1
|
Ueda T, Taniguchi Y, Adachi S, Shenton M, Hori K, Tanaka J. Gene Pyramiding Strategies for Sink Size and Source Capacity for High-Yield Japonica Rice Breeding. RICE (NEW YORK, N.Y.) 2025; 18:6. [PMID: 39945924 PMCID: PMC11825427 DOI: 10.1186/s12284-025-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/15/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
In Japan, high-yielding indica rice cultivars such as 'Habataki', 'Takanari', and 'Hokuriku 193' have been bred, and many genes related to the high-yield traits have been isolated from these and other indica cultivars. Many such genes are expected to be effective in increasing the yield of japonica rice, including those that increase sink size. It has been expected that high-yielding japonica rice could be bred by introducing sink-size genes into the genetic background of japonica cultivars such as 'Koshihikari', which show strong cold tolerance, have good taste characteristics, and fetch a high price. However, the corresponding near-isogenic lines did not necessarily produce high yields when tested in the field. In this review, we summarize information on the major high-yield-related rice genes and discuss pyramiding strategies to further increase the yield of japonica rice. In parallel with increasing sink size, source capacity needs to be increased by increasing photosynthetic rate per unit leaf area (single leaf photosynthesis), improving canopy structure, and increasing translocation capacity during the ripening stage. To implement these strategies, innovative breeding methodologies that efficiently produce the combinations of desired alleles are required.
Collapse
Affiliation(s)
- Tadamasa Ueda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yojiro Taniguchi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Shunsuke Adachi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Matthew Shenton
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Kiyosumi Hori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Junichi Tanaka
- NARO Headquarters, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
2
|
Dai J, Xu Z, Zhang X, Fang Z, Zhu J, Kang T, Xu Y, Hu Y, Cao L, Zhao C. PpNAP4 and ethylene act in a regulatory loop to modulate peach fruit ripening and softening. Int J Biol Macromol 2025; 291:138791. [PMID: 39706437 DOI: 10.1016/j.ijbiomac.2024.138791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Ripening significantly influences fruit quality and commercial value. Peaches (Prunus persica), a climacteric fruit, exhibit increased ethylene biosynthesis and decreased fruit firmness during ripening. NAC-like proteins activated by AP3/P1 (NAP) proteins are a subfamily of NAC transcription factors, and certain NAPs have been shown to intervene in fruit ripening. Here, we revealed that one NAP member PpNAP4, along with ethylene, positively regulated peach ripening and softening. Positive regulation of fruit ripening by PpNAP4 was demonstrated by overexpressing PpNAP4 in both peaches and tomatoes, resulting in enhanced fruit ripening through targeted modulation of specific ethylene biosynthesis and cell wall degradation-related genes. Further investigation revealed that PpNAP4 targets and upregulates key ethylene biosynthesis genes PpACS1, PpACO1 and PpEIN2, which is the core component of ethylene signaling. PpNAP4 positively modulates fruit softening by binding to and activating the promoters of cell wall degradation-related genes PpPL1 and PpPL15. Additionally, expression of PpPL1 and PpPL15 was directly affected by ethylene, with further investigation revealing that their promoters were clearly induced by ethylene. Our findings demonstrated a synergistic role played by the interaction between PpNAP4 and PpNAP6, enhancing the expression of PpACS1, PpACO1, PpPL1, PpPL15 and PpEIN2, thereby contributing to fruit ripening and softening. Overall, our study revealed the intricate mechanisms responsible for PpNAP4, PpNAP6, and ethylene roles during peach fruit ripening, highlighting a regulatory loop in which PpNAP4 and ethylene mutually enhance each other during the ripening process. These enhancements further contribute to peach fruit softening by upregulating specific cell wall degradation-related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Jingwen Zhu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
3
|
Swain N, Sahoo RK, Jeughale KP, Sarkar S, Selvaraj S, Parameswaran C, Katara J, Bose LK, Samantaray S. Rice homolog of Arabidopsis Xylem NAC domain 1 (OsXND1), a NAC transcription factor regulates drought stress responsive root system architecture in indica rice. Mol Genet Genomics 2024; 299:94. [PMID: 39369362 DOI: 10.1007/s00438-024-02178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2024] [Accepted: 08/25/2024] [Indexed: 10/07/2024]
Abstract
Rice yield is greatly constrained by drought stress. In Arabidopsis, XYLEM NAC DOMAIN 1 (XND1) gene regulates the xylem formation, efficiency of water transport, and the delicate equilibrium between drought tolerance and resistance to pathogens. However, diversity and the role of rice homologs of OsXND1 is not reported so far. This study hypothesized that the rice homolog of OsXND1 also regulates drought stress tolerance through modulation of root architecture. Initially, phylogenetic analysis identified two OsXND1 homologs (Os02g0555300 and Os04g0437000) in rice. Further, 14 haplotypes were identified in the OsXND1 of which Hap1 and Hap3 were major haplotypes. The association analysis of OsXND1 with 16 different traits, including 10 root traits, showed three SNPs (Chr02:20972728-Promoter variant; Chr02:20972791-5' UTR variant, and Chr02:20973745-3' UTR variant) were significantly associated with root area, root surface area, total root length, and convex hull area only under drought stress in indica rice. Besides, the superior haplotype of OsXND1 increased the root area, root surface area, total root length, and convex hull area by 46%, 40%, 38%, and 42%, respectively, under drought stress conditions. Therefore, the identified superior haplotype of OsXND1 can be utilized in haplotype breeding programs for the improvement of drought tolerance in rice.
