datasets. Sequence characteristic analyses of transcripts showed that lncRNA transcripts were shorter in average length, lower in average GC content and in average expression level as compared to the coding genes. Expression pattern analyses of lncRNAs in 12 distinct tissues showed that lncRNAs, especially lincRNA, exhibited stronger tissue-specific expression than coding genes. Moreover, 612, 1351, 1060, 875, 420 and 1689 differentially expressed (DE) lncRNAs under Vibrio anguillarum, Enteromyxum scophthalmi, and Megalocytivirus infection and heat, oxygen, and salinity stress conditions were identified, respectively. Among them, 151 and 62 lncRNAs showed differential expression under various abiotic and biotic stresses, respectively, and 11 lncRNAs differentially expressed under both abiotic and biotic stresses were selected as comprehensive stress-responsive lncRNA candidates. Furthermore, expression pattern analysis and qPCR validation both verified the comprehensive stress-responsive functions of these 11 lncRNAs. In addition, 497 significantly co-expressed target genes (correlation coefficient (R) > 0.7 and q-value < 0.05) for these 11 comprehensive stress-responsive lncRNA candidates were identified. Finally, GO and KEGG enrichment analyses indicated that these target genes were enriched mainly in molecular function, such as cytokine activity and active transmembrane transporter activity, in biological processes, such as response to stimulus and immune response, and in pathways, such as protein families: signaling and cellular processes, transporters and metabolism. These findings not only provide valuable reference resources for further research on the molecular basis and function of lncRNAs in turbot but also help to accelerate the progress of molecularly selective breeding of stress-resistant turbot strains or varieties.
Collapse
Affiliation(s)
- Weiwei Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
| | - Yadong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Yaning Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xi-wen Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
2
|
Zheng W, Xu X, Chen Y, Wang J, Zhang T, E Z, Chen S, Liu Y. Genome-Wide Identification, Molecular Characterization, and Involvement in Response to Abiotic and Biotic Stresses of the HSP70 Gene Family in Turbot ( Scophthalmus maximus). Int J Mol Sci 2023; 24:ijms24076025. [PMID: 37046999 PMCID: PMC10094059 DOI: 10.3390/ijms24076025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Heat shock proteins 70 (HSP70s) are known to play essential roles in organisms' response mechanisms to various environmental stresses. However, no systematic identification and functional analysis has been conducted for HSP70s in the turbot (Scophthalmus maximus), a commercially important worldwide flatfish. Herein, 16 HSP70 genes unevenly distributed on nine chromosomes were identified in the turbot at the genome-wide level. Analyses of gene structure, motif composition, and phylogenetic relationships provided valuable data on the HSP70s regarding their evolution, classification, and functional diversity. Expression profiles of the HSP70 genes under five different stresses were investigated by examining multiple RNA-seq datasets. Results showed that 10, 6, 8, 10, and 9 HSP70 genes showed significantly up- or downregulated expression after heat-induced, salinity-induced, and Enteromyxum scophthalmi, Vibrio anguillarum, and Megalocytivirus infection-induced stress, respectively. Among them, hsp70 (hspa1a), hspa1b, and hspa5 showed significant responses to each kind of induced stress, and qPCR analyses further validated their involvement in comprehensive anti-stress, indicating their involvement in organisms' anti-stress mechanisms. These findings not only provide new insights into the biological function of HSP70s in turbot adapting to various environmental stresses, but also contribute to the development of molecular-based selective breeding programs for the production of stress-resistant turbot strains in the aquaculture industry.
Collapse
Affiliation(s)
- Weiwei Zheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xiwen Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
| | - Jing Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Tingting Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zechen E
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
| | - Yingjie Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Chinese Academy of Fishery Sciences (CAFS), Beijing 100141, China
| |
Collapse
|
3
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
4
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Cai Z, Liu S, Wang W, Wang R, Miao X, Song P, Shan B, Wang L, Li Y, Lin L. Comparative transcriptome sequencing analysis of female and male Decapterus macrosoma. PeerJ 2022; 10:e14342. [PMID: 36389430 PMCID: PMC9651050 DOI: 10.7717/peerj.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Sexual growth dimorphism is a common phenomenon in teleost fish and has led to many reproductive strategies. Growth- and sex-related gene research in teleost fish would broaden our understanding of the process. In this study, transcriptome sequencing of shortfin scad Decapterus macrosoma was performed for the first time, and a high-quality reference transcriptome was constructed. After identification and assembly, a total of 58,475 nonredundant unigenes were obtained with an N50 length of 2,266 bp, and 28,174 unigenes were successfully annotated with multiple public databases. BUSCO analysis determined a level of 92.9% completeness for the assembled transcriptome. Gene expression analysis revealed 2,345 differentially expressed genes (DEGs) in the female and male D. macrosoma, 1,150 of which were female-biased DEGs, and 1,195 unigenes were male-biased DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were mainly involved in biological processes including protein synthesis, growth, rhythmic processes, immune defense, and vitellogenesis. Then, we identified many growth- and sex-related genes, including Igf, Fabps, EF-hand family genes, Zp3, Zp4 and Vg. In addition, a total of 19,573 simple sequence repeats (SSRs) were screened and identified from the transcriptome sequences. The results of this study can provide valuable information on growth- and sex-related genes and facilitate further exploration of the molecular mechanism of sexual growth dimorphism.
Collapse
Affiliation(s)
- Zizi Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Shigang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Rui Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xing Miao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Puqing Song
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Binbin Shan
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Longshan Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
6
|
Infection by the Parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) Suppresses the Immune System of Hybrid Tilapia. Microorganisms 2022; 10:microorganisms10101893. [DOI: 10.3390/microorganisms10101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Myxozoa (Cnidaria) is a large group of microscopic obligate endoparasites that can cause emerging diseases, affecting wild fish populations and fisheries. Recently, the myxozoan Myxobolus bejeranoi was found to infect the gills of hybrid tilapia (Nile tilapia (Oreochromis niloticus) × Jordan/blue tilapia (O. aureus)), causing high morbidity and mortality. Here, we used comparative transcriptomics to elucidate the molecular processes occurring in the fish host following infection by M. bejeranoi. Fish were exposed to pond water containing actinospores for 24 h and the effects of minor, intermediate, and severe infections on the sporulation site, the gills, and on the hematopoietic organs, head kidney and spleen, were compared. Enrichment analysis for GO and KEGG pathways indicated immune system activation in gills at severe infection, whereas in the head kidney a broad immune suppression included deactivation of cytokines and GATA3 transcription factor responsible for T helper cell differentiation. In the spleen, the cytotoxic effector proteins perforin and granzyme B were downregulated and insulin, which may function as an immunomodulatory hormone inducing systemic immune suppression, was upregulated. These findings suggest that M. bejeranoi is a highly efficient parasite that disables the defense mechanisms of its fish host hybrid tilapia.
Collapse
|
7
|
Identification of stress-related genes by co-expression network analysis based on the improved turbot genome. Sci Data 2022; 9:374. [PMID: 35768602 PMCID: PMC9243025 DOI: 10.1038/s41597-022-01458-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Turbot (Scophthalmus maximus), commercially important flatfish species, is widely cultivated in Europe and China. With the continuous expansion of the intensive breeding scale, turbot is exposed to various stresses, which greatly impedes the healthy development of turbot industry. Here, we present an improved high-quality chromosome-scale genome assembly of turbot using a combination of PacBio long-read and Illumina short-read sequencing technologies. The genome assembly spans 538.22 Mb comprising 27 contigs with a contig N50 size of 25.76 Mb. Annotation of the genome assembly identified 104.45 Mb repetitive sequences, 22,442 protein-coding genes and 3,345 ncRNAs. Moreover, a total of 345 stress responsive candidate genes were identified by gene co-expression network analysis based on 14 published stress-related RNA-seq datasets consisting of 165 samples. Significantly improved genome assembly and stress-related candidate gene pool will provide valuable resources for further research on turbot functional genome and stress response mechanism, as well as theoretical support for the development of molecular breeding technology for resistant turbot varieties. Measurement(s) | whole genome sequencing | Technology Type(s) | PacBio long-read and Illumina short-read sequencing technologies |
Collapse
|
8
|
Zhang D, Mohammed H, Ye Z, Rhodes MA, Thongda W, Zhao H, Jescovitch LN, Fuller SA, Davis DA, Peatman E. Transcriptomic profiles of Florida pompano (Trachinotus carolinus) gill following infection by the ectoparasite Amyloodiniumocellatum. FISH & SHELLFISH IMMUNOLOGY 2022; 125:171-179. [PMID: 35569776 DOI: 10.1016/j.fsi.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The dinoflagellate Amyloodinium ocellatum is an important pathogenic parasite infecting cultured marine and brackish water fishes worldwide. This includes cultured Florida pompano (Trachinotus carolinus), which is one of the most desirable marine food fish with high economic value in the USA. A. ocellatum infects fish gills and causes tissue damage, increased respiratory rate, reduced appetite, and mortality, especially in closed aquaculture systems. This study mimicked the natural infection of A. ocellatum in cultured pompano and conducted a transcriptomic comparison of gene expression in the gills of control and A. ocellatum infected fish to explore the molecular mechanisms of infection. RNA-seq data revealed 604 differentially expressed genes in the infected fish gills. The immunoglobulin genes (including IgM/T) augmentation and IL1 inflammation suppression were detected after infection. Genes involved in reactive oxygen species mediating parasite killing were also highly induced. However, excessive oxidants have been linked to oxidative tissue damage and apoptosis. Correspondingly, widespread down-regulation of collagen genes and growth factor deprivation indicated impaired tissue repair, and meanwhile the key executor of apoptosis, caspase-3 was highly expressed (25.02-fold) in infected fish. The infection also influenced the respiratory gas sensing and transport genes and established hypoxic conditions in the gill tissue. Additionally, food intake and lipid metabolism were also affected. Our work provides the transcriptome sequencing of Florida pompano and provides key insights into the acute pathogenesis of A. ocellatum. This information can be utilized for designing optimal disease surveillance strategies, future selection for host resistance, and development of novel therapeutic measures.
