1
|
Senoo A, Hoshino M, Shiomi T, Nakakido M, Nagatoishi S, Kuroda D, Nakagawa I, Tame JRH, Caaveiro JMM, Tsumoto K. Structural basis for the recognition of human hemoglobin by the heme-acquisition protein Shr from Streptococcus pyogenes. Sci Rep 2024; 14:5374. [PMID: 38438508 PMCID: PMC10912661 DOI: 10.1038/s41598-024-55734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
In Gram-positive bacteria, sophisticated machineries to acquire the heme group of hemoglobin (Hb) have evolved to extract the precious iron atom contained in it. In the human pathogen Streptococcus pyogenes, the Shr protein is a key component of this machinery. Herein we present the crystal structure of hemoglobin-interacting domain 2 (HID2) of Shr bound to Hb. HID2 interacts with both, the protein and heme portions of Hb, explaining the specificity of HID2 for the heme-bound form of Hb, but not its heme-depleted form. Further mutational analysis shows little tolerance of HID2 to interfacial mutations, suggesting that its interaction surface with Hb could be a suitable candidate to develop efficient inhibitors abrogating the binding of Shr to Hb.
Collapse
Affiliation(s)
- Akinobu Senoo
- Laboratory of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masato Hoshino
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Toshiki Shiomi
- Laboratory of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Jose M M Caaveiro
- Laboratory of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8629, Japan.
| |
Collapse
|
2
|
Macdonald R, Mahoney BJ, Soule J, Goring AK, Ford J, Loo JA, Cascio D, Clubb RT. The Shr receptor from Streptococcus pyogenes uses a cap and release mechanism to acquire heme-iron from human hemoglobin. Proc Natl Acad Sci U S A 2023; 120:e2211939120. [PMID: 36693107 PMCID: PMC9945957 DOI: 10.1073/pnas.2211939120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus) is a clinically important microbial pathogen that requires iron in order to proliferate. During infections, S. pyogenes uses the surface displayed Shr receptor to capture human hemoglobin (Hb) and acquires its iron-laden heme molecules. Through a poorly understood mechanism, Shr engages Hb via two structurally unique N-terminal Hb-interacting domains (HID1 and HID2) which facilitate heme transfer to proximal NEAr Transporter (NEAT) domains. Based on the results of X-ray crystallography, small angle X-ray scattering, NMR spectroscopy, native mass spectrometry, and heme transfer experiments, we propose that Shr utilizes a "cap and release" mechanism to gather heme from Hb. In the mechanism, Shr uses the HID1 and HID2 modules to preferentially recognize only heme-loaded forms of Hb by contacting the edges of its protoporphyrin rings. Heme transfer is enabled by significant receptor dynamics within the Shr-Hb complex which function to transiently uncap HID1 from the heme bound to Hb's β subunit, enabling the gated release of its relatively weakly bound heme molecule and subsequent capture by Shr's NEAT domains. These dynamics may maximize the efficiency of heme scavenging by S. pyogenes, enabling it to preferentially recognize and remove heme from only heme-loaded forms of Hb that contain iron.
Collapse
Affiliation(s)
- Ramsay Macdonald
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
3
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Akbari MS, Doran KS, Burcham LR. Metal Homeostasis in Pathogenic Streptococci. Microorganisms 2022; 10:1501. [PMID: 35893559 PMCID: PMC9331361 DOI: 10.3390/microorganisms10081501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus spp. are an important genus of Gram-positive bacteria, many of which are opportunistic pathogens that are capable of causing invasive disease in a wide range of populations. Metals, especially transition metal ions, are an essential nutrient for all organisms. Therefore, to survive across dynamic host environments, Streptococci have evolved complex systems to withstand metal stress and maintain metal homeostasis, especially during colonization and infection. There are many different types of transport systems that are used by bacteria to import or export metals that can be highly specific or promiscuous. Focusing on the most well studied transition metals of zinc, manganese, iron, nickel, and copper, this review aims to summarize the current knowledge of metal homeostasis in pathogenic Streptococci, and their role in virulence.
Collapse
Affiliation(s)
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | |
Collapse
|
5
|
Clayton J, Ellis-Guardiola K, Mahoney BJ, Soule J, Clubb RT, Wereszczynski J. Directed inter-domain motions enable the IsdH Staphylococcus aureus receptor to rapidly extract heme from human hemoglobin. J Mol Biol 2022; 434:167623. [DOI: 10.1016/j.jmb.2022.167623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/07/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
|
6
|
Traore ES, Li J, Chiura T, Geng J, Sachla AJ, Yoshimoto F, Eichenbaum Z, Davis I, Mak PJ, Liu A. Heme Binding to HupZ with a C-Terminal Tag from Group A Streptococcus. Molecules 2021; 26:549. [PMID: 33494451 PMCID: PMC7865249 DOI: 10.3390/molecules26030549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022] Open
Abstract
HupZ is an expected heme degrading enzyme in the heme acquisition and utilization pathway in Group A Streptococcus. The isolated HupZ protein containing a C-terminal V5-His6 tag exhibits a weak heme degradation activity. Here, we revisited and characterized the HupZ-V5-His6 protein via biochemical, mutagenesis, protein quaternary structure, UV-vis, EPR, and resonance Raman spectroscopies. The results show that the ferric heme-protein complex did not display an expected ferric EPR signal and that heme binding to HupZ triggered the formation of higher oligomeric states. We found that heme binding to HupZ was an O2-dependent process. The single histidine residue in the HupZ sequence, His111, did not bind to the ferric heme, nor was it involved with the weak heme-degradation activity. Our results do not favor the heme oxygenase assignment because of the slow binding of heme and the newly discovered association of the weak heme degradation activity with the His6-tag. Altogether, the data suggest that the protein binds heme by its His6-tag, resulting in a heme-induced higher-order oligomeric structure and heme stacking. This work emphasizes the importance of considering exogenous tags when interpreting experimental observations during the study of heme utilization proteins.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Tapiwa Chiura
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jiafeng Geng
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Ankita J. Sachla
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Francis Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Piotr J. Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| |
Collapse
|
7
|
Ellis-Guardiola K, Mahoney BJ, Clubb RT. NEAr Transporter (NEAT) Domains: Unique Surface Displayed Heme Chaperones That Enable Gram-Positive Bacteria to Capture Heme-Iron From Hemoglobin. Front Microbiol 2021; 11:607679. [PMID: 33488548 PMCID: PMC7815599 DOI: 10.3389/fmicb.2020.607679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Iron is an important micronutrient that is required by bacteria to proliferate and to cause disease. Many bacterial pathogens forage iron from human hemoglobin (Hb) during infections, which contains this metal within heme (iron-protoporphyrin IX). Several clinically important pathogenic species within the Firmicutes phylum scavenge heme using surface-displayed or secreted NEAr Transporter (NEAT) domains. In this review, we discuss how these versatile proteins function in the Staphylococcus aureus Iron-regulated surface determinant system that scavenges heme-iron from Hb. S. aureus NEAT domains function as either Hb receptors or as heme-binding chaperones. In vitro studies have shown that heme-binding NEAT domains can rapidly exchange heme amongst one another via transiently forming transfer complexes, leading to the interesting hypothesis that they may form a protein-wire within the peptidoglycan layer through which heme flows from the microbial surface to the membrane. In Hb receptors, recent studies have revealed how dedicated heme- and Hb-binding NEAT domains function synergistically to extract Hb's heme molecules, and how receptor binding to the Hb-haptoglobin complex may block its clearance by macrophages, prolonging microbial access to Hb's iron. The functions of NEAT domains in other Gram-positive bacteria are also reviewed.
