1
|
Kohlhase DR, O’Rourke JA, Graham MA. GmGLU1 and GmRR4 contribute to iron deficiency tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1295952. [PMID: 38476685 PMCID: PMC10927968 DOI: 10.3389/fpls.2024.1295952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Iron deficiency chlorosis (IDC) is a form of abiotic stress that negatively impacts soybean yield. In a previous study, we demonstrated that the historical IDC quantitative trait locus (QTL) on soybean chromosome Gm03 was composed of four distinct linkage blocks, each containing candidate genes for IDC tolerance. Here, we take advantage of virus-induced gene silencing (VIGS) to validate the function of three high-priority candidate genes, each corresponding to a different linkage block in the Gm03 IDC QTL. We built three single-gene constructs to target GmGLU1 (GLUTAMATE SYNTHASE 1, Glyma.03G128300), GmRR4 (RESPONSE REGULATOR 4, Glyma.03G130000), and GmbHLH38 (beta Helix Loop Helix 38, Glyma.03G130400 and Glyma.03G130600). Given the polygenic nature of the iron stress tolerance trait, we also silenced the genes in combination. We built two constructs targeting GmRR4+GmGLU1 and GmbHLH38+GmGLU1. All constructs were tested on the iron-efficient soybean genotype Clark grown in iron-sufficient conditions. We observed significant decreases in soil plant analysis development (SPAD) measurements using the GmGLU1 construct and both double constructs, with potential additive effects in the GmRR4+GmGLU1 construct. Whole genome expression analyses (RNA-seq) revealed a wide range of affected processes including known iron stress responses, defense and hormone signaling, photosynthesis, and cell wall structure. These findings highlight the importance of GmGLU1 in soybean iron stress responses and provide evidence that IDC is truly a polygenic trait, with multiple genes within the QTL contributing to IDC tolerance. Finally, we conducted BLAST analyses to demonstrate that the Gm03 IDC QTL is syntenic across a broad range of plant species.
Collapse
Affiliation(s)
| | - Jamie A. O’Rourke
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Michelle A. Graham
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Hu F, Ye Z, Zhang W, Fang D, Cao J. Decipher the molecular evolution and expression patterns of Cupin family genes in oilseed rape. Int J Biol Macromol 2023; 227:437-452. [PMID: 36549611 DOI: 10.1016/j.ijbiomac.2022.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cupin proteins are involved in plant growth and development as well as in response to various stresses. Here, a total of 173 Cupin genes were identified in Brassica napus, and their molecular evolution and expression patterns were analyzed. These genes were classified into ten groups. Motif and exon-intron structure indicated a high degree of conservation within each group during evolution. BnaCupins were distributed on 19 chromosomes and their expansion is mainly contributed by whole-genome duplication (WGD) and segmental duplication events. BnaCupins have undergone severe purifying selection during a long evolutionary process. Meanwhile, some positive selection sites were identified. Expression patterns and cis-element analysis indicated that BnaCupins play significant roles in plant growth and stress responses. In addition, the expression levels of some BnCupins were significantly altered when treated with different conditions (cold, salt, drought, IAA, ABA, and 6-BA). Some BnaCupin interacting proteins, such as glycosyl hydrolase5 (GHs5), carbohydrate kinase (CHKs), ATP-dependent 6-phosphofructokinase (ATP-PFK), S-adenosylmethionine synthase (S-MAT), and aldolase class II (ALD II), were identified by the protein-protein interaction network. It will contribute to enriching our knowledge of the Cupin gene family in B. napus and provide a basis for further studies of their functions.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
O’Rourke JA, Graham MA. Coupling VIGS with Short- and Long-Term Stress Exposure to Understand the Fiskeby III Iron Deficiency Stress Response. Int J Mol Sci 2022; 24:ijms24010647. [PMID: 36614091 PMCID: PMC9820625 DOI: 10.3390/ijms24010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Yield loss due to abiotic stress is an increasing problem in agriculture. Soybean is a major crop for the upper Midwestern United States and calcareous soils exacerbate iron deficiency for growers, resulting in substantial yield losses. Fiskeby III is a soybean variety uniquely resistant to a variety of abiotic stresses, including iron deficiency. Previous studies identified a MATE transporter (Glyma.05G001700) associated with iron stress tolerance in Fiskeby III. To understand the function of this gene in the Fiskeby III response to iron deficiency, we coupled its silencing using virus-induced gene silencing with RNAseq analyses at two timepoints. Analyses of these data confirm a role for the MATE transporter in Fiskeby III iron stress responses. Further, they reveal that Fiskeby III induces transcriptional reprogramming within 24 h of iron deficiency stress, confirming that like other soybean varieties, Fiskeby III is able to quickly respond to stress. However, Fiskeby III utilizes novel genes and pathways in its iron deficiency response. Identifying and characterizing these genes and pathways in Fiskeby III provides novel targets for improving abiotic stress tolerance in elite soybean lines.
Collapse
|
4
|
Potente G, Léveillé-Bourret É, Yousefi N, Choudhury RR, Keller B, Diop SI, Duijsings D, Pirovano W, Lenhard M, Szövényi P, Conti E. Comparative Genomics Elucidates the Origin of a Supergene Controlling Floral Heteromorphism. Mol Biol Evol 2022; 39:msac035. [PMID: 35143659 PMCID: PMC8859637 DOI: 10.1093/molbev/msac035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?
Collapse
Affiliation(s)
- Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- BaseClear BV, Leiden, The Netherlands
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Étienne Léveillé-Bourret
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Rimjhim Roy Choudhury
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Seydina Issa Diop
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- BaseClear BV, Leiden, The Netherlands
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | | | | | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
5
|
Natukunda MI, Hohenstein JD, McCabe CE, Graham MA, Qi Y, Singh AK, MacIntosh GC. Interaction between Rag genes results in a unique synergistic transcriptional response that enhances soybean resistance to soybean aphids. BMC Genomics 2021; 22:887. [PMID: 34895143 PMCID: PMC8665634 DOI: 10.1186/s12864-021-08147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pyramiding different resistance genes into one plant genotype confers enhanced resistance at the phenotypic level, but the molecular mechanisms underlying this effect are not well-understood. In soybean, aphid resistance is conferred by Rag genes. We compared the transcriptional response of four soybean genotypes to aphid feeding to assess how the combination of Rag genes enhanced the soybean resistance to aphid infestation. RESULTS A strong synergistic interaction between Rag1 and Rag2, defined as genes differentially expressed only in the pyramid genotype, was identified. This synergistic effect in the Rag1/2 phenotype was very evident early (6 h after infestation) and involved unique biological processes. However, the response of susceptible and resistant genotypes had a large overlap 12 h after aphid infestation. Transcription factor (TF) analyses identified a network of interacting TF that potentially integrates signaling from Rag1 and Rag2 to produce the unique Rag1/2 response. Pyramiding resulted in rapid induction of phytochemicals production and deposition of lignin to strengthen the secondary cell wall, while repressing photosynthesis. We also identified Glyma.07G063700 as a novel, strong candidate for the Rag1 gene. CONCLUSIONS The synergistic interaction between Rag1 and Rag2 in the Rag1/2 genotype can explain its enhanced resistance phenotype. Understanding molecular mechanisms that support enhanced resistance in pyramid genotypes could facilitate more directed approaches for crop improvement.
Collapse
Affiliation(s)
- Martha I. Natukunda
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Jessica D. Hohenstein
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Chantal E. McCabe
- Corn Insects and Crop Genetics Research, USDA-ARS, Ames, IA 50011 USA
| | - Michelle A. Graham
- Corn Insects and Crop Genetics Research, USDA-ARS, Ames, IA 50011 USA
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Yunhui Qi
- Department of Statistics, Iowa State University, Ames, IA 50011 USA
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
6
|
Kohlhase DR, McCabe CE, Singh AK, O’Rourke JA, Graham MA. Comparing Early Transcriptomic Responses of 18 Soybean ( Glycine max) Genotypes to Iron Stress. Int J Mol Sci 2021; 22:11643. [PMID: 34769077 PMCID: PMC8583884 DOI: 10.3390/ijms222111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Iron deficiency chlorosis (IDC) is an abiotic stress that negatively affects soybean (Glycine max [L.] Merr.) production. Much of our knowledge of IDC stress responses is derived from model plant species. Gene expression, quantitative trait loci (QTL) mapping, and genome-wide association studies (GWAS) performed in soybean suggest that stress response differences exist between model and crop species. Our current understanding of the molecular response to IDC in soybeans is largely derived from gene expression studies using near-isogenic lines differing in iron efficiency. To improve iron efficiency in soybeans and other crops, we need to expand gene expression studies to include the diversity present in germplasm collections. Therefore, we collected 216 purified RNA samples (18 genotypes, two tissue types [leaves and roots], two iron treatments [sufficient and deficient], three replicates) and used RNA sequencing to examine the expression differences of 18 diverse soybean genotypes in response to iron deficiency. We found a rapid response to iron deficiency across genotypes, most responding within 60 min of stress. There was little evidence of an overlap of specific differentially expressed genes, and comparisons of gene ontology terms and transcription factor families suggest the utilization of different pathways in the stress response. These initial findings suggest an untapped genetic potential within the soybean germplasm collection that could be used for the continued improvement of iron efficiency in soybean.