Collapse
Affiliation(s)
- Dongdong Zhang
- College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, PR China; School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Haitham Mohammed
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Melanie A Rhodes
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Honggang Zhao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren N Jescovitch
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - S Adam Fuller
- USDA, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, 2955 Highway 130 East, Stuttgart, AR, 72160, USA
| | - D Allen Davis
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
9
|
Sun JL, Jiang T, Gu Y, Song FB, Wen X, Luo J. Differential immune and metabolic responses underlie differences in the resistance of Siganus oramin and Trachinotus blochii to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2022; 120:166-179. [PMID: 34798286 DOI: 10.1016/j.fsi.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have demonstrated that Cryptocaryon irritans can efficiently propagate in golden pompano (Trachinotus blochii), especially under intensive high-density culture, which can lead to large-scale infection, bacterial invasion, and major economic losses. By contrast, Siganus oramin is less susceptible to C. irritans infection. Here, we artificially infected S. oramin and T. blochii with C. irritans. We then used RNA-seq to characterize the expression of genes in the gills of S. oramin and T. blochii at different times after infection, conducted bioinformatics analysis of relevant pathways, and compared the differentially expressed genes in the two species. The aim of this study was to enhance our understanding of host-parasite interactions to aid the development of effective prevention and treatment strategies for C. irritans. Infection with C. irritans induced the differential expression of a large number of genes in the gills of S. oramin, indicating that S. oramin may respond to C. irritans infection by modifying the expression of genes at the transcriptional level. Our research showed that the Toll-like receptor signaling pathway, Antigen processing and presentation, Complement and coagulation cascades, and Cytosolic DNA-sensing pathway are involved in the immune response of S. oramin and T. blochii to C. irritans infection. However, T. blochii has a weak ability to mobilize neutrophils to participate in defense against C. irritans infection and differs from S. oramin in its ability to induce specific immune responses. Because of gill tissue damage during infection, dissolved oxygen intake is reduced, which increases physiological and metabolic stress. The metabolic pathways of S. oramin and T. blochii significantly differed; specifically, the main pathways in S. oramin were related to glucose and lipid metabolism, and the main pathways in T. blochii were related to amino acid metabolism. This may reduce the efficiency of ATP biosynthesis in T. blochii and result in dysfunctional energy metabolism. Therefore, differential immune and metabolic responses underlie differences in the resistance of S. oramin and T. blochii to C. irritans.
Collapse
Affiliation(s)
- Jun Long Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Fei Biao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Xin Wen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| |
Collapse
|
10
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
11
|
Blood Transcriptomics of Turbot Scophthalmus maximus: A Tool for Health Monitoring and Disease Studies. Animals (Basel) 2021; 11:ani11051296. [PMID: 33946507 PMCID: PMC8147184 DOI: 10.3390/ani11051296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The analysis of blood gene expression is emerging as a relevant source of information about the health status of an organism. While these investigations are increasingly performed in human and terrestrial animals, their potential is still underexplored in fish pathology. The aim of this work was to analyze the blood transcriptional profile of a commercially important flatfish species, turbot (Scophthalmus maximus), in healthy and diseased specimens. The analysis of the most expressed genes in healthy fish indicated that turbot red blood cells have important immunological functions. In diseased fish, parasitized by a myxozoan, the blood analysis reflected a broad inhibition of the immune response followed by intense inflammatory activation in heavy infections. The results showed that turbot response appears delayed, dysregulated and ineffective in stopping the infection. Particularly, a proper development of the adaptive immune response was lacking. This study points out that blood gene expression profiling is a reliable tool for health monitoring, as well as to advance in the knowledge of fish immunity and diseases. Abstract Blood transcriptomics is emerging as a relevant tool to monitor the status of the immune system and assist in diagnosis, prognosis, treatment and pathogenesis studies of diseases. In fish pathology, the potential of transcriptome profiling of blood is still poorly explored. Here, RNA sequencing was applied to analyze the blood transcriptional profile of turbot (Scophthalmus maximus), the most important farmed flatfish. The study was conducted in healthy specimens and specimens parasitized by the myxozoan Enteromyxum scophthalmi, which causes one of the most devastating diseases in turbot aquaculture. The blood of healthy turbot showed a transcriptomic profile mainly related to erythrocyte gas transportation function, but also to antigen processing and presentation. In moderately infected turbot, the blood reflected a broad inhibition of the immune response. Particularly, down-regulation of the B cell receptor signaling pathway was shared with heavily parasitized fish, which showed larger transcriptomic changes, including the activation of the inflammatory response. Turbot response to enteromyxosis proved to be delayed, dysregulated and ineffective in stopping the infection. The study evinces that blood transcriptomics can contribute to a better understanding of the teleost immune system and serve as a reliable tool to investigate the physiopathological status of fish.
Collapse
|
12
|
Byadgi O, Massimo M, Dirks RP, Pallavicini A, Bron JE, Ireland JH, Volpatti D, Galeotti M, Beraldo P. Innate immune-gene expression during experimental amyloodiniosis in European seabass (Dicentrarchus labrax). Vet Immunol Immunopathol 2021; 234:110217. [PMID: 33647857 DOI: 10.1016/j.vetimm.2021.110217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 01/28/2023]
Abstract
The ectoparasite protozoan Amyloodinium ocellatum (AO) is the causative agent of amyloodiniosis in European seabass (ESB, Dicentrarchus labrax). There is a lack of information about basic molecular immune response mechanisms of ESB during AO infestation. Therefore, to compare gene expression between experimental AO-infested ESB tissues and uninfested ESB tissues (gills and head kidney) RNA-seq was adopted. The RNA-seq revealed multiple differentially expressed genes (DEG), namely 679 upregulated genes and 360 downregulated genes in the gills, and 206 upregulated genes and 170 downregulated genes in head kidney. In gills, genes related to the immune system (perforin, CC1) and protein binding were upregulated. Several genes involved in IFN related pathways were upregulated in the head kidney. Subsequently, to validate the DEG from amyloodiniosis, 26 ESB (mean weight 14 g) per tank in triplicate were bath challenged for 2 h with AO (3.5 × 106/tank; 70 dinospores/mL) under controlled conditions (26-28 °C and 34‰ salinity). As a control group (non-infested), 26 ESB per tank in triplicate were also used. Changes in the expression of innate immune genes in gills and head kidney at 2, 3, 5, 7 and 23 dpi were analysed using real-time PCR. The results indicated that the expression of cytokines (CC1, IL-8) and antimicrobial peptide (Hep) were strongly stimulated and reached a peak at 5 dpi in the early infestation stage, followed by a gradual reduction in the recovery stage (23 dpi). Noticeably, the immunoglobulin (IgM) expression was higher at 23 dpi compared to 7 dpi. Furthermore, in-situ hybridization showed positive signals of CC1 mRNA in AO infested gills compared to the control group. Altogether, chemokines were involved in the immune process under AO infestation and this evidence allows a better understanding of the immune response in European seabass during amyloodiniosis.
Collapse
Affiliation(s)
- Omkar Byadgi
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy.
| | - Michela Massimo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, the Netherlands
| | - Alberto Pallavicini
- Laboratory of Genetics, Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34126, Trieste, Italy; National Institute of Oceanography and Applied Geophysics, via Piccard 54, 34151, Trieste, Italy
| | - James E Bron
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Jacquie H Ireland
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Donatella Volpatti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| | - Marco Galeotti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| | - Paola Beraldo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100, Udine, Italy
| |
Collapse
|
13
|
Advances and Discoveries in Myxozoan Genomics. Trends Parasitol 2021; 37:552-568. [PMID: 33619004 DOI: 10.1016/j.pt.2021.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Myxozoans are highly diverse and globally distributed cnidarian endoparasites in freshwater and marine habitats. They have adopted a heteroxenous life cycle, including invertebrate and fish hosts, and have been associated with diseases in aquaculture and wild fish stocks. Despite their importance, genomic resources of myxozoans have proven difficult to obtain due to their miniaturized and derived genome character and close associations with fish tissues. The first 'omic' datasets have now become the main resource for a better understanding of host-parasite interactions, virulence, and diversity, but also the evolutionary history of myxozoans. In this review, we discuss recent genomic advances in the field and outline outstanding questions to be answered with continuous and improved efforts of generating myxozoan genomic data.
Collapse
|
14
|
Pleić IL, Bušelić I, Hrabar J, Šprung M, Bočina I, Mladineo I. In vivo and in vitro assessment of host-parasite interaction between the parasitic copepod Brachiella thynni (Copepoda; Lernaeopodidae) and the farmed Atlantic bluefin tuna (Thunnus thynnus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:814-822. [PMID: 32846241 DOI: 10.1016/j.fsi.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
The Atlantic bluefin tuna (ABFT; Thunnus thynnus) today represents one of the economically most important species for Croatian fisheries industry. Although the most diverse and abundant parasitofauna is usually found in the largest specimens of wild ABFT, the opposite was observed in captivity where parasite populations significantly decline by the end of the farming cycle. Copepod Brachiella thynni, is a skin parasite frequently parasitizing tuna, whose population also decreases in number throughout the rearing process. In order to better understand the immunity mechanisms underlying ABFT reaction to B. thynni infection, we studied expression profiles of immunity related genes; interleukin 1β (il1β), tumour necrosis factors (tnfα1, tnfα2), complement component 4 (c4) and caspase 3 (casp3), in peripheral blood leukocytes (PBLs) during in vitro stimulation by B. thynni protein extracts (i.e. antigens) and in infected tissues at B. thynni parasitation site. Finally, a histopathological analysis of semi-thin and ultra-thin sections of tissues surrounding B. thynii attachment site was performed to evaluate the severity of parasite-induced lesions and identify involved cell lineages. In vitro stimulation of ABFT PBLs with B. thynii antigens caused a dose-depended upregulation of selected genes, among which tnfα1 showed the highest induction by both concentrations of B. thynni protein extract. However, targeted genes were not significantly upregulated in the infected tissue. Also, no significant alterations in ultrastructure of epithelial layers surrounding B. thynii attachment site were noticed, except local tissue erosion, necrosis of squamous epithelium and proliferation of rodlet and goblet cells. Our results suggest that B. thynii has evolved strategies to successfully bypass both innate immune response and the connective-tissue proliferation processes. Therefore, the observed disappearance of this copepod by the end of the rearing process is more likely related to its limited lifespan on the host and its inability to complete the life cycle in the rearing cages, rather than host's reaction.