Collapse
Affiliation(s)
- Ken Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
9
|
Chhabra R, Saha A, Chamani A, Schneider N, Shah R, Nanjundan M. Iron Pathways and Iron Chelation Approaches in Viral, Microbial, and Fungal Infections. Pharmaceuticals (Basel) 2020; 13:E275. [PMID: 32992923 PMCID: PMC7601909 DOI: 10.3390/ph13100275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (R.C.); (A.S.); (A.C.); (N.S.); (R.S.)
| |
Collapse
|
10
|
Ellis-Guardiola K, Clayton J, Pham C, Mahoney BJ, Wereszczynski J, Clubb RT. The Staphylococcus aureus IsdH Receptor Forms a Dynamic Complex with Human Hemoglobin that Triggers Heme Release via Two Distinct Hot Spots. J Mol Biol 2020; 432:1064-1082. [PMID: 31881209 PMCID: PMC7309296 DOI: 10.1016/j.jmb.2019.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 02/02/2023]
Abstract
Iron is an essential nutrient that is actively acquired by bacterial pathogens during infections. Clinically important Staphylococcus aureus obtains iron by extracting heme from hemoglobin (Hb) using the closely related IsdB and IsdH surface receptors. In IsdH, extraction is mediated by a conserved tridomain unit that contains its second (N2) and third (N3) NEAT domains joined by a helical linker, called IsdHN2N3. Leveraging the crystal structure of the IsdHN2N3:Hb complex, we have probed the mechanism of heme capture using NMR, stopped-flow transfer kinetics measurements, and molecular dynamics (MD) simulations. NMR studies of the 220 kDa IsdHN2N3:Hb complex reveal that it is dynamic, with persistent interdomain motions enabling the linker and N3 domains in the receptor to transiently engage Hb to remove its heme. An alanine mutagenesis analysis reveals that two receptor subsites positioned ~20 Å apart trigger heme release by contacting Hb's F-helix. These subsites are located within the N3 and linker domains and appear to play distinct roles in stabilizing the heme transfer transition state. Linker domain contacts primarily function to destabilize Hb-heme interactions, thereby lowering ΔH‡, while contacts from the N3 subsite play a similar destabilizing role, but also form a bridge through which heme moves from Hb to the receptor. Interestingly, MD simulations suggest that within the transiently forming interface, both the F-helix and receptor bridge are in motion, dynamically sampling conformations that are suitable for heme transfer. Thus, IsdH triggers heme release from Hb via a flexible, low-affinity interface that forms fleetingly in solution.
Collapse
Affiliation(s)
- Ken Ellis-Guardiola
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph Clayton
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Clarissa Pham
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Brendan J. Mahoney
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Robert T. Clubb
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Transcriptomic Analysis of Streptococcus pyogenes Colonizing the Vaginal Mucosa Identifies hupY, an MtsR-Regulated Adhesin Involved in Heme Utilization. mBio 2019; 10:mBio.00848-19. [PMID: 31239377 PMCID: PMC6593403 DOI: 10.1128/mbio.00848-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Colonization of the host requires the ability to adapt to an environment that is often low in essential nutrients such as iron. Here we present data showing that the transcriptome of the important human pathogen Streptococcus pyogenes shows extensive remodeling during in vivo growth, resulting in, among many other differentially expressed genes and pathways, a significant increase in genes involved in acquiring iron from host heme. Data show that HupY, previously characterized as an adhesin in both S. pyogenes and the related pathogen Streptococcus agalactiae, binds heme and affects intracellular iron concentrations. HupY, a protein with no known heme binding domains, represents a novel heme binding protein playing an important role in bacterial iron homeostasis as well as vaginal colonization. Streptococcus pyogenes (group A streptococcus [GAS]) is a serious human pathogen with the ability to colonize mucosal surfaces such as the nasopharynx and vaginal tract, often leading to infections such as pharyngitis and vulvovaginitis. We present genome-wide transcriptome sequencing (RNASeq) data showing the transcriptomic changes GAS undergoes during vaginal colonization. These data reveal that the regulon controlled by MtsR, a master metal regulator, is activated during vaginal colonization. This regulon includes two genes highly expressed during vaginal colonization, hupYZ. Here we show that HupY binds heme in vitro, affects intracellular concentrations of iron, and is essential for proper growth of GAS using hemoglobin or serum as the sole iron source. HupY is also important for murine vaginal colonization of both GAS and the related vaginal colonizer and pathogen Streptococcus agalactiae (group B streptococcus [GBS]). These data provide essential information on the link between metal regulation and mucosal colonization in both GAS and GBS.
Collapse
|
12
|
Verstraete MM, Morales LD, Kobylarz MJ, Loutet SA, Laakso HA, Pinter TB, Stillman MJ, Heinrichs DE, Murphy MEP. The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by Staphylococcus aureus. J Biol Chem 2019; 294:11622-11636. [PMID: 31197035 DOI: 10.1074/jbc.ra119.007757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/12/2019] [Indexed: 01/30/2023] Open
Abstract
Staphylococcus aureus infection relies on iron acquisition from its host. S. aureus takes up iron through heme uptake by the iron-responsive surface determinant (Isd) system and by the production of iron-scavenging siderophores. Staphyloferrin B (SB) is a siderophore produced by the 9-gene sbn gene cluster for SB biosynthesis and efflux. Recently, the ninth gene product, SbnI, was determined to be a free l-serine kinase that produces O-phospho-l-serine (OPS), a substrate for SB biosynthesis. Previous studies have also characterized SbnI as a DNA-binding regulatory protein that senses heme to control sbn gene expression for SB synthesis. Here, we present crystal structures at 1.9-2.1 Å resolution of a SbnI homolog from Staphylococcus pseudintermedius (SpSbnI) in both apo form and in complex with ADP, a product of the kinase reaction; the latter confirmed the active-site location. The structures revealed that SpSbnI forms a dimer through C-terminal domain swapping and a dimer of dimers through intermolecular disulfide formation. Heme binding had only a modest effect on SbnI enzymatic activity, suggesting that its two functions are independent and structurally distinct. We identified a heme-binding site and observed catalytic heme transfer between a heme-degrading protein of the Isd system, IsdI, and SbnI. These findings support the notion that SbnI has a bifunctional role contributing precursor OPS to SB synthesis and directly sensing heme to control expression of the sbn locus. We propose that heme transfer from IsdI to SbnI enables S. aureus to control iron source preference according to the sources available in the environment.
Collapse
Affiliation(s)
- Meghan M Verstraete
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - L Daniela Morales
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marek J Kobylarz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Slade A Loutet
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Holly A Laakso
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Tyler B Pinter
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Martin J Stillman
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
13
|
Macdonald R, Cascio D, Collazo MJ, Phillips M, Clubb RT. The Streptococcus pyogenes Shr protein captures human hemoglobin using two structurally unique binding domains. J Biol Chem 2018; 293:18365-18377. [PMID: 30301765 DOI: 10.1074/jbc.ra118.005261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
In order to proliferate and mount an infection, many bacterial pathogens need to acquire iron from their host. The most abundant iron source in the body is the oxygen transporter hemoglobin (Hb). Streptococcus pyogenes, a potentially lethal human pathogen, uses the Shr protein to capture Hb on the cell surface. Shr is an important virulence factor, yet the mechanism by which it captures Hb and acquires its heme is not well-understood. Here, we show using NMR and biochemical methods that Shr binds Hb using two related modules that were previously defined as domains of unknown function (DUF1533). These hemoglobin-interacting domains (HIDs), called HID1 and HID2, are autonomously folded and independently bind Hb. The 1.5 Å resolution crystal structure of HID2 revealed that it is a structurally unique Hb-binding domain. Mutagenesis studies revealed a conserved tyrosine in both HIDs that is essential for Hb binding. Our biochemical studies indicate that HID2 binds Hb with higher affinity than HID1 and that the Hb tetramer is engaged by two Shr receptors. NMR studies reveal the presence of a third autonomously folded domain between HID2 and a heme-binding NEAT1 domain, suggesting that this linker domain may position NEAT1 near Hb for heme capture.
Collapse
Affiliation(s)
- Ramsay Macdonald
- From the Department of Chemistry and Biochemistry,; UCLA-DOE Institute of Genomics and Proteomics and
| | | | | | | | - Robert T Clubb
- From the Department of Chemistry and Biochemistry,; UCLA-DOE Institute of Genomics and Proteomics and; Molecular Biology Institute, UCLA, Los Angeles, California 90095.
| |
Collapse
|
14
|
Tannerella forsythia Tfo belongs to Porphyromonas gingivalis HmuY-like family of proteins but differs in heme-binding properties. Biosci Rep 2018; 38:BSR20181325. [PMID: 30266745 PMCID: PMC6200708 DOI: 10.1042/bsr20181325] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
Porphyromonas gingivalis is considered the principal etiologic agent and keystone pathogen of chronic periodontitis. As an auxotrophic bacterium, it must acquire heme to survive and multiply at the infection site. P. gingivalis HmuY is the first member of a novel family of hemophore-like proteins. Bacterial heme-binding proteins usually use histidine-methionine or histidine-tyrosine residues to ligate heme-iron, whereas P. gingivalis HmuY uses two histidine residues. We hypothesized that other 'red complex' members, i.e. Tannerella forsythia and Treponema denticola might utilize similar heme uptake mechanisms to the P. gingivalis HmuY. Comparative and phylogenetic analyses suggested differentiation of HmuY homologs and low conservation of heme-coordinating histidine residues present in HmuY. The homologs were subjected to duplication before divergence of Bacteroidetes lineages, which could facilitate evolution of functional diversification. We found that T. denticola does not code an HmuY homolog. T. forsythia protein, termed as Tfo, binds heme, but preferentially in the ferrous form, and sequesters heme from the albumin-heme complex under reducing conditions. In agreement with that, the 3D structure of Tfo differs from that of HmuY in the folding of heme-binding pocket, containing two methionine residues instead of two histidine residues coordinating heme in HmuY. Heme binding to apo-HmuY is accompanied by movement of the loop carrying the His166 residue, closing the heme-binding pocket. Molecular dynamics simulations (MD) demonstrated that this conformational change also occurs in Tfo. In conclusion, our findings suggest that HmuY-like family might comprise proteins subjected during evolution to significant diversification, resulting in different heme-binding properties.