Collapse
Affiliation(s)
- Daniel R. Kohlhase
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Chantal E. McCabe
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Jamie A. O’Rourke
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Michelle A. Graham
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| |
Collapse
|
7
|
O’Rourke JA, Morrisey MJ, Merry R, Espina MJ, Lorenz AJ, Stupar RM, Graham MA. Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. Int J Mol Sci 2021; 22:11032. [PMID: 34681702 PMCID: PMC8537376 DOI: 10.3390/ijms222011032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | - Ryan Merry
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Mary Jane Espina
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Aaron J. Lorenz
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Robert M. Stupar
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | | |
Collapse
|
8
|
O’Rourke JA, Graham MA. Gene Expression Responses to Sequential Nutrient Deficiency Stresses in Soybean. Int J Mol Sci 2021; 22:1252. [PMID: 33513952 PMCID: PMC7866191 DOI: 10.3390/ijms22031252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Throughout the growing season, crops experience a multitude of short periods of various abiotic stresses. These stress events have long-term impacts on plant performance and yield. It is imperative to improve our understanding of the genes and biological processes underlying plant stress tolerance to mitigate end of season yield loss. The majority of studies examining transcriptional changes induced by stress focus on single stress events. Few studies have been performed in model or crop species to examine transcriptional responses of plants exposed to repeated or sequential stress exposure, which better reflect field conditions. In this study, we examine the transcriptional profile of soybean plants exposed to iron deficiency stress followed by phosphate deficiency stress (-Fe-Pi). Comparing this response to previous studies, we identified a core suite of genes conserved across all repeated stress exposures (-Fe-Pi, -Fe-Fe, -Pi-Pi). Additionally, we determined transcriptional response to sequential stress exposure (-Fe-Pi) involves genes usually associated with reproduction, not stress responses. These findings highlight the plasticity of the plant transcriptome and the complexity of unraveling stress response pathways.
Collapse
Affiliation(s)
- Jamie A. O’Rourke
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50010, USA;
| | | |
Collapse
|
9
|
Gomez-Cano F, Carey L, Lucas K, García Navarrete T, Mukundi E, Lundback S, Schnell D, Grotewold E. CamRegBase: a gene regulation database for the biofuel crop, Camelina sativa. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:6031001. [PMID: 33306801 PMCID: PMC7731927 DOI: 10.1093/database/baaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/03/2022]
Abstract
Camelina is an annual oilseed plant from the Brassicaceae family that is gaining momentum as a biofuel winter cover crop. However, a significant limitation in further enhancing its utility as a producer of oils that can be used as biofuels, jet fuels or bio-based products is the absence of a repository for all the gene expression and regulatory information that is being rapidly generated by the community. Here, we provide CamRegBase (https://camregbase.org/) as a one-stop resource to access Camelina information on gene expression and co-expression, transcription factors, lipid associated genes and genome-wide orthologs in the close-relative reference plant Arabidopsis. We envision this as a resource of curated information for users, as well as a repository of new gene regulation information.
Collapse
Affiliation(s)
- Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI 48824-6473, USA
| | - Lisa Carey
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI 48824-1312, USA
| | - Kevin Lucas
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI 48824-6473, USA
| | - Tatiana García Navarrete
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI 48824-6473, USA
| | - Eric Mukundi
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI 48824-6473, USA
| | - Steve Lundback
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI 48824-6473, USA
| | - Danny Schnell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI 48824-1312, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI 48824-6473, USA
| |
Collapse
|
10
|
McCabe CE, Graham MA. New tools for characterizing early brown stem rot disease resistance signaling in soybean. THE PLANT GENOME 2020; 13:e20037. [PMID: 33217212 DOI: 10.1002/tpg2.20037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 05/12/2023]
Abstract
Brown stem rot (BSR) reduces soybean [Glycine max (L.) Merr.] yield by up to 38%. The BSR causal agent is Phialophora gregata f. sp. sojae, a slow-growing, necrotrophic fungus whose life cycle includes latent and pathogenic phases, each lasting several weeks. Brown stem rot foliar symptoms are often misdiagnosed as other soybean diseases or nutrient stress, making BSR resistance especially difficult to phenotype. To shed light on the genes and networks contributing to P. gregata resistance, we conducted RNA sequencing (RNA-seq) of a resistant genotype (PI 437970, Rbs3). Leaf, stem, and root tissues were collected 12, 24, and 36 h after stab inoculation with P. gregata, or mock infection, in the plant stem. By using multiple tissues and time points, we could see that leaves, stems, and roots use the same defense pathways. Our analyses suggest that P. gregata induces a biphasic defense response, with pathogen-associated molecular pattern (PAMP) triggered immunity observed in leaves at 12 and 24 h after infection (HAI) and effector triggered immunity detected at 36 h after infection in the stems. Gene networks associated with defense, photosynthesis, nutrient homeostasis, DNA replication, and growth are the hallmarks of resistance to P. gregata. While P. gregata is a slow-growing pathogen, our results demonstrate that pathogen recognition occurs hours after infection. By exploiting the genes and networks described here, we will be able to develop novel diagnostic tools to facilitate breeding and screening for BSR resistance.
Collapse
Affiliation(s)
- Chantal E McCabe
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA
| | - Michelle A Graham
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA
| |
Collapse
|
11
|
Lauter ANM, Rutter L, Cook D, O’Rourke JA, Graham MA. Examining Short-Term Responses to a Long-Term Problem: RNA-Seq Analyses of Iron Deficiency Chlorosis Tolerant Soybean. Int J Mol Sci 2020; 21:E3591. [PMID: 32438745 PMCID: PMC7279018 DOI: 10.3390/ijms21103591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Iron deficiency chlorosis (IDC) is a global crop production problem, significantly impacting yield. However, most IDC studies have focused on model species, not agronomically important crops. Soybean is the second largest crop grown in the United States, yet the calcareous soils across most of the upper U.S. Midwest limit soybean growth and profitability. To understand early soybean iron stress responses, we conducted whole genome expression analyses (RNA-sequencing) of leaf and root tissue from the iron efficient soybean (Glycine max) cultivar Clark, at 30, 60 and 120 min after transfer to iron stress conditions. We identified over 10,000 differentially expressed genes (DEGs), with the number of DEGs increasing over time in leaves, but decreasing over time in roots. To investigate these responses, we clustered our expression data across time to identify suites of genes, their biological functions, and the transcription factors (TFs) that regulate their expression. These analyses reveal the hallmarks of the soybean iron stress response (iron uptake and homeostasis, defense, and DNA replication and methylation) can be detected within 30 min. Furthermore, they suggest root to shoot signaling initiates early iron stress responses representing a novel paradigm for crop stress adaptations.
Collapse
Affiliation(s)
- Adrienne N. Moran Lauter
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA 50011, USA; (A.N.M.L.); (J.A.O.)
| | - Lindsay Rutter
- Department of Statistics, Iowa State University, Ames, IA 50011, USA;
| | - Dianne Cook
- Department of Econometrics and Business Statistics, Monash University, Clayton VIC 3800, Australia;
| | - Jamie A. O’Rourke
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA 50011, USA; (A.N.M.L.); (J.A.O.)
| | - Michelle A. Graham
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA 50011, USA; (A.N.M.L.); (J.A.O.)
| |
Collapse
|
12
|
O'Rourke JA, McCabe CE, Graham MA. Dynamic gene expression changes in response to micronutrient, macronutrient, and multiple stress exposures in soybean. Funct Integr Genomics 2020; 20:321-341. [PMID: 31655948 PMCID: PMC7152590 DOI: 10.1007/s10142-019-00709-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Abstract
Preserving crop yield is critical for US soybean production and the global economy. Crop species have been selected for increased yield for thousands of years with individual lines selected for improved performance in unique environments, constraints not experienced by model species such as Arabidopsis. This selection likely resulted in novel stress adaptations, unique to crop species. Given that iron deficiency is a perennial problem in the soybean growing regions of the USA and phosphate deficiency looms as a limitation to global agricultural production, nutrient stress studies in crop species are critically important. In this study, we directly compared whole-genome expression responses of leaves and roots to iron (Fe) and phosphate (Pi) deficiency, representing a micronutrient and macronutrient, respectively. Conducting experiments side by side, we observed soybean responds to both nutrient deficiencies within 24 h. While soybean responds largely to -Fe deficiency, it responds strongly to Pi resupply. Though the timing of the responses was different, both nutrient stress signals used the same molecular pathways. Our study is the first to demonstrate the speed and diversity of the soybean stress response to multiple nutrient deficiencies. We also designed the study to examine gene expression changes in response to multiple stress events. We identified 865 and 3375 genes that either altered their direction of expression after a second stress exposure or were only differentially expressed after a second stress event. Understanding the molecular underpinnings of these responses in crop species could have major implications for improving stress tolerance and preserving yield.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA.