Collapse
Affiliation(s)
- Ivana Lepen Pleić
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000, Split, Croatia.
| | - Ivana Bušelić
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000, Split, Croatia
| | - Jerko Hrabar
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000, Split, Croatia
| | - Matilda Šprung
- Department of Chemistry, Faculty of Natural Sciences, University of Split, Ulica Ruđera Boškovića 33, 21000, Split, Croatia
| | - Ivana Bočina
- Department of Biology, Faculty of Sciences, University of Split, Ulica Ruđera Boškovića 33, 21000, Split, Croatia
| | - Ivona Mladineo
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000, Split, Croatia
| |
Collapse
|
15
|
Cui W, Ma A. Transcriptome analysis provides insights into the effects of myo-inositol on the turbot Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:691-704. [PMID: 32711153 DOI: 10.1016/j.fsi.2020.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Myo-inositol is an essential vitamin for most animals, and it can modulate multiple physiological functions. In this study, we performed transcriptome gene expression profiling of gill tissue from turbot Scophthalmus maximus fed different concentrations of myo-inositol (0, 300, 600, 900, 1200 mg/kg). Results of expression tendency analysis, Weighted Gene Co-Expression Network Analysis (WGCNA), integrated transcriptome analyses, and KEGG annotation analysis of all differentially expressed genes (DEGs) demonstrated that the cytokine-cytokine receptor interaction played a core role in effects of myo-inositol on turbot, which was followed by the Jak-STAT signaling pathway. The results of qRT-PCR also showed myo-inositol mediated the gene expression of the cytokine-cytokine receptor interaction and the Jak-STAT signaling pathway in turbot. The ELISA assay indicated that myo-inositol affected the concentration change of interleukins (IL-2 and IL-10). Consequently, the interleukins associated with immune functions in the cytokine-cytokine receptor interaction played a core role in the effects of myo-inositol on turbot, which was followed by the Jak-STAT signaling pathway. Additionally, 10 hub genes associated with myo-inositol-traits were identified via WGCNA.
Collapse
Affiliation(s)
- Wenxiao Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
16
|
The Teleost Thymus in Health and Disease: New Insights from Transcriptomic and Histopathological Analyses of Turbot, Scophthalmus maximus. BIOLOGY 2020; 9:biology9080221. [PMID: 32823553 PMCID: PMC7465915 DOI: 10.3390/biology9080221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
The thymus is a primary lymphoid organ that plays a pivotal role in the adaptive immune system. The immunobiology of the thymus in fish is considered to be similar to that of mammals, but it is actually poorly characterized in several cultured teleost species. In particular, while investigations in human and veterinary medicine have highlighted that the thymus can be affected by different pathological conditions, little is known about its response during disease in fish. To better understand the role of the thymus under physiological and pathological conditions, we conducted a study in turbot (Scophthalmus maximus), a commercially valuable flatfish species, combining transcriptomic and histopathological analyses. The myxozoan parasite Enteromyxum scophthalmi, which represents a major challenge to turbot production, was used as a model of infection. The thymus tissues of healthy fish showed overrepresented functions related to its immunological role in T-cell development and maturation. Large differences were observed between the transcriptomes of control and severely infected fish. Evidence of inflammatory response, apoptosis modulation, and declined thymic function associated with loss of cellularity was revealed by both genomic and morphopathological analyses. This study presents the first description of the turbot thymus transcriptome and provides novel insights into the role of this organ in teleosts’ immune responses.
Collapse
|
17
|
Mastrochirico-Filho VA, Hata ME, Kuradomi RY, de Freitas MV, Ariede RB, Pinheiro DG, Robledo D, Houston R, Hashimoto DT. Transcriptome Profiling of Pacu ( Piaractus mesopotamicus) Challenged With Pathogenic Aeromonas hydrophila: Inference on Immune Gene Response. Front Genet 2020; 11:604. [PMID: 32582300 PMCID: PMC7295981 DOI: 10.3389/fgene.2020.00604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Pacu (Piaractus mesopotamicus) is a Neotropical fish of major importance for South American aquaculture. Septicemia caused by Aeromonas hydrophila bacteria is currently considered a substantial threat for pacu aquaculture that have provoked infectious disease outbreaks with high economic losses. The understanding of molecular aspects on progress of A. hydrophila infection and pacu immune response is scarce, which have limited the development of genomic selection for resistance to this infection. The present study aimed to generate information on transcriptome of pacu in face of A. hydrophila infection, and compare the transcriptomic responses between two groups of time-series belonging to a disease resistance challenge, peak mortality (HM) and mortality plateau (PM) groups of individuals. Nine RNA sequencing (RNA-Seq) libraries were prepared from liver tissue of challenged individuals, generating ∼160 million 150 bp pair-end reads. After quality trimming/cleanup, these reads were assembled de novo generating 211,259 contigs. When the expression of genes from individuals of HM group were compared to individuals from control group, a total of 4,413 differentially expressed transcripts were found (2,000 upregulated and 2,413 downregulated candidate genes). Additionally, 433 transcripts were differentially expressed when individuals from MP group were compared with those in the control group (155 upregulated and 278 downregulated candidate genes). The resulting differentially expressed transcripts were clustered into the following functional categories: cytokines and signaling, epithelial protection, antigen processing and presentation, apoptosis, phagocytosis, complement system cascades and pattern recognition receptors. The proposed results revealing relevant differential gene expression on HM and PM groups which will contribute to a better understanding of the molecular defense mechanisms during A. hydrophila infection.
Collapse
Affiliation(s)
| | - Milene Elissa Hata
- Aquaculture Center, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | | | | | - Daniel Guariz Pinheiro
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Diego Robledo
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Houston
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
18
|
Ronza P, Estensoro I, Bermúdez R, Losada AP, Pérez-Cordón G, Pardo BG, Sitjà-Bobadilla A, Quiroga MI. Effects of Enteromyxum spp. (Myxozoa) infection in the regulation of intestinal E-cadherin: Turbot against gilthead sea bream. JOURNAL OF FISH DISEASES 2020; 43:337-346. [PMID: 31984535 DOI: 10.1111/jfd.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Enteromyxoses are relevant diseases for turbot and gilthead sea bream aquaculture. The myxozoan parasites invade the intestinal mucosa, causing a cachectic syndrome associated with intestinal barrier alteration; nonetheless, their pathological impact is different. Turbot infected by Enteromyxum scophthalmi develop more severe intestinal lesions, reaching mortality rates of 100%, whereas in E. leei-infected gilthead sea bream, the disease progresses slowly, and mortality rates are lower. The mechanisms underlying the different pathogenesis are still unclear. We studied the distribution and expression changes of E-cadherin, a highly conserved protein of the adherens junctions, in the intestine of both species by immunohistochemistry and quantitative PCR, using the same immunohistochemical protocol and common primers. The regular immunostaining pattern observed in control fish turned into markedly irregular in parasitized turbot, showing an intense immunoreaction at the host-parasite interface. Nevertheless, E-cadherin gene expression was not significantly modulated in this species. On the contrary, no evident changes in the protein distribution were noticed in gilthead sea bream, whereas a significant gene downregulation occurred in advanced infection. The results contribute to the understanding of the different host-parasite interactions in enteromyxoses. Host and parasite cells appear to establish diverse relationships in these species, which could underlie the different pathological picture.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Castellón, Spain
| | - Roberto Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Paula Losada
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Gregorio Pérez-Cordón
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Castellón, Spain
- Cryptosporidium Reference Unit, Public Health Wales, Singleton Hospital, Swansea, UK
| | - Belén G Pardo
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Mª Isabel Quiroga
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Housekeeping gene validation for RT-qPCR studies on synovial fibroblasts derived from healthy and osteoarthritic patients with focus on mechanical loading. PLoS One 2019; 14:e0225790. [PMID: 31809510 PMCID: PMC6897414 DOI: 10.1371/journal.pone.0225790] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Selection of appropriate housekeeping genes is essential for the validity of data normalization in reverse transcription quantitative PCR (RT-qPCR). Synovial fibroblasts (SF) play a mediating role in the development and progression of osteoarthritis (OA) pathogenesis, but there is no information on reliable housekeeping genes available. Therefore the goal of this study was to identify a set of reliable housekeeping genes suitable for studies of mechanical loading on SF from healthy and OA patients. Nine genes were evaluated towards expression stability and ranked according their relative stability determined by four different mathematical procedures (geNorm, NormFinder, BestKeeper and comparative ΔCq). We observed that RPLP0 (ribosomal protein, large, P0) and EEF1A1 (eukaryotic translation elongation factor 1 alpha 1) turned out to be the genes with the most stable expression in SF from non-OA or OA patients treated with or without mechanical loading. According to geNorm two genes are sufficient for normalization throughout. Expression of one tested target gene varied considerably, if normalized to different candidate housekeeping genes. Our study provides a tool for accurate and valid housekeeping gene selection in gene expression experiments on SF from healthy and OA patients with and without mechanical loading in consistent with the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines and additionally demonstrates the impact of proper housekeeping gene selection on the expression of the gene of interest.
