1
|
Liu N, Tu J, Yi F, Zhang X, Zhong X, Wang L, Xie L, Zhou J. The Identification of Potential Anti-Depression/Anxiety Drug Targets by Stress-Induced Rat Brain Regional Proteome and Network Analyses. Neurochem Res 2024; 49:2957-2971. [PMID: 39088164 DOI: 10.1007/s11064-024-04220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Depression and anxiety disorders are prevalent stress-related neuropsychiatric disorders and involve multiple molecular changes and dysfunctions across various brain regions. However, the specific and shared pathophysiological mechanisms occurring in these regions remain unclear. Previous research used a rat model of chronic mild stress (CMS) to segregate and identify depression-susceptible, anxiety-susceptible, and insusceptible groups; then the proteomes of six distinct brain regions (the hippocampus, prefrontal cortex, hypothalamus, pituitary, olfactory bulb, and striatum) were separately and quantitatively analyzed. To gain a comprehensive and systematic understanding of the molecular abnormalities, this study aimed to investigate and compare differential proteomics data from the six regions. Differentially expressed proteins (DEPs) were identified in between specific regions and across all regions and subjected to a series of bioinformatics analyses. Regional comparisons showed that stress-induced proteomic changes and corresponding gene ontology and pathway enrichments were largely distinct, attributable to differences in cell populations, protein compositions, and brain functions of these areas. Additionally, a notable degree of overlap in the significantly enriched terms was identified, potentially suggesting strong connections in the enrichment across different regions. Furthermore, intra-regional and inter-regional protein-protein interaction networks and drug-target-DEP networks were constructed. Integrated analysis of the three association networks in the six regions, along with the DisGeNET database, identified ten DEPs as potential targets for anti-depression/anxiety drugs. Collectively, these findings revealed commonalities and differences across different brain regions at the protein level induced by CMS, and identified several novel protein targets for the development of new therapeutics for depression and anxiety.
Collapse
Affiliation(s)
- Nan Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaxin Tu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lili Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Jian Zhou
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Wei X, Zhang F, Cheng D, Wang Z, Xing N, Yuan J, Zhang W, Xing F. Free heme induces neuroinflammation and cognitive impairment by microglial activation via the TLR4/MyD88/NF-κB signaling pathway. Cell Commun Signal 2024; 22:16. [PMID: 38183122 PMCID: PMC10768134 DOI: 10.1186/s12964-023-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Red blood cells (RBCs) transfusion is related to perioperative neurocognitive disorders. The toxic effect of free heme has been identified in many pathologies. However, the underlying mechanisms of RBCs transfusion or free heme in cognitive impairment have not been clearly explored. Therefore, this research was conducted to determine the mechanism of free heme-induced neuroinflammation and cognitive impairment. METHODS Rats were received intraperitoneal injection of hemin alone or combined with intracerebroventricular injection of Hemopexin (HPX), and MWM test was conducted to measure cognitive function. The amount of heme-HPX complexes was evaluated by flow cytometry for CD91 + cells. The microglial inflammatory response in rat brain was observed by immunofluorescence staining of Iba-1, and the inflammatory factors of TNF-α, IL-1β and IL-6 in rat brain and BV2 cells were detected by ELISA analysis. Furthermore, neuronal apoptosis in HT22 cells alone and in HT22 + BV2 coculture system was detected by flow cytometry and immunofluorescence staining. Finally, western blot was conducted to detect TLR4/MyD88/NF-κB proteins in rat brain and BV2 cells treated with hemin or combined with pathway inhibitors. Additionally, the M1 surface marker CD86 was observed in BV2 cells to further confirm neuroinflammation. RESULTS Intraperitoneal injection of hemin induced cognitive impairment, increase of CD91 + cells, up-regulation of TNF-α and IL-1β, down-regulation of IL-6, activation of microglia, and activation of the TLR4/MyD88/NF-κB signaling pathway in rat brain. Significantly, intracerebroventricular injection of HPX reduced the above effects. Hemin induced boost of TNF-α, IL-1β and IL-6 in BV2 cells, as well as apoptosis in HT22 cells. Notably, when HT22 cells were cocultured with BV2 cells, apoptosis was significantly increased. Hemin also induced activation of the TLR4/MyD88/NF-κB signaling pathway and increased the M1 surface marker CD86 in BV2 cells, and inhibiting this pathway reduced the inflammatory responses. CONCLUSIONS Free heme induces cognitive impairment, and the underlying mechanism may involve neuronal apoptosis and microglial inflammation via the TLR4/MyD88/NF-κB signaling pathway. HPX may have potential therapeutic effects. Video Abstract.