Collapse
|
15
|
Song Y, Zhang X, Cai M, Lv C, Zhao Y, Wei D, Zhu H. The Heme Transporter HtsABC of Group A Streptococcus Contributes to Virulence and Innate Immune Evasion in Murine Skin Infections. Front Microbiol 2018; 9:1105. [PMID: 29887858 PMCID: PMC5981463 DOI: 10.3389/fmicb.2018.01105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
Group A Streptococcus (GAS) requires iron for growth, and heme is an important source of iron for GAS. Streptococcus heme transporter A (HtsA) is the lipoprotein component of the GAS heme-specific ABC transporter (HtsABC). The objective of this study is to examine the contribution of HtsABC to virulence and host interaction of hypervirulent M1T1 GAS using an isogenic htsA deletion mutant (ΔhtsA). The htsA deletion exhibited a significantly increased survival rate, reduced skin lesion size, and reduced systemic GAS dissemination in comparison to the wild type strain. The htsA deletion also decreased the GAS adhesion rate to Hep-2 cells, the survival in human blood and rat neutrophils, and increased the production of cytokine IL-1β, IL-6, and TNF-α levels in air pouch exudate of a mouse model of subcutaneous infection. Complementation of ΔhtsA restored the wild type phenotype. These findings support that the htsA gene is required for GAS virulence and that the htsA deletion augments host innate immune responses.
Collapse
Affiliation(s)
- Yingli Song
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaolan Zhang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Minghui Cai
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yuan Zhao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Deqin Wei
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Nagarajan D, Sukumaran S, Deka G, Krishnamurthy K, Atreya HS, Chandra N. Design of a heme-binding peptide motif adopting a β-hairpin conformation. J Biol Chem 2018; 293:9412-9422. [PMID: 29695501 DOI: 10.1074/jbc.ra118.001768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
Heme-binding proteins constitute a large family of catalytic and transport proteins. Their widespread presence as globins and as essential oxygen and electron transporters, along with their diverse enzymatic functions, have made them targets for protein design. Most previously reported designs involved the use of α-helical scaffolds, and natural peptides also exhibit a strong preference for these scaffolds. However, the reason for this preference is not well-understood, in part because alternative protein designs, such as those with β-sheets or hairpins, are challenging to perform. Here, we report the computational design and experimental validation of a water-soluble heme-binding peptide, Pincer-1, composed of predominantly β-scaffold secondary structures. Such heme-binding proteins are rarely observed in nature, and by designing such a scaffold, we simultaneously increase the known fold space of heme-binding proteins and expand the limits of computational design methods. For a β-scaffold, two tryptophan zipper β-hairpins sandwiching a heme molecule were linked through an N-terminal cysteine disulfide bond. β-Hairpin orientations and residue selection were performed computationally. Heme binding was confirmed through absorbance experiments and surface plasmon resonance experiments (KD = 730 ± 160 nm). CD and NMR experiments validated the β-hairpin topology of the designed peptide. Our results indicate that a helical scaffold is not essential for heme binding and reveal the first designed water-soluble, heme-binding β-hairpin peptide. This peptide could help expand the search for and design space to cytoplasmic heme-binding proteins.
Collapse
Affiliation(s)
| | | | - Geeta Deka
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
17
|
Corynebacterium diphtheriae Iron-Regulated Surface Protein HbpA Is Involved in the Utilization of the Hemoglobin-Haptoglobin Complex as an Iron Source. J Bacteriol 2018; 200:JB.00676-17. [PMID: 29311283 DOI: 10.1128/jb.00676-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/28/2017] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae utilizes various heme-containing proteins, including hemoglobin (Hb) and the hemoglobin-haptoglobin complex (Hb-Hp), as iron sources during growth in iron-depleted environments. The ability to utilize Hb-Hp as an iron source requires the surface-anchored proteins HtaA and either ChtA or ChtC. The ability to bind hemin, Hb, and Hb-Hp by each of these C. diphtheriae proteins requires the previously characterized conserved region (CR) domain. In this study, we identified an Hb-Hp binding protein, HbpA (38.5 kDa), which is involved in the acquisition of hemin iron from Hb-Hp. HbpA was initially identified from total cell lysates as an iron-regulated protein that binds to both Hb and Hb-Hp in situ HbpA does not contain a CR domain and has sequence similarity only to homologous proteins present in a limited number of C. diphtheriae strains. Transcription of hbpA is regulated in an iron-dependent manner that is mediated by DtxR, a global iron-dependent regulator. Deletion of hbpA from C. diphtheriae results in a reduced ability to utilize Hb-Hp as an iron source but has little or no effect on the ability to use Hb or hemin as an iron source. Cell fractionation studies showed that HbpA is both secreted into the culture supernatant and associated with the membrane, where its exposure on the bacterial surface allows HbpA to bind Hb and Hb-Hp. The identification and analysis of HbpA enhance our understanding of iron uptake in C. diphtheriae and indicate that the acquisition of hemin iron from Hb-Hp may involve a complex mechanism that requires multiple surface proteins.IMPORTANCE The ability to utilize host iron sources, such as heme and heme-containing proteins, is essential for many bacterial pathogens to cause disease. In this study, we have identified a novel factor (HbpA) that is crucial for the use of hemin iron from the hemoglobin-haptoglobin complex (Hb-Hp). Hb-Hp is considered one of the primary sources of iron for certain bacterial pathogens. HbpA has no similarity to the previously identified Hb-Hp binding proteins, HtaA and ChtA/C, and is found only in a limited group of C. diphtheriae strains. Understanding the function of HbpA may significantly increase our knowledge of how this important human pathogen can acquire host iron that allows it to survive and cause disease in the human respiratory tract.
Collapse
|
18
|
Hoshino M, Nakakido M, Nagatoishi S, Aikawa C, Nakagawa I, Tsumoto K. Biophysical characterization of the interaction between heme and proteins responsible for heme transfer in Streptococcus pyogenes. Biochem Biophys Res Commun 2017; 493:1109-1114. [DOI: 10.1016/j.bbrc.2017.09.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|
19
|
Brewitz HH, Hagelueken G, Imhof D. Structural and functional diversity of transient heme binding to bacterial proteins. Biochim Biophys Acta Gen Subj 2017; 1861:683-697. [DOI: 10.1016/j.bbagen.2016.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
20
|
Turner AG, Ong CLY, Walker MJ, Djoko KY, McEwan AG. Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Adv Microb Physiol 2017; 70:123-191. [PMID: 28528647 DOI: 10.1016/bs.ampbs.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trace metals such as Fe, Mn, Zn and Cu are essential for various biological functions including proper innate immune function. The host immune system has complicated and coordinated mechanisms in place to either starve and/or overload invading pathogens with various metals to combat the infection. Here, we discuss the roles of Fe, Mn and Zn in terms of nutritional immunity, and also the roles of Cu and Zn in metal overload in relation to the physiology and pathogenesis of two human streptococcal species, Streptococcus pneumoniae and Streptococcus pyogenes. S. pneumoniae is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the population; however, transition to internal sites can cause a range of diseases such as pneumonia, otitis media, meningitis and bacteraemia. S. pyogenes is a human pathogen responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Both species have overlapping capacity with respect to metal acquisition, export and regulation and how metal homeostasis relates to their virulence and ability to invade and survive within the host. It is becoming more apparent that metals have an important role to play in the control of infection, and with further investigations, it could lead to the potential use of metals in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Andrew G Turner
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Choo JM, Cheung JK, Wisniewski JA, Steer DL, Bulach DM, Hiscox TJ, Chakravorty A, Smith AI, Gell DA, Rood JI, Awad MM. The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme. PLoS One 2016; 11:e0162981. [PMID: 27637108 PMCID: PMC5026354 DOI: 10.1371/journal.pone.0162981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringensheme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.