Collapse
|
20
|
Bracamonte SE, Johnston PR, Monaghan MT, Knopf K. Gene expression response to a nematode parasite in novel and native eel hosts. Ecol Evol 2019; 9:13069-13084. [PMID: 31871630 PMCID: PMC6912882 DOI: 10.1002/ece3.5728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/19/2023] Open
Abstract
Invasive parasites are involved in population declines of new host species worldwide. The high susceptibilities observed in many novel hosts have been attributed to the lack of protective immunity to the parasites which native hosts acquired during their shared evolution. We experimentally infected Japanese eels (Anguilla japonica) and European eels (Anguilla anguilla) with Anguillicola crassus, a nematode parasite that is native to the Japanese eel and invasive in the European eel. We inferred gene expression changes in head kidney tissue from both species, using RNA-seq data to determine the responses at two time points during the early stages of infection (3 and 23 days postinfection). At both time points, the novel host modified the expression of a larger and functionally more diverse set of genes than the native host. Strikingly, the native host regulated immune gene expression only at the earlier time point and to a small extent while the novel host regulated these genes at both time points. A low number of differentially expressed immune genes, especially in the native host, suggest that a systemic immune response was of minor importance during the early stages of infection. Transcript abundance of genes involved in cell respiration was reduced in the novel host which may affect its ability to cope with harsh conditions and energetically demanding activities. The observed gene expression changes in response to a novel parasite that we observed in a fish follow a general pattern observed in amphibians and mammals, and suggest that the disruption of physiological processes, rather than the absence of an immediate immune response, is responsible for the higher susceptibility of the novel host.
Collapse
Affiliation(s)
- Seraina E. Bracamonte
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Faculty of Life SciencesHumboldt‐Universität zu BerlinBerlinGermany
| | - Paul R. Johnston
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Institut für BiologieFreie Universität BerlinBerlinGermany
| | - Michael T. Monaghan
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Institut für BiologieFreie Universität BerlinBerlinGermany
| | - Klaus Knopf
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Faculty of Life SciencesHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
21
|
Sudhagar A, Ertl R, Kumar G, El-Matbouli M. Transcriptome profiling of posterior kidney of brown trout, Salmo trutta, during proliferative kidney disease. Parasit Vectors 2019; 12:569. [PMID: 31783772 PMCID: PMC6884850 DOI: 10.1186/s13071-019-3823-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tetracapsuloides bryosalmonae is a myxozoan parasite which causes economically important and emerging proliferative kidney disease (PKD) in salmonids. Brown trout, Salmo trutta is a native fish species of Europe, which acts as asymptomatic carriers for T. bryosalmonae. There is only limited information on the molecular mechanism involved in the kidney of brown trout during T. bryosalmonae development. We employed RNA sequencing (RNA-seq) to investigate the global transcriptome changes in the posterior kidney of brown trout during T. bryosalmonae development. METHODS Brown trout were exposed to the spores of T. bryosalmonae and posterior kidneys were collected from both exposed and unexposed control fish. cDNA libraries were prepared from the posterior kidney and sequenced. Bioinformatics analysis was performed using standard pipeline of quality control, reference mapping, differential expression analysis, gene ontology, and pathway analysis. Quantitative real time PCR was performed to validate the transcriptional regulation of differentially expressed genes, and their correlation with RNA-seq data was statistically analyzed. RESULTS Transcriptome analysis identified 1169 differentially expressed genes in the posterior kidney of brown trout, out of which 864 genes (74%) were upregulated and 305 genes (26%) were downregulated. The upregulated genes were associated with the regulation of immune system process, vesicle-mediated transport, leucocyte activation, and transport, whereas the downregulated genes were associated with endopeptidase regulatory activity, phosphatidylcholine biosynthetic process, connective tissue development, and collagen catabolic process. CONCLUSION To our knowledge, this is the first RNA-seq based transcriptome study performed in the posterior kidney of brown trout during active T. bryosalmonae development. Most of the upregulated genes were associated with the immune system process, whereas the downregulated genes were associated with other metabolic functions. The findings of this study provide insights on the immune responses mounted by the brown trout on the developing parasite, and the host molecular machineries modulated by the parasite for its successful multiplication and release.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Central Institute of Fisheries Education, Rohtak Centre, Rohtak, Haryana India
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
22
|
Zhao Y, Liu X, Xi B, Zhang Q, Li A, Zhang J. Transcriptomic analysis of oligochaete immune responses to myxosporeans infection: Branchiura sowerbyi infected with Myxobolus cultus. J Invertebr Pathol 2019; 169:107283. [PMID: 31765651 DOI: 10.1016/j.jip.2019.107283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
The Myxozoa are endoparasites characterized by a two-host life cycle that typically involves invertebrates and vertebrates as definitive and intermediate hosts, respectively. However, little is known about invertebrate-myxosporean interactions, particularly about patterns of host immune defense. We used RNA-sequencing to identify genes that are possibly involved in the immune responses of the oligochaete Branchiura sowerbyi naturally infected with Myxobolus cultus. De novo assembly of the B. sowerbyi transcriptome yielded 119,031 unigenes, with an average length of 896 bp and an N50 length of 1754 bp. Comparative transcriptome analysis revealed 4059 differentially expressed genes (DEGs) between M. cultus-infected and uninfected B. sowerbyi groups, including 3802 upregulated genes and 257 downregulated genes. Among the B. sowerbyi immune factors implicated in the responses to M. cultus infection, DEGs related to lectins, ubiquitin-mediated proteolysis, phagocytosis, oxidative-antioxidative responses, proteases, and protease inhibitors were upregulated. The expression of some immune-related molecules such as calmodulin, heat shock proteins, antimicrobial peptides, lysenin, and serum amyoid A protein were also significantly upregulated. The expression patterns of 14 immune-related DEGs identified by RNA-seq were validated by quantitative real-time polymerase chain reaction. This study is the first attempt to characterize the B. sowerbyi transcriptome and identify immune-related molecules possibly associated with M. cultus infection. It is also the first report of invertebrate host-myxosporean interactions at the transcriptomic level. Our results will facilitate the elucidation of adaptive evolution mechanisms of myxosporean parasites in the definitive host and the genetic basis for differences in resistance of invertebrate hosts of different genotypes to a myxosporean species.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Liu
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingwen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Qianqian Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aihua Li
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyong Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Zhao Y, Liu X, Sato H, Zhang Q, Li A, Zhang J. RNA-seq analysis of local tissue of Carassius auratus gibelio with pharyngeal myxobolosis: Insights into the pharyngeal mucosal immune response in a fish-parasite dialogue. FISH & SHELLFISH IMMUNOLOGY 2019; 94:99-112. [PMID: 31476388 DOI: 10.1016/j.fsi.2019.08.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The lack of practical control measures for pharyngeal myxobolosis is becoming an important limiting factor for the sustainable development of the gibel carp (Carassius auratus gibelio) culture industry in China. Myxobolus honghuensis has been identified as the causative agent of this pandemic disease, which exclusively infects the pharynx of gibel carp, a potential important mucosal lymphoid-associated tissue (MLAT). Myxozoa generally initiate invasion through the mucosal tissues of fish, where some of them also complete their sporogonial stages. However, the pharynx-associated immune responses of teleost against myxosporeans infection remain unknown. Here, a de novo transcriptome assembly of the pharynx of gibel carp naturally infected with M. honghuensis was performed for the first time, using RNA-seq. Comparative analysis of severely infected and mildly infected pharyngeal tissues (SI group and MI group) from the same fish individuals and control pharyngeal tissues (C group) from the uninfected fish was carried out to investigate the potential mucosal immune function of the fish pharynx, and characterize the panoramic picture of pharynx local mucosal immune responses of gibel carp against the M. honghuensis infection. A total of 242,341 unigenes were obtained and pairwise comparison resulted in 13,009 differentially-expressed genes (DEGs) in the SI/C group comparison, 6014 DEGs in the MI/C group comparison, and 9031 DEGs in the SI/MI group comparison. Comprehensive analysis showed that M. honghuensis infection elicited a significant parasite load-dependent alteration of the expression of numerous innate and adaptive immune-related genes in the local lesion tissue. Innate immune molecules, including mucins, toll-like receptors, C-type lectin, serum amyloid A, cathepsins and complement components were significantly up-regulated in the SI group compared with the C group. Up-regulation of genes involved in apoptosis signaling pathway and the IFN-mediated immune system were found in the SI group, suggesting these two pathways played a crucial role in innate immune response to M. honghuensis infection. Up-regulation of chemokines and chemokine receptors and the induction of the leukocyte trans-endothelial migration pathways in the severely and mildly infected pharynx suggested that many leucocytes were recruited to the local infected sites to mount a strong mucosal immune responses against the myxosporean infection. Up-regulation of CD3D, CD22, CD276, IL4/13A, GATA3, arginase 2, IgM, IgT and pIgR transcripts provided strong evidences for the presence of T/B cells and specific mucosal immune responses at local sites with M. honghuensis infection. Our results firstly demonstrated the mucosal function of the teleost pharynx and provided evidences of intensive local immune defense responses against this mucosa-infecting myxosporean in the gibel carp pharynx. Pharyngeal myxobolosis was shaped by a prevailing anti-inflammatory response pattern during the advanced infection stages. Further understanding of the functional roles of fish immune molecules involved in the initial invasion and/or final sporogony site may facilitate future development of control strategies for this myxobolosis.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiuhua Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hiroshi Sato
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Qianqian Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Aihua Li
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinyong Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
24
|
Bracamonte SE, Johnston PR, Knopf K, Monaghan MT. Experimental infection with Anguillicola crassus alters immune gene expression in both spleen and head kidney of the European eel (Anguilla anguilla). Mar Genomics 2019; 45:28-37. [DOI: 10.1016/j.margen.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022]
|
25
|
Piazzon MC, Mladineo I, Naya-Català F, Dirks RP, Jong-Raadsen S, Vrbatović A, Hrabar J, Pérez-Sánchez J, Sitjà-Bobadilla A. Acting locally - affecting globally: RNA sequencing of gilthead sea bream with a mild Sparicotyle chrysophrii infection reveals effects on apoptosis, immune and hypoxia related genes. BMC Genomics 2019; 20:200. [PMID: 30866816 PMCID: PMC6416957 DOI: 10.1186/s12864-019-5581-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/03/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Monogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture. The polyopisthocotylean Sparicotyle chrysophrii parasitizes the gills of gilthead sea bream (GSB, Sparus aurata) causing anaemia, lamellae fusion and sloughing of epithelial cells, with the consequent hypoxia, emaciation, lethargy and mortality. Currently no preventive or curative measures against this disease exist and therefore information on the host-parasite interaction is crucial to find mitigation solutions for sparicotylosis. The knowledge about gene regulation in monogenean-host models mostly comes from freshwater monopysthocotyleans and almost nothing is known about polyopisthocotyleans. The current study aims to decipher the host response at local (gills) and systemic (spleen, liver) levels in farmed GSB with a mild natural S. chrysophrii infection by transcriptomic analysis. RESULTS Using Illumina RNA sequencing and transcriptomic analysis, a total of 2581 differentially expressed transcripts were identified in infected fish when compared to uninfected controls. Gill tissues in contact with the parasite (P gills) displayed regulation of fewer genes (700) than gill portions not in contact with the parasite (NP gills) (1235), most likely due to a local silencing effect of the parasite. The systemic reaction in the spleen was much higher than that at the parasite attachment site (local) (1240), and higher than in liver (334). NP gills displayed a strong enrichment of genes mainly related to immune response and apoptosis. Processes such as apoptosis, inflammation and cell proliferation dominated gills, whereas inhibition of apoptosis, autophagy, platelet activation, signalling and aggregation, and inflammasome were observed in spleen. Proteasome markers were increased in all tissues, whereas hypoxia-related genes were down-regulated in gills and spleen. CONCLUSIONS Contrasting forces seem to be acting at local and systemic levels. The splenic down-regulation could be part of a hypometabolic response, to counteract the hypoxia induced by the parasite damage to the gills and to concentrate the energy on defence and repair responses. Alternatively, it can be also interpreted as the often observed action of helminths to modify host immunity in its own interest. These results provide the first toolkit for future studies towards understanding and management of this parasitosis.
