1
|
Ratvaj M, Maruščáková IC, Popelka P, Fečkaninová A, Koščová J, Chomová N, Mareš J, Malý O, Žitňan R, Faldyna M, Mudroňová D. Feeding-Regime-Dependent Intestinal Response of Rainbow Trout after Administration of a Novel Probiotic Feed. Animals (Basel) 2023; 13:1892. [PMID: 37370408 DOI: 10.3390/ani13121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Intensive fish farming is associated with a high level of stress, causing immunosuppression. Immunomodulators of natural origin, such as probiotics or phytoadditives, represent a promising alternative for increasing the immune function of fish. In this study, we tested the autochthonous trout probiotic strain L. plantarum R2 in a newly developed, low-cost application form ensuring the rapid revitalization of bacteria. We tested continuous and cyclic feeding regimes with regard to their effect on the intestinal immune response and microbiota of rainbow trout. We found that during the continuous application of probiotic feed, the immune system adapts to the immunomodulator and there is no substantial stimulation of the intestinal immune response. During the cyclic treatment, after a 3-week break in probiotic feeding and the reintroduction of probiotics, there was a significant stimulation of the gene expression of molecules associated with both cellular and humoral immunity (CD8, TGF-β, IL8, TLR9), without affecting the gene expression for IL1 and TNF-α. We can conclude that, in aquaculture, this probiotic feed can be used with a continuous application, which does not cause excessive immunostimulation, or with a cyclic application, which provides the opportunity to stimulate the immunity of trout, for example, in periods of stress.
Collapse
Affiliation(s)
- Marek Ratvaj
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Ivana Cingeľová Maruščáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology, and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Adriána Fečkaninová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Natália Chomová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jan Mareš
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Ondřej Malý
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Rudolf Žitňan
- Research Institute for Animal Production Nitra, National Agricultural and Food Center, 95141 Lužianky, Slovakia
| | - Martin Faldyna
- Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| |
Collapse
|
2
|
Chen X, Zhang P, Li P, Wang G, Li J, Wu Y, Cao Z, Zhou Y, Sun Y. CpG ODN 1668 as TLR9 agonist mediates humpback grouper (Cromileptes altivelis) antibacterial immune responses. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108839. [PMID: 37207883 DOI: 10.1016/j.fsi.2023.108839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Cromileptes altivelis (humpback grouper) is the main farmed species in the southern coastal area of China owing to its important economic value. Toll-like receptor 9 (TLR9) belongs to the toll-like receptor (TLR) family and functions as a pattern recognition receptor, recognising unmethylated oligodeoxynucleotides containing the CpG motif (CpG ODNs) in bacterial and viral genomes, thereby activating host immune response. In this study, the C. altivelis TLR9 (CaTLR9) ligand CpG ODN 1668 was screened and found to significantly enhance the antibacterial immunity of humpback grouper in vivo and head kidney lymphocytes (HKLs) in vitro. In addition, CpG ODN 1668 also promoted the cell proliferation and immune gene expression of HKLs and strengthened the phagocytosis activity of head kidney macrophages. However, when the CaTLR9 expression was knocked down in the humpback group, the expression levels of TLR9, myeloid differentiation factor 88 (Myd88), tumour necrosis factor-α (TNF-α), interferon γ (IFN-γ), interleukin-1β (IL-1β), IL-6, and IL-8 were significantly reduced, and the antibacterial immune effects induced by CpG ODN 1668 were mostly abolished. Therefore, CpG ODN 1668 induced antibacterial immune responses in a CaTLR9-dependent pathway. These results enhance the knowledge of the antibacterial immunity of fish TLR signalling pathways and have important implications for exploring natural antibacterial molecules in fish.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Panpan Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Pengshuo Li
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Guotao Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jianlong Li
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Ying Wu
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Zhenjie Cao
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Yongcan Zhou
- Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Chen X, Wu Y, Qiu Y, Li P, Cao Z, Zhou Y, Sun Y. CpG ODN 2102 promotes antibacterial immune responses and enhances vaccine-induced protection in golden pompano (Trachinotusovatus). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108783. [PMID: 37137380 DOI: 10.1016/j.fsi.2023.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) are oligodeoxynucleotides containing CpG motifs and can be recognized by toll-like receptor 9 (TLR9), activating the host's immune responses. In this study, ten different CpG ODNs were designed and synthesized to study the antibacterial immune responses of CpG ODNs in golden pompano (Trachinotus ovatus). Results showed that CpG ODN 2102 significantly improved the immunity of golden pompano against bacteria. Besides, CpG ODN 2102 promoted the proliferation of head kidney lymphocytes and activated the head kidney macrophages. When TLR9-specific small interfering RNA (siRNA) was used to interfere with TLR9 expression, the immune responses were decreased. Moreover, the expression levels of myeloid differentiation primary response 88 (Myd88), p65, tumor necrosis factor receptor-associated factor 6 (TRAF6), and tumor necrosis factor-alpha (TNF-α) in the TLR9-knockdown golden pompano kidney (GPK) cells were significantly reduced. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) promoter activity of the TLR9-knockdown GPK cells was also significantly reduced. In vivo, the antibacterial immune effects induced by CpG ODN 2102 in golden pompano were mostly abolished when TLR9 expression was knocked down. These results suggested that TLR9 was involved in the immune responses induced by CpG ODN 2102. CpG ODN 2102 also enhanced the protective effect of the Vibrio harveyi vaccine pCTssJ, where the survival rate of golden pompano was significantly improved by 20%. In addition, CpG ODN 2102 enhanced the messenger RNA (mRNA) expression levels of TLR9, Myxovirus resistance (Mx), interferon γ (IFN-γ), TNF-α, interleukin (IL)-1β, IL-8, major histocompatibility complex class (MHC) Iα, MHC IIα, Immunoglobulin D (IgD), and IgM. Therefore, TLR9 was involved in the antibacterial immune responses induced by CpG ODN 2102 and CpG ODN 2102 possessed adjuvant immune effects. These results enlarged our knowledge of the antibacterial immunity of fish TLRs signaling pathway and had important implications for exploring natural antibacterial molecules in fish and developing new vaccine adjuvants.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Ying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Yulin Qiu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Pengshuo Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Zhenjie Cao
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Yongcan Zhou
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China.
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572022, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Deng J, Pan W, Ji N, Liu N, Chen Q, Chen J, Sun Y, Xie L, Chen Q. Cell-Free DNA Promotes Inflammation in Patients With Oral Lichen Planus via the STING Pathway. Front Immunol 2022; 13:838109. [PMID: 35493447 PMCID: PMC9049180 DOI: 10.3389/fimmu.2022.838109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background Damaged and dead cells release cell-free DNA (cfDNA) that activates cyclic GMP–AMP (cGAMP) synthase (cGAS), which leads to the activation of stimulator of interferon genes (STING) via the second messenger cGAMP. STING promotes the production of inflammatory cytokines and type I interferons to induce an inflammatory response. Oral lichen planus (OLP), a chronic autoimmune disease involving oral mucosa characterized by the apoptosis of keratinocytes mediated by T-lymphocytes, is related to the activation of multiple inflammatory signaling pathways. Currently, the relationship between cfDNA and OLP has not been confirmed. We hypothesized that cfDNA may be a potential therapeutic target for OLP. Methods cfDNA was extracted from the saliva and plasma of OLP patients; its concentration was measured using the Quanti-iT-PicoGree kit and its relationship with OLP inflammation was assessed. cfDNA of OLP patients (cfDNA-OLP) was transfected into THP-1 macrophages and the expression of inflammatory factors was investigated by performing quantitative real time PCR (qRT-PCR), western blotting, and enzyme-linked immunosorbent assay (ELISA). STING expression was analyzed in the tissues of OLP patients and healthy controls using immunohistochemical staining and western blotting. siRNA was used to knockdown STING expression in THP-1 macrophages, and the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) secreted by cells following cfDNA-OLP transfection were detected using ELISA. Finally, the effect of the cationic polymer PAMAM-G3 was evaluated on the treatment of inflammation induced by cfDNA-OLP. Results The concentration of cfDNA in the saliva and plasma of OLP patients was considerably higher than that of healthy controls, and it positively correlated with the levels of inflammatory cytokines and clinical characteristics. cfDNA-OLP induced an inflammatory response in THP-1 macrophages. STING expression was significantly higher in OLP tissues than in the gingival tissues of healthy controls. STING knockdown suppressed cfDNA-OLP-induced inflammation in THP-1 macrophages. PAMAM-G3 inhibited the inflammatory response caused by cfDNA-OLP. Conclusion The cfDNA level is increased in OLP patients, and the STING pathway activated by cfDNA-OLP might play a critical role in OLP pathogenesis. Treatment with PAMAM-G3 reduced the inflammation induced by cfDNA-OLP, and therefore, may be a potential treatment strategy for OLP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Xie
- *Correspondence: Liang Xie, ; Qianming Chen,
| | | |
Collapse
|
5
|
Yu X, Gao S, Xu J, Zhao Y, Lu Y, Deng N, Lin H, Zhang Y, Lu D. The flagellin of Vibrio parahaemolyticus induces the inflammatory response of Tetraodon nigroviridis through TLR5M. FISH & SHELLFISH IMMUNOLOGY 2022; 120:102-110. [PMID: 34737057 DOI: 10.1016/j.fsi.2021.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/22/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Vibrio parahaemolyticus is an important marine pathogen that cause inflammation even death in teleost. It has brought huge economic losses to aquaculture and serious threats to the sustainable development of marine fisheries. Here, we isolated the DNA, RNA, and total flagellin from V. parahaemolyticus, and obtained the primary spleen and head kidney cells (including leukocytes) from Tetraodon nigroviridis. V. parahaemolyticus DNA, RNA, and total flagellin were used to treat the T. nigroviridis primary cells described above. The results show that the nitric oxide (NO) production and respiratory burst response were significantly induced after stimulation with V. parahaemolyticus total flagellin in T. nigroviridis head kidney and spleen cells. And total flagellin could promote the gene expression and protein production of IL-1β in T. nigroviridis leukocytes. T. nigroviridis TLR5M (TnTLR5M) and TLR5S (TnTLR5S) ORF sequences were obtained as the main recognition receptor for flagellin. Real-time fluorescent quantitative PCR (qRT-PCR) was performed to detect the expression of pattern recognition receptor TnTLR5M and TnTLR5S, the important signal molecule of inflammatory system TnMyD88 and TnTRAF6, and inflammatory cytokines TnIL-1β and TnIFN-γ2. The results show that there were a significant upregulation after challenge with V. parahaemolyticus total flagellin. We further demonstrated that the total flagellin of V. parahaemolyticus could activate the luciferase activity of the NF-κB reporter gene mediated by TnTLR5M. Overall, our results suggest that V. parahaemolyticus total flagellin activated the NO production, respiratory burst response, and inflammatory cytokines expressions, such as TnIL-1β and TnIFN-γ2, through the TnTLR5M-NF-κB signaling pathway in T. nigroviridis.