Collapse
Affiliation(s)
- Nibedita Swain
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
- Department of Botany and Biotechnology, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Raj Kishore Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
- Department of Botany and Biotechnology, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Kishor P Jeughale
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Suman Sarkar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Sabarinathan Selvaraj
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - C Parameswaran
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India.
| | - Jawaharlal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Lotan K Bose
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| | - Sanghamitra Samantaray
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, India.
| |
Collapse
|
4
|
Chang W, Zhao H, Chen H, Jiao G, Yu J, Wang B, Xia H, Meng B, Li X, Yu M, Li S, Qian M, Fan Y, Zhang K, Lei B, Lu K. Transcription factor NtNAC56 regulates jasmonic acid-induced leaf senescence in tobacco. PLANT PHYSIOLOGY 2024; 195:1925-1940. [PMID: 38427921 DOI: 10.1093/plphys/kiae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Leaf senescence is a vital aspect of plant physiology and stress responses and is induced by endogenous factors and environmental cues. The plant-specific NAC (NAM, ATAF1/2, CUC2) transcription factor family influences growth, development, and stress responses in Arabidopsis (Arabidopsis thaliana) and other species. However, the roles of NACs in tobacco (Nicotiana tabacum) leaf senescence are still unclear. Here, we report that NtNAC56 regulates leaf senescence in tobacco. Transgenic plants overexpressing NtNAC56 (NtNAC56-OE) showed induction of senescence-related genes and exhibited early senescence and lower chlorophyll content compared to wild-type (WT) plants and the Ntnac56-19 mutant. In addition, root development and seed germination were inhibited in the NtNAC56-OE lines. Transmission electron microscopy observations accompanied by physiological and biochemical assays revealed that NtNAC56 overexpression triggers chloroplast degradation and reactive oxygen species accumulation in tobacco leaves. Transcriptome analysis demonstrated that NtNAC56 activates leaf senescence-related genes and jasmonic acid (JA) biosynthesis pathway genes. In addition, the JA content of NtNAC56-OE plants was higher than in WT plants, and JA treatment induced NtNAC56 expression. We performed DNA affinity purification sequencing to identify direct targets of NtNAC56, among which we focused on LIPOXYGENASE 5 (NtLOX5), a key gene in JA biosynthesis. A dual-luciferase reporter assay and a yeast one-hybrid assay confirmed that NtNAC56 directly binds to the TTTCTT motif in the NtLOX5 promoter. Our results reveal a mechanism whereby NtNAC56 regulates JA-induced leaf senescence in tobacco and provide a strategy for genetically manipulating leaf senescence and plant growth.
Collapse
Affiliation(s)
- Wei Chang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Huina Zhao
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Hongqiao Chen
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Guixiang Jiao
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Jing Yu
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Bing Wang
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Haiqian Xia
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Boyu Meng
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaodong Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Mengna Yu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Shengting Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Mingchao Qian
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Yonghai Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Bo Lei
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
5
|
Calzadilla PI. Final destination: Senescence-NtNAC56 and jasmonic acid in the regulation of leaf senescence in tobacco. PLANT PHYSIOLOGY 2024; 195:1751-1753. [PMID: 38513694 PMCID: PMC11213244 DOI: 10.1093/plphys/kiae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/04/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Affiliation(s)
- Pablo Ignacio Calzadilla
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata—CONICET, cc 327, 1900 La Plata, Buenos Aires, Argentina
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
6
|
Bulle M, Devadasu E, Rampuria S, Subramanyam R, Kirti PB. Plastid-expressed AdDjSKI enhances photosystem II stability, delays leaf senescence, and increases fruit yield in tomato plants under heat stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14374. [PMID: 38837422 DOI: 10.1111/ppl.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.
