1
|
Martín Almazán N, Sala BM, Sandalova T, Sun Y, Resink T, Cichocki F, Söderberg-Nauclér C, Miller JS, Achour A, Sarhan D. Non-classical HLA-E restricted CMV 15-mer peptides are recognized by adaptive NK cells and induce memory responses. Front Immunol 2023; 14:1230718. [PMID: 37809084 PMCID: PMC10552778 DOI: 10.3389/fimmu.2023.1230718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Human cytomegalovirus (HCMV) reactivation causes complications in immunocompromised patients after hematopoietic stem cell transplantation (HSCT), significantly increasing morbidity and mortality. Adaptive Natural Killer (aNK) cells undergo a persistent reconfiguration in response to HCMV reactivation; however, the exact role of aNK cell memory in HCMV surveillance remains elusive. Methods We employed mass spectrometry and computational prediction approaches to identify HLA-E-restricted HCMV peptides that can elucidate aNK cell responses. We also used the K562 cell line transfected with HLA-E0*0103 for specific peptide binding and blocking assays. Subsequently, NK cells were cocultured with dendritic cells (DCs) loaded with each of the identified peptides to examine aNK and conventional (c)NK cell responses. Results Here, we discovered three unconventional HLA-E-restricted 15-mer peptides (SEVENVSVNVHNPTG, TSGSDSDEELVTTER, and DSDEELVTTERKTPR) derived from the HCMV pp65-protein that elicit aNK cell memory responses restricted to HCMV. aNK cells displayed memory responses towards HMCV-infected cells and HCMV-seropositive individuals when primed by DCs loaded with each of these peptides and predicted 9-mer versions. Blocking the interaction between HLA-E and the activation NKG2C receptor but not the inhibitory NKG2A receptor abolished these specific recall responses. Interestingly, compared to the HLA-E complex with the leader peptide VMAPRTLIL, HLA-E complexes formed with each of the three identified peptides significantly changed the surface electrostatic potential to highly negative. Furthermore, these peptides do not comprise the classical HLA-E-restriction motifs. Discussion These findings suggest a differential binding to NKG2C compared to HLA-E complexes with classical leader peptides that may result in the specific activation of aNK cells. We then designed six nonameric peptides based on the three discovered peptides that could elicit aNK cell memory responses to HCMV necessary for therapeutic inventions. The results provide novel insights into HLA-E-mediated signaling networks that mediate aNK cell recall responses and maximize their reactivity.
Collapse
Affiliation(s)
- Nerea Martín Almazán
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Yizhe Sun
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Tom Resink
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Microbial Pathogenesis Unit, Karolinska Institute, Stockholm, Sweden
- Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Institute of Biomedicine, Unit for Infection and immunology, MediCity Research Laboratory, InFLAMES Flagship, University of Turku, Turku, Finland
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Huisman BD, Guan N, Rückert T, Garner L, Singh NK, McMichael AJ, Gillespie GM, Romagnani C, Birnbaum ME. High-throughput characterization of HLA-E-presented CD94/NKG2x ligands reveals peptides which modulate NK cell activation. Nat Commun 2023; 14:4809. [PMID: 37558657 PMCID: PMC10412585 DOI: 10.1038/s41467-023-40220-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
HLA-E is a non-classical class I MHC protein involved in innate and adaptive immune recognition. While recent studies have shown HLA-E can present diverse peptides to NK cells and T cells, the HLA-E repertoire recognized by CD94/NKG2x has remained poorly defined, with only a limited number of peptide ligands identified. Here we screen a yeast-displayed peptide library in the context of HLA-E to identify 500 high-confidence unique peptides that bind both HLA-E and CD94/NKG2A or CD94/NKG2C. Utilizing the sequences identified via yeast display selections, we train prediction algorithms and identify human and cytomegalovirus (CMV) proteome-derived, HLA-E-presented peptides capable of binding and signaling through both CD94/NKG2A and CD94/NKG2C. In addition, we identify peptides which selectively activate NKG2C+ NK cells. Taken together, characterization of the HLA-E-binding peptide repertoire and identification of NK activity-modulating peptides present opportunities for studies of NK cell regulation in health and disease, in addition to vaccine and therapeutic design.
Collapse
Affiliation(s)
- Brooke D Huisman
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Ning Guan
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Timo Rückert
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
| | - Lee Garner
- Centre for Immuno-Oncology, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nishant K Singh
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Centre for Immuno-Oncology, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
4
|
Vaurs J, Douchin G, Echasserieau K, Oger R, Jouand N, Fortun A, Hesnard L, Croyal M, Pecorari F, Gervois N, Bernardeau K. A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening. Sci Rep 2021; 11:17234. [PMID: 34446788 PMCID: PMC8390762 DOI: 10.1038/s41598-021-96560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Over the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.
Collapse
Affiliation(s)
- Juliette Vaurs
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Gaël Douchin
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Klara Echasserieau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Romain Oger
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Agnès Fortun
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, 44000, Nantes, France
| | - Leslie Hesnard
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Frédéric Pecorari
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France.
| | - Karine Bernardeau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France.
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
| |
Collapse
|
5
|
Bortolotti D, Gentili V, Rizzo S, Rotola A, Rizzo R. SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLA-E/NKG2A Pathway. Cells 2020; 9:E1975. [PMID: 32859121 PMCID: PMC7563485 DOI: 10.3390/cells9091975] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Natural killer cells are important in the control of viral infections. However, the role of NK cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has previously not been identified. Peripheral blood NK cells from SARS-CoV and SARS-CoV-2 naïve subjects were evaluated for their activation, degranulation, and interferon-gamma expression in the presence of SARS-CoV and SARS-CoV-2 spike proteins. K562 and lung epithelial cells were transfected with spike proteins and co-cultured with NK cells. The analysis was performed by flow cytometry and immune fluorescence. SARS-CoV and SARS-CoV-2 spike proteins did not alter NK cell activation in a K562 in vitro model. On the contrary, SARS-CoV-2 spike 1 protein (SP1) intracellular expression by lung epithelial cells resulted in NK cell-reduced degranulation. Further experiments revealed a concomitant induction of HLA-E expression on the surface of lung epithelial cells and the recognition of an SP1-derived HLA-E-binding peptide. Simultaneously, there was increased modulation of the inhibitory receptor NKG2A/CD94 on NK cells when SP1 was expressed in lung epithelial cells. We ruled out the GATA3 transcription factor as being responsible for HLA-E increased levels and HLA-E/NKG2A interaction as implicated in NK cell exhaustion. We show for the first time that NK cells are affected by SP1 expression in lung epithelial cells via HLA-E/NKG2A interaction. The resulting NK cells' exhaustion might contribute to immunopathogenesis in SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Science, University of Ferrara, 44121 Ferrara, Italy; (D.B.); (V.G.); (S.R.); (A.R.)