Collapse
Affiliation(s)
- Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Songze Gao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
6
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
7
|
McCormack M, Dillon E, O’Connor I, MacCarthy E. Investigation of the Initial Host Response of Naïve Atlantic Salmon ( Salmo salar) Inoculated with Paramoeba perurans. Microorganisms 2021; 9:microorganisms9040746. [PMID: 33918228 PMCID: PMC8066739 DOI: 10.3390/microorganisms9040746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/15/2023] Open
Abstract
Amoebic Gill Disease (AGD), caused by the ectoparasite Paramoeba perurans is characterised by hyperplasia of the gill epithelium and lamellar fusion. In this study, the initial host response of naïve Atlantic salmon (Salmo salar) inoculated with P. perurans was investigated. Using gel-free proteomic techniques and mass spectrometry gill and serum samples were analysed at 7 timepoints (2, 3, 4, 7, 9, 11 and 14 days) post-inoculation with P. perurans. Differential expression of immune related proteins was assessed by comparison of protein expression from each time point against naïve controls. Few host immune molecules associated with innate immunity showed increased expression in response to gill colonisation by amoebae. Furthermore, many proteins with roles in immune signalling, phagocytosis and T-cell proliferation were found to be inhibited upon disease progression. Initially, various immune factors demonstrated the anticipated increase in expression in response to infection in the serum while some immune inhibition became apparent at the later stages of disease progression. Taken together, the pro-immune trend observed in serum, the lack of a robust early immune response in the gill and the diversity of those proteins in the gill whose altered expression negatively impact the immune response, support the concept of a pathogen-derived suppression of the host response.
Collapse
Affiliation(s)
- Michelle McCormack
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
- Correspondence:
| | - Eugene Dillon
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ian O’Connor
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
| |
Collapse
|
8
|
Semple SL, Dixon B. Salmonid Antibacterial Immunity: An Aquaculture Perspective. BIOLOGY 2020; 9:E331. [PMID: 33050557 PMCID: PMC7599743 DOI: 10.3390/biology9100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
The aquaculture industry is continuously threatened by infectious diseases, including those of bacterial origin. Regardless of the disease burden, aquaculture is already the main method for producing fish protein, having displaced capture fisheries. One attractive sector within this industry is the culture of salmonids, which are (a) uniquely under pressure due to overfishing and (b) the most valuable finfish per unit of weight. There are still knowledge gaps in the understanding of fish immunity, leading to vaccines that are not as effective as in terrestrial species, thus a common method to combat bacterial disease outbreaks is the use of antibiotics. Though effective, this method increases both the prevalence and risk of generating antibiotic-resistant bacteria. To facilitate vaccine design and/or alternative treatment efforts, a deeper understanding of the teleost immune system is essential. This review highlights the current state of teleost antibacterial immunity in the context of salmonid aquaculture. Additionally, the success of current techniques/methods used to combat bacterial diseases in salmonid aquaculture will be addressed. Filling the immunology knowledge gaps highlighted here will assist in reducing aquaculture losses in the future.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
9
|
Bela-Ong DB, Greiner-Tollersrud L, Andreas van der Wal Y, Jensen I, Seternes OM, Jørgensen JB. Infection and microbial molecular motifs modulate transcription of the interferon-inducible gene ifit5 in a teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103746. [PMID: 32445651 DOI: 10.1016/j.dci.2020.103746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Interferon-induced proteins with tetratricopeptide repeats (IFITs) are involved in antiviral defense. Members of this protein family contain distinctive multiple structural motifs comprising tetratricopeptides that are tandemly arrayed or dispersed along the polypeptide. IFIT-encoding genes are upregulated by type I interferons (IFNs) and other stimuli. IFIT proteins inhibit virus replication by binding to and regulating the functions of cellular and viral RNA and proteins. In teleost fish, knowledge about genes and functions of IFITs is currently limited. In the present work, we describe an IFIT5 orthologue in Atlantic salmon (SsaIFIT5) with characteristic tetratricopeptide repeat motifs. We show here that the gene encoding SsaIFIT5 (SsaIfit5) was ubiquitously expressed in various salmon tissues, while bacterial and viral challenge of live fish and in vitro stimulation of cells with recombinant IFNs and pathogen mimics triggered its transcription. The profound expression in response to various immune stimulation could be ascribed to the identified IFN response elements and binding sites for various immune-relevant transcription factors in the putative promoter of the SsaIfit5 gene. Our results establish SsaIfit5 as an IFN-stimulated gene in A. salmon and strongly suggest a phylogenetically conserved role of the IFIT5 protein in antimicrobial responses in vertebrates.
Collapse
Affiliation(s)
- Dennis Berbulla Bela-Ong
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Yorick Andreas van der Wal
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway; Vaxxinova Research &Development GmBH, Münster, Germany
| | - Ingvill Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Ole Morten Seternes
- Department of Pharmacy, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway.
| |
Collapse
|
10
|
Taira G, Onoue T, Hikima JI, Sakai M, Kono T. Circadian clock components Bmal1 and Clock1 regulate tlr9 gene expression in the Japanese medaka (Oryzias latipes). FISH & SHELLFISH IMMUNOLOGY 2020; 105:438-445. [PMID: 32653586 DOI: 10.1016/j.fsi.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Currently, circadian regulation of immune molecules in lower vertebrates, particularly, diurnal oscillation in the immune status of a fish, is not well understood. In this study, the diurnal oscillation of toll-like receptor (Tlr) 9, which plays a role in pathogen recognition, was investigated in the Japanese medaka fish (Oryzias latipes). We confirmed the expression of tlr9 and clock genes (bmal1 and clock1) in the central and peripheral tissues of medaka. These genes were expressed in a diurnal manner in medaka acclimated to a 12-h:12-h light-dark (12:12 LD) cycle. In addition, increased tlr9 expression was detected in medaka embryo cells (OLHdrR-e3) overexpressing both bmal1 and clock1 genes; however, this result was not obtained when only one or neither of the genes was overexpressed. This suggests that the increase in expression was mediated by the Bmal1 and Clock1 proteins together. In vitro stimulation of the head kidney with CpG-oligodeoxynucleotides (CpG-ODNs) at different zeitgeber times (ZTs; ZT0 = light on, ZT12 = light off) affected the degree of tlr9 gene expression, showing high and low responsiveness to CpG-ODN stimulation at ZT6/10 and ZT18/22, respectively. Similarly, bacterial infection at different ZT points induced a difference in the expression of Tlr9 signaling pathway-related genes (tlr9 and myd88). These results suggested that fish tlr9 exhibits diurnal oscillation, which is regulated by clock proteins, and its responsiveness to immune-stimulation/pathogen infection depends on the time of the day.