Collapse
Affiliation(s)
- Mallesham Bulle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | |
Collapse
|
7
|
Sun L, Xu H, Song J, Yang X, Wang X, Liu H, Pang M, Hu Y, Yang Q, Ning X, Liang S, Zhang S, Luan W. OsNAC103, a NAC Transcription Factor, Positively Regulates Leaf Senescence and Plant Architecture in Rice. RICE (NEW YORK, N.Y.) 2024; 17:15. [PMID: 38358523 PMCID: PMC10869678 DOI: 10.1186/s12284-024-00690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/13/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Leaf senescence, the last stage of leaf development, is essential for crop yield by promoting nutrition relocation from senescence leaves to new leaves and seeds. NAC (NAM/ATAF1/ATAF2/CUC2) proteins, one of the plant-specific transcription factors, widely distribute in plants and play important roles in plant growth and development. Here, we identified a new NAC member OsNAC103 and found that it plays critical roles in leaf senescence and plant architecture in rice. OsNAC103 mRNA levels were dramatically induced by leaf senescence as well as different phytohormones such as ABA, MeJA and ACC and abiotic stresses including dark, drought and high salinity. OsNAC103 acts as a transcription factor with nuclear localization signals at the N terminal and a transcriptional activation signal at the C terminal. Overexpression of OsNAC103 promoted leaf senescence while osnac103 mutants delayed leaf senescence under natural condition and dark-induced condition, meanwhile, senescence-associated genes (SAGs) were up-regulated in OsNAC103 overexpression (OsNAC103-OE) lines, indicating that OsNAC103 positively regulates leaf senescence in rice. Moreover, OsNAC103-OE lines exhibited loose plant architecture with larger tiller angles while tiller angles of osnac103 mutants decreased during the vegetative and reproductive growth stages due to the response of shoot gravitropism, suggesting that OsNAC103 can regulate the plant architecture in rice. Taken together, our results reveal that OsNAC103 plays crucial roles in the regulation of leaf senescence and plant architecture in rice.
Collapse
Affiliation(s)
- Lina Sun
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Hanqin Xu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Juan Song
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoying Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - XinYi Wang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Haiyan Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Mengzhen Pang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Youchuan Hu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Qi Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaotong Ning
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
8
|
Jin SK, Xu LN, Leng YJ, Zhang MQ, Yang QQ, Wang SL, Jia SW, Song T, Wang RA, Tao T, Liu QQ, Cai XL, Gao JP. The OsNAC24-OsNAP protein complex activates OsGBSSI and OsSBEI expression to fine-tune starch biosynthesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2224-2240. [PMID: 37432878 PMCID: PMC10579716 DOI: 10.1111/pbi.14124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/28/2022] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
Starch accounts for up to 90% of the dry weight of rice endosperm and is a key determinant of grain quality. Although starch biosynthesis enzymes have been comprehensively studied, transcriptional regulation of starch-synthesis enzyme-coding genes (SECGs) is largely unknown. In this study, we explored the role of a NAC transcription factor, OsNAC24, in regulating starch biosynthesis in rice. OsNAC24 is highly expressed in developing endosperm. The endosperm of osnac24 mutants is normal in appearance as is starch granule morphology, while total starch content, amylose content, chain length distribution of amylopectin and the physicochemical properties of the starch are changed. In addition, the expression of several SECGs was altered in osnac24 mutant plants. OsNAC24 is a transcriptional activator that targets the promoters of six SECGs; OsGBSSI, OsSBEI, OsAGPS2, OsSSI, OsSSIIIa and OsSSIVb. Since both the mRNA and protein abundances of OsGBSSI and OsSBEI were decreased in the mutants, OsNAC24 functions to regulate starch synthesis mainly through OsGBSSI and OsSBEI. Furthermore, OsNAC24 binds to the newly identified motifs TTGACAA, AGAAGA and ACAAGA as well as the core NAC-binding motif CACG. Another NAC family member, OsNAP, interacts with OsNAC24 and coactivates target gene expression. Loss-of-function of OsNAP led to altered expression in all tested SECGs and reduced the starch content. These results demonstrate that the OsNAC24-OsNAP complex plays key roles in fine-tuning starch synthesis in rice endosperm and further suggest that manipulating the OsNAC24-OsNAP complex regulatory network could be a potential strategy for breeding rice cultivars with improved cooking and eating quality.