| |
Collapse
|
6
|
de Miranda BLM, Gelmini GF, Risti M, Hauer V, da Silva JS, Roxo VMMS, Bicalho MDG, Malheiros D. HLA-E genotyping and its relevance in kidney transplantation outcome. HLA 2020; 95:457-464. [PMID: 31950670 DOI: 10.1111/tan.13806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/29/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Abstract
HLA-E, a class I nonclassical HLA molecule, is expressed in all tissues and is involved in the regulation of both innate (by interaction with the CD94/NKG2 receptor expressed mainly in NK cells) and adaptive immunity (by interaction with T CD8+ cells), suggesting a possible role in the solid organ transplantation context. Transplanted patients with chronic kidney disease and their respective donors (N = 107 pairs) were genotyped for exons 2 and 3 of the HLA-E locus by sequence-based typing (SBT). Groups' genotype frequencies were compared regarding episodes of clinical rejection by global G test, and binary logistic regression was made to demonstrate the contribution of genetic variables vs epidemiological variables. Comparisons of donors' genotype frequencies showed significant differences (P = .0230), revealing a protective profile of E*01:01/*01:01 compared to the other genotypes (P = .0099; OR = 0.3088; CI [95%] = 0.1333-0.7157). The same happened when the aforementioned genotype was combined with the E*01:01/*01:01 recipients' genotype (P = .0065; OR = 0.1760; CI [95%] = 0.0517-0.5987). A binary logistic regression analysis was performed, and, of all variables considered, only two were included in the resulting model (P = .007; R2 Cox and Snell = 0.243; R2 Nagelkerke = 0.328)- "End-Stage Renal Disease" and "HLA class II Mismatches." A protective profile (E*01:01/*01:01) was observed between the recipients and donors, suggesting a possible impact of the HLA-E genotype in rejection episodes.
Collapse
Affiliation(s)
- Bruna L M de Miranda
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Geórgia F Gelmini
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Matilde Risti
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Vanessa Hauer
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - José Samuel da Silva
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Valéria M M S Roxo
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Maria da Graça Bicalho
- Laboratório de Imunogenética e Histocompatibilidade do Departamento de Genética da Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Danielle Malheiros
- Laboratório de Genética Molecular Humana do Departamento de Genética da Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Rohn H, Michita RT, Schramm S, Dolff S, Gäckler A, Korth J, Heinemann FM, Wilde B, Trilling M, Horn PA, Kribben A, Witzke O, Rebmann V. HLA-E Polymorphism Determines Susceptibility to BK Virus Nephropathy after Living-Donor Kidney Transplant. Cells 2019; 8:E847. [PMID: 31394776 PMCID: PMC6721664 DOI: 10.3390/cells8080847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Human leukocyte antigen (HLA)-E is important for the regulation of anti-viral immunity. BK polyomavirus (BKPyV) reactivation after kidney transplant is a serious complication that can result in BKPyV-associated nephropathy (PyVAN) and subsequent allograft loss. To elucidate whether HLA-E polymorphisms influence BKPyV replication and nephropathy, we determined the HLA-E genotype of 278 living donor and recipient pairs. A total of 44 recipients suffered from BKPyV replication, and 11 of these developed PyVAN. Homozygosity of the recipients for the HLA-E*01:01 genotype was associated with the protection against PyVAN after transplant (p = 0.025, OR 0.09, CI [95%] 0.83-4.89). Considering the time course of the occurrence of nephropathy, recipients with PyVAN were more likely to carry the HLA-E*01:03 allelic variant than those without PyVAN (Kaplan-Meier analysis p = 0.03; OR = 4.25; CI (95%) 1.11-16.23). Our findings suggest that a predisposition based on a defined HLA-E genotype is associated with an increased susceptibility to develop PyVAN. Thus, assessing HLA-E polymorphisms may enable physicians to identify patients being at an increased risk of this viral complication.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre for Infectious Diseases (WZI), University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Rafael Tomoya Michita
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Sabine Schramm
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre for Infectious Diseases (WZI), University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Anja Gäckler
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Johannes Korth
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre for Infectious Diseases (WZI), University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
8
|
Toni Ho GG, Heinen F, Stieglitz F, Blasczyk R, Bade-Döding C. Dynamic Interaction between Immune Escape Mechanism and HLA-Ib Regulation. Immunogenetics 2019. [DOI: 10.5772/intechopen.80731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Rudolph ME, McArthur MA, Magder LS, Barnes RS, Chen WH, Sztein MB. Age-Associated Heterogeneity of Ty21a-Induced T Cell Responses to HLA-E Restricted Salmonella Typhi Antigen Presentation. Front Immunol 2019; 10:257. [PMID: 30886613 PMCID: PMC6409365 DOI: 10.3389/fimmu.2019.00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023] Open
Abstract
Human-restricted Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever—a life-threatening disease of great global health significance, particularly in the developing world. Ty21a is an oral live-attenuated vaccine that protects against the development of typhoid disease in part by inducing robust T cell responses, among which multifunctional CD8+ cytotoxic T lymphocytes (CTL) play an important role. Following Ty21a vaccination, a significant component of adult CTL have shown to be targeted to S. Typhi antigen presented by the conserved major histocompatibility complex (MHC) class Ib molecule, human leukocyte antigen-E (HLA-E). S. Typhi challenge studies have shown that baseline, multifunctional HLA-E responsive T cells are associated with protection from, and delayed onset of, typhoid disease. However, despite the overwhelming burden of typhoid fever in school-aged children, and due to limited availability of pediatric samples, incomplete information is available regarding these important HLA-E-restricted responses in children, even though studies have shown that younger children may be less likely to develop protective cell mediated immune (CMI) responses than adults following vaccination. To address this gap, we have studied this phenomenon in depth by using mass cytometry to analyze pediatric and adult T cell responses to HLA-E-restricted S. Typhi antigen presentation, before and after Ty21a vaccination. Herein, we show variable responses in all age strata following vaccination among T effector memory (TEM) and T effector memory CD45RA+ (TEMRA) cells based on conventional gating analysis. However, by utilizing the dimensionality reduction tool tSNE (t-distributed Stochastic Neighbor Embedding), we are able to identify diverse, highly multifunctional gut-homing- TEM and TEMRA clusters of cells which are more abundant in adult and older pediatric participants than in younger children. These findings highlight a potential age-associated maturation of otherwise conserved HLA-E restricted T cell responses. Such insights, coupled with the marked importance of multifunctional T cell responses to combat infection, may better inform future pediatric vaccination strategies against S. Typhi and other infectious diseases.