- Department of Agronomy, Iowa State University, 1567 Agronomy Hall, Ames, IA, 50011, USA.
| | - Chantal E McCabe
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Michelle A Graham
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, 1567 Agronomy Hall, Ames, IA, 50011, USA
| |
Collapse
|
13
|
Pedley KF, Pandey AK, Ruck A, Lincoln LM, Whitham SA, Graham MA. Rpp1 Encodes a ULP1-NBS-LRR Protein That Controls Immunity to Phakopsora pachyrhizi in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:120-133. [PMID: 30303765 DOI: 10.1094/mpmi-07-18-0198-fi] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phakopsora pachyrhizi is the causal agent of Asian soybean rust. Susceptible soybean plants infected by virulent isolates of P. pachyrhizi are characterized by tan-colored lesions and erumpent uredinia on the leaf surface. Germplasm screening and genetic analyses have led to the identification of seven loci, Rpp1 to Rpp7, that provide varying degrees of resistance to P. pachyrhizi (Rpp). Two genes, Rpp1 and Rpp1b, map to the same region on soybean chromosome 18. Rpp1 is unique among the Rpp genes in that it confers an immune response (IR) to avirulent P. pachyrhizi isolates. The IR is characterized by a lack of visible symptoms, whereas resistance provided by Rpp1b to Rpp7 results in red-brown foliar lesions. Rpp1 maps to a region spanning approximately 150 kb on chromosome 18 between markers Sct_187 and Sat_064 in L85-2378 (Rpp1), an isoline developed from Williams 82 and PI 200492 (Rpp1). To identify Rpp1, we constructed a bacterial artificial chromosome library from soybean accession PI 200492. Sequencing of the Rpp1 locus identified three homologous nucleotide binding site-leucine rich repeat (NBS-LRR) candidate resistance genes between Sct_187 and Sat_064. Each candidate gene is also predicted to encode an N-terminal ubiquitin-like protease 1 (ULP1) domain. Cosilencing of the Rpp1 candidates abrogated the immune response in the Rpp1 resistant soybean accession PI 200492, indicating that Rpp1 is a ULP1-NBS-LRR protein and plays a key role in the IR.
Collapse
Affiliation(s)
- Kerry F Pedley
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Ajay K Pandey
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
- 3 Iowa State University, Department of Plant Pathology and Microbiology, Ames, IA 50011, U.S.A
| | - Amy Ruck
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Lori M Lincoln
- 2 USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, U.S.A.; and
| | - Steven A Whitham
- 3 Iowa State University, Department of Plant Pathology and Microbiology, Ames, IA 50011, U.S.A
| | - Michelle A Graham
- 2 USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, U.S.A.; and
| |
Collapse
|
14
|
Lew TTS, Wong MH, Kwak SY, Sinclair R, Koman VB, Strano MS. Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802086. [PMID: 30191658 DOI: 10.1002/smll.201802086] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Indexed: 05/24/2023]
Abstract
The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single-walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA-wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid-nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.
Collapse
Affiliation(s)
- Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
15
|
McCabe CE, Cianzio SR, O'Rourke JA, Graham MA. Leveraging RNA-Seq to Characterize Resistance to Brown Stem Rot and the Rbs3 Locus in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1083-1094. [PMID: 30004290 DOI: 10.1094/mpmi-01-18-0009-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brown stem rot, caused by the fungus Phialophora gregata, reduces soybean yield by up to 38%. Although three dominant resistance loci have been identified (Rbs1 to Rbs3), the gene networks responsible for pathogen recognition and defense remain unknown. Further, identification and characterization of resistant and susceptible germplasm remains difficult. We conducted RNA-Seq of infected and mock-infected leaf, stem, and root tissues of a resistant (PI 437970, Rbs3) and susceptible (Corsoy 79) genotype. Combining historical mapping data with genotype expression differences allowed us to identify a cluster of receptor-like proteins that are candidates for the Rbs3 resistance gene. Reads mapping to the Rbs3 locus were used to identify potential novel single-nucleotide polymorphisms within candidate genes that could improve phenotyping and breeding efficiency. Comparing responses to infection revealed little overlap in differential gene expression between genotypes or tissues. Gene networks associated with defense, DNA replication, and iron homeostasis are hallmarks of resistance to P. gregata. This novel research demonstrates the utility of combining contrasting genotypes, gene expression, and classical genetic studies to characterize complex disease resistance loci.
Collapse
Affiliation(s)
- Chantal E McCabe
- 1 United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-1010, U.S.A. and Department of Agronomy, Iowa State University, Ames; and
| | | | - Jamie A O'Rourke
- 1 United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-1010, U.S.A. and Department of Agronomy, Iowa State University, Ames; and
| | - Michelle A Graham
- 1 United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-1010, U.S.A. and Department of Agronomy, Iowa State University, Ames; and
| |
Collapse
|
16
|
Xu HY, Zhang C, Li ZC, Wang ZR, Jiang XX, Shi YF, Tian SN, Braun E, Mei Y, Qiu WL, Li S, Wang B, Xu J, Navarre D, Ren D, Cheng N, Nakata PA, Graham MA, Whitham SA, Liu JZ. The MAPK Kinase Kinase GmMEKK1 Regulates Cell Death and Defense Responses. PLANT PHYSIOLOGY 2018; 178:907-922. [PMID: 30158117 PMCID: PMC6181047 DOI: 10.1104/pp.18.00903] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/18/2018] [Indexed: 05/13/2023]
Abstract
MAPK signaling pathways play critical roles in plant immunity. Here, we silenced multiple genes encoding MAPKs using virus-induced gene silencing mediated by Bean pod mottle virus to identify MAPK genes involved in soybean (Glycine max) immunity. Surprisingly, a strong hypersensitive response (HR) cell death was observed when soybean MAPK KINASE KINASE1 (GmMEKK1), a homolog of Arabidopsis (Arabidopsis thaliana) MEKK1, was silenced. The HR was accompanied by the overaccumulation of defense signaling molecules, salicylic acid (SA) and hydrogen peroxide. Genes involved in primary metabolism, translation/transcription, photosynthesis, and growth/development were down-regulated in GmMEKK1-silenced plants, while the expression of defense-related genes was activated. Accordingly, GmMEKK1-silenced plants were more resistant to downy mildew (Peronospora manshurica) and Soybean mosaic virus compared with control plants. Silencing GmMEKK1 reduced the activation of GmMPK6 but enhanced the activation of GmMPK3 in response to flg22 peptide. Unlike Arabidopsis MPK4, GmMPK4 was not activated by either flg22 or SA. Interestingly, transient overexpression of GmMEKK1 in Nicotiana benthamiana also induced HR. Our results indicate that GmMEKK1 plays both positive and negative roles in immunity and appears to differentially activate downstream MPKs by promoting GmMPK6 activation but suppressing GmMPK3 activation in response to flg22. The involvement of GmMPK4 kinase activity in cell death and in flg22- or SA-triggered defense responses in soybean requires further investigation.
Collapse
Affiliation(s)
- Hui-Yang Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chi Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen-Chao Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhi-Rong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xu-Xu Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Sheng-Nan Tian
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Edward Braun
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Yu Mei
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Wen-Li Qiu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Sen Li
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Juan Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Duroy Navarre
- U.S. Department of Agriculture-Agricultural Research Service, Prosser, Washington 99350
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ninghui Cheng
- U.S. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Paul A Nakata
- U.S. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Michelle A Graham
- U.S. Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
17
|
Komatsu S, Wang X, Yin X, Nanjo Y, Ohyanagi H, Sakata K. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database. J Proteomics 2017; 163:52-66. [PMID: 28499913 DOI: 10.1016/j.jprot.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. BIOLOGICAL SIGNIFICANCE The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from genome sequences, though there are over lapped proteins. Based on the demonstrated application of data stored in the database for functional analyses, it is suggested that these data will be useful for analyses of biological mechanisms in soybean. Furthermore, coupled with recent advances in information and communication technology, the usefulness of this database would increase in the analyses of biological mechanisms.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Xin Wang
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Xiaojian Yin
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yohei Nanjo
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Hajime Ohyanagi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Saudi Arabia
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0816, Japan.
| |
Collapse
|
18
|
Wang X, Komatsu S. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:117-148. [PMID: 28427531 DOI: 10.1016/bs.afnr.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean.
Collapse
Affiliation(s)
- Xin Wang
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
19
|
Kim E, Hwang S, Lee I. SoyNet: a database of co-functional networks for soybean Glycine max. Nucleic Acids Res 2017; 45:D1082-D1089. [PMID: 27492285 PMCID: PMC5210602 DOI: 10.1093/nar/gkw704] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 01/09/2023] Open
Abstract
Soybean (Glycine max) is a legume crop with substantial economic value, providing a source of oil and protein for humans and livestock. More than 50% of edible oils consumed globally are derived from this crop. Soybean plants are also important for soil fertility, as they fix atmospheric nitrogen by symbiosis with microorganisms. The latest soybean genome annotation (version 2.0) lists 56 044 coding genes, yet their functional contributions to crop traits remain mostly unknown. Co-functional networks have proven useful for identifying genes that are involved in a particular pathway or phenotype with various network algorithms. Here, we present SoyNet (available at www.inetbio.org/soynet), a database of co-functional networks for G. max and a companion web server for network-based functional predictions. SoyNet maps 1 940 284 co-functional links between 40 812 soybean genes (72.8% of the coding genome), which were inferred from 21 distinct types of genomics data including 734 microarrays and 290 RNA-seq samples from soybean. SoyNet provides a new route to functional investigation of the soybean genome, elucidating genes and pathways of agricultural importance.