Collapse
Affiliation(s)
- M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| | | | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.,Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Ron P Dirks
- Future Genomics Technology, Leiden, The Netherlands
| | | | | | - Jerko Hrabar
- Institute of Oceanography and Fisheries, Split, Croatia
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
26
|
Ronza P, Robledo D, Bermúdez R, Losada AP, Pardo BG, Martínez P, Quiroga MI. Integrating Genomic and Morphological Approaches in Fish Pathology Research: The Case of Turbot ( Scophthalmus maximus) Enteromyxosis. Front Genet 2019; 10:26. [PMID: 30766546 PMCID: PMC6365611 DOI: 10.3389/fgene.2019.00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/16/2019] [Indexed: 01/04/2023] Open
Abstract
Enteromyxosis, caused by Enteromyxum scophthalmi, is one of the most devastating diseases stemming from myxozoan parasites in turbot (Scophthalmus maximus L.), being a limiting factor for its production. The disease develops as a cachectic syndrome, associated to catarrhal enteritis and leukocytic depletion, with morbidity and mortality rates usually reaching 100%. To date, no effective treatment exists and there are different unknown issues concerning its pathogenesis. The gross and microscopic lesions associated to enteromyxosis have been thoroughly described, and several morphopathological studies have been carried out to elucidate the mechanisms of this host-parasite interaction. More recently, efforts have been focused on a multidisciplinary approach, combining histopathology and transcriptome analysis, which has provided significant advances in the understanding of the pathogenesis of this parasitosis. RNA-Seq technology was applied at early and advanced stages of the disease on fishes histologically evaluated and classified based on their lesional degree. In the same way, the transcriptomic data were analyzed in relation to the morphopathological picture and the course of the disease. In this paper, a comprehensive review of turbot enteromyxosis is presented, starting from the disease description up to the most novel information extracted by an integrated approach on the infection mechanisms and host response. Further, we discuss ongoing strategies toward a full understanding of host-pathogen interaction and the identification of suitable biomarkers for early diagnosis and disease management strategies.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Diego Robledo
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - Roberto Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana Paula Losada
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Belén G Pardo
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
27
|
Panchin AY, Aleoshin VV, Panchin YV. From tumors to species: a SCANDAL hypothesis. Biol Direct 2019; 14:3. [PMID: 30674330 PMCID: PMC6343361 DOI: 10.1186/s13062-019-0233-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/13/2019] [Indexed: 11/27/2022] Open
Abstract
ᅟ Some tumor cells can evolve into transmissible parasites. Notable examples include the Tasmanian devil facial tumor disease, the canine transmissible venereal tumor and transmissible cancers of mollusks. We present a hypothesis that such transmissible tumors existed in the past and that some modern animal taxa are descendants of these tumors. We expect potential candidates for SCANDALs (speciated by cancer development animals) to be simplified relatives of more complex metazoans and have genomic alterations typical for cancer progression (such as deletions of universal apoptosis genes). We considered several taxa of simplified animals for our hypothesis: dicyemida, orthonectida, myxosporea and trichoplax. Based on genomic analysis we conclude that Myxosporea appear to be the most suitable candidates for a tumor ancestry. They are simplified parasitic cnidarians that universally lack major genes implicated in cancer progression including all genes with Caspase and BCL2 domains as well as any p53 and apoptotic protease activating factor – 1 (Apaf-1) homologs, suggesting the disruption of main apoptotic pathways in their early evolutionary history. Further comparative genomics and single-cell transcriptomic studies may be helpful to test our hypothesis of speciation via a cancerous stage. Reviewers This article was reviewed by Eugene Koonin, Mikhail Gelfand and Gregory M Woods. Electronic supplementary material The online version of this article (10.1186/s13062-019-0233-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Y Panchin
- Institute for Information Transmission Problems, Bolshoy Karetniy Pereulok 19/1, Moscow, Russian Federation, 127051.
| | - V V Aleoshin
- Institute for Information Transmission Problems, Bolshoy Karetniy Pereulok 19/1, Moscow, Russian Federation, 127051.,A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Y V Panchin
- Institute for Information Transmission Problems, Bolshoy Karetniy Pereulok 19/1, Moscow, Russian Federation, 127051.,A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
28
|
Yang Y, Fu Q, Wang X, Liu Y, Zeng Q, Li Y, Gao S, Bao L, Liu S, Gao D, Dunham R, Liu Z. Comparative transcriptome analysis of the swimbladder reveals expression signatures in response to low oxygen stress in channel catfish, Ictalurus punctatus. Physiol Genomics 2018; 50:636-647. [PMID: 29799804 DOI: 10.1152/physiolgenomics.00125.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Channel catfish is the leading aquaculture species in the US, and one of the reasons for its application in aquaculture is its relatively high tolerance against hypoxia. However, hypoxia can still cause huge economic losses to the catfish industry. Studies on hypoxia tolerance, therefore, are important for aquaculture. Fish swimbladder has been considered as an accessory respiration organ surrounded by a dense capillary countercurrent exchange system. In this regard, we conducted RNA-Seq analysis with swimbladder samples of catfish under hypoxic and normal conditions to determine if swimbladder was responsive to low oxygen treatment and to reveal genes, their expression patterns, and pathways involved in hypoxia responses in catfish. A total of 155 differentially expressed genes (DEGs) were identified from swimbladder of adult catfish, whereas a total of 2,127 DEGs were identified from swimbladder of fingerling catfish under hypoxic condition as compared with untreated controls. Subsequent pathway analysis revealed that many DEGs under hypoxia were involved in HIF signaling pathway ( nos2, eno2, camk2d2, prkcb, cdkn1a, eno1, and tfrc), MAPK signaling pathway (voltage-dependent calcium channel subunit genes), PI3K/Akt/mTOR signaling pathway ( itga6, g6pc, and cdkn1a), Ras signaling pathway ( efna3 and ksr2), and signaling by VEGF ( fn1, wasf3, and hspb1) in catfish swimbladder. This study provided insights into regulation of gene expression and their involved gene pathways in catfish swimbladder in response to low oxygen stresses.
Collapse
Affiliation(s)
- Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama.,Marine Science and Engineering College, Qingdao Agricultural University , Qingdao , China
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Sen Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University , Syracuse, New York
| |
Collapse
|
29
|
Estensoro I, Pérez-Cordón G, Sitjà-Bobadilla A, Piazzon MC. Bromodeoxyuridine DNA labelling reveals host and parasite proliferation in a fish-myxozoan model. JOURNAL OF FISH DISEASES 2018; 41:651-662. [PMID: 29265424 DOI: 10.1111/jfd.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Enteromyxum leei is a myxozoan parasite responsible for enteritis in gilthead sea bream (Sparus aurata). The parasite proliferates in the paracellular space of the intestinal epithelium and induces an inflammatory reaction. To assess intestinal cell turnover and parasite proliferation, fish were infected with the parasite by anal intubation; after 17 and 64 days, the cell proliferative marker bromodeoxyuridine (BrdU) was administered; and after 24 hr, tissue samples were taken for immunohistochemical detection. Parasite exposure induced increased epithelial and immune cell proliferation in all intestinal segments at all time points, even before parasite establishment. This increased turnover was triggered early after intubation and mainly at a local level, as shown by an increased proliferating cell nuclear antigen (pcna) gene expression only at the posterior intestine after 17 days (not found in lymphohaematopoietic organs). Incorporation of BrdU in parasite secondary and tertiary daughter cells indicated that parasite endogeny is not by schizogonial division, which uses de novo synthesis pathway of pyrimidines. Altogether, BrdU immunolabelling and pcna gene expression showed the rapid proliferative response of the fish intestines upon a myxozoan infection and how this response is effectively triggered even before the parasite reaches or establishes in the site.