Collapse
Affiliation(s)
- Mark E Rudolph
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laurence S Magder
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Hannoun Z, Lin Z, Brackenridge S, Kuse N, Akahoshi T, Borthwick N, McMichael A, Murakoshi H, Takiguchi M, Hanke T. Identification of novel HIV-1-derived HLA-E-binding peptides. Immunol Lett 2018; 202:65-72. [PMID: 30172717 PMCID: PMC6291738 DOI: 10.1016/j.imlet.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023]
Abstract
Non-classical class Ib MHC-E molecule is becoming an increasingly interesting component of the immune response. It is involved in both the adaptive and innate immune responses to several chronic infections including HIV-1 and, under very specific circumstances, likely mediated a unique vaccine protection of rhesus macaques against pathogenic SIV challenge. Despite being recently in the spotlight for HIV-1 vaccine development, to date there is only one reported human leukocyte antigen (HLA)-E-binding peptide derived from HIV-1. In an effort to help start understanding the possible functions of HLA-E in HIV-1 infection, we determined novel HLA-E binding peptides derived from HIV-1 Gag, Pol and Vif proteins. These peptides were identified in three independent assays, all quantifying cell-surface stabilization of HLA-E*01:01 or HLA-E*01:03 molecules upon peptide binding, which was detected by HLA-E-specific monoclonal antibody and flow cytometry. Thus, following initial screen of over 400 HIV-1-derived 15-mer peptides, 4 novel 9-mer peptides PM9, RL9, RV9 and TP9 derived from 15-mer binders specifically stabilized surface expression of HLA-E*01:03 on the cell surface in two separate assays and 5 other binding candidates EI9, MD9, NR9, QF9 and YG9 gave a binding signal in only one of the two assays, but not both. Overall, we have expanded the current knowledge of HIV-1-derived target peptides stabilizing HLA-E cell-surface expression from 1 to 5, thus broadening inroads for future studies. This is a small, but significant contribution towards studying the fine mechanisms behind HLA-E actions and their possible use in development of a new kind of vaccines.
Collapse
Affiliation(s)
- Zara Hannoun
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zhansong Lin
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Nicola Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew McMichael
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
11
|
Rölle A, Meyer M, Calderazzo S, Jäger D, Momburg F. Distinct HLA-E Peptide Complexes Modify Antibody-Driven Effector Functions of Adaptive NK Cells. Cell Rep 2018; 24:1967-1976.e4. [PMID: 30134159 DOI: 10.1016/j.celrep.2018.07.069] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 11/29/2022] Open
Abstract
Adaptive NK cells are characterized by profound alterations in multiple signaling molecules, transcription factors, and epigenetic modifications compared with canonical NK cells. Although their existence is associated with prior exposure to human cytomegalovirus (HCMV), key questions regarding their regulation and function remain. A large proportion of adaptive NK cells express the activating receptor CD94/NKG2C, binding to human leukocyte antigen E (HLA-E), that presents a limited set of peptides. We show that adaptive NK cells discriminate differences between HLA-E-peptide complexes with exquisite specificity. Prolonged exposure to an environment displaying the HLA-E peptide ligand VMAPRTLFL, derived from the leader sequence of HLA-G, enriched adaptive NK cells with low FcεRγ expression, upregulated CD25 expression, increased proliferative activity, and resulted in elevated antibody-dependent cellular cytotoxicity and IFN-γ responses compared with other HLA-E peptide complexes. Our study demonstrates that recognition of alterations in the HLA-E ligandome via an activating receptor can influence heterologous effector mechanisms and proliferation in adaptive NK cells.
Collapse
Affiliation(s)
- Alexander Rölle
- Antigen Presentation and T/NK Cell Activation Group (D121), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany; Clinical Cooperation Unit "Applied Tumor Immunity" (D120), German Cancer Research Center, Heidelberg, Germany.
| | - Marten Meyer
- Antigen Presentation and T/NK Cell Activation Group (D121), German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit "Applied Tumor Immunity" (D120), German Cancer Research Center, Heidelberg, Germany
| | - Silvia Calderazzo
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany; Clinical Cooperation Unit "Applied Tumor Immunity" (D120), German Cancer Research Center, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group (D121), German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit "Applied Tumor Immunity" (D120), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
12
|
Joosten SA, Sullivan LC, Ottenhoff THM. Characteristics of HLA-E Restricted T-Cell Responses and Their Role in Infectious Diseases. J Immunol Res 2016; 2016:2695396. [PMID: 27699181 PMCID: PMC5028793 DOI: 10.1155/2016/2695396] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 12/31/2022] Open
Abstract
Human HLA-E can, in addition to self-antigens, also present pathogen-derived sequences, which elicit specific T-cell responses. T-cells recognize their antigen presented by HLA-E highly specifically and have unique functional and phenotypical properties. Pathogen specific HLA-E restricted CD8+ T-cells are an interesting new player in the field of immunology. Future work should address their exact roles and relative contributions in the immune response against infectious diseases.
Collapse
Affiliation(s)
- Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3010, Australia
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
13
|
Celik AA, Kraemer T, Huyton T, Blasczyk R, Bade-Döding C. The diversity of the HLA-E-restricted peptide repertoire explains the immunological impact of the Arg107Gly mismatch. Immunogenetics 2016; 68:29-41. [PMID: 26552660 PMCID: PMC4701785 DOI: 10.1007/s00251-015-0880-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022]
Abstract
Human leukocyte antigen (HLA)-E molecules are potent inhibitors of NK cell-mediated killing. Low in polymorphisms, two alleles are widely expressed among diverse populations: HLA-E*01:01 and HLA-E*01:03. Both alleles are distinguished by one SNP resulting in the substitution Arg107Gly. Both alleles present a limited set of peptides derived from class I leader sequences physiologically; however, HLA-E*01:01 presents non-canonical peptides in the absence of HLA class I molecules. To further assess the functional differences between both alleles, we analyzed the peptide repertoire of HLA-E*01:03 by applying soluble HLA technology followed by mass-spectrometric peptide sequencing. HLA-E*01:03 restricted peptides showed a length of 9-17 amino acids and differed in their biophysical properties, no overlap in the peptide repertoire of both allelic variants could be observed; however, both alleles shared marginal peptides from the same proteomic content. Artificial APCs expressing empty HLA-E*01:01 or E*01:03 molecules were generated and stabilized using cognate HLA class I-derived peptide ligands to analyze the impact of residue 107 within the HLA-E heavy chain on the NKG2/CD94 receptor engagement. Differences in peptide stabilization could be translated to the density and half-life time of peptide-HLA-E molecules on the cell surface that subsequently impacted NK cell inhibition as verified by cytotoxicity assays. Taken together, these data illustrate functional differences of HLA-E allelic variants induced by a single amino acid. Furthermore, the function of HLA-E in pathophysiologic situations when the HLA processing machinery is interrupted seems to be more emphasized than previously described, implying a crucial role for HLA-E in tumor or viral immune episodes.