Collapse
Affiliation(s)
- Eiru Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sohyun Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
20
|
Gahlaut V, Jaiswal V, Kumar A, Gupta PK. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2019-2042. [PMID: 27738714 DOI: 10.1007/s00122-016-2794-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 09/15/2016] [Indexed: 05/26/2023]
Abstract
TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Plant Molecular Biology and Genetic Engineering, CSIR-National Botanical Research Institute, Lucknow, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology, Dehradun, India
| | | |
Collapse
|
21
|
Tan HW, Song XM, Duan WK, Wang Y, Hou XL. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis). Genome 2016; 58:463-77. [PMID: 26599708 DOI: 10.1139/gen-2015-0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.
Collapse
Affiliation(s)
- Hua-Wei Tan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ming Song
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,b Center of Genomics and Computational Biology, College of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Wei-Ke Duan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi-Lin Hou
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Vatanparast M, Shetty P, Chopra R, Doyle JJ, Sathyanarayana N, Egan AN. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Sci Rep 2016; 6:29070. [PMID: 27356763 PMCID: PMC4928180 DOI: 10.1038/srep29070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- US National Herbarium (US), Department of Botany, Smithsonian Institution-NMNH, 10th and Constitution Ave, Washington DC, 20013, USA
| | - Prateek Shetty
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824, USA
| | - Ratan Chopra
- United States Department of Agriculture, Agriculture Research Service, 3810 4th St., Lubbock, TX, 79415, USA
| | - Jeff J Doyle
- Section of Plant Breeding &Genetics, School of Integrative Plant Science, Cornell University, 412 Mann Library, Ithaca, NY, 14853, USA
| | - N Sathyanarayana
- Department of Botany, Sikkim University, 5th Mile, Tadong, Gangtok, Sikkim, 737102, India
| | - Ashley N Egan
- US National Herbarium (US), Department of Botany, Smithsonian Institution-NMNH, 10th and Constitution Ave, Washington DC, 20013, USA
| |
Collapse
|
23
|
Yu Y, Wang N, Hu R, Xiang F. Genome-wide identification of soybean WRKY transcription factors in response to salt stress. SPRINGERPLUS 2016; 5:920. [PMID: 27386364 PMCID: PMC4927560 DOI: 10.1186/s40064-016-2647-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/22/2016] [Indexed: 01/23/2023]
Abstract
Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group further categorized into five subgroups (IIa-IIe). The soybean WRKYs from each group shared similar gene structures and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance.
Collapse
Affiliation(s)
- Yanchong Yu
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
- />Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 Shandong China
| | - Nan Wang
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
| | - Ruibo Hu
- />Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road No. 189, Qingdao, 266101 Shandong China
| | - Fengning Xiang
- />The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100 Shandong China
| |
Collapse
|
24
|
|
25
|
Chai C, Wang Y, Joshi T, Valliyodan B, Prince S, Michel L, Xu D, Nguyen HT. Soybean transcription factor ORFeome associated with drought resistance: a valuable resource to accelerate research on abiotic stress resistance. BMC Genomics 2015; 16:596. [PMID: 26268547 PMCID: PMC4534118 DOI: 10.1186/s12864-015-1743-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genome sequencing provides the most comprehensive collection of an organism's genetic information. The availability of complete genome sequences is expected to dramatically deliver a high impact on biology. However, to achieve this impact in the area of crop improvement, significant efforts are still required on functional genomics, including the areas of gene annotation, cloning, expression profiling, and functional validation. RESULTS Here we report our efforts in generating the first transcription factor (TF) open reading frame (ORF)eome resource associated with drought resistance in soybean (Glycine max), a major oil/protein crop grown worldwide. This study provides a highly annotated soybean TF-ORFeome associated with drought resistance. It contains information from experimentally verified protein-coding sequences (CDS), expression profiling under several abiotic stresses (drought, salinity, dehydration and ABA), and computationally predicted protein subcellular localization and cis-regulatory elements (CREs) analysis. All the information is available to plant researchers through a freely accessible and user-friendly database, Soybean Knowledge Base (SoyKB). CONCLUSIONS The soybean TF-ORFeome provides a valuable public resource for functional genomics studies, especially in the area of plant abiotic stresses. It will accelerate findings in the areas of abiotic stresses and lead to the generation of crops with enhanced resistance to multiple stresses.
Collapse
Affiliation(s)
- Chenglin Chai
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yongqin Wang
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Trupti Joshi
- Department of Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Silvas Prince
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Lydia Michel
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Dong Xu
- Department of Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
26
|
Quach TN, Nguyen HTM, Valliyodan B, Joshi T, Xu D, Nguyen HT. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response. Mol Genet Genomics 2015; 290:1095-115. [PMID: 25542200 PMCID: PMC4435856 DOI: 10.1007/s00438-014-0978-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/10/2014] [Indexed: 11/30/2022]
Abstract
Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome. Phylogenetic analyses show that soybean's proteins share strong homology to Arabidopsis and many of them are closely related to functionally characterized NF-Y in plants. Expression analysis in various tissues of flower, leaf, root, seeds of different developmental stages, root hairs under rhizobium inoculation, and drought-treated roots and leaves revealed that certain groups of soybean NF-Y are likely involved in specific developmental and stress responses. This study provides extensive evaluation of the soybean NF-Y family and is particularly useful for further functional characterization of GmNF-Y proteins in seed development, nodulation and drought adaptation of soybean.
Collapse
Affiliation(s)
- Truyen N. Quach
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211 USA
- Present Address: Field Crop Research Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Hanh T. M. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211 USA
- Present Address: The Center for Plant Science Innovation, University of Nebraska, Lincoln, NE USA
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211 USA
| | - Trupti Joshi
- Department of Computer Science, Christopher S. Bond Life Sciences Center, National Center for Soybean Biotechnology and Informatics Institute, University of Missouri, Columbia, MO USA
| | - Dong Xu
- Department of Computer Science, Christopher S. Bond Life Sciences Center, National Center for Soybean Biotechnology and Informatics Institute, University of Missouri, Columbia, MO USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
27
|
de los Reyes BG, Mohanty B, Yun SJ, Park MR, Lee DY. Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining. RICE (NEW YORK, N.Y.) 2015; 8:14. [PMID: 25844119 PMCID: PMC4385054 DOI: 10.1186/s12284-015-0041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/12/2015] [Indexed: 05/23/2023]
Abstract
Dissecting the upstream regulatory architecture of rice genes and their cognate regulator proteins is at the core of network biology and its applications to comparative functional genomics. With the rapidly advancing comparative genomics resources in the genus Oryza, a reference genome annotation that defines the various cis-elements and trans-acting factors that interface each gene locus with various intrinsic and extrinsic signals for growth, development, reproduction and adaptation must be established to facilitate the understanding of phenotypic variation in the context of regulatory networks. Such information is also important to establish the foundation for mining non-coding sequence variation that defines novel alleles and epialleles across the enormous phenotypic diversity represented in rice germplasm. This review presents a synthesis of the state of knowledge and consensus trends regarding the various cis-acting and trans-acting components that define spatio-temporal regulation of rice genes based on representative examples from both foundational studies in other model and non-model plants, and more recent studies in rice. The goal is to summarize the baseline for systematic upstream sequence annotation of the rapidly advancing genome sequence resources in Oryza in preparation for genus-wide functional genomics. Perspectives on the potential applications of such information for gene discovery, network engineering and genomics-enabled rice breeding are also discussed.
Collapse
Affiliation(s)
| | - Bijayalaxmi Mohanty
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Song Joong Yun
- />Department of Crop Science and Institute of Agricultural Science and Technology, Chonbuk National University, Chonju, 561-756 Korea
| | - Myoung-Ryoul Park
- />School of Biology and Ecology, University of Maine, Orono, ME 04469 USA
| | - Dong-Yup Lee
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| |
Collapse
|
28
|
A classification of basic helix-loop-helix transcription factors of soybean. Int J Genomics 2015; 2015:603182. [PMID: 25763382 PMCID: PMC4339708 DOI: 10.1155/2015/603182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/29/2014] [Indexed: 11/30/2022] Open
Abstract
The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH) family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281) of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.
Collapse
|
29
|
Belamkar V, Weeks NT, Bharti AK, Farmer AD, Graham MA, Cannon SB. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics 2014; 15:950. [PMID: 25362847 PMCID: PMC4226900 DOI: 10.1186/1471-2164-15-950] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/16/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. RESULTS In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~13 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. CONCLUSIONS We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress.