Collapse
Affiliation(s)
- Jocelyn M. Choo
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jackie K. Cheung
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jessica A. Wisniewski
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dieter M. Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Thomas J. Hiscox
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anjana Chakravorty
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - A. Ian Smith
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Julian I. Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Milena M. Awad
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- * E-mail:
| |
Collapse
|
22
|
Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. Streptococcus pyogenes adhesion and colonization. FEBS Lett 2016; 590:3739-3757. [PMID: 27312939 DOI: 10.1002/1873-3468.12254] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a human-adapted pathogen responsible for a wide spectrum of disease. GAS can cause relatively mild illnesses, such as strep throat or impetigo, and less frequent but severe life-threatening diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS is an important public health problem causing significant morbidity and mortality worldwide. The main route of GAS transmission between humans is through close or direct physical contact, and particularly via respiratory droplets. The upper respiratory tract and skin are major reservoirs for GAS infections. The ability of GAS to establish an infection in the new host at these anatomical sites primarily results from two distinct physiological processes, namely bacterial adhesion and colonization. These fundamental aspects of pathogenesis rely upon a variety of GAS virulence factors, which are usually under strict transcriptional regulation. Considerable progress has been made in better understanding these initial infection steps. This review summarizes our current knowledge of the molecular mechanisms of GAS adhesion and colonization.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre For Infection Research, Braunschweig, Germany
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
23
|
Romero-Espejel ME, Rodríguez MA, Chávez-Munguía B, Ríos-Castro E, Olivares-Trejo JDJ. Characterization of Spbhp-37, a Hemoglobin-Binding Protein of Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:47. [PMID: 27200302 PMCID: PMC4854876 DOI: 10.3389/fcimb.2016.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-positive microorganism that is the cause of bacterial pneumonia, sinusitis and otitis media. This human pathogen also can cause invasive diseases such as meningitis, bacteremia and septicemia. Hemoglobin (Hb) and haem can support the growth and viability of S. pneumoniae as sole iron sources. Unfortunately, the acquisition mechanism of Hb and haem in this bacterium has been poorly studied. Previously we identified two proteins of 37 and 22 kDa as putative Hb- and haem-binding proteins (Spbhp-37 and Spbhp-22, respectively). The sequence of Spbhp-37 protein was database annotated as lipoprotein without any function or localization. Here it was immunolocalized in the surface cell by transmission electron microscopy using specific antibodies produced against the recombinant protein. The expression of Spbhp-37 was increased when bacteria were grown in media culture supplied with Hb. In addition, the affinity of Sphbp-37 for Hb was determined. Thus, in this work we are presenting new findings that attempt to explain the mechanism involved in iron acquisition of this pathogen. In the future these results could help to develop new therapy targets in order to avoid the secondary effects caused by the traditional therapies.
Collapse
Affiliation(s)
- María E Romero-Espejel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica. LaNSE-CINVESTAV, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - José de Jesús Olivares-Trejo
- Laboratorio de Bacteriología y Nanomedicina, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México México, México
| |
Collapse
|
24
|
Akbas N, Draganova EB, Block DR, Sook BR, Chan YF, Zhuo J, Eichenbaum Z, Rodgers KR, Dixon DW. Heme-bound SiaA from Streptococcus pyogenes: Effects of mutations and oxidation state on protein stability. J Inorg Biochem 2016; 158:99-109. [PMID: 26746808 PMCID: PMC4943329 DOI: 10.1016/j.jinorgbio.2015.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
The protein SiaA (HtsA) is part of a heme uptake pathway in Streptococcus pyogenes. In this report, we present the heme binding of the alanine mutants of the axial histidine (H229A) and methionine (M79A) ligands, as well as a lysine (K61A) and cysteine (C58A) located near the heme propionates (based on homology modeling) and a control mutant (C47A). pH titrations gave pKa values ranging from 9.0 to 9.5, close to the value of 9.7 for WT SiaA. Resonance Raman spectra of the mutants suggested that the ferric heme environment may be distinct from the wild-type; spectra of the ferrous states were similar. The midpoint reduction potential of the K61A mutant was determined by spectroelectrochemical titration to be 61±3mV vs. SHE, similar to the wild-type protein (68±3mV). The addition of guanidine hydrochloride showed two processes for protein denaturation, consistent with heme loss from protein forms differing by the orientation of the heme in the binding pocket (the half-life for the slower process ranged from less than half a day to two days). The ease of protein unfolding was related to the strength of interaction of the residues with the heme. We hypothesize that kinetically facile but only partial unfolding, followed by a very slow approach to the completely unfolded state, may be a fundamental attribute of heme trafficking proteins. Small motions to release/transfer the heme accompanied by resistance to extensive unfolding may preserve the three dimensional form of the protein for further uptake and release.
Collapse
Affiliation(s)
- Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | | | - Darci R Block
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Brian R Sook
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Yau Fong Chan
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Joy Zhuo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Dabney W Dixon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA.
| |
Collapse
|
25
|
CovRS-Regulated Transcriptome Analysis of a Hypervirulent M23 Strain of Group A Streptococcus pyogenes Provides New Insights into Virulence Determinants. J Bacteriol 2015. [PMID: 26216843 DOI: 10.1128/jb.00511-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The two-component control of virulence (Cov) regulator (R)-sensor (S) (CovRS) regulates the virulence of Streptococcus pyogenes (group A Streptococcus [GAS]). Inactivation of CovS during infection switches the pathogenicity of GAS to a more invasive form by regulating transcription of diverse virulence genes via CovR. However, the manner in which CovRS controls virulence through expression of extended gene families has not been fully determined. In the current study, the CovS-regulated gene expression profiles of a hypervirulent emm23 GAS strain (M23ND/CovS negative [M23ND/CovS(-)]) and a noninvasive isogenic strain (M23ND/CovS(+)), under different growth conditions, were investigated. RNA sequencing identified altered expression of ∼ 349 genes (18% of the chromosome). The data demonstrated that M23ND/CovS(-) achieved hypervirulence by allowing enhanced expression of genes responsible for antiphagocytosis (e.g., hasABC), by abrogating expression of toxin genes (e.g., speB), and by compromising gene products with dispensable functions (e.g., sfb1). Among these genes, several (e.g., parE and parC) were not previously reported to be regulated by CovRS. Furthermore, the study revealed that CovS also modulated the expression of a broad spectrum of metabolic genes that maximized nutrient utilization and energy metabolism during growth and dissemination, where the bacteria encounter large variations in available nutrients, thus restructuring metabolism of GAS for adaption to diverse growth environments. From constructing a genome-scale metabolic model, we identified 16 nonredundant metabolic gene modules that constitute unique nutrient sources. These genes were proposed to be essential for pathogen growth and are likely associated with GAS virulence. The genome-wide prediction of genes associated with virulence identifies new candidate genes that potentially contribute to GAS virulence. IMPORTANCE The CovRS system modulates transcription of ∼ 18% of the genes in the Streptococcus pyogenes genome. Mutations that inactivate CovR or CovS enhance the virulence of this bacterium. We determined complete transcriptomes of a naturally CovS-inactivated invasive deep tissue isolate of an emm23 strain of S. pyogenes (M23ND) and its complemented avirulent variant (CovS(+)). We identified diverse virulence genes whose altered expression revealed a genetic switching of a nonvirulent form of M23ND to a highly virulent strain. Furthermore, we also systematically uncovered for the first time the comparative levels of expression of a broad spectrum of metabolic genes, which reflected different metabolic needs of the bacterium as it invaded deeper tissue of the human host.
Collapse
|
26
|
Abi-Khalil E, Segond D, Terpstra T, André-Leroux G, Kallassy M, Lereclus D, Bou-Abdallah F, Nielsen-Leroux C. Heme interplay between IlsA and IsdC: Two structurally different surface proteins from Bacillus cereus. Biochim Biophys Acta Gen Subj 2015; 1850:1930-41. [PMID: 26093289 DOI: 10.1016/j.bbagen.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Iron is an essential element for bacterial growth and virulence. Because of its limited bioavailability in the host, bacteria have adapted several strategies to acquire iron during infection. In the human opportunistic bacteria Bacillus cereus, a surface protein IlsA is shown to be involved in iron acquisition from both ferritin and hemoproteins. IlsA has a modular structure consisting of a NEAT (Near Iron transporter) domain at the N-terminus, several LRR (Leucine Rich Repeat) motifs and a SLH (Surface Layer Homology) domain likely involved in anchoring the protein to the cell surface. METHODS Isothermal titration calorimetry, UV-Vis spectrophotometry, affinity chromatography and rapid kinetics stopped-flow measurements were employed to probe the binding and transfer of hemin between two different B. cereus surface proteins (IlsA and IsdC). RESULTS IlsA binds hemin via the NEAT domain and is able to extract heme from hemoglobin whereas the LRR domain alone is not involved in these processes. A rapid hemin transfer from hemin-containing IlsA (holo-IlsA) to hemin-free IsdC (apo-IsdC) is demonstrated. CONCLUSIONS For the first time, it is shown that two different B. cereus surface proteins (IlsA and IsdC) can interact and transfer heme suggesting their involvement in B. cereus heme acquisition. GENERAL SIGNIFICANCE An important role for the complete Isd system in heme-associated bacterial growth is demonstrated and new insights into the interplay between an Isd NEAT surface protein and an IlsA-NEAT-LRR protein, both of which appear to be involved in heme-iron acquisition in B. cereus are revealed.