Collapse
Affiliation(s)
- Alexander A Celik
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Thomas Kraemer
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Trevor Huyton
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Christina Bade-Döding
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany.
| |
Collapse
|
14
|
Sullivan LC, Westall GP, Widjaja JML, Mifsud NA, Nguyen THO, Meehan AC, Kotsimbos TC, Brooks AG. The Presence of HLA-E-Restricted, CMV-Specific CD8+ T Cells in the Blood of Lung Transplant Recipients Correlates with Chronic Allograft Rejection. PLoS One 2015; 10:e0135972. [PMID: 26302084 PMCID: PMC4547726 DOI: 10.1371/journal.pone.0135972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/28/2015] [Indexed: 11/25/2022] Open
Abstract
The human cytomegalovirus (CMV) immune evasion protein, UL40, shares an identical peptide sequence with that found in the leader sequence of many human leukocyte antigen (HLA)-C alleles and when complexed with HLA-E, can modulate NK cell functions via interactions with the CD94-NKG2 receptors. However the UL40-derived sequence can also be immunogenic, eliciting robust CD8+ T cell responses. In the setting of solid organ transplantation these T cells may not only be involved in antiviral immunity but also can potentially contribute to allograft rejection when the UL40 epitope is also present in allograft-encoded HLA. Here we assessed 15 bilateral lung transplant recipients for the presence of HLA-E-restricted UL40 specific T cells by tetramer staining of peripheral blood mononuclear cells (PBMC). UL40-specific T cells were observed in 7 patients post-transplant however the magnitude of the response varied significantly between patients. Moreover, unlike healthy CMV seropositive individuals, longitudinal analyses revealed that proportions of such T cells fluctuated markedly. Nine patients experienced low-grade acute cellular rejection, of which 6 also demonstrated UL40-specific T cells. Furthermore, the presence of UL40-specific CD8+ T cells in the blood was significantly associated with allograft dysfunction, which manifested as Bronchiolitis Obliterans Syndrome (BOS). Therefore, this study suggests that minor histocompatibility antigens presented by HLA-E can represent an additional risk factor following lung transplantation.
Collapse
Affiliation(s)
- Lucy C. Sullivan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Glen P. Westall
- Department of Medicine, Monash University, Central Clinical School, The Alfred Centre, Commercial Road, Melbourne, Victoria, Australia
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Commercial Road, Melbourne, Victoria, Australia
| | - Jacqueline M. L. Widjaja
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicole A. Mifsud
- Department of Medicine, Monash University, Central Clinical School, The Alfred Centre, Commercial Road, Melbourne, Victoria, Australia
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Commercial Road, Melbourne, Victoria, Australia
| | - Thi H. O. Nguyen
- Department of Medicine, Monash University, Central Clinical School, The Alfred Centre, Commercial Road, Melbourne, Victoria, Australia
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Commercial Road, Melbourne, Victoria, Australia
| | - Aislin C. Meehan
- Department of Medicine, Monash University, Central Clinical School, The Alfred Centre, Commercial Road, Melbourne, Victoria, Australia
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Commercial Road, Melbourne, Victoria, Australia
| | - Tom C. Kotsimbos
- Department of Medicine, Monash University, Central Clinical School, The Alfred Centre, Commercial Road, Melbourne, Victoria, Australia
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Commercial Road, Melbourne, Victoria, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine; The Research Institute at the Nationwide Children's Hospital and the Departments of Pediatrics and Physics; The Ohio State University; Columbus OH USA
| | - Salim I. Khakoo
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
16
|
HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome. Stem Cells Int 2015; 2015:346714. [PMID: 26366178 PMCID: PMC4549550 DOI: 10.1155/2015/346714] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 01/28/2023] Open
Abstract
The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire.
To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection.
Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.
Collapse
|
17
|
Kraemer T, Blasczyk R, Bade-Doeding C. HLA-E: a novel player for histocompatibility. J Immunol Res 2014; 2014:352160. [PMID: 25401109 PMCID: PMC4221882 DOI: 10.1155/2014/352160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/03/2014] [Indexed: 11/17/2022] Open
Abstract
The classical class I human leukocyte antigens (HLA-A, -B, and -C) present allele-specific self- or pathogenic peptides originated by intracellular processing to CD8(+) immune effector cells. Even a single mismatch in the heavy chain (hc) of an HLA class I molecule can impact on the peptide binding profile. Since HLA class I molecules are highly polymorphic and most of their polymorphisms affect the peptide binding region (PBR), it becomes obvious that systematic HLA matching is crucial in determining the outcome of transplantation. The opposite holds true for the nonclassical HLA class I molecule HLA-E. HLA-E polymorphism is restricted to two functional versions and is thought to present a limited set of highly conserved peptides derived from class I leader sequences. However, HLA-E appears to be a ligand for the innate and adaptive immune system, where the immunological response to peptide-HLA-E complexes is dictated through the sequence of the bound peptide. Structural investigations clearly demonstrate how subtle amino acid differences impact the strength and response of the cognate CD94/NKG2 or T cell receptor.
Collapse
Affiliation(s)
- Thomas Kraemer
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Straße 5, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Straße 5, 30625 Hannover, Germany
| | - Christina Bade-Doeding
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Straße 5, 30625 Hannover, Germany
| |
Collapse
|
18
|
Merino AM, Sabbaj S, Easlick J, Goepfert P, Kaslow RA, Tang J. Dimorphic HLA-B signal peptides differentially influence HLA-E- and natural killer cell-mediated cytolysis of HIV-1-infected target cells. Clin Exp Immunol 2013; 174:414-23. [PMID: 23952339 PMCID: PMC3826307 DOI: 10.1111/cei.12187] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2013] [Indexed: 12/18/2022] Open
Abstract
As a mechanism of self-protection, signal peptides cleaved from human leukocyte antigen (HLA) class I products bind to HLA-E before the complex interacts with the natural killer (NK) cell receptor CD94/NKG2A to inhibit NK-mediated cell lysis. Two types of the signal peptides differ in their position 2 (P2) anchor residue, with P2-methionine (P2-M) having higher HLA-E binding affinity than P2-threonine (P2-T). All HLA-A and HLA-C molecules carry P2-M, whereas HLA-B products have either P2-M or P2-T. Epidemiological evidence suggests that P2-M is unfavourable in the context of HIV-1 infection, being associated with accelerated acquisition of HIV-1 infection in two African cohorts. To begin elucidating the functional mechanism, we studied NK-mediated killing of CD4(+) T cells and monocyte-derived macrophages infected with two laboratory-adapted HIV-1 strains and two transmitted/founder (T/F) viruses. In the presence of target cells derived from individuals with the three HLA-B P2 genotypes (M/M, M/T and T/T), NK-mediated cytolysis was elevated consistently for P2-T in a dose-dependent manner for all cell and virus combinations tested (P = 0·008-0·03). Treatment of target cells with an anti-HLA-E monoclonal antibody restored NK-mediated cytolysis of cells expressing P2-M. Observations on cell lysis were also substantiated by measurements of HIV-1 p24 antigen in the culture supernatants. Overall, our experiments indicate that the anti-HIV-1 function mediated by NK cells is compromised by P2-M, corroborating the association of HLA-B genotype encoding P2-M with accelerated HIV-1 acquisition.