Collapse
Affiliation(s)
- Vikas Belamkar
- />Interdepartmental Genetics, Iowa State University, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Nathan T Weeks
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Arvind K Bharti
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Andrew D Farmer
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Michelle A Graham
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Steven B Cannon
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| |
Collapse
|
30
|
O’Rourke JA, Iniguez LP, Fu F, Bucciarelli B, Miller SS, Jackson SA, McClean PE, Li J, Dai X, Zhao PX, Hernandez G, Vance CP. An RNA-Seq based gene expression atlas of the common bean. BMC Genomics 2014; 15:866. [PMID: 25283805 PMCID: PMC4195886 DOI: 10.1186/1471-2164-15-866] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is grown throughout the world and comprises roughly 50% of the grain legumes consumed worldwide. Despite this, genetic resources for common beans have been lacking. Next generation sequencing, has facilitated our investigation of the gene expression profiles associated with biologically important traits in common bean. An increased understanding of gene expression in common bean will improve our understanding of gene expression patterns in other legume species. RESULTS Combining recently developed genomic resources for Phaseolus vulgaris, including predicted gene calls, with RNA-Seq technology, we measured the gene expression patterns from 24 samples collected from seven tissues at developmentally important stages and from three nitrogen treatments. Gene expression patterns throughout the plant were analyzed to better understand changes due to nodulation, seed development, and nitrogen utilization. We have identified 11,010 genes differentially expressed with a fold change ≥ 2 and a P-value < 0.05 between different tissues at the same time point, 15,752 genes differentially expressed within a tissue due to changes in development, and 2,315 genes expressed only in a single tissue. These analyses identified 2,970 genes with expression patterns that appear to be directly dependent on the source of available nitrogen. Finally, we have assembled this data in a publicly available database, The Phaseolus vulgaris Gene Expression Atlas (Pv GEA), http://plantgrn.noble.org/PvGEA/ . Using the website, researchers can query gene expression profiles of their gene of interest, search for genes expressed in different tissues, or download the dataset in a tabular form. CONCLUSIONS These data provide the basis for a gene expression atlas, which will facilitate functional genomic studies in common bean. Analysis of this dataset has identified genes important in regulating seed composition and has increased our understanding of nodulation and impact of the nitrogen source on assimilation and distribution throughout the plant.
Collapse
Affiliation(s)
- Jamie A O’Rourke
- />Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 USA
- />USDA-ARS, Corn Insect Crop Genetics Research Unit, Iowa State University, Ames, IA 50011 USA
| | - Luis P Iniguez
- />Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, 66210 Cuernavaca, Mor Mexico
| | - Fengli Fu
- />Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 USA
| | - Bruna Bucciarelli
- />Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 USA
- />USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108 USA
| | - Susan S Miller
- />Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 USA
- />USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108 USA
| | - Scott A Jackson
- />Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Philip E McClean
- />Department of Plant Sciences, North Dakota State University, Fargo, ND 58105 USA
| | - Jun Li
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Xinbin Dai
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Patrick X Zhao
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Georgina Hernandez
- />Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, 66210 Cuernavaca, Mor Mexico
| | - Carroll P Vance
- />Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
31
|
Valliyodan B, Van Toai TT, Alves JD, de Fátima P Goulart P, Lee JD, Fritschi FB, Rahman MA, Islam R, Shannon JG, Nguyen HT. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). Int J Mol Sci 2014; 15:17622-43. [PMID: 25268626 PMCID: PMC4227181 DOI: 10.3390/ijms151017622] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/06/2014] [Accepted: 09/19/2014] [Indexed: 11/17/2022] Open
Abstract
Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.
Collapse
Affiliation(s)
- Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Tara T Van Toai
- United States Department of Agriculture-Agricultural Research Service, Soil Drainage Research Unit, Columbus, OH 43210, USA.
| | - Jose Donizeti Alves
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil.
| | | | - Jeong Dong Lee
- Division of Plant Sciences, University of Missouri, Delta Center, Portageville, MO 68373, USA.
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Mohammed Atiqur Rahman
- Office of Information Technology, Ohio State University South Centers at Piketon, Columbus, OH 43210, USA.
| | - Rafiq Islam
- Office of Information Technology, Ohio State University South Centers at Piketon, Columbus, OH 43210, USA.
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri, Delta Center, Portageville, MO 68373, USA.
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
32
|
Bencke-Malato M, Cabreira C, Wiebke-Strohm B, Bücker-Neto L, Mancini E, Osorio MB, Homrich MS, Turchetto-Zolet AC, De Carvalho MCCG, Stolf R, Weber RLM, Westergaard G, Castagnaro AP, Abdelnoor RV, Marcelino-Guimarães FC, Margis-Pinheiro M, Bodanese-Zanettini MH. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection. BMC PLANT BIOLOGY 2014; 14:236. [PMID: 25201117 PMCID: PMC4172953 DOI: 10.1186/s12870-014-0236-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/29/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. RESULTS As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. CONCLUSIONS The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.
Collapse
Affiliation(s)
- Marta Bencke-Malato
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Caroline Cabreira
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Beatriz Wiebke-Strohm
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lauro Bücker-Neto
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Marina B Osorio
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Milena S Homrich
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andreia Carina Turchetto-Zolet
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Renata Stolf
- />Empresa Brasileira de Pesquisa Agropecuária (Embrapa Soja), Londrina, Brazil
| | - Ricardo LM Weber
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Atílio P Castagnaro
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Tucumán, Argentina
| | - Ricardo V Abdelnoor
- />Empresa Brasileira de Pesquisa Agropecuária (Embrapa Soja), Londrina, Brazil
| | | | - Márcia Margis-Pinheiro
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Helena Bodanese-Zanettini
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
33
|
Thu NBA, Hoang XLT, Doan H, Nguyen TH, Bui D, Thao NP, Tran LSP. Differential expression analysis of a subset of GmNAC genes in shoots of two contrasting drought-responsive soybean cultivars DT51 and MTD720 under normal and drought conditions. Mol Biol Rep 2014. [PMID: 24985975 DOI: 10.1007/s11105-014-0825-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
NAC transcription factors are known to be involved in regulation of plant responses to drought stress. In this study, the expression of 23 drought-responsive GmNAC genes was assessed in the shoot tissues of DT51 and MTD720, the two soybean varieties with contrasting drought-responsive phenotypes, by real-time quantitative PCR (RT-qPCR) under normal and drought conditions. Results indicated that expression profile of GmNAC genes was genotype-dependent, and six GmNACs (GmNAC019, 043, 062, 085, 095 and 101) had higher transcript levels in the shoots of the drought-tolerant DT51 in comparison with the drought-sensitive MTD720 under drought. Our study suggests a positive correlation between the higher drought tolerance degree of DT51 versus MTD720 and the up-regulation of at least these six drought-responsive GmNACs in the shoot tissues. Furthermore, on the basis of our analysis, three genes, GmNAC043, 085 and 101, were identified as promising candidates for development of drought-tolerant soybean cultivars by genetic engineering.
Collapse
Affiliation(s)
- Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | |
Collapse
|
34
|
Thu NBA, Hoang XLT, Doan H, Nguyen TH, Bui D, Thao NP, Tran LSP. Differential expression analysis of a subset of GmNAC genes in shoots of two contrasting drought-responsive soybean cultivars DT51 and MTD720 under normal and drought conditions. Mol Biol Rep 2014; 41:5563-9. [PMID: 24985975 DOI: 10.1007/s11033-014-3507-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
NAC transcription factors are known to be involved in regulation of plant responses to drought stress. In this study, the expression of 23 drought-responsive GmNAC genes was assessed in the shoot tissues of DT51 and MTD720, the two soybean varieties with contrasting drought-responsive phenotypes, by real-time quantitative PCR (RT-qPCR) under normal and drought conditions. Results indicated that expression profile of GmNAC genes was genotype-dependent, and six GmNACs (GmNAC019, 043, 062, 085, 095 and 101) had higher transcript levels in the shoots of the drought-tolerant DT51 in comparison with the drought-sensitive MTD720 under drought. Our study suggests a positive correlation between the higher drought tolerance degree of DT51 versus MTD720 and the up-regulation of at least these six drought-responsive GmNACs in the shoot tissues. Furthermore, on the basis of our analysis, three genes, GmNAC043, 085 and 101, were identified as promising candidates for development of drought-tolerant soybean cultivars by genetic engineering.