Collapse
Affiliation(s)
- Xin Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Fan Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Dan Cheng
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Luong R, Ribeiro RV, Rangan A, Naganathan V, Blyth F, Waite LM, Handelsman DJ, Le Couteur DG, Seibel MJ, Hirani V. Haem Iron Intake Is Associated with Increased Major Adverse Cardiovascular Events, All-Cause Mortality, Congestive Cardiac Failure, and Coronary Revascularisation in Older Men: The Concord Health and Ageing in Men Project. J Nutr Health Aging 2023; 27:559-570. [PMID: 37498103 DOI: 10.1007/s12603-023-1945-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Nutritional intake can influence major adverse cardiovascular events (MACE). Dietary iron is found in two forms: haem-iron (HI) only found in animal sources and non-haem iron (NHI) present mostly in plant sources. OBJECTIVE We evaluated the associations between dietary iron intakes with MACE and iron status biomarkers. DESIGN Prospective cohort study. SETTING The Concord Health and Ageing in Men Project, Sydney, Australia. PARTICIPANTS 539 community-dwelling older Australian men aged 75 years and older. METHODS Men underwent nutritional assessment using a validated diet history questionnaire. Entries were converted to food groups and nutrients. The dietary calculation was used to derive HI and NHI intakes from total iron intakes. Analyses of iron intakes with iron status biomarkers were conducted using linear regression, and with MACE and individual endpoints were conducted using Cox regression. Five-point MACE comprised of all-cause mortality, myocardial infarction (MI), congestive cardiac failure (CCF), coronary revascularisation, and/or ischaemic stroke. Four-point MACE included the four endpoints of MI, CCF, coronary revascularisation, and/or ischaemic stroke, and excluded all-cause mortality. RESULTS At a median of 5.3 (4.6 - 6.3) years follow-up, the incidences were: 31.2% (n = 168) five-point MACE, 17.8% (n = 96) four-point MACE excluding all-cause mortality, 20.1% (n = 111) all-cause mortality, 11.3% (n = 61) CCF, and 3.1% (n = 15) coronary revascularisation. In adjusted analyses, higher HI intake (per 1mg increment) was associated with increased five-point MACE (HR: 1.45 [95% CI: 1.16, 1.80, P = .001]), four-point MACE excluding all-cause mortality (HR: 1.64 [95% CI: 1.26, 2.15, P <.001]), all-cause mortality (HR: 1.51 [95% CI: 1.15, 1.99, P = .003]), CCF (HR: 2.08 [95% CI: 1.45, 2.98, P <.001]), and coronary revascularisation (HR: 1.89 [95% CI: 1.15, 3.10, P = .012]). Compared with the bottom tertile of NHI intake, the middle tertile of NHI intake was associated with reduced risk of all-cause mortality (HR: 0.56 [95% CI: 0.33, 0.96, P = .035]). Total iron intake was not associated with MACE and individual endpoints. Dietary iron intakes were not associated with serum iron and haemoglobin. CONCLUSION Higher haem iron intake was independently associated with increased risks of five-point MACE, four-point MACE excluding all-cause mortality, all-cause mortality, CCF, and coronary revascularisation in older men over 5 years.
Collapse
Affiliation(s)
- R Luong
- Rebecca Luong, Level 4, Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Deng Y, Zhang X, Chen F, Huang J, Zhang D, Luo J. HO-1 mediated by PI3K/Akt/Nrf2 signaling pathway is involved in (-)-epigallocatechin-3-gallate-rescueing impaired cognitive function induced by chronic cerebral hypoperfusion in rat model. Exp Aging Res 2022; 48:428-443. [DOI: 10.1080/0361073x.2021.2011689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yu Deng
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Xiong Zhang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Fei Chen
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Jie Huang
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Daijiang Zhang
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Jie Luo
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| |
Collapse
|
5
|
Critical Role of Hemopexin Mediated Cytoprotection in the Pathophysiology of Sickle Cell Disease. Int J Mol Sci 2021; 22:ijms22126408. [PMID: 34203861 PMCID: PMC8232622 DOI: 10.3390/ijms22126408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating hemopexin is the primary protein responsible for the clearance of heme; therefore, it is a systemic combatant against deleterious inflammation and oxidative stress induced by the presence of free heme. This role of hemopexin is critical in hemolytic pathophysiology. In this review, we outline the current research regarding how the dynamic activity of hemopexin is implicated in sickle cell disease, which is characterized by a pathological aggregation of red blood cells and excessive hemolysis. This pathophysiology leads to symptoms such as acute kidney injury, vaso-occlusion, ischemic stroke, pain crises, and pulmonary hypertension exacerbated by the presence of free heme and hemoglobin. This review includes in vivo studies in mouse, rat, and guinea pig models of sickle cell disease, as well as studies in human samples. In summary, the current research indicates that hemopexin is likely protective against these symptoms and that rectifying depleted hemopexin in patients with sickle cell disease could improve or prevent the symptoms. The data compiled in this review suggest that further preclinical and clinical research should be conducted to uncover pathways of hemopexin in pathological states to evaluate its potential clinical function as both a biomarker and therapy for sickle cell disease and related hemoglobinopathies.
Collapse
|
6
|
Warenits AM, Hatami J, Müllebner A, Ettl F, Teubenbacher U, Magnet IAM, Bauder B, Janata A, Miller I, Moldzio R, Kramer AM, Sterz F, Holzer M, Högler S, Weihs W, Duvigneau JC. Motor Cortex and Hippocampus Display Decreased Heme Oxygenase Activity 2 Weeks After Ventricular Fibrillation Cardiac Arrest in Rats. Front Med (Lausanne) 2020; 7:513. [PMID: 33015090 PMCID: PMC7511667 DOI: 10.3389/fmed.2020.00513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023] Open
Abstract
Heme oxygenase (HO) and biliverdin reductase (BVR) activities are important for neuronal function and redox homeostasis. Resuscitation from cardiac arrest (CA) frequently results in neuronal injury and delayed neurodegeneration that typically affect vulnerable brain regions, primarily hippocampus (Hc) and motor cortex (mC), but occasionally also striatum and cerebellum. We questioned whether these delayed effects are associated with changes of the HO/BVR system. We therefore analyzed the activities of HO and BVR in the brain regions Hc, mC, striatum and cerebellum of rats subjected to ventricular fibrillation CA (6 min or 8 min) after 2 weeks following resuscitation, or sham operation. From all investigated regions, only Hc and mC showed significantly decreased HO activities, while BVR activity was not affected. In order to find an explanation for the changed HO activity, we analyzed protein abundance and mRNA expression levels of HO-1, the inducible, and HO-2, the constitutively expressed isoform, in the affected regions. In both regions we found a tendency for a decreased immunoreactivity of HO-2 using immunoblots and immunohistochemistry. Additionally, we investigated the histological appearance and the expression of markers indicative for activation of microglia [tumor necrosis factor receptor type I (TNFR1) mRNA and immunoreactivity for ionized calcium-binding adapter molecule 1 (Iba1])], and activation of astrocytes [immunoreactivity for glial fibrillary acidic protein (GFAP)] in Hc and mC. Morphological changes were detected only in Hc displaying loss of neurons in the cornu ammonis 1 (CA1) region, which was most pronounced in the 8 min CA group. In this region also markers indicating inflammation and activation of pro-death pathways (expression of HO-1 and TNFR1 mRNA, as well as Iba1 and GFAP immunoreactivity) were upregulated. Since HO products are relevant for maintaining neuronal function, our data suggest that neurodegenerative processes following CA may be associated with a decreased capacity to convert heme into HO products in particularly vulnerable brain regions.