Collapse
Affiliation(s)
- Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Sun Z, Wu M, Wang S, Feng S, Wang Y, Wang T, Zhu C, Jiang X, Wang H, Wang R, Yuan X, Wang M, Zhong L, Cheng Y, Bao M, Zhang F. An insertion of transposon in DcNAP inverted its function in the ethylene pathway to delay petal senescence in carnation (Dianthus caryophyllus L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2307-2321. [PMID: 37626478 PMCID: PMC10579710 DOI: 10.1111/pbi.14132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/12/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023]
Abstract
Petal senescence is the final stage of flower development. Transcriptional regulation plays key roles in this process. However, whether and how post-transcriptional regulation involved is still largely unknown. Here, we identified an ethylene-induced NAC family transcription factor DcNAP in carnation (Dianthus caryophyllus L.). One allele, DcNAP-dTdic1, has an insertion of a dTdic1 transposon in its second exon. The dTdic1 transposon disrupts the structure of DcNAP and causes alternative splicing, which transcribes multiple domain-deleted variants (DcNAP2 and others). Conversely, the wild type allele DcNAP transcribes DcNAP1 encoding an intact NAC domain. Silencing DcNAP1 delays and overexpressing DcNAP1 accelerates petal senescence in carnation, while silencing and overexpressing DcNAP2 have the opposite effects, respectively. Further, DcNAP2 could interact with DcNAP1 and interfere the binding and activation activity of DcNAP1 to the promoters of its downstream target ethylene biosynthesis genes DcACS1 and DcACO1. Lastly, ethylene signalling core transcriptional factor DcEIL3-1 can activate the expression of DcNAP1 and DcNAP2 in the same way by binding their promoters. In summary, we discovered a novel mechanism by which DcNAP regulates carnation petal senescence at the post-transcriptional level. It may also provide a useful strategy to manipulate the NAC domains of NAC transcription factors for crop genetic improvement.
Collapse
|
10
|
Shoormij F, Mirlohi A, Chan-Rodriguez D, Bolibok-Brągoszewska H, Saeidi G. Characterization of 14 Triticum species for the NAM-B1 gene and its associated traits. PLoS One 2023; 18:e0287798. [PMID: 37607184 PMCID: PMC10443865 DOI: 10.1371/journal.pone.0287798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Wheat grain protein, zinc (Zn), and iron (Fe) content are important wheat qualities crucial for human nutrition and health worldwide. Increasing these three components simultaneously in wheat grains by a single gene came into the picture through NAM-B1 cloning. NAM-B1 gene and its association with the mentioned grain quality traits have been primarily studied in common and durum wheat and their progenitors T. dicoccum and T. dicoccoides. METHOD In the present study, for the first time, 38 wheat accessions comprising ten hexaploids from five species and 28 tetraploids from nine species were evaluated in the field for two consecutive years. Additionally, the 582 first nucleotides of the NAM-B1 gene were examined. RESULT The NAM-B1 gene was present in 21 tetraploids and five hexaploid accessions. Seven tetraploid accessions contained the wild-type allele (five T. dicoccum, one T. dicoccoides, and one T. ispahanicum) and fourteen the mutated allele with a 'T' insertion at position 11 in the open reading frame, causing a frameshift. In hexaploid wheat comprising the gene, only one accession of T. spelta contained the wild-type allele, and the rest resembled the insertion mutated type. In the two-year field experiment, eight accessions with the wild-type NAM-B1 allele had significantly higher protein, Zn and Fe grain content when compared to indel-type accessions. Additionally, these accessions exhibited a lower mean for seed-filling duration than all other accessions containing indel-type alleles. In terms of grain yield, 1,000-kernel weight, kernel diameter, and kernel length, T. dicoccum accessions having wild-type alleles were similar to the indel-type accessions over two years of evaluation. CONCLUSION These findings further support the possibility of simultaneous improvement of wheat grain protein, Zn, and Fe content by a single gene crucial for human nutrition and health worldwide.