Collapse
Affiliation(s)
- A M Merino
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
19
|
Lampen MH, Hassan C, Sluijter M, Geluk A, Dijkman K, Tjon JM, de Ru AH, van der Burg SH, van Veelen PA, van Hall T. Alternative peptide repertoire of HLA-E reveals a binding motif that is strikingly similar to HLA-A2. Mol Immunol 2013; 53:126-31. [PMID: 22898188 DOI: 10.1016/j.molimm.2012.07.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/09/2012] [Accepted: 07/21/2012] [Indexed: 12/31/2022]
Abstract
The non-classical HLA-E is a conserved class I molecule that mainly presents monomorphic leader peptides derived from other HLA class I molecules. These leader peptides comprise an optimized sequence for tight and deep binding into the HLA-E groove. In a TAP-deficient environment, as it can be generated during viral infection or in tumor tissue, loading of the classical leader peptide sequences is hampered leading to an alternative HLA-E peptide repertoire. In this study, we characterized this alternative peptide repertoire using cells in which TAP activity is inhibited. We identified more than 500 unique peptide sequences carried by HLA-E and found that their binding motif is different from the dominant leader peptides. Hydrophobic amino acids were only found at positions 2 and 9, in close resemblance to the peptide binding motif of HLA-A*0201. HLA-E-eluted peptides were indeed able to bind this classical HLA class I molecule. Our findings suggest that the dominant leader peptides uniquely conform to HLA-E, but that in their absence a peptide pool is presented like that of HLA-A*0201.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Merino AM, Song W, He D, Mulenga J, Allen S, Hunter E, Tang J, Kaslow RA. HLA-B signal peptide polymorphism influences the rate of HIV-1 acquisition but not viral load. J Infect Dis 2012; 205:1797-805. [PMID: 22492862 PMCID: PMC3571229 DOI: 10.1093/infdis/jis275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/28/2011] [Indexed: 01/03/2023] Open
Abstract
Human leukocyte antigen alleles influence the immune response to HIV-1. Signal peptides cleaved from those alleles bind to HLA-E and mediate natural killer cell function. Signal peptides of HLA-A and HLA-C proteins carry methionine (Met) at anchor position 2 (P2); those of HLA-B carry Met or threonine (Thr). Different P2 residues alter HLA-E binding to its cognate receptors and may impact HIV-1 acquisition. Among Zambian couples (N = 566) serodiscordant for HIV-1, P2-Met accelerated acquisition in the HIV-1-negative partner (relative hazard [RH], 1.79). Among seroconverting Zambian (n = 240) and Rwandan (n = 64) partners, P2-Met also accelerated acquisition (RH, 1.47 and RH, 1.83 respectively). HLA-B alleles displaying the reportedly protective Bw4 epitope carry P2-Thr. Bw4/P2-Thr and Bw6/P2-Thr showed similar protective effects compared with Bw6/P2-Met. Neither motif was associated with viral load. The influence of HLA-B alleles on HIV/AIDS may derive from multiple motifs in and beyond the mature proteins.
Collapse
Affiliation(s)
| | | | | | | | - Susan Allen
- Rwanda-Zambia HIV-1 Research Group, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine
| | - Eric Hunter
- Vaccine Research Center, Emory University, Atlanta, Georgia
| | | | - Richard A. Kaslow
- Department of Medicine
- Department of Microbiology
- Department of Epidemiology, University of Alabama at Birmingham
| |
Collapse
|
21
|
Kim HJ, Cantor H. Regulation of self-tolerance by Qa-1-restricted CD8(+) regulatory T cells. Semin Immunol 2012; 23:446-52. [PMID: 22136694 DOI: 10.1016/j.smim.2011.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 10/14/2022]
Abstract
Mounting an efficient immune response to pathogens while avoiding damage to host tissues is the central task of the immune system. Emerging evidence has highlighted the contribution of the CD8(+) lineage of regulatory T cells to the maintenance of self-tolerance. Specific recognition of the MHC class Ib molecule Qa-1 complexed to peptides expressed by activated CD4(+) T cells by regulatory CD8(+) T cells triggers an inhibitory interaction that prevents autoimmune responses. Conversely, defective Qa-1-restricted CD8(+) regulatory activity can result in development of systemic autoimmune disease. Here, we review recent research into the cellular and molecular basis of these regulatory T cells, their mechanism of suppressive activity and the potential application of these insights into new treatments for autoimmune disease and cancer.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
22
|
Jagessar SA, Heijmans N, Blezer ELA, Bauer J, Blokhuis JH, Wubben JAM, Drijfhout JW, van den Elsen PJ, Laman JD, Hart BA'. Unravelling the T-cell-mediated autoimmune attack on CNS myelin in a new primate EAE model induced with MOG34-56 peptide in incomplete adjuvant. Eur J Immunol 2012; 42:217-27. [PMID: 21928277 DOI: 10.1002/eji.201141863] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 12/20/2022]
Abstract
Induction of experimental autoimmune encephalomyelitis (EAE) has been documented in common marmosets using peptide 34-56 from human myelin/oligodendrocyte glycoprotein (MOG(34-56) ) in incomplete Freund's adjuvant (IFA). Here, we report that this EAE model is associated with widespread demyelination of grey and white matter. We performed an in-depth analysis of the specificity, MHC restriction and functions of the activated T cells in the model, which likely cause EAE in an autoantibody-independent manner. T-cell lines isolated from blood and lymphoid organs of animals immunized with MOG(34-56) displayed high production of IL-17A and specific lysis of MOG(34-56) -pulsed EBV B-lymphoblastoid cells as typical hallmarks. Cytotoxicity was directed at the epitope MOG(40-48) presented by the non-classical MHC class Ib allele Caja-E, which is orthologue to HLA-E and is expressed in non-inflamed brain. In vivo activated T cells identified by flow cytometry in cultures with MOG(34-56,) comprised CD4(+) CD56(+) and CD4(+) CD8(+) CD56(+) T cells. Furthermore, phenotypical analysis showed that CD4(+) CD8(+) CD56(+) T cells also expressed CD27, but CD16, CD45RO, CD28 and CCR7 were absent. These results show that, in the MOG34-56/IFA marmoset EAE model, a Caja-E-restricted population of autoreactive cytotoxic T cells plays a key role in the process of demyelination in the grey and white matter.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
van Hall T, Oliveira CC, Joosten SA, Ottenhoff THM. The other Janus face of Qa-1 and HLA-E: diverse peptide repertoires in times of stress. Microbes Infect 2010; 12:910-8. [PMID: 20670688 DOI: 10.1016/j.micinf.2010.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
The non-polymorphic MHC molecule Qa-1 and its human counterpart HLA-E present monomorphic signal peptides to innate receptors and thereby regulate lymphocyte activity. Under stress, this peptide content is replaced with a surprisingly diverse repertoire of novel peptides that are associated with heat-shock proteins, infectious agents or antigen processing defects.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Clinical Oncology, Leiden University Medical Center, K1-P, Albinusdreef 2, 2333 ZA Leiden, Netherlands.