Collapse
Affiliation(s)
| | - Jasmin Hatami
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Müllebner
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.,Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Florian Ettl
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Ursula Teubenbacher
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | | | - Barbara Bauder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Andreas Janata
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Ingrid Miller
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Rudolf Moldzio
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Fritz Sterz
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandra Högler
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weihs
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
7
|
Robicsek SA, Bhattacharya A, Rabai F, Shukla K, Doré S. Blood-Related Toxicity after Traumatic Brain Injury: Potential Targets for Neuroprotection. Mol Neurobiol 2019; 57:159-178. [PMID: 31617072 DOI: 10.1007/s12035-019-01766-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Emergency visits, hospitalizations, and deaths due to traumatic brain injury (TBI) have increased significantly over the past few decades. While the primary early brain trauma is highly deleterious to the brain, the secondary injury post-TBI is postulated to significantly impact mortality. The presence of blood, particularly hemoglobin, and its breakdown products and key binding proteins and receptors modulating their clearance may contribute significantly to toxicity. Heme, hemin, and iron, for example, cause membrane lipid peroxidation, generate reactive oxygen species, and sensitize cells to noxious stimuli resulting in edema, cell death, and increased morbidity and mortality. A wide range of other mechanisms such as the immune system play pivotal roles in mediating secondary injury. Effective scavenging of all of these pro-oxidant and pro-inflammatory metabolites as well as controlling maladaptive immune responses is essential for limiting toxicity and secondary injury. Hemoglobin metabolism is mediated by key molecules such as haptoglobin, heme oxygenase, hemopexin, and ferritin. Genetic variability and dysfunction affecting these pathways (e.g., haptoglobin and heme oxygenase expression) have been implicated in the difference in susceptibility of individual patients to toxicity and may be target pathways for potential therapeutic interventions in TBI. Ongoing collaborative efforts are required to decipher the complexities of blood-related toxicity in TBI with an overarching goal of providing effective treatment options to all patients with TBI.
Collapse
Affiliation(s)
- Steven A Robicsek
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurosurgery, Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Ayon Bhattacharya
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.,Department of Pharmacology, KPC Medical College, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Ferenc Rabai
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Krunal Shukla
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurology, Psychiatry, Pharmaceutics and Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Exp Neurol 2019; 318:244-250. [PMID: 31078524 DOI: 10.1016/j.expneurol.2019.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Hemopexin (Hpx) is critical for hemin scavenging after the erythrocyte lysis that occurs following intracerebral hemorrhage (ICH). Low-density lipoprotein receptor-related protein-1 (LRP1, also called CD91) is an important receptor through which the hemin-Hpx complex can undergo endocytosis. This study investigated changes in the hemin-Hpx-CD91 axis in both hematoma and perihematomal tissue in a large animal ICH model. The effect of deferoxamine (DFX) on hemin-Hpx-CD91 was also examined. The study consisted of two parts. First, piglets had an injection of autologous blood into the right frontal lobe of brain and were euthanized from day 1 to day 7. Hematoma and perihematomal tissue of brains were used for hemin assay, immunohistochemistry, and immunofluorescence. Second, piglets with ICH were treated with deferoxamine or vehicle, and were euthanized for hemin measurement and Hpx and CD91 immunohistochemistry. We found that there was an increase of hemin levels within the hematoma and perihematomal brain tissue after ICH. Hpx and CD91-positive cells were present in the clot and perihematomal tissue from day 1. Hpx and CD91 positive cells were Iba1 positive. After DFX therapy, hemin dropped markedly in the hematoma and perihematomal brain tissue. Furthermore, DFX treatment decreased the number of Hpx and CD91 positive cells in and around the hematoma. In conclusion, hemin accumulation occurs in and around the hematoma. Increases in Hpx and CD91 may be important in scavenging that hemin. DFX treatment decreased hemin release from the hematoma and reduced the expression of Hpx and CD91.
Collapse
|
9
|
Dong B, Yang Y, Zhang Z, Xie K, Su L, Yu Y. Hemopexin alleviates cognitive dysfunction after focal cerebral ischemia-reperfusion injury in rats. BMC Anesthesiol 2019; 19:13. [PMID: 30646866 PMCID: PMC6334464 DOI: 10.1186/s12871-019-0681-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/04/2019] [Indexed: 01/15/2023] Open
Abstract
Background Ischemia-reperfusion (I/R) is a critical pathophysiological basis of cognitive dysfunction caused by ischemia stroke. Heme-oxygenase-1 (HO-1) is the rate-limiting enzyme for the elimination of excessive free heme by combining with hemopexin (HPX), a plasma protein that contributes to eliminating excessive free heme during ischemia stroke. This study aimed to elucidate whether HPX could alleviate cognitive dysfunction in rats subjected to cerebral I/R. Methods Rats were randomly divided into five groups: sham, MCAO, Vehicle, HPX and HPX + protoporphyrin IX (ZnPPIX). Cerebral I/R was induced by MCAO. Saline, vehicle, HPX and HPX + ZnPPIX were injected intracerebroventricularly at the moment after reperfusion. Morris water maze (MWM) test was used to detect the learning and cognitive function. Western blot was used to detect the expression of HO-1 in ischemic penumbra. CD31/vWF double labeling immunofluorescence was used to detect the neovascularization in the penumbra hippocampus. The structure and function of blood-brain barrier (BBB) was detected by the permeability of Evans Blue (EB), water content of the brain tissue, the Ang1/Ang2 and VE-cadherin expression. Results Our study verified that HPX improved the learning and memory capacity. Hemopexin up-regulated HO-1 protein expression, the average vessel density in the penumbra hippocampus and the VE- cadherin expression but decreased the permeability of EB, the water content of brain tissue and the ratio of Ang1/Ang2. The effects were reversed by ZnPPIX, an inhibitor of HO-1. Conclusion HPX can maintain the integrity of the blood-brain barrier and alleviate cognitive dysfunction after cerebral I/R through the HO-1 pathway.