Collapse
Affiliation(s)
- Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | |
Collapse
|
35
|
Moran Lauter AN, Peiffer GA, Yin T, Whitham SA, Cook D, Shoemaker RC, Graham MA. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 2014; 15:702. [PMID: 25149281 PMCID: PMC4161901 DOI: 10.1186/1471-2164-15-702] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Iron is an essential micronutrient for all living things, required in plants for photosynthesis, respiration and metabolism. A lack of bioavailable iron in soil leads to iron deficiency chlorosis (IDC), causing a reduction in photosynthesis and interveinal yellowing of leaves. Soybeans (Glycine max (L.) Merr.) grown in high pH soils often suffer from IDC, resulting in substantial yield losses. Iron efficient soybean cultivars maintain photosynthesis and have higher yields under IDC-promoting conditions than inefficient cultivars. RESULTS To capture signaling between roots and leaves and identify genes acting early in the iron efficient cultivar Clark, we conducted a RNA-Seq study at one and six hours after replacing iron sufficient hydroponic media (100 μM iron(III) nitrate nonahydrate) with iron deficient media (50 μM iron(III) nitrate nonahydrate). At one hour of iron stress, few genes were differentially expressed in leaves but many were already changing expression in roots. By six hours, more genes were differentially expressed in the leaves, and a massive shift was observed in the direction of gene expression in both roots and leaves. Further, there was little overlap in differentially expressed genes identified in each tissue and time point. CONCLUSIONS Genes involved in hormone signaling, regulation of DNA replication and iron uptake utilization are key aspects of the early iron-efficiency response. We observed dynamic gene expression differences between roots and leaves, suggesting the involvement of many transcription factors in eliciting rapid changes in gene expression. In roots, genes involved iron uptake and development of Casparian strips were induced one hour after iron stress. In leaves, genes involved in DNA replication and sugar signaling responded to iron deficiency. The differentially expressed genes (DEGs) and signaling components identified here represent new targets for soybean improvement.
Collapse
Affiliation(s)
- Adrienne N Moran Lauter
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Gregory A Peiffer
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Tengfei Yin
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Steven A Whitham
- />Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 USA
| | - Dianne Cook
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Randy C Shoemaker
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| | - Michelle A Graham
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
36
|
O'Rourke JA, Bolon YT, Bucciarelli B, Vance CP. Legume genomics: understanding biology through DNA and RNA sequencing. ANNALS OF BOTANY 2014; 113:1107-20. [PMID: 24769535 PMCID: PMC4030821 DOI: 10.1093/aob/mcu072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/13/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND The legume family (Leguminosae) consists of approx. 17 000 species. A few of these species, including, but not limited to, Phaseolus vulgaris, Cicer arietinum and Cajanus cajan, are important dietary components, providing protein for approx. 300 million people worldwide. Additional species, including soybean (Glycine max) and alfalfa (Medicago sativa), are important crops utilized mainly in animal feed. In addition, legumes are important contributors to biological nitrogen, forming symbiotic relationships with rhizobia to fix atmospheric N2 and providing up to 30 % of available nitrogen for the next season of crops. The application of high-throughput genomic technologies including genome sequencing projects, genome re-sequencing (DNA-seq) and transcriptome sequencing (RNA-seq) by the legume research community has provided major insights into genome evolution, genomic architecture and domestication. SCOPE AND CONCLUSIONS This review presents an overview of the current state of legume genomics and explores the role that next-generation sequencing technologies play in advancing legume genomics. The adoption of next-generation sequencing and implementation of associated bioinformatic tools has allowed researchers to turn each species of interest into their own model organism. To illustrate the power of next-generation sequencing, an in-depth overview of the transcriptomes of both soybean and white lupin (Lupinus albus) is provided. The soybean transcriptome focuses on analysing seed development in two near-isogenic lines, examining the role of transporters, oil biosynthesis and nitrogen utilization. The white lupin transcriptome analysis examines how phosphate deficiency alters gene expression patterns, inducing the formation of cluster roots. Such studies illustrate the power of next-generation sequencing and bioinformatic analyses in elucidating the gene networks underlying biological processes.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- United States Department of Agriculture, Agricultural Research Service, University of Minnesota, St. Paul, MN 55108, USA Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Yung-Tsi Bolon
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Bruna Bucciarelli
- United States Department of Agriculture, Agricultural Research Service, University of Minnesota, St. Paul, MN 55108, USA Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Carroll P Vance
- United States Department of Agriculture, Agricultural Research Service, University of Minnesota, St. Paul, MN 55108, USA Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| |
Collapse
|
37
|
Yu J, Zhang Z, Wei J, Ling Y, Xu W, Su Z. SFGD: a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways. BMC Genomics 2014; 15:271. [PMID: 24712981 PMCID: PMC4051163 DOI: 10.1186/1471-2164-15-271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean (Glycine max L.) is one of the world's most important leguminous crops producing high-quality protein and oil. Increasing the relative oil concentration in soybean seeds is many researchers' goal, but a complete analysis platform of functional annotation for the genes involved in the soybean acyl-lipid pathway is still lacking. Following the success of soybean whole-genome sequencing, functional annotation has become a major challenge for the scientific community. Whole-genome transcriptome analysis is a powerful way to predict genes with biological functions. It is essential to build a comprehensive analysis platform for integrating soybean whole-genome sequencing data, the available transcriptome data and protein information. This platform could also be used to identify acyl-lipid metabolism pathways. DESCRIPTION In this study, we describe our construction of the Soybean Functional Genomics Database (SFGD) using Generic Genome Browser (Gbrowse) as the core platform. We integrated microarray expression profiling with 255 samples from 14 groups' experiments and mRNA-seq data with 30 samples from four groups' experiments, including spatial and temporal transcriptome data for different soybean development stages and environmental stresses. The SFGD includes a gene co-expression regulatory network containing 23,267 genes and 1873 miRNA-target pairs, and a group of acyl-lipid pathways containing 221 enzymes and more than 1550 genes. The SFGD also provides some key analysis tools, i.e. BLAST search, expression pattern search and cis-element significance analysis, as well as gene ontology information search and single nucleotide polymorphism display. CONCLUSION The SFGD is a comprehensive database integrating genome and transcriptome data, and also for soybean acyl-lipid metabolism pathways. It provides useful toolboxes for biologists to improve the accuracy and robustness of soybean functional genomics analysis, further improving understanding of gene regulatory networks for effective crop improvement. The SFGD is publically accessible at http://bioinformatics.cau.edu.cn/SFGD/, with all data available for downloading.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenhai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Ling
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
38
|
Xu Y, Guo M, Liu X, Wang C, Liu Y. SoyFN: a knowledge database of soybean functional networks. Database (Oxford) 2014; 2014:bau019. [PMID: 24618044 PMCID: PMC3949006 DOI: 10.1093/database/bau019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 01/08/2023]
Abstract
Many databases for soybean genomic analysis have been built and made publicly available, but few of them contain knowledge specifically targeting the omics-level gene-gene, gene-microRNA (miRNA) and miRNA-miRNA interactions. Here, we present SoyFN, a knowledge database of soybean functional gene networks and miRNA functional networks. SoyFN provides user-friendly interfaces to retrieve, visualize, analyze and download the functional networks of soybean genes and miRNAs. In addition, it incorporates much information about KEGG pathways, gene ontology annotations and 3'-UTR sequences as well as many useful tools including SoySearch, ID mapping, Genome Browser, eFP Browser and promoter motif scan. SoyFN is a schema-free database that can be accessed as a Web service from any modern programming language using a simple Hypertext Transfer Protocol call. The Web site is implemented in Java, JavaScript, PHP, HTML and Apache, with all major browsers supported. We anticipate that this database will be useful for members of research communities both in soybean experimental science and bioinformatics. Database URL: http://nclab.hit.edu.cn/SoyFN.
Collapse
Affiliation(s)
- Yungang Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China and School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Maozu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China and School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Xiaoyan Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China and School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China and School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yang Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China and School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
39
|
Quach TN, Tran LSP, Valliyodan B, Nguyen HTM, Kumar R, Neelakandan AK, Guttikonda SK, Sharp RE, Nguyen HT. Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in arabidopsis. PLoS One 2014; 9:e84886. [PMID: 24465446 PMCID: PMC3900428 DOI: 10.1371/journal.pone.0084886] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/27/2013] [Indexed: 12/22/2022] Open
Abstract
In Arabidopsis, NAC (NAM, ATAF and CUC) transcription factors have been found to promote lateral root number through the auxin signaling pathway. In the present study, the role of water stress-inducible soybean GmNAC003 and GmNAC004 genes in the enhancement of lateral root development under water deficit conditions was investigated. Both genes were highly expressed in roots, leaves and flowers of soybean and were strongly induced by water stress and moderately induced by a treatment with abscisic acid (ABA). They showed a slight response to treatment with 2,4-dichlorophenoxyacetic acid (2,4-D). The transgenic Arabidopsis plants overexpressing GmNAC004 showed an increase in lateral root number and length under non-stress conditions and maintained higher lateral root number and length under mild water stress conditions compared to the wild-type (WT), while the transgenic plants overexpressing GmNAC003 did not show any response. However, LR development of GmNAC004 transgenic Arabidopsis plants was not enhanced in the water-stressed compared to the well-watered treatment. In the treatment with ABA, LR density of the GmNAC004 transgenic Arabidopsis was less suppressed than that of the WT, suggesting that GmNAC004 counteracts ABA-induced inhibition of lateral root development. In the treatment with 2,4-D, lateral root density was enhanced in both GmNAC004 transgenic Arabidopsis and WT plants but the promotion was higher in the transgenic plants. Conversely, in the treatment with naphthylphthalamic acid (NPA), lateral root density was inhibited and there was no difference in the phenotype of the GmNAC004 transgenic Arabidopsis and WT plants, indicating that auxin is required for the action of GmNAC004. Transcript analysis for a number of known auxin and ABA related genes showed that GmNAC004's role may suppress ABA signaling but promote auxin signaling to increase lateral root development in the Arabidopsis heterologous system.