| | | | | | | |
Collapse
|
24
|
't Hart BA, Hintzen RQ, Laman JD. Multiple sclerosis - a response-to-damage model. Trends Mol Med 2009; 15:235-44. [PMID: 19451035 DOI: 10.1016/j.molmed.2009.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/18/2022]
Abstract
According to a widely supported but unproven concept, the autoimmune mechanisms that drive neuroinflammation in multiple sclerosis (MS) are triggered by virus infection. However, a direct viral trigger of MS has not been identified. MS models in non-human primates suggest that lifelong asymptomatic infection with certain herpesviruses (e.g. cytomegalovirus) creates a repertoire of potentially autoreactive memory T cells. When these are exposed to antigens released after central nervous system injury as a consequence of an unknown pathogenic event, they are reactivated and induce autoimmune neurological disease. This response-to-damage of antiviral memory cells can take place years after the initiating infection. Consequently, elucidating the anti-herpesvirus T-cell repertoire might provide new targets for preventive diagnosis and therapy.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Lange Kleiweg 139, 2288 GJ Rijswijk, The Netherlands.
| | | | | |
Collapse
|
25
|
Sullivan LC, Clements CS, Rossjohn J, Brooks AG. The major histocompatibility complex class Ib molecule HLA-E at the interface between innate and adaptive immunity. TISSUE ANTIGENS 2008; 72:415-24. [PMID: 18946929 DOI: 10.1111/j.1399-0039.2008.01138.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The non-classical major histocompatibility complex (MHC) class I molecule human leucocyte antigen (HLA)-E is the least polymorphic of all the MHC class I molecules and acts as a ligand for receptors of both the innate and the adaptive immune systems. The recognition of self-peptides complexed to HLA-E by the CD94-NKG2A receptor expressed by natural killer (NK) cells represents a crucial checkpoint for immune surveillance by NK cells. However, HLA-E can also be recognised by the T-cell receptor expressed by alphabeta CD8 T cells and therefore can play a role in the adaptive immune response to invading pathogens. The recent resolution of HLA-E in complex with both innate and adaptive ligands has provided insight into the dual role of this molecule in immunity.
Collapse
MESH Headings
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- HLA Antigens/chemistry
- HLA Antigens/immunology
- HLA Antigens/metabolism
- Hematopoietic Stem Cell Transplantation
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunity, Active/immunology
- Immunity, Innate/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/immunology
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- Polymorphism, Genetic
- Protein Interaction Domains and Motifs/physiology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Natural Killer Cell/immunology
- Receptors, Natural Killer Cell/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- L C Sullivan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | |
Collapse
|
26
|
Peptide-binding motif prediction by using phage display library for SasaUBA*0301, a resistance haplotype of MHC class I molecule from Atlantic Salmon (Salmo salar). Mol Immunol 2008; 45:1658-64. [PMID: 18206244 DOI: 10.1016/j.molimm.2007.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/02/2007] [Indexed: 11/22/2022]
Abstract
The structure of the peptide-binding specificity of major histocompatibility complex (MHC) class I has been analyzed extensively in human and mouse. For fish, there are no crystallographic models of MHC molecules, neither are there data on the peptide-binding specificity. In this study, we describe for the first time the identification of a fish class I peptide-MHC ligand binding motif. Phage display technology using both 7 mer and 12 mer libraries enabled us to identify peptide ligands with unique specificity that interacts with the recombinant Salmon MHC class I molecule. The recombinant proteins, beta 2m/SasaUBA*0301, were produced in Escherichia coli, in which the carboxyl terminus of beta 2-microglobulin is joined together with a flexible (GGGGS)3 linker to the amino terminus of the heavy chain. One hundred and seven individual phages bound to beta 2m/SasaUBA*0301 were isolated after four rounds of panning from the 7 mer random-peptide library. The peptide encoding sequences were determined and peptide alignment led to the prediction of position-specific anchor residue. A prominent proline at position 2 was observed and we predict that it might be one of the anchors at the N-terminus. Meanwhile, phage display peptide library encoding random 12 mer peptides was also screened against beta 2m/SasaUBA*0301. Eighty-five percentages of the corresponding peptides have an enrichment of leucine, methionine, valine, or isoleucine at the C-terminus. We predict that this particular allele of Salmon class I molecule might have a very similar binding motif at the C-terminus compared with a known mouse class I molecule H2-Kb which has L, or I, V, M at p8. Previous work showed that Atlantic Salmon carrying the allele SasaUBA*0301 are resistant to infectious Salmon aneamia virus and there is a significant association between MHC polymorphism and the disease resistance. Therefore, our study might contribute to designing a peptide vaccine against this viral disease.
Collapse
|
27
|
Wooden SL, Kalb SR, Cotter RJ, Soloski MJ. Cutting edge: HLA-E binds a peptide derived from the ATP-binding cassette transporter multidrug resistance-associated protein 7 and inhibits NK cell-mediated lysis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:1383-7. [PMID: 16034073 DOI: 10.4049/jimmunol.175.3.1383] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-E is an MHC class Ib molecule that binds nonamer peptides derived from the leader sequence of MHC class 1a molecules and is the major ligand for CD94/NKG2 receptors found on NK and T cells. Using the MHC class Ia-null cell line 721.221, we find that surface HLA-E increases following heat shock at 42 degrees C and NK cell-mediated lysis is inhibited using heat-stressed 721.221 targets. We have used mass spectrometry to identify and sequence a novel peptide from HLA-E following heat shock, ALALVRMLI, derived from the transmembrane domain of the human ATP-binding cassette protein, multidrug resistance-associated protein, MRP7. Pulsing 721.221 targets with synthetic MRP7 peptide results in strong inhibition of NK cell-mediated lysis that is reversible using anti-CD94 and anti-class I mAbs. This report is the first to identify a non-MHC leader inhibitory peptide bound to HLA-E and provides insight into the immunoregulatory role of HLA-E during cell stress.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Antigens, CD/metabolism
- Cell Line
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/immunology
- Epitopes, B-Lymphocyte/biosynthesis
- Epitopes, B-Lymphocyte/metabolism
- Epitopes, B-Lymphocyte/physiology
- HLA Antigens/biosynthesis
- HLA Antigens/metabolism
- HLA Antigens/physiology
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/physiology
- Hot Temperature
- Humans
- Immunologic Factors/biosynthesis
- Immunologic Factors/metabolism
- Immunologic Factors/physiology
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Multidrug Resistance-Associated Proteins/metabolism
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Osmotic Pressure
- Peptide Fragments/biosynthesis
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Protein Binding/immunology
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- HLA-E Antigens
Collapse
Affiliation(s)
- Stacey L Wooden
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Our understanding of the classical MHC class I molecules (MHC class Ia molecules) has long focused on their extreme polymorphism. These molecules present peptides to T cells and are central to discrimination between self and non-self. By contrast, the functions of the non-polymorphic MHC class I molecules (MHC class Ib molecules) have been elusive, but emerging evidence reveals that, in addition to antigen presentation, MHC class Ib molecules are involved in immunoregulation. As we discuss here, the subset of MHC class Ib molecules that presents peptides to T cells bridges innate and acquired immunity, and this provides insights into the origins of acquired immunity.