Collapse
Affiliation(s)
- Beibei Dong
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Yongyan Yang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Zhishen Zhang
- Department of Anesthesiology, Xiamen Medical University Zhongshan Hospital, Xiamen, 516211, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| | - Lin Su
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
10
|
Wu P, Yan XS, Zhang Y, Huo DS, Song W, Fang X, Wang H, Yang ZJ, Jia JX. The protective mechanism underlying total flavones of Dracocephalum (TFD) effects on rat cerebral ischemia reperfusion injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1199-1206. [PMID: 30457456 DOI: 10.1080/15287394.2018.1504385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Previously, total flavones of Dracocephalum (TFD), derived from Dracocephalum, were found to exert protective effects in cerebral ischemia reperfusion injury (CIRI) in middle cerebral artery occlusion (MCAO) rat model. However, the mechanisms underlying these observed effects of TFD on MCAO-induced rats still remain to be determined. Therefore, the aim of this study was to examine whether TFD alleviated MCAO through mechanisms involving anti-inflammatory and anti-apoptotic using MCAO rats. The following parameters were measured: (1) percentage (%) area of brain infarction; (2) serum levels of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and (3) expression protein levels of caspase-3 and AMP-activated protein kinase (AMPK). Results showed that MCAO significantly increased the % area of brain infarction, while TFD administration in these animals markedly reduced % area of brain infarction. A significant elevation on serum levels of TNF-α and IL-6 was noted with MCAO which was markedly reduced by TFD. In addition, MCAO produced a significant rise in protein expression levels of caspase-3 and AMPK. In contrast, TFD markedly lowered protein expression levels of caspase-3 and AMPK. Data suggest that the protective effects of TFD in MCAO model animals may involve inhibition of inflammatory mediator release associated with apoptosis through down regulation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Peng Wu
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Xu-Sheng Yan
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Yu Zhang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Dong-Sheng Huo
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Wei Song
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Xin Fang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - He Wang
- b School of Health Sciences , University of Newcastle , Newcastle , Australia
| | - Zhan-Jun Yang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Jian-Xin Jia
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| |
Collapse
|
11
|
Wu P, Yan XS, Zhang Y, Huo DS, Song W, Fang X, Wang H, Yang ZJ, Jia JX. The protective mechanism underlying total flavones of Dracocephalum (TFD) effects on rat cerebral ischemia reperfusion injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1108-1115. [PMID: 30430924 DOI: 10.1080/15287394.2018.1503073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Previously, total flavones of Dracocephalum (TFD), derived from Dracocephalum, were found to exert protective effects in cerebral ischemia reperfusion injury (CIRI) in middle cerebral artery occlusion (MCAO) rat model. However, the mechanisms underlying these observed effects of TFD on MCAO-induced rats still remain to be determined. Therefore, the aim of this study was to examine whether TFD alleviated MCAO through mechanisms involving anti-inflammatory and anti-apoptotic using MCAO rats. The following parameters were measured: (1) percentage (%) area of brain infarction; (2) serum levels of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and (3) expression protein levels of caspase-3 and AMP-activated protein kinase (AMPK). Results showed that MCAO significantly increased the % area of brain infarction, while TFD administration in these animals markedly reduced % area of brain infarction. A significant elevation on serum levels of TNF-α and IL-6 was noted with MCAO which was markedly reduced by TFD. In addition, MCAO produced a significant rise in protein expression levels of caspase-3 and AMPK. In contrast, TFD markedly lowered protein expression levels of caspase-3 and AMPK. Data suggest that the protective effects of TFD in MCAO model animals may involve inhibition of inflammatory mediator release associated with apoptosis through down regulation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Peng Wu
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Xu-Sheng Yan
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Yu Zhang
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Dong-Sheng Huo
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Wei Song
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Xin Fang
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - He Wang
- b School of Health Sciences , University of Newcastle , Newcastle , Australia
| | - Zhan-Jun Yang
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Jian-Xin Jia
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| |
Collapse
|
12
|
Davies KTJ, Bennett NC, Faulkes CG, Rossiter SJ. Limited Evidence for Parallel Molecular Adaptations Associated with the Subterranean Niche in Mammals: A Comparative Study of Three Superorders. Mol Biol Evol 2018; 35:2544-2559. [PMID: 30137400 PMCID: PMC6188548 DOI: 10.1093/molbev/msy161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among mammals, several lineages have independently adapted to a subterranean niche and possess similar phenotypic traits for burrowing (e.g., cylindrical bodies, short limbs, and absent pinnae). Previous research on mole-rats has revealed molecular adaptations for coping with reduced oxygen, elevated carbon dioxide, and the absence of light. In contrast, almost nothing is known regarding molecular adaptations in other subterranean lineages (e.g., true moles and golden moles). Therefore, the extent to which the recurrent phenotypic adaptations of divergent subterranean taxa have arisen via parallel routes of molecular evolution remains untested. To address these issues, we analyzed ∼8,000 loci in 15 representative subterranean taxa of four independent transitions to an underground niche for signatures of positive selection and convergent amino acid substitutions. Complementary analyses were performed in nonsubterranean "control" taxa to assess the biological significance of results. We found comparable numbers of positively selected genes in each of the four subterranean groups; however, correspondence in terms of gene identity between gene sets was low. Furthermore, we did not detect evidence of more convergent amino acids among subterranean species pairs compared with levels found between nonsubterranean controls. Comparisons with nonsubterranean taxa also revealed loci either under positive selection or with convergent substitutions, with similar functional enrichment (e.g., cell adhesion, immune response, and coagulation). Given the limited indication that positive selection and convergence occurred in the same loci, we conclude that selection may have acted on different loci across subterranean mammal lineages to produce similar phenotypes.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nigel C Bennett
- Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Chris G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Yang Y, Dong B, Lu J, Wang G, Yu Y. Hemopexin reduces blood-brain barrier injury and protects synaptic plasticity in cerebral ischemic rats by promoting EPCs through the HO-1 pathway. Brain Res 2018; 1699:177-185. [PMID: 30092232 DOI: 10.1016/j.brainres.2018.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/03/2023]
Abstract
Ischemic stroke causes endothelial dysfunction and blood-brain barrier dysfunction, thus damages synaptic plasticity such as learning and memory. In this study we aim to investigate the effect of hemopexin (HPX) in protecting synaptic plasticity and blood brain barrier integrity from toxic heme, and determine whether this effect is via the activation of endothelial progenitor cells (EPCs) through the heme oxygenase-1 (HO-1) pathway. Our data indicates HPX showed a significant effect in inducing the expression of HO-1, promoting the migration and differentiation of EPCs, facilitating new blood vessel formation thus protecting blood-brain barrier integrity. Also the magnitude of synaptic plasticity of rats recovered with HPX treatment. And in the presence of HO-1 blocker Zinc protoporphyrin-9 (ZnppIX), HPX lost its protective effect. This suggests that HPX protects endothelial and blood brain barrier integrity from toxic heme, thus protects neurologic function in cerebral ischemic rats in HO-1 pathway.