Collapse
Affiliation(s)
- Truyen N. Quach
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Lam-Son Phan Tran
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Babu Valliyodan
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Hanh TM. Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Rajesh Kumar
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Anjanasree K. Neelakandan
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Satish Kumar Guttikonda
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Robert E. Sharp
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Henry T. Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
40
|
Lin F, Zhao M, Baumann DD, Ping J, Sun L, Liu Y, Zhang B, Tang Z, Hughes E, Doerge RW, Hughes TJ, Ma J. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genomics 2014; 15:18. [PMID: 24410936 PMCID: PMC3893405 DOI: 10.1186/1471-2164-15-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen. RESULTS A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters. CONCLUSIONS This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional "fingerprints" of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense signaling to the same pathogen may be largely responsible for such variations.
Collapse
Affiliation(s)
- Feng Lin
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Meixia Zhao
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas D Baumann
- Department of Mathematics, University of Wisconsin – La Crosse, La Crosse, WI 54601, USA
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Yunfeng Liu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Biao Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Zongxiang Tang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Elisa Hughes
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Teresa J Hughes
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- USDA-ARS Crop Production and Pest Control Research Unit, Purdue University, West Lafayette, IN 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
41
|
Atwood SE, O'Rourke JA, Peiffer GA, Yin T, Majumder M, Zhang C, Cianzio SR, Hill JH, Cook D, Whitham SA, Shoemaker RC, Graham MA. Replication protein A subunit 3 and the iron efficiency response in soybean. PLANT, CELL & ENVIRONMENT 2014; 37:213-34. [PMID: 23742135 DOI: 10.1111/pce.12147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/09/2013] [Accepted: 05/28/2013] [Indexed: 05/20/2023]
Abstract
In soybean [Glycine max (L.) Merr.], iron deficiency results in interveinal chlorosis and decreased photosynthetic capacity, leading to stunting and yield loss. In this study, gene expression analyses investigated the role of soybean replication protein A (RPA) subunits during iron stress. Nine RPA homologs were significantly differentially expressed in response to iron stress in the near isogenic lines (NILs) Clark (iron efficient) and Isoclark (iron inefficient). RPA homologs exhibited opposing expression patterns in the two NILs, with RPA expression significantly repressed during iron deficiency in Clark but induced in Isoclark. We used virus induced gene silencing (VIGS) to repress GmRPA3 expression in the iron inefficient line Isoclark and mirror expression in Clark. GmRPA3-silenced plants had improved IDC symptoms and chlorophyll content under iron deficient conditions and also displayed stunted growth regardless of iron availability. RNA-Seq comparing gene expression between GmRPA3-silenced and empty vector plants revealed massive transcriptional reprogramming with differential expression of genes associated with defense, immunity, aging, death, protein modification, protein synthesis, photosynthesis and iron uptake and transport genes. Our findings suggest the iron efficient genotype Clark is able to induce energy controlling pathways, possibly regulated by SnRK1/TOR, to promote nutrient recycling and stress responses in iron deficient conditions.
Collapse
Affiliation(s)
- Sarah E Atwood
- Interdepartmental Genetics Program, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jin J, Zhang H, Kong L, Gao G, Luo J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 2014; 42:D1182-7. [PMID: 24174544 PMCID: PMC3965000 DOI: 10.1093/nar/gkt1016] [Citation(s) in RCA: 619] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 11/25/2022] Open
Abstract
With the aim to provide a resource for functional and evolutionary study of plant transcription factors (TFs), we updated the plant TF database PlantTFDB to version 3.0 (http://planttfdb.cbi.pku.edu.cn). After refining the TF classification pipeline, we systematically identified 129 288 TFs from 83 species, of which 67 species have genome sequences, covering main lineages of green plants. Besides the abundant annotation provided in the previous version, we generated more annotations for identified TFs, including expression, regulation, interaction, conserved elements, phenotype information, expert-curated descriptions derived from UniProt, TAIR and NCBI GeneRIF, as well as references to provide clues for functional studies of TFs. To help identify evolutionary relationship among identified TFs, we assigned 69 450 TFs into 3924 orthologous groups, and constructed 9217 phylogenetic trees for TFs within the same families or same orthologous groups, respectively. In addition, we set up a TF prediction server in this version for users to identify TFs from their own sequences.
Collapse
Affiliation(s)
- Jinpu Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing 100871, P.R. China
| | | | - Lei Kong
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing 100871, P.R. China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing 100871, P.R. China
| | - Jingchu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
43
|
Cooper B, Campbell KB, McMahon MB, Luster DG. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing. PLANT SIGNALING & BEHAVIOR 2013; 8:e27543. [PMID: 24401541 PMCID: PMC4091232 DOI: 10.4161/psb.27543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 05/23/2023]
Abstract
Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory; USDA-ARS; Beltsville, MD USA
| | | | | | | |
Collapse
|
44
|
Thao NP, Thu NBA, Hoang XLT, Van Ha C, Tran LSP. Differential expression analysis of a subset of drought-responsive GmNAC genes in two soybean cultivars differing in drought tolerance. Int J Mol Sci 2013; 14:23828-41. [PMID: 24322442 PMCID: PMC3876080 DOI: 10.3390/ijms141223828] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 12/26/2022] Open
Abstract
The plant-specific NAC transcription factors play important roles in plant response to drought stress. Here, we have compared the expression levels of a subset of GmNAC genes in drought-tolerant DT51 and drought-sensitive MTD720 under both normal and drought stress conditions aimed at identifying correlation between GmNAC expression levels and drought tolerance degree, as well as potential GmNAC candidates for genetic engineering. The expression of 23 selected dehydration-responsive GmNACs was assessed in both stressed and unstressed root tissues of DT51 and MTD720 using real-time quantitative PCR. The results indicated that expression of GmNACs was genotype-dependent. Seven and 13 of 23 tested GmNACs showed higher expression levels in roots of DT51 in comparison with MTD720 under normal and drought stress conditions, respectively, whereas none of them displayed lower transcript levels under any conditions. This finding suggests that the higher drought tolerance of DT51 might be positively correlated with the higher induction of the GmNAC genes during water deficit. The drought-inducible GmNAC011 needs to be mentioned as its transcript accumulation was more than 76-fold higher in drought-stressed DT51 roots relative to MTD720 roots. Additionally, among the GmNAC genes examined, GmNAC085, 092, 095, 101 and 109 were not only drought-inducible but also more highly up-regulated in DT51 roots than in that of MTD720 under both treatment conditions. These data together suggest that GmNAC011, 085, 092, 095, 101 and 109 might be promising candidates for improvement of drought tolerance in soybean by biotechnological approaches.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh 70000, Vietnam; E-Mails: (N.B.A.T.); (X.L.T.H.)
| | - Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh 70000, Vietnam; E-Mails: (N.B.A.T.); (X.L.T.H.)
| | - Xuan Lan Thi Hoang
- School of Biotechnology, International University, Vietnam National University HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh 70000, Vietnam; E-Mails: (N.B.A.T.); (X.L.T.H.)
| | - Chien Van Ha
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; E-Mail:
- National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham Van Dong Street, Hanoi 10000, Vietnam
- Post-Graduate Program, Vietnamese Academy of Agricultural Science, Thanhtri, Hanoi 10000, Vietnam
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; E-Mail:
| |
Collapse
|
45
|
PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinformatics 2013; 14:321. [PMID: 24219505 PMCID: PMC4225725 DOI: 10.1186/1471-2105-14-321] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 10/30/2013] [Indexed: 01/11/2023] Open
Abstract
Background Plants regulate intrinsic gene expression through transcription factors (TFs), transcriptional regulators (TRs), chromatin regulators (CRs), and the basal transcription machinery. An understanding of plant gene regulatory mechanisms at a systems level requires the identification of these regulatory elements on a genomic scale. Results Here, we present PlantTFcat, a high-performance web-based analysis tool that is designed to identify and categorize plant TF/TR/CR genes from genome-scale protein and nucleic acid sequences by systematically analyzing InterProScan domain patterns in protein sequences. The comprehensive prediction logics that are included in PlantTFcat are based on relationships between gene families and conserved domains from 108 published plant TF/TR/CR families. These prediction logics effectively distinguish TF/TR/CR families with common conserved domains. Our systematic performance evaluations indicate that PlantTFcat annotates known TF/TR/CR families with high coverage and sensitivity. Conclusions PlantTFcat provides an analysis tool to identify and categorize plant TF/TR/CR genes on a genomic scale. PlantTFcat is freely available to the public at http://plantgrn.noble.org/PlantTFcat/.
Collapse
|
46
|
Xia Z, Zhai H, Lü S, Wu H, Zhang Y. Recent achievement in gene cloning and functional genomics in soybean. ScientificWorldJournal 2013; 2013:281367. [PMID: 24311973 PMCID: PMC3842071 DOI: 10.1155/2013/281367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022] Open
Abstract
Soybean is a model plant for photoperiodism as well as for symbiotic nitrogen fixation. However, a rather low efficiency in soybean transformation hampers functional analysis of genes isolated from soybean. In comparison, rapid development and progress in flowering time and photoperiodic response have been achieved in Arabidopsis and rice. As the soybean genomic information has been released since 2008, gene cloning and functional genomic studies have been revived as indicated by successfully characterizing genes involved in maturity and nematode resistance. Here, we review some major achievements in the cloning of some important genes and some specific features at genetic or genomic levels revealed by the analysis of functional genomics of soybean.