Collapse
Affiliation(s)
- I Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - G Pérez-Cordón
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK
| | - A Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - M C Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|
30
|
Taboada X, Rey M, Bouza C, Viñas A. Cytogenomic analysis of several repetitive DNA elements in turbot (Scophthalmus maximus). Gene 2018; 644:4-12. [PMID: 29246535 DOI: 10.1016/j.gene.2017.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
Abstract
Repetitive DNA plays a fundamental role in the organization, size and evolution of eukaryotic genomes. The sequencing of the turbot revealed a small and compact genome, as in all flatfish studied to date. The assembly of repetitive regions is still incomplete because it is difficult to correctly identify their position, number and array. The combination of classical cytogenetic techniques along with high quality sequencing is essential to increase the knowledge of the structure and composition of these sequences and, thus, of the structure and function of the whole genome. In this work, the in silico analysis of H1 histone, 5S rDNA, telomeric and Rex repetitive sequences, was compared to their chromosomal mapping by fluorescent in situ hybridization (FISH), providing a more comprehensive picture of these elements in the turbot genome. FISH assays confirmed the location of H1 in LG8; 5S rDNA in LG4 and LG6; telomeric sequences at the end of all chromosomes whereas Rex elements were dispersed along most chromosomes. The discrepancies found between both approaches could be related to the sequencing methodology applied in this species and also to the resolution limitations of the FISH technique. Turbot cytogenomic analyses have proven to add new chromosomal landmarks in the karyotype of this species, representing a powerful tool to investigate targeted genomic sequences or regions in the genetic and physical maps of this species.
Collapse
Affiliation(s)
- Xoana Taboada
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Magalí Rey
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Bouza
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Ana Viñas
- Departamento de Zoología, Genética y Antropología Física, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
31
|
Sudhagar A, Kumar G, El-Matbouli M. Transcriptome Analysis Based on RNA-Seq in Understanding Pathogenic Mechanisms of Diseases and the Immune System of Fish: A Comprehensive Review. Int J Mol Sci 2018; 19:ijms19010245. [PMID: 29342931 PMCID: PMC5796193 DOI: 10.3390/ijms19010245] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years, with the advent of next-generation sequencing along with the development of various bioinformatics tools, RNA sequencing (RNA-Seq)-based transcriptome analysis has become much more affordable in the field of biological research. This technique has even opened up avenues to explore the transcriptome of non-model organisms for which a reference genome is not available. This has made fish health researchers march towards this technology to understand pathogenic processes and immune reactions in fish during the event of infection. Recent studies using this technology have altered and updated the previous understanding of many diseases in fish. RNA-Seq has been employed in the understanding of fish pathogens like bacteria, virus, parasites, and oomycetes. Also, it has been helpful in unraveling the immune mechanisms in fish. Additionally, RNA-Seq technology has made its way for future works, such as genetic linkage mapping, quantitative trait analysis, disease-resistant strain or broodstock selection, and the development of effective vaccines and therapies. Until now, there are no reviews that comprehensively summarize the studies which made use of RNA-Seq to explore the mechanisms of infection of pathogens and the defense strategies of fish hosts. This review aims to summarize the contemporary understanding and findings with regard to infectious pathogens and the immune system of fish that have been achieved through RNA-Seq technology.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
- Central Institute of Fisheries Education, Rohtak Centre, Haryana 124411, India.
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| |
Collapse
|
32
|
Yin F, Qian D. Transcriptomic analysis reveals the key immune-related signalling pathways of Sebastiscus marmoratus in response to infection with the parasitic ciliate Cryptocaryon irritans. Parasit Vectors 2017; 10:576. [PMID: 29157267 PMCID: PMC5697091 DOI: 10.1186/s13071-017-2508-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022] Open
Abstract
Background False kelpfish (Sebastiscus marmoratus) is one of the target species in artificial breeding in China, and is susceptible to infection by Cryptocaryon irritans, which is an obligate parasitic ciliate that lives in the epithelium of the fish gills, skin and fins. Here, we sought to understand the mechanisms of molecular immunity of S. marmoratus against C. irritans infection. Methods We carried out an extensive analysis of the transcriptome of S. marmoratus immune-related tissues. A paired-end library was constructed from the cDNA synthesized using a Genomic Sample Prep Kit. Five normalized cDNA libraries were constructed using RNA from the control group and the four groups of C. irritans-infected fish. The libraries were sequenced on an Illumina Mi-Seq platform, and functional annotation of the transcriptome was performed using bioinformatics software. Results The data produced a total of 149,983,397 clean reads from five cDNA libraries constructed from S. marmoratus immune-related tissues. A total of 33,291 unigenes were assembled with an average length of 1768 bp. In eggNOG (Evolutionary Genealogy of Genes: non-supervised orthologous groups) categories, 333 unigenes (0.94%) were assigned to defense mechanisms. In the immune system process sub-categories of gene ontology (GO) enrichment analysis, with the passage of time post-infection, the number of differentially expressed genes (DEGs) was reduced from 24 h to 48 h but then increased from 72 h to 96 h. Specifically, the immune-related differentially expressed genes (IRDEGs), which belong to the KEGG (Kyoto encyclopedia of genes and genomes) pathways, such as the complement and coagulation cascades, chemokine signalling pathways and toll-like receptor signalling pathways were mainly observed at 24 h post-infection. Conclusions Infection with C. irritans resulted in a large number of DEGs in the immune-related tissues of S. marmoratus. The rapid and significant response of the S. marmoratus immune signalling pathways following C. irritans infection may be associated with their involvement in the immune process. Electronic supplementary material The online version of this article (10.1186/s13071-017-2508-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Dong Qian
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China. .,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
33
|
Kirschneck C, Batschkus S, Proff P, Köstler J, Spanier G, Schröder A. Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Sci Rep 2017; 7:14751. [PMID: 29116140 PMCID: PMC5677027 DOI: 10.1038/s41598-017-15281-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
Meaningful, reliable and valid mRNA expression analyses by real-time quantitative PCR (RT-qPCR) can only be achieved, if suitable reference genes are chosen for normalization and if appropriate RT-qPCR quality standards are met. Human periodontal ligament (hPDL) fibroblasts play a major mediating role in orthodontic tooth movement and periodontitis. Despite corresponding in-vitro gene expression studies being a focus of interest for many years, no information is available for hPDL fibroblasts on suitable reference genes, which are generally used in RT-qPCR experiments to normalize variability between samples. The aim of this study was to identify and validate suitable reference genes for normalization in untreated hPDL fibroblasts as well as experiments on orthodontic tooth movement or periodontitis (Aggregatibacter actinomycetemcomitans). We investigated the suitability of 13 candidate reference genes using four different algorithms (geNorm, NormFinder, comparative ΔCq and BestKeeper) and ranked them according to their expression stability. Overall PPIB (peptidylprolyl isomerase A), TBP (TATA-box-binding protein) and RPL22 (ribosomal protein 22) were found to be most stably expressed with two genes in conjunction sufficient for reliable normalization. This study provides an accurate tool for quantitative gene expression analysis in hPDL fibroblasts according to the MIQE guidelines and shows that reference gene reliability is treatment-specific.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany.
| | - Sarah Batschkus
- Department of Orthodontics, University of Goettingen, Goettingen, D-37075, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Josef Köstler
- Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Gerrit Spanier
- Department of Cranial and Maxillo-Facial Surgery, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| |
Collapse
|
34
|
Salinas I, Magadán S. Omics in fish mucosal immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:99-108. [PMID: 28235585 DOI: 10.1016/j.dci.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 05/22/2023]
Abstract
The mucosal immune system of fish is a complex network of immune cells and molecules that are constantly surveilling the environment and protecting the host from infection. A number of "omics" tools are now available and utilized to understand the complexity of mucosal immune systems in non-traditional animal models. This review summarizes recent advances in the implementation of "omics" tools pertaining to the four mucosa-associated lymphoid tissues in teleosts. Genomics, transcriptomics, proteomics, and "omics" in microbiome research require interdisciplinary collaboration and careful experimental design. The data-rich datasets generated are proving really useful at discovering new innate immune players in fish mucosal secretions, identifying novel markers of specific mucosal immune responses, unraveling the diversity of the B and T cell repertoires and characterizing the diversity of the microbial communities present in teleost mucosal surfaces. Bioinformatics, data analysis and storage platforms should be developed to facilitate rapid processing of large datasets, especially when mammalian tools such as bioinformatics analysis software are not available in fishes.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Susana Magadán
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA; Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra 36310, Spain.
| |
Collapse
|
35
|
Jacobson G, Muncaster S, Mensink K, Forlenza M, Elliot N, Broomfield G, Signal B, Bird S. Omics and cytokine discovery in fish: Presenting the Yellowtail kingfish (Seriola lalandi) as a case study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:63-76. [PMID: 28416435 DOI: 10.1016/j.dci.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
A continued programme of research is essential to overcome production bottlenecks in any aquacultured fish species. Since the introduction of genetic and molecular techniques, the quality of immune research undertaken in fish has greatly improved. Thousands of species specific cytokine genes have been discovered, which can be used to conduct more sensitive studies to understand how fish physiology is affected by aquaculture environments or disease. Newly available transcriptomic technologies, make it increasingly easier to study the immunogenetics of farmed species for which little data exists. This paper reviews how the application of transcriptomic procedures such as RNA Sequencing (RNA-Seq) can advance fish research. As a case study, we present some preliminary findings using RNA-Seq to identify cytokine related genes in Seriola lalandi. These will allow in-depth investigations to understand the immune responses of these fish in response to environmental change or disease and help in the development of therapeutic approaches.