Collapse
Affiliation(s)
- Yongyan Yang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Jun Lu
- School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China; Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
14
|
Zhang P, Zhu S, Zhao M, Zhao P, Zhao H, Deng J, Li J. Identification of plasma biomarkers for diffuse axonal injury in rats by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Brain Res Bull 2018; 142:224-232. [PMID: 30077728 DOI: 10.1016/j.brainresbull.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
DAI is a serious and complex brain injury associated with significant morbidity and mortality. The lack of reliable objective diagnostic modalities for DAI delays administration of therapeutic interventions. Hence, identifying reliable biomarkers is urgently needed to enable early DAI diagnosis in the clinic. Herein, we established a rat model of DAI and applied an isobaric tags for a relative and absolute quantification (iTRAQ) coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) proteomics approach to screen differentially expressed plasma proteins associated with DAI. A total of 58 proteins were found to be significantly modulated in blood plasma samples of the injury group in at least one time point compared to controls. Bioinformatics analysis of the differentially expressed proteins revealed that the pathogenesis of axonal injury underlying DAI is multi-stage biological process involved. Two significantly changed proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hemopexin (Hpx), were identified as potential diagnostic biomarkers for DAI, and were successfully confirmed by further western blot analysis. This proteomic profiling study not only identified novel plasma biomarkers that may facilitate the development of clinically diagnostic for DAI, but also provided enhanced understanding of the molecular mechanisms underlying DAI.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Peng Zhao
- Faculty of Basic Medical Sciences, Zunyi Medical And Pharmaceutical College, Zunyi 563006, China
| | - Haiyi Zhao
- Genecreate Biological Engineering Co., Ltd., National Bio-Industry Base, Wuhan, 430075, China
| | - Jianqiang Deng
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Role of Damage Associated Molecular Pattern Molecules (DAMPs) in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2018; 19:ijms19072035. [PMID: 30011792 PMCID: PMC6073937 DOI: 10.3390/ijms19072035] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) represents only a small portion of all strokes, but accounts for almost half of the deaths caused by stroke worldwide. Neurosurgical clipping and endovascular coiling can successfully obliterate the bleeding aneurysms, but ensuing complications such as cerebral vasospasm, acute and chronic hydrocephalus, seizures, cortical spreading depression, delayed ischemic neurological deficits, and delayed cerebral ischemia lead to poor clinical outcomes. The mechanisms leading to these complications are complex and poorly understood. Early brain injury resulting from transient global ischemia can release molecules that may be critical to initiate and sustain inflammatory response. Hence, the events during early brain injury can influence the occurrence of delayed brain injury. Since the damage associated molecular pattern molecules (DAMPs) might be the initiators of inflammation in the pathophysiology of aSAH, so the aim of this review is to highlight their role in the context of aSAH from diagnostic, prognostic, therapeutic, and drug therapy monitoring perspectives. DAMPs represent a diverse and a heterogenous group of molecules derived from different compartments of cells upon injury. Here, we have reviewed the most important DAMPs molecules including high mobility group box-1 (HMGB1), S100B, hemoglobin and its derivatives, extracellular matrix components, IL-1α, IL-33, and mitochondrial DNA in the context of aSAH and their role in post-aSAH complications and clinical outcome after aSAH.
Collapse
|
16
|
Leclerc JL, Santiago-Moreno J, Dang A, Lampert AS, Cruz PE, Rosario AM, Golde TE, Doré S. Increased brain hemopexin levels improve outcomes after intracerebral hemorrhage. J Cereb Blood Flow Metab 2018; 38:1032-1046. [PMID: 27864463 PMCID: PMC5999006 DOI: 10.1177/0271678x16679170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Following intracerebral hemorrhage (ICH), extracellular heme precipitates secondary brain injury, which results in irreversible brain damage and enduring neurological deficits. Hemopexin (Hpx) is an endogenous protein responsible for scavenging heme, thereby modulating its intrinsic proxidant/proinflammatory properties. Although Hpx is present in the brain, the endogenous levels are insufficient to combat the massive heme overload following ICH. We hypothesized that increasing brain Hpx levels would improve ICH outcomes. Unique recombinant adeno-associated viral vectors were designed to specifically overexpress Hpx within the mouse brain. Western blotting, ELISA, and immunohistochemistry of brain homogenates/sections, CSF, and serum were performed. As compared to controls, Hpx mice have increased Hpx protein levels in all three types of biospecimens evaluated, which results in 45.6 ± 6.9% smaller lesions and improved functional recovery after ICH (n=14-19/group, p < 0.05). Local mechanistic analyses show significantly less tissue injury, trends toward smaller hematoma volumes, unchanged heme oxygenase 1 and iron levels, and significantly increased microgliosis and decreased astrogliosis and lipid peroxidation. Peripheral levels of heme-related markers indicate a positive modulation of iron-binding capacity. These findings reveal that high local Hpx levels improve ICH outcomes, likely through both central and peripheral clearance mechanisms, and establish the potential for therapeutically administering clinical-grade Hpx for ICH.