Collapse
Affiliation(s)
- Genki Taira
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Teika Onoue
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
11
|
Chang CJ. Immune sensing of DNA and strategies for fish DNA vaccine development. FISH & SHELLFISH IMMUNOLOGY 2020; 101:252-260. [PMID: 32247047 DOI: 10.1016/j.fsi.2020.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/21/2023]
Abstract
Studies of DNA vaccines have shown that understanding the mechanism of DNA vaccine-mediated action is the key for vaccine development. Current knowledge has shown the presence of antigen presenting cells (APCs) involving in B and T cells at the muscle injection site and the upregulation of type I interferon (IFN-I) that initiates antiviral response and benefits adaptive immunity in fish DNA vaccines. IFN-I may be triggered by expressed antigen such as the rhabdovirus G protein encoded DNA vaccine or by plasmid DNA itself through cytosolic DNA sensing. The investigating of Toll-like receptor 9, and 21 are the CpG-motif sensors in many fish species, and the cytosolic DNA receptors DDX41 and downstream STING signaling revealed the mechanisms for IFN-I production. This review article describes the recent finding of receptors for cytosolic DNA, the STING-TBK1-IRF signaling, and the possibility of turning these findings into strategies for the future development of DNA vaccines.
Collapse
Affiliation(s)
- Chia-Jung Chang
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Nepal A, Wolfson DL, Ahluwalia BS, Jensen I, Jørgensen J, Iliev DB. Intracellular distribution and transcriptional regulation of Atlantic salmon (Salmo salar) Rab5c, 7a and 27a homologs by immune stimuli. FISH & SHELLFISH IMMUNOLOGY 2020; 99:119-129. [PMID: 32014587 DOI: 10.1016/j.fsi.2020.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Rab GTPases control trafficking of intracellular vesicles and are key regulators of endocytic and secretory pathways. Due to their specific distribution, they may serve as markers for different endolysosomal compartments. Since Rab GTPases are involved in uptake and trafficking of endocytosed ligands and cell receptors, as well as secretion of immune mediators, they have been implicated in diverse immunological processes and their functions are often exploited by intracellular pathogens such as viruses. While Rab proteins have been studied extensively in mammals, their functions in vesicle trafficking in teleosts are not well known. In the present work, Atlantic salmon Rab5c, Rab7a and Rab27a homologs were studied in terms of intracellular distribution and gene expression. Structured illumination microscopy demonstrated that transgenic, GFP-tagged salmon Rab5c and Rab7a are, predominantly, located within early endosomes and late endosomes/lysosomes, respectively. In contrast, Rab27a showed a broader distribution, which indicates that it associates with diverse intracellular vesicles and organelles. Infection of salmon with Salmonid alphavirus subtype 3 (SAV3) enhanced the mRNA levels of all of the studied Rab isoforms in heart and head kidney and most of them were upregulated in spleen. This may reflect the capacity of the virus to exploit the functions of these rab proteins. It is also possible that the transcriptional regulation of Rab proteins in SAV3-infected organs may play a role in the antiviral immune response. The latter was further supported by in vitro experiments with adherent head kidney leukocytes. The expression of Rab5c and Rab27a was upregulated in these cells following stimulation with TLR ligands including CpG oligonucleotides and polyI:C. The expression of most of the analyzed Rab isoforms in the primary leukocytes was also enhanced by stimulation with type I IFN. Interestingly, IFN-gamma had a negative effect on Rab7a expression which may be linked to the priming activity of this cytokine on monocytes and macrophages. Overall, these data demonstrate that the intracellular distribution of Rab5c, Rab7a and Rab27a is phylogenetically conserved within vertebrates and that these molecules might be implicated in viral infections and the regulation of the antiviral immune response in Atlantic salmon.
Collapse
Affiliation(s)
- Arpita Nepal
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Deanna L Wolfson
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dimitar B Iliev
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway; Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
13
|
Injection Vaccines Formulated with Nucleotide, Liposomal or Mineral Oil Adjuvants Induce Distinct Differences in Immunogenicity in Rainbow Trout. Vaccines (Basel) 2020; 8:vaccines8010103. [PMID: 32106599 PMCID: PMC7157222 DOI: 10.3390/vaccines8010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/23/2022] Open
Abstract
Protection facilitated by the widespread use of mineral oil adjuvanted injection vaccines in salmonid fish comes with adverse effects of varying severity. In this study, we characterized the immunological profiles of two alternative vaccine formulations, both with proven efficacy and an improved safety profile in rainbow trout. Experimental injection vaccines were prepared on an identical whole-cell Aeromonas salmonicida bacterin platform and were formulated with CpG oligodeoxynucleotides, a liposomal (CAF01) or a benchmark mineral oil adjuvant, respectively. A naïve group, as well as bacterin and saline-injected groups were also included. Following administration, antigen-specific serum antibody titers, the tissue distribution of immune cell markers, and the expression of immune-relevant genes following the in vitro antigenic restimulation of anterior kidney leukocytes was investigated. Immunohistochemical staining suggested prolonged antigen presentation for the particulate formulations and increased mucosal presence of antigen-presenting cells in all immunized fish. Unlike the other immunized groups, the CAF01 group only displayed a transient elevation in specific antibody titers and immunohistochemical observations, and the transcription data suggest an increased role of cell-mediated immunity for this group. Finally, the transcription profile of the CpG formulation approached that of a TH1 profile. When compared to the benchmark formulation, CAF01 and CpG adjuvants induce slight, but distinct differences in the resulting protective immune responses. This is important, as it allows a broader immunological approach for the future development of safer vaccines.
Collapse
|
14
|
Svenning S, Gondek-Wyrozemska AT, van der Wal YA, Robertsen B, Jensen I, Jørgensen JB, Edholm ES. Microbial Danger Signals Control Transcriptional Induction of Distinct MHC Class I L Lineage Genes in Atlantic Salmon. Front Immunol 2019; 10:2425. [PMID: 31681311 PMCID: PMC6797598 DOI: 10.3389/fimmu.2019.02425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Antigen processing and presentation by major histocompatibility complex (MHC) molecules is a cornerstone in vertebrate immunity. Like mammals, teleosts possess both classical MHC class I and multiple families of divergent MHC class I genes. However, while certain mammalian MHC class I-like molecules have proven to be integral in immune regulation against a broad array of pathogens, the biological relevance of the different MHC class I lineages in fish remains elusive. This work focuses on MHC class I L lineage genes and reveals unique regulatory patterns of six genes (Sasa-lia, Sasa-lda, Sasa-lca, Sasa-lga, Sasa-lha, and Sasa-lfa) in antimicrobial immunity of Atlantic salmon (Salmo salar L.). Using two separate in vivo challenge models with different kinetics and immune pathologies combined with in vitro stimulation using viral and bacterial TLR ligands, we show that de novo synthesis of different L lineage genes is distinctly regulated in response to various microbial stimuli. Prior to the onset of classical MHC class I gene expression, lia was rapidly and systemically induced in vivo by the single-stranded (ss) RNA virus salmonid alpha virus 3 (SAV3) but not in response to the intracellular bacterium Piscirickettsia salmonis. In contrast, lga expression was upregulated in response to both viral and bacterial stimuli. A role for distinct MHC class I L-lineage genes in anti-microbial immunity in salmon was further substantiated by a marked upregulation of lia and lga gene expression in response to type I IFNa stimulation in vitro. Comparably, lha showed no transcriptional induction in response to IFNa stimulation but was strongly induced in response to a variety of viral and bacterial TLR ligands. In sharp contrast, lda showed no response to viral or bacterial challenge. Similarly, induction of lca, which is predominantly expressed in primary and secondary lymphoid tissues, was marginal with the exception of a strong and transient upregulation in pancreas following SAV3 challenge Together, these findings suggest that certain Atlantic salmon MHC class I L lineage genes play important and divergent roles in early anti-microbial response and that their regulation, in response to different activation signals, represents a system for selectively promoting the expression of distinct non-classical MHC class I genes in response to different types of immune challenges.