Collapse
Affiliation(s)
- Elise Abi-Khalil
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France; Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon; Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Diego Segond
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France
| | - Tyson Terpstra
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | | | - Mireille Kallassy
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Didier Lereclus
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | | |
Collapse
|
27
|
Abstract
Gram-positive Streptococcus species are responsible for millions of cases of meningitis, bacterial pneumonia, endocarditis, erysipelas and necrotizing fasciitis. Iron is essential for the growth and survival of Streptococcus in the host environment. Streptococcus species have developed various mechanisms to uptake iron from an environment with limited available iron. Streptococcus can directly extract iron from host iron-containing proteins such as ferritin, transferrin, lactoferrin and hemoproteins, or indirectly by relying on the employment of specialized secreted hemophores (heme chelators) and small siderophore molecules (high affinity ferric chelators). This review presents the most recent discoveries in the iron acquisition system of Streptococcus species - the transporters as well as the regulators.
Collapse
Affiliation(s)
- Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | |
Collapse
|
28
|
Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains. PLoS One 2014; 9:e104794. [PMID: 25153520 PMCID: PMC4143258 DOI: 10.1371/journal.pone.0104794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
Iron is essential for bacterial survival, being required for numerous biological processes. NEAr-iron Transporter (NEAT) domains have been studied in pathogenic Gram-positive bacteria to understand how their proteins obtain heme as an iron source during infection. While a 2002 study initially discovered and annotated the NEAT domain encoded by the genomes of several Gram-positive bacteria, there remains a scarcity of information regarding the conservation and distribution of NEAT domains throughout the bacterial kingdom, and whether these domains are restricted to pathogenic bacteria. This study aims to expand upon initial bioinformatics analysis of predicted NEAT domains, by exploring their evolution and conserved function. This information was used to identify new candidate domains in both pathogenic and nonpathogenic organisms. We also searched metagenomic datasets, specifically sequence from the Human Microbiome Project. Here, we report a comprehensive phylogenetic analysis of 343 NEAT domains, encoded by Gram-positive bacteria, mostly within the phylum Firmicutes, with the exception of Eggerthella sp. (Actinobacteria) and an unclassified Mollicutes bacterium (Tenericutes). No new NEAT sequences were identified in the HMP dataset. We detected specific groups of NEAT domains based on phylogeny of protein sequences, including a cluster of novel clostridial NEAT domains. We also identified environmental and soil organisms that encode putative NEAT proteins. Biochemical analysis of heme binding by a NEAT domain from a protein encoded by the soil-dwelling organism Paenibacillus polymyxa demonstrated that the domain is homologous in function to NEAT domains encoded by pathogenic bacteria. Together, this study provides the first global bioinformatics analysis and phylogenetic evidence that NEAT domains have a strong conservation of function, despite group-specific differences at the amino acid level. These findings will provide information useful for future projects concerning the structure and function of NEAT domains, particularly in pathogens where they have yet to be studied.
Collapse
|
29
|
Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin. PLoS One 2014; 9:e100744. [PMID: 24959723 PMCID: PMC4069089 DOI: 10.1371/journal.pone.0100744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
The hemoglobin receptor IsdB rapidly acquires heme from methemoglobin (metHb) in the heme acquisition pathway of Staphylococcus aureus. IsdB consists of N-terminal segment (NS), NEAT1 (N1), middle (MD), and heme binding NEAT2 (N2) domains, and C-terminal segment (CS). This study aims to elucidate the roles of these domains or segments in the metHb/IsdB reaction. Deletion of CS does not alter the kinetics and equilibrium of the reaction. Sequential deletions of NS and N1 in NS-N1-MD-N2 progressively reduce heme transfer rates and change the kinetic pattern from one to two phases, but have no effect on the equilibrium of the heme transfer reaction, whereas further deletion of MD reduces the percentage of transferred metHb heme. MD-N2 has higher affinity for heme than N2. MD in trans reduces rates of heme dissociation from holo-N2 and increases the percentage of metHb heme captured by N2 by 4.5 fold. NS-N1-MD and N2, but not NS-N1, MD, and N2, reconstitute the rapid metHb/IsdB reaction. NS-N1-MD-NIsdC, a fusion protein of NS-N1-MD and the NEAT domain of IsdC, slowly acquires heme from metHb by itself but together with N2 results in rapid heme loss from metHb. Thus, NS-N1 and MD domains specifically and critically contribute to the kinetics and equilibrium of the metHb/IsdB reaction, respectively. These findings support a mechanism of direct heme acquisition by IsdB in which MD enhances the affinity of N2 for heme to thermodynamically drive heme transfer from metHb to IsdB and in which NS is required for the rapid and single phase kinetics of the metHb/IsdB reaction.
Collapse
|
30
|
Bowden CFM, Verstraete MM, Eltis LD, Murphy MEP. Hemoglobin binding and catalytic heme extraction by IsdB near iron transporter domains. Biochemistry 2014; 53:2286-94. [PMID: 24645787 DOI: 10.1021/bi500230f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Isd (iron-regulated surface determinant) system is a multiprotein transporter that allows bacterium Staphylococcus aureus to take up iron from hemoglobin (Hb) during human infection. In this system, IsdB is a cell wall-anchored surface protein that contains two near iron transporter (NEAT) domains, one of which binds heme. IsdB rapidly extracts heme from Hb and transfers it to IsdA for relay into the bacterial cell. Using a series of recombinant IsdB constructs that included at least one NEAT domain, we demonstrated that both domains are required to bind Hb with high affinity (KD = 0.42 ± 0.05 μM) and to extract heme from Hb. Moreover, IsdB extracted heme only from oxidized metHb, although it also bound oxyHb and the Hb-CO complex. In a reconstituted model of the biological heme relay pathway, IsdB catalyzed the transfer of heme from metHb to IsdA with a Km for metHb of 0.75 ± 0.07 μN and a kcat of 0.22 ± 0.01 s(-1). The latter is consistent with the transfer of heme from metHb to IsdB being the rate-limiting step. With both NEAT domains and the linker region present in a single contiguous polypeptide, high-affinity Hb binding was achieved, rapid heme uptake was observed, and multiple turnovers of heme extraction from metHb and transfer to IsdA were conducted, representing all known Hb-heme uptake functions of the full-length IsdB protein.
Collapse
Affiliation(s)
- Catherine F M Bowden
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia , Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
31
|
Ran Y, Malmirchegini GR, Clubb RT, Lei B. Axial ligand replacement mechanism in heme transfer from streptococcal heme-binding protein Shp to HtsA of the HtsABC transporter. Biochemistry 2013; 52:6537-47. [PMID: 23980583 PMCID: PMC3815476 DOI: 10.1021/bi400965u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heme-binding protein Shp of Group A Streptococcus rapidly transfers its heme to HtsA, the lipoprotein component of the HtsABC transporter, in a concerted two-step process with one kinetic phase. Heme axial residue-to-alanine replacement mutant proteins of Shp and HtsA (Shp(M66A), Shp(M153A), HtsA(M79A), and HtsA(H229A)) were used to probe the axial displacement mechanism of this heme transfer reaction. Ferric Shp(M66A) at high pH and Shp(M153A) have a pentacoordinate heme iron complex with a methionine axial ligand. ApoHtsA(M79A) efficiently acquires heme from ferric Shp but alters the reaction mechanism to two kinetic phases from a single phase in the wild-type protein reactions. In contrast, apoHtsA(H229A) cannot assimilate heme from ferric Shp. The conversion of pentacoordinate holoShp(M66A) into pentacoordinate holoHtsA(H229A) involves an intermediate, whereas holoHtsA(H229A) is directly formed from pentacoordinate holoShp(M153A). Conversely, apoHtsA(M79A) reacts with holoShp(M66A) and holoShp(M153A) in mechanisms with one and two kinetic phases, respectively. These results imply that the Met79 and His229 residues of HtsA displace the Met66 and Met153 residues of Shp, respectively. Structural docking analysis supports this mechanism of the specific axial residue displacement. Furthermore, the rates of the cleavage of the axial bond in Shp in the presence of a replacing HtsA axial residue are greater than that in the absence of a replacing HtsA axial residue. These findings reveal a novel heme transfer mechanism of the specific displacement of the Shp axial residues with the HtsA axial residues and the involvement of the HtsA axial residues in the displacement.