Collapse
Affiliation(s)
- Jenna L Leclerc
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA.,2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | | | - Alex Dang
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Andrew S Lampert
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Pedro E Cruz
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Awilda M Rosario
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA.,2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,3 Departments of Neurology, Psychology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Plasma Hemopexin ameliorates murine spinal cord injury by switching microglia from the M1 state to the M2 state. Cell Death Dis 2018; 9:181. [PMID: 29415995 PMCID: PMC5833847 DOI: 10.1038/s41419-017-0236-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a devastating type of central nervous system (CNS) trauma with limited therapeutic treatments. The polarization of microglia into the M1 or M2 state has been documented to play important roles in the pathogenesis of SCI, although the complete repertoire of underlying factors has not been identified. Interestingly, the time point at which hematomyelia (intramedullary spinal cord hemorrhage) is alleviated coincides with a decrease in the number of M2 microglia. Here the function of Hemopexin (Hpx), a hematogenous glycoprotein, was examined in the crush model of SCI. Hpx levels were elevated at the lesion site during hematomyelia and were synchronously correlated with the level of the M2 marker Arginase-1 (Arg-1). Ablation of Hpx in vivo affected the polarization state of lipopolysaccharide (LPS)-stimulated microglia, as mirrored by a lower percentage of M2 microglia and a higher percentage of M1 microglia in the lesion site, which delayed the recovery and exacerbated the behavioral dysfunction after SCI. However, Hpx induced a rapid switch from the M1 to M2 phenotype in LPS-stimulated primary cultured microglia in a heme scavenging-independent manner. The supernant of Hpx-treated microglia ameliorated neuronal degeneration, alleviated demyelination, and promoted oligodendrocyte precursor cell (OPC) maturation. This modulatory effect of Hpx on microglia polarization was at least partially mediated by the LRP-1 receptor. Based on these results, Hpx is considered a novel modulator of the polarization of microglia during the pathogenesis of SCI and may play a crucial role in the recovery from SCI.
Collapse
|
18
|
Dong B, Zhang Z, Xie K, Yang Y, Shi Y, Wang C, Yu Y. Hemopexin promotes angiogenesis via up-regulating HO-1 in rats after cerebral ischemia-reperfusion injury. BMC Anesthesiol 2018; 18:2. [PMID: 29298658 PMCID: PMC5751849 DOI: 10.1186/s12871-017-0466-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/21/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) is a critical pathophysiological change of ischemic stroke. Heme-oxygenase-1 (HO-1) is a rate-limiting enzyme of eliminating excessive free heme by combining with hemopexin (HPX), a plasma protein contributing to alleviating infarct size due to ischemia stroke. This study was to investigate whether HPX could improve angiogenesis after cerebral ischemia-reperfusion via up-regulating HO-1. METHODS Rats were randomly divided into five groups: sham, MCAO, MCAO + Vehicle, MCAO + HPX and MCAO + HPX + protoporphyrin IX (ZnPPIX, an HO-1 inhibitor). Cerebral I/R was induced by MCAO. Saline, vehicle, HPX and HPX + ZnPPIX were respectively given to MCAO group, MCAO + Vehicle group, MCAO + HPX group and MCAO + HPX + ZnPPIX group at the moment after reperfusion by intracerebroventricular injection. Neurological behavioral scores(NBS) was assessed at 24 h and 7d after I/R. Real-time polymerase chain reaction (RT-PCR) was used to analyze the mRNA level of HO-1. Angiogenesis in penumbra area was assessed by immunofluorescence detection at 7d after I/R. Serum endothelial nitric oxide synthase (eNOS) was assessed by enzyme linked immunosorbent assay (ELISA) at 24 h and 7d after I/R. RESULTS Compared with sham group, the NBS and the mRNA levels of HO-1 at 24 h and 7d after I/R in MCAO group decreased notably (P < 0.05), the new vessel density in ischemia penumbra increased notably at 7d after I/R (P < 0.05), the serum eNOS level increased at 24 h and 7d after I/R (P < 0.05). MCAO group and MCAO + Vehicle group showed no significant differences (P > 0.05). In the MCAO + HPX group, compared with MCAO + Vehicle group, the NBS and the mRNA levels of HO-1 increased drastically at 24 h and 7d after I/R (P < 0.05), the new vessel density in ischemia penumbra increased significantly at 7d after I/R (P < 0.05), the serum eNOS level at 24 h and 7d after I/R ascended notably (P < 0.05). Compared with MCAO + HPX group, the NBS assessment, new vessel density and serum eNOS level decreased at corresponding time points after I/R in MCAO + HPX+ ZnPPIX group (P < 0.05). CONCLUSION HPX can promote angiogenesis after cerebral ischemia-reperfusion injury in rats via up-regulating HO-1.
Collapse
Affiliation(s)
- Beibei Dong
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Zhishen Zhang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| | - Yongyan Yang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Yuan Shi
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Chenxu Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
19
|
Elphinstone RE, Conroy AL, Hawkes M, Hermann L, Namasopo S, Warren HS, John CC, Liles WC, Kain KC. Alterations in Systemic Extracellular Heme and Hemopexin Are Associated With Adverse Clinical Outcomes in Ugandan Children With Severe Malaria. J Infect Dis 2016; 214:1268-75. [PMID: 27515862 PMCID: PMC5034960 DOI: 10.1093/infdis/jiw357] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022] Open
Abstract
Background. Malaria remains a major cause of global mortality. Extracellular heme, released during malaria-induced hemolysis, mediates a number of pathogenic processes associated with vascular and organ injury. Hemopexin (hpx) facilitates the degradation of extracellular heme. In this study, we explore the hypothesis that dysregulation of the heme-hpx axis is associated with disease severity, acute kidney injury (AKI), and outcome. Methods. Plasma levels of hemin and hpx (at admission, day 3, and day 14) were assessed in children with severe malaria in Jinja, Uganda. Results. The ratio of heme to hpx was higher at admission and decreased with recovery (median, 0.043 [interquartile range {IQR}, 0.007–0.239] on day 1, 0.024 [IQR, 0.005–0.126] on day 3, and 0.008 [IQR, 0.002–0.022] on day 14; P < .001). Ratios of heme to hpx at admission were higher in children with as compared to those without severe anemia (median, 0.124 [IQR, 0.024–0.431] vs 0.016 [IQR, 0.003–0.073]; P < .0001), children with as compared to those without respiratory distress (median, 0.063 [IQR, 0.017–0.413] vs 0.020 [IQR, 0.004–0.124]; P < .01), and children with as opposed to those without stage 3 AKI (median, 0.354 [IQR, 0.123–2.481] vs 0.037 [IQR, 0.005–0.172], P < .01). The heme to hpx ratio at admission was associated with 6-month mortality (median, 0.148 [IQR, 0.042–0.500] vs 0.039 [IQR, 0.007–0.172]; P = .012). Conclusions. The ratio of heme to hpx is associated with disease severity and adverse clinical outcomes in Ugandan children, and dysregulation of the heme axis may contribute to malaria pathogenesis.