Collapse
Affiliation(s)
- Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Shixiang Lü
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Hongyan Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yupeng Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
47
|
Morales AMAP, O Rourke JA, van de Mortel M, Scheider KT, Bancroft TJ, Bor M AZ, Nelson RT, Nettleton D, Baum TJ, Shoemaker RC, Frederick RD, Abdelnoor RV, Pedley KF, Whitham SA, Graham MA. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1029-1047. [PMID: 32481171 DOI: 10.1071/fp12296] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/12/2013] [Indexed: 05/24/2023]
Abstract
Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to Phakopsora pachyrhizi Sydow, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression in mock-inoculated and P. pachyrhizi-infected leaves of resistant soybean accession PI459025B (Rpp4) and the susceptible cultivar (Williams 82) across a 12-day time course. Unexpectedly, two biphasic responses were identified. In the incompatible reaction, genes induced at 12h after infection (hai) were not differentially expressed at 24 hai, but were induced at 72 hai. In contrast, genes repressed at 12 hai were not differentially expressed from 24 to 144 hai, but were repressed 216 hai and later. To differentiate between basal and resistance-gene (R-gene) mediated defence responses, we compared gene expression in Rpp4-silenced and empty vector-treated PI459025B plants 14 days after infection (dai) with P. pachyrhizi. This identified genes, including transcription factors, whose differential expression is dependent upon Rpp4. To identify differentially expressed genes conserved across multiple P. pachyrhizi resistance pathways, Rpp4 expression datasets were compared with microarray data previously generated for Rpp2 and Rpp3-mediated defence responses. Fourteen transcription factors common to all resistant and susceptible responses were identified, as well as fourteen transcription factors unique to R-gene-mediated resistance responses. These genes are targets for future P. pachyrhizi resistance research.
Collapse
Affiliation(s)
- Aguida M A P Morales
- Universidade Federal de Viçosa, Departamento de Fitotecnia, 36.570-000, Viçosa, MG, Brazil
| | - Jamie A O Rourke
- USDA-Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN 55108, USA
| | - Martijn van de Mortel
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Katherine T Scheider
- USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA
| | | | - Alu Zio Bor M
- Universidade Federal de Viçosa, Departamento de Fitotecnia, 36.570-000, Viçosa, MG, Brazil
| | - Rex T Nelson
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50014, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Randy C Shoemaker
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA
| | - Reid D Frederick
- USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA
| | - Ricardo V Abdelnoor
- Laboratório de Biotecnologia Vegetal e Bioinformática, Embrapa Soja, Rod. Carlos João Strass, 86001-970, Londrina - PR, Brazil
| | - Kerry F Pedley
- USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Michelle A Graham
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA
| |
Collapse
|
48
|
Van Ha C, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT, Mochida K, Van Dong N, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res 2013; 20:511-24. [PMID: 23810914 PMCID: PMC3789561 DOI: 10.1093/dnares/dst027] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022] Open
Abstract
In plants, the auxin response factor (ARF) transcription factors play important roles in regulating diverse biological processes, including development, growth, cell division and responses to environmental stimuli. An exhaustive search of soybean genome revealed 51 GmARFs, many of which were formed by genome duplications. The typical GmARFs (43 members) contain a DNA-binding domain, an ARF domain and an auxin/indole acetic acid (AUX/IAA) dimerization domain, whereas the remaining eight members lack the dimerization domain. Phylogenetic analysis of the ARFs from soybean and Arabidopsis revealed both similarity and divergence between the two ARF families, as well as enabled us to predict the functions of the GmARFs. Using quantitative real-time polymerase chain reaction (qRT-PCR) and available soybean Affymetrix array and Illumina transcriptome sequence data, a comprehensive expression atlas of GmARF genes was obtained in various organs and tissues, providing useful information about their involvement in defining the precise nature of individual tissues. Furthermore, expression profiling using qRT-PCR and microarray data revealed many water stress-responsive GmARFs in soybean, albeit with different patterns depending on types of tissues and/or developmental stages. Our systematic analysis has identified excellent tissue-specific and/or stress-responsive candidate GmARF genes for in-depth in planta functional analyses, which would lead to potential applications in the development of genetically modified soybean cultivars with enhanced drought tolerance.
Collapse
Affiliation(s)
- Chien Van Ha
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, Vietnam
- Post-Graduate Program, Vietnamese Academy of Agricultural Science, Thanhtri, Hanoi, Vietnam
| | - Dung Tien Le
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, Vietnam
| | - Rie Nishiyama
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Saad Sulieman
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Uyen Thi Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Keiichi Mochida
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Nguyen Van Dong
- National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, Vietnam
| | | | - Kazuo Shinozaki
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
49
|
Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics 2013; 14:647. [PMID: 24059455 PMCID: PMC3853109 DOI: 10.1186/1471-2164-14-647] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought tolerance is an attribute maintained in plants by cross-talk between multiple and cascading metabolic pathways. Without a sequenced genome available for horse gram, it is difficult to comprehend such complex networks and intercalated genes associated with drought tolerance of horse gram (Macrotyloma uniflorum). Therefore, de novo transcriptome discovery and associated analyses was done for this highly drought tolerant yet under exploited legume to decipher its genetic makeup. RESULTS Eight samples comprising of shoot and root tissues of two horse gram genotypes (drought-sensitive; M-191 and drought-tolerant; M-249) were used for comparison under control and polyethylene glycol-induced drought stress conditions. Using Illumina sequencing technology, a total of 229,297,896 paired end read pairs were generated and utilized for de novo assembly of horse gram. Significant BLAST hits were obtained for 26,045 transcripts while, 3,558 transcripts had no hits but contained important conserved domains. A total of 21,887 unigenes were identified. SSRs containing sequences covered 16.25% of the transcriptome with predominant tri- and mono-nucleotides (43%). The total GC content of the transcriptome was found to be 43.44%. Under Gene Ontology response to stimulus, DNA binding and catalytic activity was highly expressed during drought stress conditions. Serine/threonine protein kinase was found to dominate in Enzyme Classification while pathways belonging to ribosome metabolism followed by plant pathogen interaction and plant hormone signal transduction were predominant in Kyoto Encyclopedia of Genes and Genomes analysis. Independent search on plant metabolic network pathways suggested valine degradation, gluconeogenesis and purine nucleotide degradation to be highly influenced under drought stress in horse gram. Transcription factors belonging to NAC, MYB-related, and WRKY families were found highly represented under drought stress. qRT-PCR validated the expression profile for 9 out of 10 genes analyzed in response to drought stress. CONCLUSIONS De novo transcriptome discovery and analysis has generated enormous information over horse gram genomics. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against drought stress by horse gram. The knowledge generated can be further utilized for exploring other underexploited plants for stress responsive genes and improving plant tolerance.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Plant Metabolic Engineering Laboratory, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, HP, India.
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhu M, Dahmen JL, Stacey G, Cheng J. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data. BMC Bioinformatics 2013; 14:278. [PMID: 24053776 PMCID: PMC3854569 DOI: 10.1186/1471-2105-14-278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 09/03/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND High-throughput RNA sequencing (RNA-Seq) is a revolutionary technique to study the transcriptome of a cell under various conditions at a systems level. Despite the wide application of RNA-Seq techniques to generate experimental data in the last few years, few computational methods are available to analyze this huge amount of transcription data. The computational methods for constructing gene regulatory networks from RNA-Seq expression data of hundreds or even thousands of genes are particularly lacking and urgently needed. RESULTS We developed an automated bioinformatics method to predict gene regulatory networks from the quantitative expression values of differentially expressed genes based on RNA-Seq transcriptome data of a cell in different stages and conditions, integrating transcriptional, genomic and gene function data. We applied the method to the RNA-Seq transcriptome data generated for soybean root hair cells in three different development stages of nodulation after rhizobium infection. The method predicted a soybean nodulation-related gene regulatory network consisting of 10 regulatory modules common for all three stages, and 24, 49 and 70 modules separately for the first, second and third stage, each containing both a group of co-expressed genes and several transcription factors collaboratively controlling their expression under different conditions. 8 of 10 common regulatory modules were validated by at least two kinds of validations, such as independent DNA binding motif analysis, gene function enrichment test, and previous experimental data in the literature. CONCLUSIONS We developed a computational method to reliably reconstruct gene regulatory networks from RNA-Seq transcriptome data. The method can generate valuable hypotheses for interpreting biological data and designing biological experiments such as ChIP-Seq, RNA interference, and yeast two hybrid experiments.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
- Current address: Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jeremy L Dahmen
- C.S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Divisions of Plant Science and Biochemistry, Columbia, MO, USA
| | - Gary Stacey
- C.S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Divisions of Plant Science and Biochemistry, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO, USA
- C.S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|