Collapse
Affiliation(s)
- Yanchao Ran
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718
| | - G. Reza Malmirchegini
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Benfang Lei
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718
| |
Collapse
|
32
|
Ouattara M, Pennati A, Devlin DJ, Huang YS, Gadda G, Eichenbaum Z. Kinetics of heme transfer by the Shr NEAT domains of Group A Streptococcus. Arch Biochem Biophys 2013; 538:71-9. [PMID: 23993953 DOI: 10.1016/j.abb.2013.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/06/2013] [Accepted: 08/14/2013] [Indexed: 01/07/2023]
Abstract
The hemolytic Group A Streptococcus (GAS) is a notorious human pathogen. Shr protein of GAS participates in iron acquisition by obtaining heme from host hemoglobin and delivering it to the adjacent receptor on the surface, Shp. Heme is then conveyed to the SiaABC proteins for transport across the membrane. Using rapid kinetic studies, we investigated the role of the two heme binding NEAT modules of Shr. Stopped-flow analysis showed that holoNEAT1 quickly delivered heme to apoShp. HoloNEAT2 did not exhibit such activity; only little and slow transfer of heme from NEAT2 to apoShp was seen, suggesting that Shr NEAT domains have distinctive roles in heme transport. HoloNEAT1 also provided heme to apoNEAT2, by a fast and reversible process. To the best of our knowledge this is the first transfer observed between isolated NEAT domains of the same receptor. Sequence alignment revealed that Shr NEAT domains belong to two families of NEAT domains that are conserved in Shr orthologs from several species. Based on the heme transfer kinetics, we propose that Shr proteins modulate heme uptake according to heme availability by a mechanism where NEAT1 facilitates fast heme delivery to Shp, whereas NEAT2 serves as a temporary storage for heme on the bacterial surface.
Collapse
Affiliation(s)
- Mahamoudou Ouattara
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cai H, Grunwald EW, Park S, Lei B, Richards MP. Lipid oxidation in trout muscle is strongly inhibited by a protein that specifically binds hemin released from hemoglobin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4180-4187. [PMID: 23570608 PMCID: PMC3758795 DOI: 10.1021/jf4006142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The recombinant streptococcal protein apoShp can be used as a probe for hemoglobin (Hb) reactivity in fish muscle due to its specific affinity for hemin that is released from Hb at post-mortem pH values. Hemin affinity measurements indicated that apoShp binds hemin released from Hb but not myoglobin (Mb). Hemin affinity of holoShp was higher at pH 5.7 compared to pH 8.0. This may be attributed to enhanced electrostatic interaction of His58 with the heme-7-propionate at lower pH. ApoShp readily acquired hemin that was released from trout IV metHb in the presence of washed cod muscle during 2 °C storage at pH 6.3. This was based on increases in redness in the washed cod matrix, which occurs when apoShp binds hemin that is released from metHb. ApoShp prevented Hb-mediated lipid oxidation in washed cod muscle during 2 °C storage. The prevention of Hb-mediated lipid oxidation by apoShp was likely due to bis-methionyl coordination of hemin that dissociated from metHb. This hexacoordination of hemin appears to prevent peroxide-mediated redox reactions, and there is no component in the matrix capable of dissociating hemin from Shp. ApoShp was also added to minced muscle from rainbow trout ( Oncorhynchus mykiss ) to examine the degree to which Hb contributes to lipid oxidation in trout muscle. Addition of apoShp inhibited approximately 90% of the lipid oxidation that occurred in minced trout muscle during 9 days of 2 °C storage on the basis of lipid peroxide, hexanal, and thiobarituric acid reactive substances (TBARS) values. These results strongly suggest that Hb is the primary promoter of lipid oxidation in trout muscle.
Collapse
Affiliation(s)
- He Cai
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, 1805 Linden Drive West, Madison, Wisconsin 53706, USA
| | - Eric W Grunwald
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, 1805 Linden Drive West, Madison, Wisconsin 53706, USA
| | - Sungyong Park
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, 1805 Linden Drive West, Madison, Wisconsin 53706, USA
| | - Benfang Lei
- Department of Immunology and Infectious Diseases, P.O. Box 173610, Montana State University, Bozeman, Montana, 59717, USA
| | - Mark P. Richards
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, 1805 Linden Drive West, Madison, Wisconsin 53706, USA
| |
Collapse
|
34
|
Gruss A, Borezée-Durant E, Lechardeur D. Environmental heme utilization by heme-auxotrophic bacteria. Adv Microb Physiol 2013; 61:69-124. [PMID: 23046952 DOI: 10.1016/b978-0-12-394423-8.00003-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme, an iron-containing porphyrin, is the prosthetic group for numerous key cellular enzymatic and regulatory processes. Many bacteria encode the biosynthetic enzymes needed for autonomous heme production. Remarkably, however, numerous other bacteria lack a complete heme biosynthesis pathway, yet encode heme-requiring functions. For such heme-auxotrophic bacteria (HAB), heme or porphyrins must be captured from the environment. Functional studies, aided by genomic analyses, provide insight into the HAB lifestyle, how they acquire and manage heme, and the uses of heme that make it worthwhile, and sometimes necessary, to capture this bioactive molecule.
Collapse
Affiliation(s)
- Alexandra Gruss
- INRA, UMR1319 Micalis and AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | | |
Collapse
|
35
|
Abstract
All but a few bacterial species have an absolute need for heme, and most are able to synthesize it via a pathway that is highly conserved among all life domains. Because heme is a rich source for iron, many pathogenic bacteria have also evolved processes for sequestering heme from their hosts. The heme biosynthesis pathways are well understood at the genetic and structural biology levels. In comparison, much less is known about the heme acquisition, trafficking, and degradation processes in bacteria. Gram-positive and Gram-negative bacteria have evolved similar strategies but different tactics for importing and degrading heme, likely as a consequence of their different cellular architectures. The differences are manifested in distinct structures for molecules that perform similar functions. Consequently, the aim of this chapter is to provide an overview of the structural biology of proteins and protein-protein interactions that enable Gram-positive and Gram-negative bacteria to sequester heme from the extracellular milieu, import it to the cytosol, and degrade it to mine iron.
Collapse
Affiliation(s)
- David R Benson
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS, 66047, USA,
| | | |
Collapse
|
36
|
Abstract
Lactic acid bacteria (LAB) are of profound importance in food production and infection medicine. LAB do not rely on heme (protoheme IX) for growth and are unable to synthesize this cofactor but are generally able to assemble a small repertoire of heme-containing proteins if heme is provided from an exogenous source. These features are in contrast to other bacteria, which synthesize their heme or depend on heme for growth. We here present the cellular function of heme proteins so far identified in LAB and discuss their biogenesis as well as applications of the extraordinary heme physiology of LAB.
Collapse
|
37
|
Spirig T, Malmirchegini GR, Zhang J, Robson SA, Sjodt M, Liu M, Krishna Kumar K, Dickson CF, Gell DA, Lei B, Loo JA, Clubb RT. Staphylococcus aureus uses a novel multidomain receptor to break apart human hemoglobin and steal its heme. J Biol Chem 2012; 288:1065-78. [PMID: 23132864 DOI: 10.1074/jbc.m112.419119] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It requires iron to grow, which must be actively procured from its host to successfully mount an infection. Heme-iron within hemoglobin (Hb) is the most abundant source of iron in the human body and is captured by S. aureus using two closely related receptors, IsdH and IsdB. Here we demonstrate that each receptor captures heme using two conserved near iron transporter (NEAT) domains that function synergistically. NMR studies of the 39-kDa conserved unit from IsdH (IsdH(N2N3), Ala(326)-Asp(660)) reveals that it adopts an elongated dumbbell-shaped structure in which its NEAT domains are properly positioned by a helical linker domain, whose three-dimensional structure is determined here in detail. Electrospray ionization mass spectrometry and heme transfer measurements indicate that IsdH(N2N3) extracts heme from Hb via an ordered process in which the receptor promotes heme release by inducing steric strain that dissociates the Hb tetramer. Other clinically significant Gram-positive pathogens capture Hb using receptors that contain multiple NEAT domains, suggesting that they use a conserved mechanism.