Collapse
Affiliation(s)
- Robyn E Elphinstone
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Department of Laboratory Medicine and Pathobiology
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Department of Pediatrics, Indiana University, Indianapolis
| | - Michael Hawkes
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Division of Pediatric Infectious Diseases, University of Alberta, Edmonton, Canada
| | - Laura Hermann
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital
| | - Sophie Namasopo
- Department of Pediatrics, Jinja Regional Referral Hospital, Uganda
| | - H Shaw Warren
- Infectious Disease Unit, Department of Pediatrics, Massachusetts General Hospital, Boston
| | - Chandy C John
- Department of Pediatrics, Indiana University, Indianapolis
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Department of Laboratory Medicine and Pathobiology Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto
| |
Collapse
|
20
|
Schrödl W, Büchler R, Wendler S, Reinhold P, Muckova P, Reindl J, Rhode H. Acute phase proteins as promising biomarkers: Perspectives and limitations for human and veterinary medicine. Proteomics Clin Appl 2016; 10:1077-1092. [PMID: 27274000 DOI: 10.1002/prca.201600028] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 12/23/2022]
Abstract
Acute phase proteins (APPs) are highly conserved plasma proteins that are increasingly secreted by the liver in response to a variety of injuries, independently of their location and cause. APPs favor the systemic regulation of defense, coagulation, proteolysis, and tissue repair. Various APPs have been applied as general diagnostic parameters for a long time. Through proteomic techniques, more and more APPs have been discovered to be differentially altered. Since they are not consistently explainable by a stereotypic hepatic expression of sets of APPs, most of these results have unfortunately been neglected or attributed to the nonspecificity of the acute phase reaction. Moreover, it appears that various extrahepatic tissues are also able to express APPs. These extrahepatic APPs show focally specific roles in tissue homeostasis and repair and are released primarily into interstitial and distal fluids. Since these focal proteins might leak into the circulatory system, mixtures of hepatic and extrahepatic APP species can be expected in blood. Hence, a selective alteration of parts of APPs might be expected. There are several hints on multiple molecular forms and fragments of tissue-derived APPs. These differences offer the chance for multiple selective determinations. Thus, specific proteoforms might indeed serve as tissue-specific disease indicators.
Collapse
Affiliation(s)
- Wieland Schrödl
- Institute of Bacteriology and Mycology, Veterinary Faculty, University Leipzig, Germany
| | - Rita Büchler
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Sindy Wendler
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at 'Friedrich Loeffler Institut', Federal Research Institute for Animal Health, Jena, Germany
| | - Petra Muckova
- Institute of Biochemistry I, University Hospital Jena, Germany.,Clinic of Neurology, University Hospital Jena, Germany
| | - Johanna Reindl
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Heidrun Rhode
- Institute of Biochemistry I, University Hospital Jena, Germany
| |
Collapse
|
21
|
Sun ZG, Chen LP, Wang FW, Xu CY, Geng M. Protective effects of ginsenoside Rg1 against hydrogen peroxide-induced injury in human neuroblastoma cells. Neural Regen Res 2016; 11:1159-64. [PMID: 27630703 PMCID: PMC4994462 DOI: 10.4103/1673-5374.187057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 01/02/2023] Open
Abstract
The active ingredient of ginseng, ginsenosides Rg1, has been shown to scavenge free radicals and improve antioxidant capacity. This study hypothesized that ginsenosides Rg1 has a protective role in human neuroblastoma cells injured by H2O2. Ginsenosides Rg1 at different concentrations (50 and 100 μM) was used to treat H2O2 (150 μM)-injured SH-SY5Y cells. Results demonstrated that ginsenoside Rg1 elevated the survival rate of SH-SY5Y cells injured by H2O2, diminished the amount of leaked lactate dehydrogenase, and increased superoxide dismutase activity. Ginsenoside Rg1 effectively suppressed caspase-3 immunoreactivity, and contributed to heat shock protein 70 gene expression, in a dose-dependent manner. These results indicate that ginsenoside Rg1 has protective effects on SH-SY5Y cells injured by H2O2 and that its mechanism of action is associated with anti-oxidation and the inhibition of apoptosis.
Collapse
Affiliation(s)
- Zhi-gao Sun
- Department of Traditional Chinese Medicine, Hainan Branch Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Li-ping Chen
- Department of Traditional Chinese Medicine, Chinese PLA General Hospital, Beijing, China
| | - Fa-wei Wang
- Department of Traditional Chinese Medicine, Chinese PLA General Hospital, Beijing, China
| | - Cheng-yong Xu
- Department of Traditional Chinese Medicine, Hainan Branch Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Miao Geng
- Institute of Gerontology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
23rd Annual Meeting of Chinese Society of Anesthesiology. Br J Anaesth 2016. [DOI: 10.1093/bja/aev308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Roumenina LT, Rayes J, Lacroix-Desmazes S, Dimitrov JD. Heme: Modulator of Plasma Systems in Hemolytic Diseases. Trends Mol Med 2016; 22:200-213. [PMID: 26875449 DOI: 10.1016/j.molmed.2016.01.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/15/2022]
Abstract
Hemolytic diseases such as sickle-cell disease, β-thalassemia, malaria, and autoimmune hemolytic anemia continue to present serious clinical hurdles. In these diseases, lysis of erythrocytes causes the release of hemoglobin and heme into plasma. Extracellular heme has strong proinflammatory potential and activates immune cells and endothelium, thus contributing to disease pathogenesis. Recent studies have revealed that heme can interfere with the function of plasma effector systems such as the coagulation and complement cascades, in addition to the activity of immunoglobulins. Any perturbation in such functions may have severe pathological consequences. In this review we analyze heme interactions with coagulation, complement, and immunoglobulins. Deciphering such interactions to better understand the complex pathogenesis of hemolytic diseases is pivotal.