Collapse
Affiliation(s)
- Steingrim Svenning
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Agata T Gondek-Wyrozemska
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Yorick Andreas van der Wal
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.,Vaxxinova Research & Development, Vaxxinova GmbH, Münster, Germany
| | - Børre Robertsen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Eva-Stina Edholm
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Zhan FB, Tan K, Song X, Yu J, Wang WM. Isolation and expression of four Megalobrama amblycephala toll-like receptor genes in response to a bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1028-1040. [PMID: 31430559 DOI: 10.1016/j.fsi.2019.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Toll-like receptors (TLRs) are a category of pattern recognition receptors (PRRs), which recognize pathogen associated molecular patterns (PAMPs) and participate in the immune responses. We identified tlr5a, tlr5b, tlr9 and tlr21 from the genome of blunt snout bream (Megalobrama amblycephala). All four tlrs were constitutively expressed in all examined tissues. After an immune bacterial challenge with Aeromonas hydrophila, their expressionwas up-regulated in lymphoid organs and tissues. Recombinant eukaryotic plasmid pEGFP-N1 was transfected into the common carp (Cyprinus carpio) EPC (epithelioma papulosum cyprini) cells for the purpose of subcellular localization. pcDNA3.1(+) recombinant eukaryotic plasmid was used to investigate the effects of overexpression of tlrs on the expression of downstream interferon-associated immune factors. The four Tlrs were distributed in the cytoplasm of transfected cells and appeared as filamentous or reticular. The expression of irf3, irf7, isg15, mx1, pkr and viperin at 0, 6, 12, 18, 24, 36, 48 and 72 h post-transfection in transfected EPC cells was quantified by qPCR. Overexpression of tlrs upregulated the expression of viperin, isg15, irf3, irf7, mx1 and pkr (in that order of magnitude). We also cloned the following promoters of irfs: Irf1-p, irf2-p, irf6-p, irf7-p, irf8-p and irf9-p. Results of the dual luciferase reporter assay suggested that tlr5a, tlr5b and tlr9 enhanced the activities of irf7-p, while tlr5b enhanced the activities of irf1-p and irf7-p. This suggests that they all play a role in the innate immunity. The experiments also indicated that TLRs activate irf3 or irf7 signaling to induce IFN secretion and subsequent upregulation of IFN-stimulated genes. These results indicate that tlrs and irfs play an important immune role in response to A. hydrophila infection in blunt snout bream, and pave the way for further studies of immune mechanisms mediated by TLRs in fish.
Collapse
Affiliation(s)
- Fan-Bin Zhan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kianann Tan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoran Song
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiongying Yu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Iliev DB, Lagos L, Thim HL, Jørgensen SM, Krasnov A, Jørgensen JB. CpGs Induce Differentiation of Atlantic Salmon Mononuclear Phagocytes Into Cells With Dendritic Morphology and a Proinflammatory Transcriptional Profile but an Exhausted Allostimulatory Activity. Front Immunol 2019; 10:378. [PMID: 30918507 PMCID: PMC6424866 DOI: 10.3389/fimmu.2019.00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Due to their ability to present foreign antigens and prime naïve T cells, macrophages, and dendritic cells (DCs) are referred to as professional antigen-presenting cells (APCs). Although activated macrophages may function as APCs, these cells are particularly effective at directly engaging pathogens through phagocytosis, and production of antimicrobial compounds. On the other hand, DCs possess superb antigen-presenting and costimulatory capacity and they are essential for commencement and regulation of adaptive immune responses. In in vitro models, development of mature mammalian DCs from monocytes requires sequential exposure to growth factors (including GM-CSF and IL-4) and proinflammatory stimuli such as toll-like receptor (TLR) ligands. Currently, except for IL-4/13, neither orthologs nor functional analogs of the growth factors which are essential for the differentiation of mammalian DCs (including GM-CSF and FLT3) have been identified in teleosts and data about differentiation of piscine APCs is scant. In the present study, primary salmon mononuclear phagocytes (MPs) stimulated in vitro for 5-7 days with a B-class CpG oligodeoxynucleotides (ODN 2006PS) underwent morphological differentiation and developed "dendritic" morphology, characterized by long, branching pseudopodia. Transcriptional profiling showed that these cells expressed high levels of proinflammatory mediators characteristic for M1 polarized MPs. However, the cells treated with CpGs for 7 days downregulated their surface MHCII molecules as well as their capacity to endocytose ovalbumin and exhibited attenuated allostimulatory activity. This concurred with transcriptional downregulation of costimulatory CD80/86 and upregulation of inhibitory CD274 (B7-H1) genes. Despite their exhausted allostimulatory activity, these cells were still responsive to re-stimulation with gardiquimod (a TLR7/8 ligand) and further upregulated a wide array of immune genes including proinflammatory mediators such as intereukin-1 beta and tumor necrosis factor. Overall, the presented data highlight the disparate effects TLR ligands may have on the proinflammatory status of APCs, on one side, and their antigen-presenting/costimulatory functions, on the other. These findings also indicate that despite the poor phylogenetic conservation of the growth factors involved in the differentiation of DCs, some of the processes that orchestrate the development and the differentiation of professional APCs are conserved between teleosts in mammals.
Collapse
Affiliation(s)
- Dimitar B Iliev
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Leidy Lagos
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hanna L Thim
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | | | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
17
|
Martins T, Valentim A, Pereira N, Antunes LM. Anaesthetics and analgesics used in adult fish for research: A review. Lab Anim 2018; 53:325-341. [PMID: 30514148 DOI: 10.1177/0023677218815199] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The number of fish used in research has increased in the last decades. Anaesthesia is required when fish must be held immobile and it is crucial to promote fish welfare, because these vertebrates can show signs of stress and/or pain during handling, transport, tagging, sampling and invasive procedures. The use of an inadequate anaesthetic protocol can compromise not only the welfare of the fish, but also the reliability of the research results. Thus, the development of suitable anaesthetic regimes for each fish species is important. This article reviews the main anaesthetic and analgesic agents used in adult fish in a research setting.
Collapse
Affiliation(s)
- Tânia Martins
- 1 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal
| | - Ana Valentim
- 1 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal.,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,3 Laboratory Animal Science Group, Universidade do Porto, Portugal
| | - Nuno Pereira
- 4 Oceanário de Lisboa, Portugal.,5 ISPA - Instituto Universitário, Lisboa, Portugal.,6 Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal.,7 Chronic Diseases Research Center (CEDOC), Nova Medical School, Portugal.,8 Faculty of Veterinary Medicine, Lusófona University, Portugal
| | - Luis Marques Antunes
- 1 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal.,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,3 Laboratory Animal Science Group, Universidade do Porto, Portugal
| |
Collapse
|
18
|
Muñoz-Flores C, Astuya A, Roa F, Romero A, Acosta J, Sánchez O, Toledo J. Activation of membrane-bound and soluble Toll-like Receptors 5 in Salmo salar depends on the MyD88 signalling pathway. Biochim Biophys Acta Gen Subj 2018; 1862:2215-2225. [DOI: 10.1016/j.bbagen.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/29/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
|
19
|
Iliev D, Strandskog G, Nepal A, Aspar A, Olsen R, Jørgensen J, Wolfson D, Ahluwalia BS, Handzhiyski J, Mironova R. Stimulation of exosome release by extracellular DNA is conserved across multiple cell types. FEBS J 2018; 285:3114-3133. [PMID: 29953723 DOI: 10.1111/febs.14601] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 06/26/2018] [Indexed: 01/01/2023]
Abstract
Exosomes are distinguished from other types of extracellular vesicles by their small and relatively uniform size (30-100 nm) and their composition which reflects their endo-lysosomal origin. Involvement of these extracellular organelles in intercellular communication and their implication in pathological conditions has fuelled intensive research on mammalian exosomes; however, currently, very little is known about exosomes in lower vertebrates. Here we show that, in primary cultures of head kidney leukocytes from Atlantic salmon (Salmo salar), phosphorothioate CpG oligodeoxynucleotides induce secretion of vesicles with characteristics very similar to these of mammalian exosomes. Further experiments revealed that the oligonucleotide-induced exosome secretion did not depend on the CpG motifs but it relied on the phosphorothioate modification of the internucleotide linkage. Exosome secretion was also induced by genomic bacterial and eukaryotic DNA in toll-like receptor 9-negative piscine and human cell lines demonstrating that this is a phylogenetically conserved phenomenon which does not depend on activation of immune signaling pathways. In addition to exosomes, stimulation with phosphorothioate oligonucleotides and genomic DNA induced secretion of LC3B-II, an autophagosome marker, which was associated with vesicles of diverse size and morphology, possibly derived from autophagosome-related intracellular compartments. Overall, this work reveals a previously unrecognized biological activity of phosphorothioate ODNs and genomic DNA - their capacity to induce secretion of exosomes and other types of extracellular vesicles. This finding might help shed light on the side effects of therapeutic phosphorothioate oligodeoxynucleotides and the biological activity of extracellular genomic DNA which is often upregulated in pathological conditions.