Collapse
Affiliation(s)
- John R Rodgers
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
29
|
Nattermann J, Nischalke HD, Hofmeister V, Ahlenstiel G, Zimmermann H, Leifeld L, Weiss EH, Sauerbruch T, Spengler U. The HLA-A2 restricted T cell epitope HCV core 35-44 stabilizes HLA-E expression and inhibits cytolysis mediated by natural killer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:443-53. [PMID: 15681828 PMCID: PMC1602324 DOI: 10.1016/s0002-9440(10)62267-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2004] [Indexed: 12/18/2022]
Abstract
Impaired activity of natural killer cells has been proposed as a mechanism contributing to viral persistence in hepatitis C virus (HCV) infection. Natural cytotoxicity is regulated by interactions of HLA-E with inhibitory CD94/NKG2A receptors on natural killer (NK) cells. Here, we studied whether HCV core encodes peptides that bind to HLA-E and inhibit natural cytotoxicity. We analyzed 30 HCV core-derived peptides. Peptide-induced stabilization of HLA-E expression was measured flow cytometrically after incubating HLA-E-transfected cells with peptides. NK cell function was studied with a (51)chromium-release-assay. Intrahepatic HLA-E expression was analyzed by an indirect immunoperoxidase technique and flow cytometry of isolated cells using a HLA-E-specific antibody. We identified peptide aa35-44, a well-characterized HLA-A2 restricted T cell epitope, as a peptide stabilizing HLA-E expression and thereby inhibiting NK cell-mediated lysis. Blocking experiments confirmed that this inhibitory effect of peptide aa35-44 on natural cytotoxicity was mediated via interactions between CD94/NKG2A receptors and enhanced HLA-E expression. In line with these in vitro data we found enhanced intrahepatic HLA-E expression on antigen-presenting cells in HCV-infected patients. Our data indicate the existence of T cell epitopes that can be recognized by HLA-A2 and HLA-E. This dual recognition may contribute to viral persistence in hepatitis C.
Collapse
Affiliation(s)
- Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nattermann J, Nischalke HD, Hofmeister V, Kupfer B, Ahlenstiel G, Feldmann G, Rockstroh J, Weiss EH, Sauerbruch T, Spengler U. HIV-1 infection leads to increased HLA-E expression resulting in impaired function of natural killer cells. Antivir Ther 2005; 10:95-107. [PMID: 15751767 DOI: 10.1177/135965350501000107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HIV has evolved several strategies to evade recognition by the host immune system including down-regulation of major histocompatibility complex (MHC) class I molecules. However, reduced expression of MHC class I molecules may stimulate natural killer (NK) cell lysis in cells of haematopoietic lineage. Here, we describe how HIV counteracts stimulation of NK cells by stabilizing surface expression of the non-classical MHC class I molecule, HLA-E. We demonstrate enhanced expression of HLA-E on lymphocytes from HIV-infected patients and show that in vitro infection of lymphocytes with HIV results in up-regulation of HLA-E expression and reduced susceptibility to NK cell cytotoxicity. Using HLA-E transfected K-562 cells, we identified the well-known HIV T-cell epitope p24 aa14-22a as a ligand for HLA-E that stabilizes surface expression of HLA-E, favouring inhibition of NK cell cytotoxicity. These results propose HIV-mediated up-regulation of HLA-E expression as an additional evasion strategy targeting the antiviral activities of NK cells, which may contribute to the capability of the virus in establishing chronic infection.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Sequence
- Antigens, CD/metabolism
- Base Sequence
- CD4-Positive T-Lymphocytes/immunology
- Case-Control Studies
- Cytotoxicity, Immunologic
- DNA/genetics
- Epitopes/metabolism
- HIV Core Protein p24/genetics
- HIV Core Protein p24/metabolism
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/immunology
- HIV-1/pathogenicity
- HLA Antigens/genetics
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- In Vitro Techniques
- K562 Cells
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Ligands
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily D
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Transfection
- Up-Regulation
- HLA-E Antigens
Collapse
Affiliation(s)
- Jacob Nattermann
- Department of Internal Medicine I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huddleston H, Schust DJ. Immune Interactions at the Maternal-Fetal Interface: a Focus on Antigen Presentation. Am J Reprod Immunol 2004; 51:283-9. [PMID: 15212681 DOI: 10.1111/j.1600-0897.2004.00157.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEMS Viruses and fetuses face similar immunologic challenges. Each must evade immune detection and destruction. The virus must avoid host recognition of intracellular infection; the fetus allogenic recognition. Each has manipulated the process of antigen presentation to allow survival in an immunologic environment otherwise predictably hostile. How have these approaches co-evolved? What can they teach us about viral pathogenesis and immunologic interactions at the maternal-fetal interface? METHOD OF STUDY Review of relevant literature. RESULTS Special classical and non-classical MHC class I products are spared from downregulation in the placenta and from viral immunoevasive strategies. CONCLUSIONS Viruses rely upon some of the same strategies to avoid immune detection as do trophoblast cells. In the future, viral infections may prove a useful tool for studies of immunology at the maternal-fetal interface.
Collapse
Affiliation(s)
- Heather Huddleston
- Division of Reproductive Endocrinology and Fertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Wada H, Matsumoto N, Maenaka K, Suzuki K, Yamamoto K. The inhibitory NK cell receptor CD94/NKG2A and the activating receptor CD94/NKG2C bind the top of HLA-E through mostly shared but partly distinct sets of HLA-E residues. Eur J Immunol 2004; 34:81-90. [PMID: 14971033 DOI: 10.1002/eji.200324432] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The human non-classical MHC class I molecule HLA-E is a ligand for both an inhibitory NK cell receptor (CD94/NKG2A) and an activating receptor (CD94/NKG2C). To identify HLA-E surface recognized by both receptors, especially to determine if both receptors recognize the same epitope, we made a series of individually Ala-substituted HLA-E proteins and analyzed their binding to CD94/NKG2A orCD94/NKG2C. Eight HLA-E mutations that significantly impaired HLA-E binding to CD94/NKG2A are all found in the top of alpha1/alpha2 domain of HLA-E. These results suggest that CD94/NKG2A binds a HLA-E surface equivalent to a NKG2D binding site on MICA. Of the eight mutations that impaired HLA-E binding to CD94/NKG2A, six significantly impaired HLA-E binding to CD94/NKG2C suggesting that CD94/NKG2C also binds a similar surface of HLA-E. Unexpectedly, the two HLA-E mutations (D69A and H155A) selectively abrogated HLA-E binding to CD94/NKG2A, not largely affected CD94/NKG2C. These results indicate that a mostly shared, but partly distinct set of HLA-E residues is discriminated by the two receptors.