Collapse
Affiliation(s)
- Gregory Jacobson
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Simon Muncaster
- School Applied Science, Bay of Plenty Polytechnic, 70 Windermere Dr, Poike, Tauranga 3112, New Zealand
| | - Koen Mensink
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Nick Elliot
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Grant Broomfield
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Beth Signal
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Steve Bird
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|
36
|
Robledo D, Hermida M, Rubiolo JA, Fernández C, Blanco A, Bouza C, Martínez P. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:41-55. [PMID: 28063346 DOI: 10.1016/j.cbd.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Flatfish have a high market acceptance thus representing a profitable aquaculture production. The main farmed species is the turbot (Scophthalmus maximus) followed by Japanese flounder (Paralichthys olivaceous) and tongue sole (Cynoglossus semilaevis), but other species like Atlantic halibut (Hippoglossus hippoglossus), Senegalese sole (Solea senegalensis) and common sole (Solea solea) also register an important production and are very promising for farming. Important genomic resources are available for most of these species including whole genome sequencing projects, genetic maps and transcriptomes. In this work, we integrate all available genomic information of these species within a common framework, taking as reference the whole assembled genomes of turbot and tongue sole (>210× coverage). New insights related to the genetic basis of productive traits and new data useful to understand the evolutionary origin and diversification of this group were obtained. Despite a general 1:1 chromosome syntenic relationship between species, the comparison of turbot and tongue sole genomes showed huge intrachromosomic reorganizations. The integration of available mapping information supported specific chromosome fusions along flatfish evolution and facilitated the comparison between species of previously reported genetic associations for productive traits. When comparing transcriptomic resources of the six species, a common set of ~2500 othologues and ~150 common miRNAs were identified, and specific sets of putative missing genes were detected in flatfish transcriptomes, likely reflecting their evolutionary diversification.
Collapse
Affiliation(s)
- Diego Robledo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Biology (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
37
|
Gao C, Fu Q, Su B, Zhou S, Liu F, Song L, Zhang M, Ren Y, Dong X, Tan F, Li C. Transcriptomic profiling revealed the signatures of intestinal barrier alteration and pathogen entry in turbot (Scophthalmus maximus) following Vibrio anguillarum challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:159-168. [PMID: 27431928 DOI: 10.1016/j.dci.2016.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The mucosal immune system serves as the frontline barriers of host defense against pathogen infection, especially for the fishes, which are living in the pathogen rich aquatic environment. The intestine constitutes the largest surface body area in constantly contact with the external pathogens, and plays a vital role in the immune defense against inflammation and pathogen infection. Previous studies have revealed that fish intestine might serves as the portal of entry for Vibrio anguillarum. To characterize the immune actors and their associated immune activities in turbot intestine barrier during bacterial infection, here we examined the gene expression profiles of turbot intestine at three time points following experimental infection with V. anguillarum utilizing RNA-seq technology. A total of 122 million reads were assembled into 183,101 contigs with an average length of 1151 bp and the N50 size of 2302 bp. Analysis of differential gene expression between control and infected samples at 1 h, 4 h, and 12 h revealed 2079 significantly expressed genes. Enrichment and pathway analysis of the differentially expressed genes showed the centrality of the pathogen attachment and recognition, antioxidant/apoptosis, mucus barrier modification and immune activation/inflammation in the pathogen entry and host immune responses. The present study reported the novel gene expression patterns in turbot mucosal immunity, which were overlooked in previous studies. Our results can help to understand the mechanisms of turbot host defense, and may also provide foundation to identify the biomarkers for future selection of disease-resistant broodstock and evaluation of disease prevention and treatment options.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
38
|
Parra D, Korytář T, Takizawa F, Sunyer JO. B cells and their role in the teleost gut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:150-66. [PMID: 26995768 PMCID: PMC5125549 DOI: 10.1016/j.dci.2016.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 05/03/2023]
Abstract
Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system.
Collapse
Affiliation(s)
- David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Tomáš Korytář
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Martin SAM, Dehler CE, Król E. Transcriptomic responses in the fish intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:103-117. [PMID: 26995769 DOI: 10.1016/j.dci.2016.03.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/05/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
The intestine, being a multifunctional organ central to both nutrient uptake, pathogen recognition and regulating the intestinal microbiome, has been subjected to intense research. This review will focus on the recent studies carried out using high-throughput gene expression approaches, such as microarray and RNA sequencing (RNA-seq). These techniques have advanced greatly in recent years, mainly as a result of the massive changes in sequencing methodologies. At the time of writing, there is a transition between relatively well characterised microarray platforms and the developing RNA-seq, with the prediction that within a few years as costs decrease and computation power increase, RNA-seq related approaches will supersede the microarrays. Comparisons between the approaches are made and specific examples of how the techniques have been used to examine intestinal responses to pathogens, dietary manipulations and osmoregulatory challenges are given.
Collapse
Affiliation(s)
- Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Carola E Dehler
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
40
|
Sitjà-Bobadilla A, Estensoro I, Pérez-Sánchez J. Immunity to gastrointestinal microparasites of fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:187-201. [PMID: 26828391 DOI: 10.1016/j.dci.2016.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Fish intestinal parasites cause direct mortalities and also morbidity, poor growth, higher susceptibility to opportunistic pathogens and lower resistance to stress. This review is focused on microscopic parasites (Protozoa and Metazoa) that invade the gastrointestinal tract of fish. Intracellular parasites (mainly Microsporidia and Apicomplexa) evoke almost no host immune reaction while they are concealed in the cytoplasmic and nuclear compartments, and can even use fish cells (macrophages) as Trojan horses to spread in the host. Inflammatory reaction only appears when the parasite bursts infected cells. Immunity against extracellular parasites is depicted for the myxozoans Ceratonova shasta and Enteromyxum spp. The cellular and humoral innate responses and the production of antibodies are crucial for resolving some of these myxozoonoses, but an excessive inflammatory reaction (concerted by cytokines) can become a fatal pathophysiological consequence. The local immune response plays a key role, with numerous genes more strongly regulated in the intestine than at lymphohaematopoietic organs.
Collapse
Affiliation(s)
- Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain.
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|
41
|
Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Front Physiol 2016; 7:359. [PMID: 27610085 PMCID: PMC4997091 DOI: 10.3389/fphys.2016.00359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| |
Collapse
|
42
|
Dang Y, Xu X, Shen Y, Hu M, Zhang M, Li L, Lv L, Li J. Transcriptome Analysis of the Innate Immunity-Related Complement System in Spleen Tissue of Ctenopharyngodon idella Infected with Aeromonas hydrophila. PLoS One 2016; 11:e0157413. [PMID: 27383749 PMCID: PMC4934786 DOI: 10.1371/journal.pone.0157413] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/27/2016] [Indexed: 02/02/2023] Open
Abstract
The grass carp (Ctenopharyngodon idella) is an important commercial farmed herbivorous fish species in China, but is susceptible to Aeromonas hydrophila infections. In the present study, we performed de novo RNA-Seq sequencing of spleen tissue from specimens of a disease-resistant family, which were given intra-peritoneal injections containing PBS with or without a dose of A. hydrophila. The fish were sampled from the control group at 0 h, and from the experimental group at 4, 8, 12, 24, 48 and 72 h. 122.18 million clean reads were obtained from the normalized cDNA libraries; these were assembled into 425,260 contigs and then 191,795 transcripts. Of those, 52,668 transcripts were annotated with the NCBI Nr database, and 41,347 of the annotated transcripts were assigned into 90 functional groups. 20,569 unigenes were classified into six main categories, including 38 secondary KEGG pathways. 2,992 unigenes were used in the analysis of differentially expressed genes (DEGs). 89 of the putative DEGs were related to the immune system and 41 of them were involved in the complement and coagulation cascades pathway. This study provides insights into the complement and complement-related pathways involved in innate immunity, through expression profile analysis of the genomic resources in C. idella. We conclude that complement and complement-related genes play important roles during defense against A. hydrophila infection. The immune response is activated at 4 h after the bacterial injections, indicating that the complement pathways are activated at the early stage of bacterial infection. The study has improved our understanding of the immune response mechanisms in C. idella to bacterial pathogens.
Collapse
Affiliation(s)
- Yunfei Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, PR China
| | - Xiaoyan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, PR China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, PR China
| | - Moyan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, PR China
| | - Meng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, PR China
| | - Lisen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, PR China
| | - Liqun Lv
- National Pathogen Collection Center for Aquatic Animals, College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, PR China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, PR China
| |
Collapse
|
43
|
RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insights into parasite invasion and immune evasion strategies. Int J Parasitol 2016; 46:507-17. [PMID: 27109557 DOI: 10.1016/j.ijpara.2016.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 12/13/2022]
Abstract
Enteromyxum scophthalmi, an intestinal myxozoan parasite, is the causative agent of a threatening disease for turbot (Scophthalmus maximus, L.) aquaculture. The colonisation of the digestive tract by this parasite leads to a cachectic syndrome associated with high morbidity and mortality rates. This myxosporidiosis has a long pre-patent period and the first detectable clinical and histopathological changes are subtle. The pathogenic mechanisms acting in the early stages of infection are still far from being fully understood. Further information on the host-parasite interaction is needed to assist in finding efficient preventive and therapeutic measures. Here, a RNA-seq-based transcriptome analysis of head kidney, spleen and pyloric caeca from experimentally-infected and control turbot was performed. Only infected fish with early signs of infection, determined by histopathology and immunohistochemical detection of E. scophthalmi, were selected. The RNA-seq analysis revealed, as expected, less intense transcriptomic changes than those previously found during later stages of the disease. Several genes involved in IFN-related pathways were up-regulated in the three organs, suggesting that the IFN-mediated immune response plays a main role in this phase of the disease. Interestingly, an opposite expression pattern had been found in a previous study on severely infected turbot. In addition, possible strategies for immune system evasion were suggested by the down-regulation of different genes encoding complement components and acute phase proteins. At the site of infection (pyloric caeca), modulation of genes related to different structural proteins was detected and the expression profile indicated the inhibition of cell proliferation and differentiation. These transcriptomic changes provide indications regarding the mechanisms of parasite attachment to and invasion of the host. The current results contribute to a better knowledge of the events that characterise the early stages of turbot enteromyxosis and provide valuable information to identify molecular markers for early detection and control of this important parasitosis.