Collapse
Affiliation(s)
- Dimitar Iliev
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Guro Strandskog
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Arpita Nepal
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Augusta Aspar
- Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Randi Olsen
- Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn Jørgensen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Deanna Wolfson
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Jordan Handzhiyski
- Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Roumyana Mironova
- Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
20
|
Angulo C, Alamillo E, Hirono I, Kondo H, Jirapongpairoj W, Perez-Urbiola JC, Reyes-Becerril M. Class B CpG-ODN2006 is highly associated with IgM and antimicrobial peptide gene expression through TLR9 pathway in yellowtail Seriola lalandi. FISH & SHELLFISH IMMUNOLOGY 2018; 77:71-82. [PMID: 29567135 DOI: 10.1016/j.fsi.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/07/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to characterize the TLR9 gene from yellowtail (Seriola lalandi) and evaluate its functional activity using the class B Cytosine-phosphate-guanine-oligodeoxynucleotide2006 (CpG-ODN2006) in an in vivo experiment after one-week immunostimulation. The gene expressions of TLR9, Immunoglobulin M (IgM), antimicrobial peptides and cytokines were evaluated by real time PCR, and humoral immune parameters were analyzed in serum. The TLR9 nucleotide sequence from yellowtail was obtained using the whole-genome shotgun sequencing method and bioinformatics tools. The yellowtail full-length cDNA sequence of SlTLR9 was 3789 bp in length, including a 66-bp 5'-untranslated region (UTR), a 3'-UTR of 528 bp, and an open reading frame (ORF) of 3192 bp translatable to 1064 amino acid showing a high degree of similarity with the counterparts of other fish species and sharing common structural architecture of the TLR family, including LRR domains, one C-terminal LRR region, and a TIR domain. Gene expression studies revealed the constitutive expression of TLR9 mRNA in all analyzed tissues; the highest levels were observed in intestine, liver and spleen where they play an important role in the fish immune system. The expression levels of TLR9 after B class CpG-ODN2006 (the main TLR9-agonist) was significantly up-regulated in all analyzed tissues, with the high expression observed in spleen followed by intestine and skin. The CpG-B has been shown as a potent B cell mitogen, and interestingly, IgM mRNA transcript was up-regulated in spleen and intestine, which was highly correlated with TLR9 after CpG-ODN2006 stimulation. The antimicrobial peptides, piscidin and NK-lysine, were up-regulated in spleen and gill after CpG-ODN2006 injection with a high correlation (r ≥ 0.82) with TLR9 gene expression. Cytokine genes were up-regulated in spleen, intestine and skin after CpG-ODN was compared with the control group. No significant correlation was observed between TLR9 and IL-1β, TNF-α and Mx gene expressions. The results showed that CpG-ODN2006 intraperitoneal injection enhanced lysozyme, peroxidase and superoxide dismutase activities in serum and demonstrated that CpG-ODN2006 can induce a specific immune response via TLR9 in which IgM and antimicrobial peptides must have an important role in the defense mechanisms against infections in yellowtail.
Collapse
Affiliation(s)
- Carlos Angulo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Erika Alamillo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Walissara Jirapongpairoj
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Juan Carlos Perez-Urbiola
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Martha Reyes-Becerril
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
21
|
Eslamloo K, Xue X, Hall JR, Smith NC, Caballero-Solares A, Parrish CC, Taylor RG, Rise ML. Transcriptome profiling of antiviral immune and dietary fatty acid dependent responses of Atlantic salmon macrophage-like cells. BMC Genomics 2017; 18:706. [PMID: 28886690 PMCID: PMC5591513 DOI: 10.1186/s12864-017-4099-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Due to the limited availability and high cost of fish oil in the face of increasing aquaculture production, there is a need to reduce usage of fish oil in aquafeeds without compromising farm fish health. Therefore, the present study was conducted to determine if different levels of vegetable and fish oils can alter antiviral responses of salmon macrophage-like cells (MLCs). Atlantic salmon (Salmo salar) were fed diets containing 7.4% (FO7) or 5.1% (FO5) fish oil. These diets were designed to be relatively low in EPA + DHA (i.e. FO7: 1.41% and FO5: 1%), but near the requirement level, and resulting in comparable growth. Vegetable oil (i.e. rapeseed oil) was used to balance fish oil in experimental diets. After a 16-week feeding trial, MLCs isolated from fish in these dietary groups were stimulated by a viral mimic (dsRNA: pIC) for 6 h (qPCR assay) and 24 h (microarray and qPCR assays). RESULTS The fatty acid composition of head kidney leukocytes varied between the two dietary groups (e.g. higher 20:5n-3 in the FO7 group). Following microarray assays using a 44K salmonid platform, Rank Products (RP) analysis showed 14 and 54 differentially expressed probes (DEP) (PFP < 0.05) between the two diets in control and pIC groups (FO5 vs. FO7), respectively. Nonetheless, Significance Analysis of Microarrays (SAM, FDR < 0.05) identified only one DEP between pIC groups of the two diets. Moreover, we identified a large number (i.e. 890 DEP in FO7 and 1128 DEP in FO5 overlapping between SAM and RP) of pIC-responsive transcripts, and several of them were involved in TLR-/RLR-dependent and cytokine-mediated pathways. The microarray results were validated as significantly differentially expressed by qPCR assays for 2 out of 9 diet-responsive transcripts and for all of the 35 selected pIC-responsive transcripts. CONCLUSION Fatty acid-binding protein adipocyte (fabp4) and proteasome subunit beta type-8 (psmb8) were significantly up- and down-regulated, respectively, in the MLCs of fish fed the diet with a lower level of fish oil, suggesting that they are important diet-responsive, immune-related biomarkers for future studies. Although the different levels of dietary fish and vegetable oils involved in this study affected the expression of some transcripts, the immune-related pathways and functions activated by the antiviral response of salmon MLCs in both groups were comparable overall. Moreover, the qPCR revealed transcripts responding early to pIC (e.g. lgp2, map3k8, socs1, dusp5 and cflar) and time-responsive transcripts (e.g. scarb1-a, csf1r, traf5a, cd80 and ctsf) in salmon MLCs. The present study provides a comprehensive picture of the putative molecular pathways (e.g. RLR-, TLR-, MAPK- and IFN-associated pathways) activated by the antiviral response of salmon MLCs.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
22
|
Alternatives to mineral oil adjuvants in vaccines against Aeromonas salmonicida subsp. salmonicida in rainbow trout offer reductions in adverse effects. Sci Rep 2017; 7:5930. [PMID: 28724973 PMCID: PMC5517504 DOI: 10.1038/s41598-017-06324-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/12/2017] [Indexed: 11/08/2022] Open
Abstract
In an effort to reduce the frequency and severity of adverse reactions seen from the use of mineral oil adjuvants in salmonid fish, the effects of two alternative adjuvants were assessed, focusing on the induction of adverse effects as well as protection. Using rainbow trout (Oncorhynchus mykiss) as recipients, injection vaccines based on formalin-inactivated Aeromonas salmonicida subspecies salmonicida were formulated with CpG oligodeoxynucleotides, the liposomal cationic adjuvant formulation 01 (CAF01) or with Freund’s incomplete adjuvant and administered intraperitoneally. Control groups of unvaccinated, Tris-buffered saline-injected or bacterin-injected individuals were included, and each group included in the study held a total number of 240 individuals. Subsequently, individuals from each group were examined for differences in Fulton’s condition factor, macro- and microscopic pathological changes, as well as protection against experimental infection with A. salmonicida. While adverse effects were not eliminated, reductions in microscopic and macroscopic adverse effects, in particular, were seen for both the nucleotide- and liposome-based vaccine formulations. Furthermore, the induced protection appears similar to that of the benchmark formulation, thus introducing viable, potential alternative types of adjuvants for use in future fish vaccines.
Collapse
|
23
|
Sutherland BJ, Covello JM, Friend SE, Poley JD, Koczka KW, Purcell SL, MacLeod TL, Donovan BR, Pino J, González-Vecino JL, Gonzalez J, Troncoso J, Koop BF, Wadsworth SL, Fast MD. Host–parasite transcriptomics during immunostimulant-enhanced rejection of salmon lice (Lepeophtheirus salmonis) by Atlantic salmon (Salmo salar). Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Salmon lice ( Lepeophtheirus salmonis) are important ectoparasites of wild and farmed salmonids and cause major losses to the salmon farming industry throughout the Northern Hemisphere. With the emergence of resistance to several commonly used parasiticides, novel control strategies and integration of multiple treatment options are needed, including host immunostimulation. Here, we investigate the effects of a functional feed containing a peptidoglycan and nucleotide formulation on L. salmonis infection of Atlantic salmon ( Salmo salar) by characterizing lice infection levels, the expression of several host immune genes, and the parasite transcriptomic response to the immunostimulated host. Although initial infection intensities were low, the low dose (LD) immunostimulant diet reduced the total lice burden by 50% relative to controls. Immunostimulant fed hosts up-regulated interleukin-1β in the skin and spleen. This gene has been implicated in successful responses of several salmonid species to salmon lice but is typically not observed in Atlantic salmon, suggesting a favorable influence on the immune response. Lice infecting LD immunostimulated salmon overexpressed genes putatively involved in parasite immunity, including carboxylesterases, and underexpressed genes putatively involved in feeding (e.g., proteases). These lice response genes further improve the characterization of the transcriptome of the non-model parasite by identifying genes potentially involved in evading host immunity.