Collapse
Affiliation(s)
- Lubka T Roumenina
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Unité Mixte de Recherche en Santé (UMRS 1138), Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F75006 Paris, France.
| | - Julie Rayes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Unité Mixte de Recherche en Santé (UMRS 1138), Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F75006 Paris, France
| | - Jordan D Dimitrov
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Unité Mixte de Recherche en Santé (UMRS 1138), Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F75006 Paris, France.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Hemoglobin and its scavenger proteins haptoglobin and hemopexin (Hx) associate with HDL and influence the inflammatory properties of HDL. Moreover, HDL from Hx-null mice is proinflammatory. In addition, Hx deficiency is implicated in a number of other inflammatory diseases such as septic shock and experimental autoimmune encephalomyelitis. This article highlights studies that demonstrate novel insights into the physiological protective role of Hx in inflammatory diseases. RECENT FINDINGS Recent studies demonstrate that Hx-dependent uptake of extracellular heme leads to the deactivation of Bach1 repression leading to the transcriptional activation of antioxidant heme oxygenase-1 gene. Levels of circulating Hx have been implicated in the prognosis for patients with septic shock. In addition, Hx therapy has been shown to be beneficial in cardiovascular disease, cerebral ischemic injury, and experimental autoimmune encephalomyelitis. SUMMARY These studies suggest that heme scavenging is a major mechanism by which Hx defends against oxidative stress and related inflammatory disorders. Hx therapy may provide a novel protective role against heme and oxidative stress-mediated inflammatory conditions including atherosclerosis.
Collapse
Affiliation(s)
- Niyati U. Mehta
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Departments of Medicine/ Cardiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Srinivasa T. Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Departments of Medicine/ Cardiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
25
|
Sun M, Li M, Huang Q, Han F, Gu JH, Xie J, Han R, Qin ZH, Zhou Z. Ischemia/reperfusion-induced upregulation of TIGAR in brain is mediated by SP1 and modulated by ROS and hormones involved in glucose metabolism. Neurochem Int 2015; 80:99-109. [PMID: 25445985 DOI: 10.1016/j.neuint.2014.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/30/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
We previously found that TIGAR (TP53-induced glycolysis and apoptosis regulator) was upregulated in response to ischemia/reperfusion insult in a TP53-independent manner. The present study sought to investigate the regulatory mechanisms of TIGAR upregulation in animal and cellular models of stroke. The animal and cellular models of ischemia/reperfusion were produced by transient middle cerebral artery occlusion and reperfusion (tMCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. The expression of TIGAR protein in cortical tissues and hippocampal neuronal cell line HT22 cells or primary neurons was determined. Glucose, hormones and hydrogen peroxide (H2O2) were administered to mice via injection into the tail vein or lateral ventricle or directly added into cell culture medium. In mice subjected to tMCAO/R, the blood glucose level rapidly increased, peaking at 0.5 h and then declined. TIGAR protein was also significantly increased and then declined with a delayed time-course. The increase in TIGAR protein was blunted when blood glucose levels were controlled with insulin. However, administering glucose solution to mice or adding glucose to cell culture medium had no effect on TIGAR protein levels. In contrast adrenaline, hydrocortisone, glucagon and H2O2 significantly increased TIGAR protein expression, whereas insulin inhibited TIGAR expression. The transcription factor SP1 was induced by ischemia/reperfusion ahead of TIGAR upregulation. Inhibiting SP1 with mithramycin A or silencing SP1 with siRNA blocked the ischemia-induced TIGAR upregulation. These results suggest that ROS and hormones regulating blood glucose metabolism play a role in ischemia/reperfusion-induced TIGAR upregulation.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Mei Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Qiao Huang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Feng Han
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou 310058, China
| | - Jin-Hua Gu
- Department of Pathophysiology, Nantong University School of Medical Science, Nantong 226001, China
| | - Jiaming Xie
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China.
| | - Zhipeng Zhou
- Department of Radiology, Affiliated Hospital of Guilin Medical College, Guilin 541001, China.
| |
Collapse
|
26
|
Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol 2014; 5:115. [PMID: 24904418 PMCID: PMC4035012 DOI: 10.3389/fphar.2014.00115] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prosthetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion, and hemorrhage. The plasma scavenger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavenge heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce reactive oxygen species generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review, we will discuss the mechanisms behind heme-induced cytotoxicity and inflammation and the consequences of these events on different tissues and diseases.
Collapse
Affiliation(s)
- Fabianno F. Dutra
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
27
|
Bamm VV, Harauz G. Hemoglobin as a source of iron overload in multiple sclerosis: does multiple sclerosis share risk factors with vascular disorders? Cell Mol Life Sci 2014; 71:1789-98. [PMID: 24504127 PMCID: PMC11113400 DOI: 10.1007/s00018-014-1570-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
Although iron is known to be essential for the normal development and health of the central nervous system, abnormal iron deposits are found in and around multiple sclerosis (MS) lesions that themselves are closely associated with the cerebral vasculature. However, the origin of this excess iron is unknown, and it is not clear whether this is one of the primary causative events in the pathogenesis of MS, or simply another consequence of the long-lasting inflammatory conditions. Here, applying a systems biology approach, we propose an additional way for understanding the neurodegenerative component of the disease caused by chronic subclinical extravasation of hemoglobin, in combination with multiple other factors including, but not limited to, dysfunction of different cellular protective mechanisms against extracellular hemoglobin reactivity and oxidative stress. Moreover, such considerations could also shed light on and explain the higher susceptibility of MS patients to a wide range of cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir V. Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|