Collapse
Affiliation(s)
- Haruka Wada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | | | | | | | | |
Collapse
|
33
|
Miller JD, Weber DA, Ibegbu C, Pohl J, Altman JD, Jensen PE. Analysis of HLA-E peptide-binding specificity and contact residues in bound peptide required for recognition by CD94/NKG2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1369-75. [PMID: 12874227 DOI: 10.4049/jimmunol.171.3.1369] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC class Ib molecule HLA-E is the primary ligand for CD94/NKG2A-inhibitory receptors expressed on NK cells, and there is also evidence for TCR-mediated recognition of this molecule. HLA-E preferentially assembles with a homologous set of peptides derived from the leader sequence of class Ia molecules, but its capacity to bind and present other peptides remains to be fully explored. The peptide-binding motif of HLA-E was investigated by folding HLA-E in vitro in the presence of peptide libraries derived from a nonameric leader peptide sequence randomized at individual anchor positions. A high degree of selectivity was observed at four of five total anchor positions, with preference for amino acids present in HLA-E-binding peptides from class Ia leader sequences. Selectivity was also observed at the nonanchor P5 position, with preference for positively charged amino acids, suggesting that electrostatic interactions involving the P5 side chain may facilitate assembly of HLA-E peptide complexes. The observed HLA-E peptide-binding motif was strikingly similar to that previously identified for the murine class Ib molecule, Qa-1. Experiments with HLA-E tetramers bearing peptides substituted at nonanchor positions demonstrated that P5 and P8 are primary contact residues for interaction with CD94/NKG2 receptors. A conservative replacement of Arg for Lys at P5 completely abrogated binding to CD94/NKG2. Despite conservation of peptide-binding specificity in HLA-E and Qa-1, cross-species tetramer-staining experiments demonstrated that the interaction surfaces on CD94/NKG2 and the class Ib ligands have diverged between primates and rodents.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Amino Acid Substitution/genetics
- Animals
- Antigens, CD/metabolism
- Binding, Competitive/genetics
- Binding, Competitive/immunology
- Epitopes/genetics
- Epitopes/metabolism
- Escherichia coli/genetics
- Escherichia coli/immunology
- HLA Antigens/genetics
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunoassay
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/metabolism
- Lysine/genetics
- Lysine/metabolism
- Macaca mulatta
- Mice
- Mice, Inbred C57BL
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Oligopeptides/chemical synthesis
- Oligopeptides/genetics
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Peptide Library
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Folding
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Recombinant Proteins/chemical synthesis
- Recombinant Proteins/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- Joseph D Miller
- Emory Vaccine Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
34
|
Michaëlsson J, Teixeira de Matos C, Achour A, Lanier LL, Kärre K, Söderström K. A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 2002; 196:1403-14. [PMID: 12461076 PMCID: PMC2194258 DOI: 10.1084/jem.20020797] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 07/26/2002] [Accepted: 09/13/2002] [Indexed: 11/21/2022] Open
Abstract
Human histocompatibility leukocyte antigen (HLA)-E is a nonclassical major histocompatibility complex (MHC) class I molecule which presents a restricted set of nonameric peptides, derived mainly from the signal sequence of other MHC class I molecules. It interacts with CD94/NKG2 receptors expressed on the surface of natural killer (NK) cells and T cell subsets. Here we demonstrate that HLA-E also presents a peptide derived from the leader sequence of human heat shock protein 60 (hsp60). This peptide gains access to HLA-E intracellularly, resulting in up-regulated HLA-E/hsp60 signal peptide cell-surface levels on stressed cells. Notably, HLA-E molecules in complex with the hsp60 signal peptide are no longer recognized by CD94/NKG2A inhibitory receptors. Thus, during cellular stress an increased proportion of HLA-E molecules may bind the nonprotective hsp60 signal peptide, leading to a reduced capacity to inhibit a major NK cell population. Such stress induced peptide interference would gradually uncouple CD94/NKG2A inhibitory recognition and provide a mechanism for NK cells to detect stressed cells in a peptide-dependent manner.
Collapse
Affiliation(s)
- Jakob Michaëlsson
- Microbiology and Tumor Biology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Heinzel AS, Grotzke JE, Lines RA, Lewinsohn DA, McNabb AL, Streblow DN, Braud VM, Grieser HJ, Belisle JT, Lewinsohn DM. HLA-E-dependent presentation of Mtb-derived antigen to human CD8+ T cells. J Exp Med 2002; 196:1473-81. [PMID: 12461082 PMCID: PMC2194265 DOI: 10.1084/jem.20020609] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 09/11/2002] [Accepted: 10/11/2002] [Indexed: 11/24/2022] Open
Abstract
Previous studies in mice and humans have suggested an important role for CD8+ T cells in host defense to Mtb. Recently, we have described human, Mtb-specific CD8+ cells that are neither HLA-A, B, or C nor group 1 CD1 restricted, and have found that these cells comprise the dominant CD8+ T cell response in latently infected individuals. In this report, three independent methods are used to demonstrate the ability of these cells to recognize Mtb-derived antigen in the context of the monomorphic HLA-E molecule. This is the first demonstration of the ability of HLA-E to present pathogen-derived antigen. Further definition of the HLA-E specific response may aid development of an effective vaccine against tuberculosis.
Collapse
Affiliation(s)
- Amy S Heinzel
- Division of Pulmonary & Critical Care Medicine, Portland VA Medical Center, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Allan DSJ, Lepin EJM, Braud VM, O'Callaghan CA, McMichael AJ. Tetrameric complexes of HLA-E, HLA-F, and HLA-G. J Immunol Methods 2002; 268:43-50. [PMID: 12213342 DOI: 10.1016/s0022-1759(02)00199-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HLA-E, HLA-F, and HLA-G are human nonclassical MHC class Ib molecules. To study the function and identify potential ligands of these molecules, we constructed tetrameric complexes. In this brief review, we discuss the methods used to produce such tetramers and the interesting results they provided. HLA-E tetramers bound to natural killer (NK) cells and T cells, allowing the identification of CD94/NKG2 molecules as receptors for HLA-E. HLA-G tetramers interacted with immunoglobulin-like transcript-2 (ILT2) and ILT4 receptors, aiding the understanding of HLA-G function during pregnancy. Tetrameric complexes of HLA-F also bound to ILT2 and ILT4.
Collapse
Affiliation(s)
- David S J Allan
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| | | | | | | | | |
Collapse
|