Collapse
Affiliation(s)
- Ben J.G. Sutherland
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Jennifer M. Covello
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Sarah E. Friend
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Jordan D. Poley
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Kim W. Koczka
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Sara L. Purcell
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Tara L. MacLeod
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Bridget R. Donovan
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Jorge Pino
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | | | - Javier Gonzalez
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | - Jose Troncoso
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | - Ben F. Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - Mark D. Fast
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
24
|
U-Taynapun K, Chirapongsatonkul N, Itami T, Tantikitti C. CpG ODN mimicking CpG rich region of myxosporean Myxobolus supamattayai stimulates innate immunity in Asian sea bass (Lates calcarifer) and defense against Streptococcus iniae. FISH & SHELLFISH IMMUNOLOGY 2016; 58:116-124. [PMID: 27629917 DOI: 10.1016/j.fsi.2016.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine CpG dinucleotides within specific sequence contexts (CpG motifs) have been reported as pathogen-associated molecular patterns (PAMPs). Its immunostimulatory effects have been demonstrated in diverse vertebrate models. CpG ODN is typically found in bacterial or viral genome and recognized by a non-self recognition receptor Toll-like receptor9 (TLR9). Here, a new CpG ODN 1013 which mimics sequence of SSU rDNA of early eukaryotic organism myxosporidia, Myxobolus supamattayai, was employed to stimulate the immune responses of Asian sea bass Lates calcarifer. Its immunostimulant potentiality was comparatively compared with that of CpG ODN 1668, a widely used as functional immunostimulant. Both unmethylated CpG ODNs with some modified phosphorothioated positions were intraperitoneally injection (5 μg/fish). Hematological examination, immunological assays and immune-related genes expression were evaluated 12 h, 1, 3 and 5 d after post CpG ODN challenge. The immunosimulatory effect of these CpG ODNs on fish immunity to protect the bacterial pathogen Streptococcus iniae was also determined. The results demonstrated that these two CpG ODNs could induce immune responses in Asian sea bass including the significant (P < 0.05) increase level of WBC, peroxidase activity and oxidative radicals in head kidney (HK) leukocyte, serum innate immune parameters and up-regulation of four immune responsive genes compared with the control group. Most of immune responses induced by ODN 1668 were strong within 1 d but lesser extended while ODN 1013 prolonged the stimulatory effects during the whole experimental period. After challenge with S. iniae, the survival proportion in ODN 1013-treated fish was apparently higher than that treated with ODN 1668 and PBS, respectively. The results together suggested that CpG ODN 1013 enhanced innate immune responses, including humoral and cellular responses, through TLR9 mediated signaling pathway which is mainly contribute to the protective immunity in Asian sea bass against S. iniae infection. These findings can lead to a new approach in immunostimulant development by using the novel CpG ODN originating from the parasite M. supamattayai, besides those from bacterial and viral genomes, for disease control in fish host.
Collapse
Affiliation(s)
- Kittichon U-Taynapun
- Aquatic Animal Health Management Research Unit, Department of Fisheries, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 80110, Thailand; Aquatic Animal Health Research Center, Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nion Chirapongsatonkul
- Aquatic Animal Health Management Research Unit, Department of Fisheries, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 80110, Thailand; Department of Biochemistry, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Toshiaki Itami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 889-2192, Japan
| | - Chutima Tantikitti
- Aquatic Animal Health Research Center, Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
25
|
Dong X, Su B, Zhou S, Shang M, Yan H, Liu F, Gao C, Tan F, Li C. Identification and expression analysis of toll-like receptor genes (TLR8 and TLR9) in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 58:309-317. [PMID: 27633670 DOI: 10.1016/j.fsi.2016.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/04/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Mucosal immune system is one of the most important components in the innate immunity and constitutes the front line of host defense against infection, especially for teleost, which are living in the pathogen-rich aquatic environment. The pathogen recognition receptors (PRRs), which can recognize the conserved pathogen-associated molecular patterns (PAMPs) of bacteria, are considered as one of the most important component for pathogen recognition and immune signaling pathways activation in mucosal immunity. In this regard, we sought to identify TLR8 and TLR9 in turbot (Scophthalmus maximus), as well as their mucosal expression patterns following different bacterial infection in mucosal tissues for the first time. The full-length TLR8 transcript consists of an open reading frame (ORF) of 3108 bp encoding the putative peptide of 1035 amino acids. While the TLR9 was 6730 bp long, containing a 3168 bp ORF that encodes 1055 amino acids. The phylogenetic analysis revealed both TLR8 and TLR9 showed the closest relationship to large yellow croaker. Moreover, both TLR8 and TLR9 could be detected in all examined healthy turbot tissues, with the lowest expression level in liver and a relatively moderate expression pattern in healthy mucosal tissues. Distinct expression patterns of TLR8 and TLR9 were comparatively observed in the mucosal tissues (intestine, gill and skin) following Vibrio anguillarum and Streptococcus iniae infection, suggesting their different roles for mucosal immunity. Further functional studies are needed to better characterize TLR8 and TLR9 and their family members, to better understand the ligand specificity and to identify their roles in different mucosal tissues in protecting fish from the pathogenically hostile environment.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Mei Shang
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Hao Yan
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
26
|
Lin K, Zhu Z, Ge H, Zheng L, Huang Z, Wu S. Immunity to nervous necrosis virus infections of orange-spotted grouper (Epinephelus coioides) by vaccination with virus-like particles. FISH & SHELLFISH IMMUNOLOGY 2016; 56:136-143. [PMID: 27394969 DOI: 10.1016/j.fsi.2016.06.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/25/2016] [Accepted: 06/29/2016] [Indexed: 05/27/2023]
Abstract
Nervous necrosis virus (NNV) is a kind of the betanodaviruses, which can cause viral nervous necrosis (VNN) and massive mortality in larval and juvenile stages of orange-spotted grouper (Epinephelus coioides). Due to the lack of viral genomes, virus-like particles (VLPs) are considered as one of the most promising candidates in vaccine study to control this disease. In this study, a type of VLPs, which was engineered on the basis of orange-spotted grouper nervous necrosis virus (OGNNV), was produced from prokaryotes. They possessed the similar structure and size to the native NNV. In addition, synthetic oligodeoxynucleotide (ODN) containing CpG motif was added in vaccines, and the expression patterns of several genes were analyzed after injecting with VLP and VLP with adjuvant (VA) to assess the regulation effect of vaccine for inducing immune responses. RT-PCR assays showed that six related genes in healthy tissues were ubiquitously expressed in all nine tested tissues. The vaccine alone was able to enhance the expression of genes, including MHCIa, MyD88, TLR3, TLR9 and TLR22 after vaccination, indicating that the vaccine was able to induce immune response in grouper. In liver, spleen and kidney, the gene expressions of VA group were all significantly higher than that of VLP group at 72 h post-stimulation, showing that the fish of VA challenge group obtained the longer-lasting protective immunity and resistance to pathogen challenge than that of VLP group. The data indicated that the efficacy of vaccine could be further enhanced by CpG ODN after vaccination and provided the reference for the development of future viral vaccine in grouper.