Collapse
Affiliation(s)
- Thomas Spirig
- Department of Chemistry and Biochemistry and the UCLA-Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dahesh S, Nizet V, Cole JN. Study of streptococcal hemoprotein receptor (Shr) in iron acquisition and virulence of M1T1 group A streptococcus. Virulence 2012; 3:566-75. [PMID: 23076332 DOI: 10.4161/viru.21933] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus, GAS) is a human bacterial pathogen of global significance, causing severe invasive diseases associated with serious morbidity and mortality. To survive within the host and establish an infection, GAS requires essential nutrients, including iron. The streptococcal hemoprotein receptor (Shr) is a surface-localized GAS protein that binds heme-containing proteins and extracellular matrix components. In this study, we employ targeted allelic exchange mutagenesis to investigate the role of Shr in the pathogenesis of the globally disseminated serotype M1T1 GAS. The shr mutant exhibited a growth defect in iron-restricted medium supplemented with ferric chloride, but no significant differences were observed in neutrophil survival, antimicrobial peptide resistance, cell surface charge, fibronectin-binding or adherence to human epithelial cells and keratinocytes, compared with wild-type. However, the shr mutant displayed a reduction in human blood proliferation, laminin-binding capacity and was attenuated for virulence in in vivo models of skin and systemic infection. We conclude that Shr augments GAS adherence to laminin, an important extracellular matrix attachment component. Furthermore, Shr-mediated iron uptake contributes to GAS growth in human blood, and is required for full virulence of serotype M1T1 GAS in mouse models of invasive disease.
Collapse
Affiliation(s)
- Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
39
|
Thiansilakul Y, Benjakul S, Grunwald EW, Richards MP. Retardation of myoglobin and haemoglobin-mediated lipid oxidation in washed bighead carp by phenolic compounds. Food Chem 2012; 134:789-96. [DOI: 10.1016/j.foodchem.2012.02.182] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/15/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
40
|
Wang R, Kaplan A, Guo L, Shi W, Zhou X, Lux R, He X. The influence of iron availability on human salivary microbial community composition. MICROBIAL ECOLOGY 2012; 64:152-61. [PMID: 22318873 PMCID: PMC3376180 DOI: 10.1007/s00248-012-0013-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/17/2012] [Indexed: 05/09/2023]
Abstract
It is a well-recognized fact that the composition of human salivary microbial community is greatly affected by its nutritional environment. However, most studies are currently focused on major carbon or nitrogen sources with limited attention to trace elements like essential mineral ions. In this study, we examined the effect of iron availability on the bacterial profiles of an in vitro human salivary microbial community as iron is an essential trace element for the survival and proliferation of virtually all microorganisms. Analysis via a combination of PCR with denaturing gradient gel electrophoresis demonstrated a drastic change in species composition of an in vitro human salivary microbiota when iron was scavenged from the culture medium by addition of the iron chelator 2,2'-bipyridyl. This shift in community profile was prevented by the presence of excessive ferrous iron (Fe(2+)). Most interestingly, under iron deficiency, the in vitro grown salivary microbial community became dominated by several hemolytic bacterial species, including Streptococcus spp., Gemella spp., and Granulicatella spp. all of which have been implicated in infective endocarditis. These data provide evidence that iron availability can modulate host-associated oral microbial communities, resulting in a microbiota with potential clinical impact.
Collapse
Affiliation(s)
- Renke Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Aida Kaplan
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Lihong Guo
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Renate Lux
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Xuesong He
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Corresponding author. UCLA School of Dentistry, 10833 Le Conte Avenue, CHS 20-118 Los Angeles, CA 90095-1668. Phone: (310) 825-9748. FAX: (310) 794-7109.
| |
Collapse
|
41
|
Klebba PE, Charbit A, Xiao Q, Jiang X, Newton SM. Mechanisms of iron and haem transport byListeria monocytogenes. Mol Membr Biol 2012; 29:69-86. [DOI: 10.3109/09687688.2012.694485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Lu C, Xie G, Liu M, Zhu H, Lei B. Direct heme transfer reactions in the Group A Streptococcus heme acquisition pathway. PLoS One 2012; 7:e37556. [PMID: 22649539 PMCID: PMC3359286 DOI: 10.1371/journal.pone.0037556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/25/2012] [Indexed: 11/19/2022] Open
Abstract
The heme acquisition machinery in Group A Streptococcus (GAS) consists of the surface proteins Shr and Shp and ATP-binding cassette transporter HtsABC. Shp cannot directly acquire heme from methemoglobin (metHb) but directly transfers its heme to HtsA. It has not been previously determined whether Shr directly relays heme from metHb to Shp. Thus, the complete pathway for heme acquisition from metHb by the GAS heme acquisition machinery has remained unclear. In this study, the metHb-to-Shr and Shr-to-Shp heme transfer reactions were characterized by spectroscopy, kinetics and protein-protein interaction analyses. Heme is efficiently transferred from the β and α subunits of metHb to Shr with rates that are 7 and 60 times greater than those of the passive heme release from metHb, indicating that Shr directly acquires heme from metHb. The rapid heme transfer from Shr to Shp involves an initial heme donor/acceptor complex and a spectrally and kinetically detectable transfer intermediate, implying that heme is directly channeled from Shr to Shp. The present results show that Shr speeds up heme transfer from metHb to Shp, whereas Shp speeds up heme transfer from Shr to HtsA. Furthermore, the findings demonstrate that Shr can interact with metHb and Shp but not HtsA. Taken together with our published results on the Shp/HtsA reaction, these findings establish a model of the heme acquisition pathway in GAS in which Shr directly extracts heme from metHb and Shp relays it from Shr to HtsA.
Collapse
Affiliation(s)
- Chunmei Lu
- Department of Physiology, Harbin Medical University, Harbin, People's Republic of China
| | - Gang Xie
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Mengyao Liu
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, People's Republic of China
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (HZ); (BL)
| | - Benfang Lei
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (HZ); (BL)
| |
Collapse
|
43
|
Smith AD, Wilks A. Extracellular heme uptake and the challenges of bacterial cell membranes. CURRENT TOPICS IN MEMBRANES 2012; 69:359-92. [PMID: 23046657 PMCID: PMC3731948 DOI: 10.1016/b978-0-12-394390-3.00013-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein-protein interaction, and heme transfer.
Collapse
Affiliation(s)
- Aaron D. Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| |
Collapse
|
44
|
Honsa ES, Fabian M, Cardenas AM, Olson JS, Maresso AW. The five near-iron transporter (NEAT) domain anthrax hemophore, IsdX2, scavenges heme from hemoglobin and transfers heme to the surface protein IsdC. J Biol Chem 2011; 286:33652-60. [PMID: 21808055 PMCID: PMC3190864 DOI: 10.1074/jbc.m111.241687] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/19/2011] [Indexed: 11/06/2022] Open
Abstract
Pathogenic bacteria require iron to replicate inside mammalian hosts. Recent studies indicate that heme acquisition in Gram-positive bacteria is mediated by proteins containing one or more near-iron transporter (NEAT) domains. Bacillus anthracis is a spore-forming, Gram-positive pathogen and the causative agent of anthrax disease. The rapid, extensive, and efficient replication of B. anthracis in host tissues makes this pathogen an excellent model organism for the study of bacterial heme acquisition. B. anthracis secretes two NEAT hemophores, IsdX1 and IsdX2. IsdX1 contains a single NEAT domain, whereas IsdX2 has five, a novel property among hemophores. To understand the functional significance of harboring multiple, non-identical NEAT domains, we purified each individual NEAT domain of IsdX2 as a GST fusion and analyzed the specific function of each domain as it relates to heme acquisition and transport. NEAT domains 1, 3, 4, and 5 all bind heme, with domain 5 having the highest affinity. All NEATs associate with hemoglobin, but only NEAT1 and -5 can extract heme from hemoglobin, seemingly by a specific and active process. NEAT1, -3, and -4 transfer heme to IsdC, a cell wall-anchored anthrax NEAT protein. These results indicate that IsdX2 has all the features required to acquire heme from the host and transport heme to the bacterial cell wall. Additionally, these results suggest that IsdX2 may accelerate iron import rates by acting as a "heme sponge" that enhances B. anthracis replication in iron-starved environments.