Collapse
|
44
|
Robledo D, Taggart JB, Ireland JH, McAndrew BJ, Starkey WG, Haley CS, Hamilton A, Guy DR, Mota-Velasco JC, Gheyas AA, Tinch AE, Verner-Jeffreys DW, Paley RK, Rimmer GSE, Tew IJ, Bishop SC, Bron JE, Houston RD. Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with Infectious Pancreatic Necrosis virus reveals a marked contrast in immune response. BMC Genomics 2016; 17:279. [PMID: 27066778 PMCID: PMC4827185 DOI: 10.1186/s12864-016-2600-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/22/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Infectious Pancreatic Necrosis (IPN) is a highly contagious birnavirus disease of farmed salmonid fish, which often causes high levels of morbidity and mortality. A large host genetic component to resistance has been previously described for Atlantic salmon (Salmo salar L.), which mediates high mortality rates in some families and zero mortality in others. However, the molecular and immunological basis for this resistance is not yet fully known. This manuscript describes a global comparison of the gene expression profiles of resistant and susceptible Atlantic salmon fry following challenge with the IPN virus. RESULTS Salmon fry from two IPNV-resistant and two IPNV-susceptible full sibling families were challenged with the virus and sampled at 1 day, 7 days and 20 days post-challenge. Significant viral titre was observed in both resistant and susceptible fish at all timepoints, although generally at higher levels in susceptible fish. Gene expression profiles combined with gene ontology and pathway analyses demonstrated that while a clear immune response was observed in both resistant and susceptible fish, there were striking differences between the two phenotypes. The susceptible fish showed marked up-regulation of genes related to cytokine activity and inflammatory response that evidently failed to protect against the virus. In contrast, the resistant fish demonstrated a less pronounced immune response including up-regulation of genes relating to the M2 macrophage system. CONCLUSIONS While only the susceptible phenotype shows appreciable mortality levels, both resistant and susceptible fish can become infected with IPNV. Susceptible fish are characterized by a much larger, yet ineffective, immune response, largely related to cytokine and inflammatory systems. Resistant fish demonstrate a more moderate, putative macrophage-mediated inflammatory response, which may contribute to their survival.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.,Departamento de Genética, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Jacqueline H Ireland
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Brendan J McAndrew
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - William G Starkey
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Chris S Haley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Alastair Hamilton
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | - Derrick R Guy
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | - Jose C Mota-Velasco
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | - Almas A Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.,Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | - Alan E Tinch
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | | | - Richard K Paley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB, UK
| | - Georgina S E Rimmer
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB, UK
| | - Ian J Tew
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB, UK
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
45
|
Yin F, Gao Q, Tang B, Sun P, Han K, Huang W. Transcriptome and analysis on the complement and coagulation cascades pathway of large yellow croaker (Larimichthys crocea) to ciliate ectoparasite Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2016; 50:127-141. [PMID: 26804649 DOI: 10.1016/j.fsi.2016.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most valuable marine fish in southern China. Given to the rapid development of aquaculture industry, the L. crocea was subjected to ciliate ectoparasite Cryptocaryon irritans. It therefore is indispensable and urgent to understand the mechanism of L. crocea host defense against C. irritans infection. In the present study, the extensively analysis at the transcriptome level for Cryptocaryoniasis in L. crocea was carried out. These results showed that 15,826,911, 16,462,921, and 15,625,433 paired-end clean reads were obtained from three cDNA libraries (A: 0 theronts/fish, B: 12,000 theronts/fish, and C: 24,000 theronts/fish) of the L. crocea immune-related tissues by Illumina paired-end sequencing technology. Totally, 30,509 unique transcript fragments (unigenes) were assembled, with an average length of 1715 bp. In B/A, C/A, and C/B pairwise comparison, 972, 900, and 1126 genes showed differential expression respectively. Differently expressed immune-related genes (DEIGs) were scrutinized, in B/A pairwise comparison, 48 genes showed differential expression, including 26 up-regulated genes and 22 down-regulated genes in B; in C/A pairwise comparison, there were 39 DEIGs, including 7 up-regulated genes and 32 down-regulated genes in C; in C/B pairwise comparison, 40 genes showed differential expression, including 11 up-regulated genes and 29 down-regulated genes in C. There were 16 DEIGs enriched KEGG pathways, in which the complement and coagulation cascades pathway was the top most DEIGs enriched pathway (B:A = 42; C:A = 28; C:B = 42). The coagulation and fibrinolytic system was in a highly active state after infected by C. irritans with non-lethal concentration; the alternative complement pathway may play an important role in the early stages of C. irritans infection. These results demonstrated that low-concentration infection can significantly induce the immunological response in fishes, however, when fishes were in fatal conditions, the immunity was suppressed.
Collapse
Affiliation(s)
- Fei Yin
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China.
| | - Quanxin Gao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Baojun Tang
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Peng Sun
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Kunhuang Han
- Ningde Fufa Fisheries Co., Ltd., Ningde, Fujian Province, 352000, PR China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Weiqing Huang
- Ningde Fufa Fisheries Co., Ltd., Ningde, Fujian Province, 352000, PR China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| |
Collapse
|
46
|
Ma D, Ma A, Huang Z, Wang G, Wang T, Xia D, Ma B. Transcriptome Analysis for Identification of Genes Related to Gonad Differentiation, Growth, Immune Response and Marker Discovery in The Turbot (Scophthalmus maximus). PLoS One 2016; 11:e0149414. [PMID: 26925843 PMCID: PMC4771204 DOI: 10.1371/journal.pone.0149414] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Background Turbot Scophthalmus maximus is an economically important species extensively aquacultured in China. The genetic selection program is necessary and urgent for the sustainable development of this industry, requiring more and more genome background knowledge. Transcriptome sequencing is an excellent alternative way to identify transcripts involved in specific biological processes and exploit a considerable quantity of molecular makers when no genome sequences are available. In this study, a comprehensive transcript dataset for major tissues of S. maximus was produced on basis of an Illumina platform. Results Total RNA was isolated from liver, spleen, kidney, cerebrum, gonad (testis and ovary) and muscle. Equal quantities of RNA from each type of tissues were pooled to construct two cDNA libraries (male and female). Using the Illumina paired-end sequencing technology, nearly 44.22 million clean reads in length of 100 bp were generated and then assembled into 106,643 contigs, of which 71,107 were named unigenes with an average length of 892 bp after the elimination of redundancies. Of these, 24,052 unigenes (33.83% of the total) were successfully annotated. GO, KEGG pathway mapping and COG analysis were performed to predict potential genes and their functions. Based on our sequence analysis and published documents, many candidate genes with fundamental roles in sex determination and gonad differentiation (dmrt1), growth (ghrh, myf5, prl/prlr) and immune response (TLR1/TLR21/TLR22, IL-15/IL-34), were identified for the first time in this species. In addition, a large number of credible genetic markers, including 21,192 SSRs and 8,642 SNPs, were identified in the present dataset. Conclusion This informative transcriptome provides valuable new data to increase genomic resources of Scophthalmus maximus. The future studies of corresponding gene functions will be very useful for the management of reproduction, growth and disease control in turbot aquaculture breeding programs. The molecular markers identified in this database will aid in genetic linkage analyses, mapping of quantitative trait loci, and acceleration of marker assisted selection programs.
Collapse
Affiliation(s)
- Deyou Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Dalian Ocean University, Dalian, 116023, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- * E-mail:
| | - Zhihui Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Guangning Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ting Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dandan Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Benhe Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
47
|
Robledo D, Fernández C, Hermida M, Sciara A, Álvarez-Dios JA, Cabaleiro S, Caamaño R, Martínez P, Bouza C. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot. Int J Mol Sci 2016; 17:243. [PMID: 26901189 PMCID: PMC4783974 DOI: 10.3390/ijms17020243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species.
Collapse
Affiliation(s)
- Diego Robledo
- Departamento de Xenética, Facultade de Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Carlos Fernández
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Miguel Hermida
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Andrés Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario S2002LRK, Argentina.
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Santiago Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Rubén Caamaño
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Paulino Martínez
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Carmen Bouza
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
48
|
Ronza P, Bermúdez R, Losada AP, Sitjà-Bobadilla A, Pardo BG, Quiroga MI. Immunohistochemical detection and gene expression of TNFα in turbot (Scophthalmus maximus) enteromyxosis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:368-376. [PMID: 26386194 DOI: 10.1016/j.fsi.2015.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/29/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Enteromyxum scophthalmi (Myxozoa) constitutes one of the most devastating pathogens for turbot (Scophthalmus maximus, L.) aquaculture. This parasite causes a severe intestinal parasitosis that leads to a cachectic syndrome with high morbidity and mortality rates for which no therapeutic options are available. Presence of inflammatory infiltrates, increased apoptotic rates and epithelial detaching have been described at intestinal level, as well as leukocyte depletion in lymphohaematopoietic organs. Previous investigations on enteromyxosis in turbot showed the high susceptibility of this species to the parasite and reported the existence of a dysregulated immune response against the parasite. The pleiotropic cytokine tumour necrosis factor alpha (TNFα) plays a major role in immune response and is involved in a wide range of biological activities. In teleost, the gene expression of this cytokine has been found regulated under several pathological conditions. Teleost TNFα shows some analogous functions with its mammalian counterparts, but the extent of its activities is still poorly understood. Cytokines are generally considered as a double-edge sword and TNFα has been implicated in the pathogenesis of different inflammatory diseases as well as in wasting syndromes described in mammals. The aim of this work was to analyse the expression of TNFα during enteromyxosis with molecular (Q-PCR) and morphological (immunohistochemistry) tools. Kidney, spleen and pyloric caeca from turbot with moderate and severe infections were analysed and compared to healthy naïve fish. TNFα expression was increased in both spleen and kidney in the earlier stages of the disease, whereas in severely infected fish, the expression decreased, especially in kidney. At the intestinal level, an increase in the number of TNFα-positive cells was noticed, which was proportional to the infiltration of inflammatory cells. The results demonstrate the involvement of TNFα in the immune response to E. scophthalmi in turbot, which could be related to the development of the clinic signs and lesions.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Roberto Bermúdez
- Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Ana Paula Losada
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Ariadna Sitjà-Bobadilla
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón 12595, Spain.
| | - Belén G Pardo
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - María Isabel Quiroga
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|