Collapse
Affiliation(s)
- Kebing Lin
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| | - Zhihuang Zhu
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| | - Hui Ge
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| | - Leyun Zheng
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| | - Zhongchi Huang
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China.
| | - Shuiqing Wu
- Fisheries Research Institute of Fujian, Xiamen 361012, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361012, China
| |
Collapse
|
27
|
Su H, Yuan G, Su J. A specific CpG oligodeoxynucleotide induces protective antiviral responses against grass carp reovirus in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:218-227. [PMID: 26972738 DOI: 10.1016/j.dci.2016.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) show strong immune stimulatory activity in vertebrate, however, they possess specific sequence feature among species. In this study, we screened out an optimal CpG ODN sequence for grass carp (Ctenopharyngodon idella), 1670A 5'-TCGAACGTTTTAACGTTTTAACGTT-3', from six published sequences and three sequences designed by authors based on grass carp head kidney mononuclear cells and CIK (C. idella kidney) cells proliferation. VP4 mRNA expression was strongly inhibited by CpG ODN 1670A in CIK cells with GCRV infection, showing its strong antiviral activity. The mechanism via toll-like receptor 9 (TLR9)-mediated signaling pathway was measured by real-time quantitative RT-PCR, and TLR21 did not play a role in the immune response to CpG ODN. The late up-regulation of CiRIG-I mRNA expression indicated that RIG-I-like receptors (RLRs) signaling pathway participated in the immune response to CpG ODN which is the first report on the interaction between CpG and RLRs. We also found that the efficient CpG ODN can activates interferon system. Infected with GCRV, type I interferon expression was reduced and type II interferon was induced by the efficient CpG ODN in CIK cells, especially IFNγ2, suggesting that IFNγ2 played an important role in response to the efficient CpG ODN. These results provide a theoretical basis and new development trend for further research on CpG and the application of CpG vaccine adjuvant in grass carp disease control.
Collapse
Affiliation(s)
- Hang Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Gailing Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
28
|
Ji J, Torrealba D, Ruyra À, Roher N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. BIOLOGY 2015; 4:664-96. [PMID: 26492276 PMCID: PMC4690013 DOI: 10.3390/biology4040664] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
Abstract
Fish disease treatments have progressed significantly over the last few years and have moved from the massive use of antibiotics to the development of vaccines mainly based on inactivated bacteria. Today, the incorporation of immunostimulants and antigens into nanomaterials provide us with new tools to enhance the performance of immunostimulation. Nanoparticles are dispersions or solid particles designed with specific physical properties (size, surface charge, or loading capacity), which allow controlled delivery and therefore improved targeting and stimulation of the immune system. The use of these nanodelivery platforms in fish is in the initial steps of development. Here we review the advances in the application of nanoparticles to fish disease prevention including: the type of biomaterial, the type of immunostimulant or vaccine loaded into the nanoparticles, and how they target the fish immune system.
Collapse
Affiliation(s)
- Jie Ji
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Debora Torrealba
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Àngels Ruyra
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
29
|
Sensors of Infection: Viral Nucleic Acid PRRs in Fish. BIOLOGY 2015; 4:460-93. [PMID: 26184332 PMCID: PMC4588145 DOI: 10.3390/biology4030460] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/25/2022]
Abstract
Viruses produce nucleic acids during their replication, either during genomic replication or transcription. These nucleic acids are present in the cytoplasm or endosome of an infected cell, or in the extracellular space to be sensed by neighboring cells during lytic infections. Cells have mechanisms of sensing virus-generated nucleic acids; these nucleic acids act as flags to the cell, indicating an infection requiring defense mechanisms. The viral nucleic acids are called pathogen-associated molecular patterns (PAMPs) and the sensors that bind them are called pattern recognition receptors (PRRs). This review article focuses on the most recent findings regarding nucleic acids PRRs in fish, including: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cytoplasmic DNA sensors (CDSs) and class A scavenger receptors (SR-As). It also discusses what is currently known of the downstream signaling molecules for each PRR family and the resulting antiviral response, either type I interferons (IFNs) or pro-inflammatory cytokine production. The review highlights what is known but also defines what still requires elucidation in this economically important animal. Understanding innate immune systems to virus infections will aid in the development of better antiviral therapies and vaccines for the future.
Collapse
|
30
|
Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015; 2015:670437. [PMID: 25759845 PMCID: PMC4337036 DOI: 10.1155/2015/670437] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Collapse
|
31
|
Reyes-Becerril M, Angulo C, Ascencio F. Humoral immune response and TLR9 gene expression in Pacific red snapper (Lutjanus peru) experimentally exposed to Aeromonas veronii. FISH & SHELLFISH IMMUNOLOGY 2015; 42:289-296. [PMID: 25462554 DOI: 10.1016/j.fsi.2014.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Aquaculture production of Pacific red snapper Lutjanus peru is growing rapidly in Mexico, especially in Gulf of California. As it is a relatively new aquaculture species there are few reports evaluating its immune response to pathogens. The Gram-negative bacteria Aeromonas veronii is a heterogeneous organism that causes the disease known as motile aeromonad septicemia, which is responsible for serious economic loss in seabream culture due to bacterial infections. For the purpose of this study, juvenile Pacific red snapper specimens were intraperitoneally injected with low doses of A. veronii (1 × 10(6) CFU ml(-1)). Changes in humoral immune parameters (total protein, myeloperoxidase, lisozyme and antiprotease activities and IgM levels), as well as superoxide dismutase and catalase activities, and TLR9 gene expression were evaluated 24 and 48 h after injection. Overall, the results showed an enhanced in humoral immune parameters and SOD and CAT activities in fish infected with A. veronii compared with control group at 24 or 48 h. By real time PCR assays, the basal mRNA transcripts of TLR9 showed that were highly expressed in intestine and leucocytes compared to skin, head kidney, liver and gill. Then, the mRNA expression levels of TLR9 in head kidney, skin, liver and intestine were analyzed in non-infected and experimentally infected fish 24 and 48 h after injection. A. veronii up-regulated the expression of TLR9 at 24 or 48 h of exposure in all samples analyzed except in liver. Interestingly, intestine produced the greatest increase in transcript levels upon exposure (48 h) to A. veronii. Taken together, our results suggest that low doses of A. veronii infection inducing humoral immune system and TLR9 immune gene in Pacific red snapper that can be useful in the health control of this species.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, Mexico
| | - Carlos Angulo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, Mexico
| | - Felipe Ascencio
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, Mexico.
| |
Collapse
|
32
|
Zhang J, Kong X, Zhou C, Li L, Nie G, Li X. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. FISH & SHELLFISH IMMUNOLOGY 2014; 41:380-8. [PMID: 25241605 DOI: 10.1016/j.fsi.2014.09.022] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/05/2014] [Accepted: 09/14/2014] [Indexed: 05/22/2023]
Abstract
Pattern recognition receptors (PRRs) recognize the conserved molecular structure of pathogens and trigger the signaling pathways that activate immune cells in response to pathogen infection. Toll-like receptors (TLRs) are the first and best characterized innate immune receptors. To date, at least 20 TLR types (TLR1, 2, 3, 4, 5M, 5S, 7, 8, 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, and 26) have been found in more than a dozen of fish species. However, of the TLRs identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S, TLR9, TLR21, and TLR22. Some studies have suggested that TLR2, TLR5M, TLR5S, TLR9, and TLR21 could specifically recognize PAMPs from bacteria. In addition, other TLRs including TLR1, TLR4, TLR14, TLR18, and TLR25 may also be sensors of bacteria. TLR signaling pathways in fish exhibit some particular features different from that in mammals. In this review, the ligand specificity and signal pathways of TLRs that recognize bacteria in fish are summarized. References for further studies on the specificity for recognizing bacteria using TLRs and the following reactions triggered are discussed. In-depth studies should be continuously performed to identify the ligand specificity of all TLRs in fish, particularly non-mammalian TLRs, and their signaling pathways. The discovery of TLRs and their functions will contribute to the understanding of disease resistance mechanisms in fish and provide new insights for drug intervention to manipulate immune responses.
Collapse
Affiliation(s)
- Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Chuanjiang Zhou
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
33
|
The effect of TLR9 agonist CpG oligodeoxynucleotides on the intestinal immune response of cobia (Rachycentron canadum). J Immunol Res 2014; 2014:273284. [PMID: 24991578 PMCID: PMC4060301 DOI: 10.1155/2014/273284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/11/2014] [Accepted: 04/22/2014] [Indexed: 01/29/2023] Open
Abstract
Cytosine-guanine oligodeoxynucleotide (CpG ODN) motifs of bacterial DNA are recognized through toll-like receptor 9 (TLR9) and are potent activators of innate immunity. However, the interaction between TLR9 and CpG ODN in aquatic species has not been well characterized. Hence, cobia TLR9 isoform B (RCTLR9B) was cloned and its expression and induction in intestine were investigated. RCTLR9B cDNA consists of 3113bp encoding 1009 amino acids containing three regions, leucine rich repeats, transmembrane domain, and toll/interleukin-1 receptor (TIR) domain. Intraperitoneal injection of CpG ODN 2395 upregulated RCTLR9 A and B and MyD88 and also induced the expressions of Mx, chemokine CC, and interleukin IL-1β. Cobia intraperitoneally injected with CpG ODN 1668 and 2395 had increased survival rates after challenge with Photobacterium damselae subsp. piscicida. In addition, formulation of CpG ODN with formalin-killed bacteria (FKB) and aluminum hydroxide gel significantly increased expressions of RCTLR9 A (50 folds) and B (30 folds) isoforms at 10 dpi (CpG ODN 1668) and MyD88 (21 folds) at 6 dpv (CpG ODN 2395). Subsequently, IL-1β increased at 6 dpv in 1668 group. No histopathological damage and inflammatory responses were observed in the injected cobia. Altogether, these results facilitate CpG ODNs as an adjuvant to increase bacterial disease resistance and efficacy of vaccines in cobia.