Collapse
Affiliation(s)
- Erin Sarah Honsa
- From the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Marian Fabian
- the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77096
| | - Ana Maria Cardenas
- From the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030 and
| | - John S. Olson
- the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77096
| | - Anthony William Maresso
- From the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030 and
| |
Collapse
|
45
|
Waller AS, Paillot R, Timoney JF. Streptococcus equi: a pathogen restricted to one host. J Med Microbiol 2011; 60:1231-1240. [DOI: 10.1099/jmm.0.028233-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Andrew S. Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Romain Paillot
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - John F. Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
46
|
Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J Bacteriol 2011; 193:5374-85. [PMID: 21803991 DOI: 10.1128/jb.05508-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen Corynebacterium diphtheriae utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. The use of hemin iron in C. diphtheriae involves the dtxR- and iron-regulated hmu hemin uptake locus, which encodes an ABC hemin transporter, and the surface-anchored hemin binding proteins HtaA and HtaB. Sequence analysis of HtaA and HtaB identified a conserved region (CR) of approximately 150 amino acids that is duplicated in HtaA and present in a single copy in HtaB. The two conserved regions in HtaA, designated CR1 and CR2, were used to construct glutathione S-transferase (GST) fusion proteins (GST-CR1 and GST-CR2) to assess hemin binding by UV-visual spectroscopy. These studies showed that both domains were able to bind hemin, suggesting that the conserved sequences are responsible for the hemin binding property previously ascribed to HtaA. HtaA and the CR2 domain were also shown to be able to bind hemoglobin (Hb) by the use of an enzyme-linked immunosorbent assay (ELISA) method in which Hb was immobilized on a microtiter plate. The CR1 domain exhibited a weak interaction with Hb in the ELISA system, while HtaB showed no significant binding to Hb. Competitive binding studies demonstrated that soluble hemin and Hb were able to inhibit the binding of HtaA and the CR domains to immobilized Hb. Moreover, HtaA was unable to bind to Hb from which the hemin had been chemically removed. Alignment of the amino acid sequences of CR domains from various Corynebacterium species revealed several conserved residues, including two highly conserved tyrosine (Y) residues and one histidine (H) residue. Site-directed mutagenesis studies showed that Y361 and H412 were critical for the binding to hemin and Hb by the CR2 domain. Biological assays showed that Y361 was essential for the hemin iron utilization function of HtaA. Hemin transfer experiments demonstrated that HtaA was able to acquire hemin from Hb and that hemin bound to HtaA could be transferred to HtaB. These findings are consistent with a proposed mechanism of hemin uptake in C. diphtheriae in which hemin is initially obtained from Hb by HtaA and then transferred between surface-anchored proteins, with hemin ultimately transported into the cytosol by an ABC transporter.
Collapse
|
47
|
Nobles CL, Maresso AW. The theft of host heme by Gram-positive pathogenic bacteria. Metallomics 2011; 3:788-96. [PMID: 21725569 DOI: 10.1039/c1mt00047k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The element iron is essential for bacteria and plays a key role in the virulence and pathology of bacterial diseases. The largest reservoir of iron within the human body is in protoporphyrin IX, the compound commonly referred to as heme and bound by hemoglobin. For many years, the study of heme uptake in bacteria was restricted to Gram-negative organisms. However, recent studies have shed light on how bacteria containing a thick peptidoglycan, such as Gram-positive bacteria, acquire and transport heme. This review summarizes old and new research covering the acquisition, transport, and utilization of heme in Gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Christopher L Nobles
- Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza - BCM280, Houston, TX 77030, USA
| | | |
Collapse
|
48
|
Bober M, Mörgelin M, Olin AI, von Pawel-Rammingen U, Collin M. The membrane bound LRR lipoprotein Slr, and the cell wall-anchored M1 protein from Streptococcus pyogenes both interact with type I collagen. PLoS One 2011; 6:e20345. [PMID: 21655249 PMCID: PMC3105044 DOI: 10.1371/journal.pone.0020345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/29/2011] [Indexed: 11/28/2022] Open
Abstract
Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR) have been indentified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20–30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid). The streptococcal leucine rich (Slr) protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein) and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1) and emm1 mutant strain (MC25) had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors.
Collapse
Affiliation(s)
- Marta Bober
- Division of Infection Medicine, Department of Clinical Sciences, Biomedical Center, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Gaudin CFM, Grigg JC, Arrieta AL, Murphy MEP. Unique heme-iron coordination by the hemoglobin receptor IsdB of Staphylococcus aureus. Biochemistry 2011; 50:5443-52. [PMID: 21574663 PMCID: PMC3114464 DOI: 10.1021/bi200369p] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Iron is an essential requirement for life for nearly all organisms. The human pathogen Staphylococcus aureus is able to acquire iron from the heme cofactor of hemoglobin (Hb) released from lysed erythrocytes. IsdB, the predominant Hb receptor of S. aureus, is a cell wall-anchored protein that is composed of two NEAT domains. The N-terminal NEAT domain (IsdB-N1) binds Hb, and the C-terminal NEAT domain (IsdB-N2) relays heme to IsdA for transport into the cell. Here we present the 1.45 Å resolution X-ray crystal structure of the IsdB-N2–heme complex. While the structure largely conforms to the eight-strand β-sandwich fold seen in other NEAT domains such as IsdA-N and uses a conserved Tyr residue to coordinate heme-iron, a Met residue is also involved in iron coordination, resulting in a novel Tyr-Met hexacoordinate heme-iron state. The kinetics of the transfer of heme from IsdB-N2 to IsdA-N can be modeled as a two-step process. The rate of transfer of heme between the isolated NEAT domains (82 s–1) was found to be similar to that measured for the full-length proteins. Replacing the iron coordinating Met with Leu did not abrogate high-affinity heme binding but did reduce the heme transfer rate constant by more than half. This unusual Met-Tyr heme coordination may also bestow properties on IsdB that help it to bind heme in different oxidation states or extract heme from hemoglobin.
Collapse
Affiliation(s)
- Catherine F M Gaudin
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
50
|
Xiao Q, Jiang X, Moore KJ, Shao Y, Pi H, Dubail I, Charbit A, Newton SM, Klebba PE. Sortase independent and dependent systems for acquisition of haem and haemoglobin in Listeria monocytogenes. Mol Microbiol 2011; 80:1581-97. [PMID: 21545655 DOI: 10.1111/j.1365-2958.2011.07667.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We studied three Fur-regulated systems of Listeria monocytogenes: the srtB region, that encodes sortase-anchored proteins and a putative ABC transporter, and the fhu and hup operons, that produce putative ABC transporters for ferric hydroxamates and haemin (Hn)/haemoglobin (Hb) respectively. Deletion of lmo2185 in the srtB region reduced listerial [(59) Fe]-Hn transport, and purified Lmo2185 bound [(59) Fe]-Hn (K(D) = 12 nM), leading to its designation as a Hn/Hb binding protein (hbp2). Purified Hbp2 also acted as a haemophore, capturing and supplying Hn from the environment. Nevertheless, Hbp2 only functioned in [(59) Fe]-Hn transport at external concentrations less than 50 nM: at higher Hn levels its uptake occurred with equivalent affinity and rate without Hbp2. Similarly, deletion of sortase A had no effect on ferric siderophore or Hn/Hb transport at any concentration, and the srtA-independence of listerial Hn/Hb uptake distinguished it from comparable systems of Staphylococcus aureus. In the cytoplasmic membrane, the Hup transporter was specific for Hn: its lipoprotein (HupD) only showed high affinity for the iron porphyrin (K(D) = 26 nM). Conversely, the FhuD lipoprotein encoded by the fhu operon had broad specificity: it bound both ferric siderophores and Hn, with the highest affinity for ferrioxamine B (K(D) = 123 nM). Deletions of Hup permease components hupD, hupG or hupDGC reduced Hn/Hb uptake, and complementation of ΔhupC and ΔhupG by chromosomal integration of hupC(+) and hupG(+) alleles on pPL2 restored growth promotion by Hn/Hb. However, ΔhupDGC did not completely eliminate [(59) Fe]-Hn transport, implying the existence of another cytoplasmic membrane Hn transporter. The overall K(M) of Hn uptake by wild-type strain EGD-e was 1 nM, and it occurred at similar rates (V(max) = 23 pmol 10(9) cells(-1) min(-1)) to those of ferric siderophore transporters. In the ΔhupDGC strain uptake occurred at a threefold lower rate (V(max) = 7 pmol 10(9) cells(-1) min(-1)). The results show that at low (< 50 nM) levels of Hn, SrtB-dependent peptidoglycan-anchored proteins (e.g. Hbp2) bind the porphyrin, and HupDGC or another transporter completes its uptake into the cytoplasm. However, at higher concentrations Hn uptake is SrtB-independent: peptidoglycan-anchored binding proteins are dispensable because HupDGC directly absorbs and internalizes Hn. Finally, ΔhupDGC increased the LD(50) of L. monocytogenes 100-fold in the mouse infection model, reiterating the importance of this system in listerial virulence.
Collapse
Affiliation(s)
- Qiaobin Xiao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | | | | | | | |
Collapse
|