Collapse
|
34
|
Zhou ZX, Zhang J, Sun L. C7: a CpG oligodeoxynucleotide that induces protective immune response against megalocytivirus in Japanese flounder (Paralichthys olivaceus) via Toll-like receptor 9-mediated signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:124-132. [PMID: 24333437 DOI: 10.1016/j.dci.2013.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Megalocytivirus is the causative agent of severe disease outbreaks in farmed fish. Currently there is no effective control against megalocytivirus in aquaculture. Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs are known to possess marked immunostimulatory properties. In this study, we investigated the potentials of ten CpG ODNs as antiviral agents in a model of Japanese flounder (Paralichthys olivaceus). We found that, when administered into flounder, three of the ten CpG ODNs inhibited viral replication in kidney, spleen, and liver. ODN C7, which exhibited the strongest inhibitory activity, was able to promote proliferation of peripheral blood leukocytes and enhance activation of head kidney mononuclear adherent phagocytes. When the expression of toll-like receptor 9 (TLR9) was knocked down in vivo by small interfering RNA, C7-mediated immune response and antiviral activity were significantly blocked. Moreover, when C7 was co-administered with pCN86, a DNA vaccine against megalocytivirus, a significant increase in vaccine-induced protection was observed compared to administration with pCN86 alone. Further analysis showed that compared to fish immunized with pCN86, fish immunized with pCN86 plus C7 exhibited significantly upregulated expression of a wide range of genes involved in innate and adaptive immunity. Taken together, these results indicate that ODN C7 activates TLR9-mediated immune response and possesses antiviral and adjuvant potentials that may be exploited for the control of megalocytivirus infection in farmed flounder.
Collapse
Affiliation(s)
- Zhi-xia Zhou
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
35
|
Pietretti D, Wiegertjes GF. Ligand specificities of Toll-like receptors in fish: indications from infection studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:205-222. [PMID: 23981328 DOI: 10.1016/j.dci.2013.08.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Toll like receptors (TLRs) are present in many different fish families from several different orders, including cyprinid, salmonid, perciform, pleuronectiform and gadiform representatives, with at least some conserved properties among these species. However, low conservation of the leucine-rich repeat ectodomain hinders predictions of ligand specificities of fish TLRs based on sequence information only. We review the presence of a TLR genes, and changes in their gene expression profiles as result of infection, in the context of different fish orders and fish families. The application of RT-qPCR and availability of increasing numbers of fish genomes has led to numerous gene expression studies, including studies on TLR gene expression, providing the most complete dataset to date. Induced changes of gene expression may provide (in)direct evidence for the involvement of a particular TLR in the reaction to a pathogen. Especially when findings are consistent across different studies on the same fish species or consistent across different fish species, up-regulation of TLR gene expression could be a first indication of functional relevance. We discuss TLR1, TLR2, TLR4, TLR5 and TLR9 as presumed sensors of bacterial ligands and discuss as presumed sensors of viral ligands TLR3 and TLR22, TLR7 and TLR8. More functional studies are needed before conclusions on ligands specific to (groups of) fish TLRs can be drawn, certainly true for studies on non-mammalian TLRs. Future studies on the conservation of function of accessory molecules, in conjunction with TLR molecules, may bring new insight into the function of fish TLRs.
Collapse
Affiliation(s)
- Danilo Pietretti
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
36
|
Collet B. Innate immune responses of salmonid fish to viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:160-73. [PMID: 23981327 DOI: 10.1016/j.dci.2013.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 05/07/2023]
Abstract
Viruses are the most serious pathogenic threat to the production of the main aquacultured salmonid species the rainbow trout Oncorhynchus mykiss and the Atlantic salmon Salmo salar. The viral diseases Infectious Pancreatic Necrosis (IPN), Pancreatic Disease (PD), Infectious Haemorrhagic Necrosis (IHN), Viral Haemorrhagic Septicaemia (VHS), and Infectious Salmon Anaemia (ISA) cause massive economic losses to the global salmonid aquaculture industry every year. To date, no solution exists to treat livestock affected by a viral disease and only a small number of efficient vaccines are available to prevent infection. As a consequence, understanding the host immune response against viruses in these fish species is critical to develop prophylactic and preventive control measures. The innate immune response represents an important part of the host defence mechanism preventing viral replication after infection. It is a fast acting response designed to inhibit virus propagation immediately within the host, allowing for the adaptive specific immunity to develop. It has cellular and humoral components which act in synergy. This review will cover inflammation responses, the cell types involved, apoptosis, antimicrobial peptides. Particular attention will be given to the type I interferon system as the major player in the innate antiviral defence mechanism of salmonids. Viral evasion strategies will also be discussed.
Collapse
|
37
|
Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein) Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen. Vaccines (Basel) 2014; 2:228-51. [PMID: 26344619 PMCID: PMC4494258 DOI: 10.3390/vaccines2020228] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/21/2014] [Accepted: 03/13/2014] [Indexed: 01/01/2023] Open
Abstract
Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag) formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions) can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV) as the test Ag, the combined use of two Toll-like receptor (TLR) ligand adjuvants, CpG oligonucleotides (ODNs) and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs) before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing receptor (PRR) ligands, such as CpG/polyI:C, increases both adaptive and innate responses and represents a promising adjuvant strategy for enhancing the protection of future viral vaccines.
Collapse
|
38
|
Byadgi O, Puteri D, Lee YH, Lee JW, Cheng TC. Identification and expression analysis of cobia (Rachycentron canadum) Toll-like receptor 9 gene. FISH & SHELLFISH IMMUNOLOGY 2014; 36:417-427. [PMID: 24378677 DOI: 10.1016/j.fsi.2013.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
Cobia culture is hindered by bacterial infection (Photobacterium damselae subsp. piscicida) and in order to study the effect of P. damselae subsp. piscicida challenge and CpG ODN stimulation on cobia Toll like receptor 9 (RCTLR9), we used PCR to clone RCTLR9 gene and qRT-PCR to quantify gene expression. The results indicated that RCTLR9 cDNA contains 3141 bp. It encodes 1047 amino acids containing 16 typical structures of leucine-rich repeats (LRRs) including an LRRTYP, LRRCT and a motif involved in PAMP binding was identified at position 240-253 amino acid. Broad expression of RCTLR9 was found in larval, juvenile and adult stages irrespective of the tissues. In larval stage, RCTLR9 mRNA expression decreased at 5 d and then increased at 10 dph. At juvenile stage cobia, the expression was significantly high (p < 0.05) in spleen and intestine compared to gill, kidney, liver and skin. However, at adult stage, the significant high expression was found in gill and intestine. Cobia challenged with P. damselae subsp. piscicida showed significant increase in RCTLR9 expression at 24 h post challenge in intestine, spleen and liver, while in kidney the expression was peak at 12 h and later it decreased at 24 h. The highest expression was 40 fold increase in spleen and the lowest expression was ∼3.6 fold increase in liver. Cobia stimulated with CpG oligonucleotides showed that the induction of these genes was CpG ODN type and time dependent. In spleen and liver, CpG ODNs 1668 and 2006 injected group showed high expression of RCTLR9, IL-1β, chemokine CC compared to other groups. Meanwhile, CpG ODN 2006 has induced high expression of IgM. The CpG ODNs 2395 have induced significant high expression of Mx in spleen and liver. These results demonstrates the potential of using CpG ODN to enhance cobia resistance to P. damselae subsp. piscicida infection and use as an adjuvant in vaccine development.
Collapse
Affiliation(s)
- Omkar Byadgi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Dinda Puteri
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Fisheries and Marine Science, University of Brawijaya, Malang, Indonesia
| | - Yan-Horn Lee
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Council of Agriculture, Pingtung, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ta-Chih Cheng
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
39
|
Pietretti D, Scheer M, Fink IR, Taverne N, Savelkoul HFJ, Spaink HP, Forlenza M, Wiegertjes GF. Identification and functional characterization of nonmammalian Toll-like receptor 20. Immunogenetics 2013; 66:123-41. [DOI: 10.1007/s00251-013-0751-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/26/2013] [Indexed: 01/04/2023]
|
40
|
Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL). Mol Immunol 2013; 56:745-56. [DOI: 10.1016/j.molimm.2013.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
|