Collapse
Affiliation(s)
- Fatemeh Shoormij
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - David Chan-Rodriguez
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Ghodratollah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
11
|
Tan S, Sha Y, Sun L, Li Z. Abiotic Stress-Induced Leaf Senescence: Regulatory Mechanisms and Application. Int J Mol Sci 2023; 24:11996. [PMID: 37569371 PMCID: PMC10418887 DOI: 10.3390/ijms241511996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Leaf senescence is a natural phenomenon that occurs during the aging process of plants and is influenced by various internal and external factors. These factors encompass plant hormones, as well as environmental pressures such as inadequate nutrients, drought, darkness, high salinity, and extreme temperatures. Abiotic stresses accelerate leaf senescence, resulting in reduced photosynthetic efficiency, yield, and quality. Gaining a comprehensive understanding of the molecular mechanisms underlying leaf senescence in response to abiotic stresses is imperative to enhance the resilience and productivity of crops in unfavorable environments. In recent years, substantial advancements have been made in the study of leaf senescence, particularly regarding the identification of pivotal genes and transcription factors involved in this process. Nevertheless, challenges remain, including the necessity for further exploration of the intricate regulatory network governing leaf senescence and the development of effective strategies for manipulating genes in crops. This manuscript provides an overview of the molecular mechanisms that trigger leaf senescence under abiotic stresses, along with strategies to enhance stress tolerance and improve crop yield and quality by delaying leaf senescence. Furthermore, this review also highlighted the challenges associated with leaf senescence research and proposes potential solutions.
Collapse
Affiliation(s)
| | | | - Liwei Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Sehar S, Adil MF, Askri SMH, Feng Q, Wei D, Sahito FS, Shamsi IH. Pan-transcriptomic Profiling Demarcates Serendipita Indica-Phosphorus Mediated Tolerance Mechanisms in Rice Exposed to Arsenic Toxicity. RICE (NEW YORK, N.Y.) 2023; 16:28. [PMID: 37354226 DOI: 10.1186/s12284-023-00645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Inadvertent accumulation of arsenic (As) in rice (Oryza sativa L.) is a concern for people depending on it for their subsistence, as it verily causes epigenetic alterations across the genome as well as in specific cells. To ensure food safety, certain attempts have been made to nullify this highest health hazard encompassing physiological, chemical and biological methods. Albeit, the use of mycorrhizal association along with nutrient reinforcement strategy has not been explored yet. Mechanisms of response and resistance of two rice genotypes to As with or without phosphorus (P) nutrition and Serendipita indica (S. indica; S.i) colonization were explored by root transcriptome profiling in the present study. Results revealed that the resistant genotype had higher auxin content and root plasticity, which helped in keeping the As accumulation and P starvation response to a minimum under alone As stress. However, sufficient P supply and symbiotic relationship switched the energy resources towards plant's developmental aspects rather than excessive root proliferation. Higher As accumulating genotype (GD-6) displayed upregulation of ethylene signaling/biosynthesis, root stunting and senescence related genes under As toxicity. Antioxidant defense system and cytokinin biosynthesis/signaling of both genotypes were strengthened under As + S.i + P, while the upregulation of potassium (K) and zinc (Zn) transporters depicted underlying cross-talk with iron (Fe) and P. Differential expression of phosphate transporters, peroxidases and GSTs, metal detoxification/transport proteins, as well as phytohormonal metabolism were responsible for As detoxification. Taken together, S. indica symbiosis fortified with adequate P-fertilizer can prove to be effective in minimizing As acquisition and accumulation in rice plants.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qidong Feng
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongming Wei
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Falak Sehar Sahito
- Dow International Medical College, Dow University of Health Sciences, Karachi, 74200, Pakistan
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Choi I, Ahn CS, Lee DH, Baek SA, Jung JW, Kim JK, Lee HS, Pai HS. Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening. Mol Cells 2022; 45:660-672. [PMID: 35993163 PMCID: PMC9448650 DOI: 10.14348/molcells.2022.2025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
The target of rapamycin complex (TORC) plays a key role in plant cell growth and survival by regulating the gene expression and metabolism according to environmental information. TORC activates transcription, mRNA translation, and anabolic processes under favorable conditions, thereby promoting plant growth and development. Tomato fruit ripening is a complex developmental process promoted by ethylene and specific transcription factors. TORC is known to modulate leaf senescence in tomato. In this study, we investigated the function of TORC in tomato fruit ripening using virus-induced gene silencing (VIGS) of the TORC genes, TOR, lethal with SEC13 protein 8 (LST8), and regulatory-associated protein of TOR (RAPTOR). Quantitative reverse transcription-polymerase chain reaction showed that the expression levels of tomato TORC genes were the highest in the orange stage during fruit development in Micro-Tom tomato. VIGS of these TORC genes using stage 2 tomato accelerated fruit ripening with premature orange/red coloring and decreased fruit growth, when control tobacco rattle virus 2 (TRV2)-myc fruits reached the mature green stage. TORC-deficient fruits showed early accumulation of carotenoid lycopene and reduced cellulose deposition in pericarp cell walls. The early ripening fruits had higher levels of transcripts related to fruit ripening transcription factors, ethylene biosynthesis, carotenoid synthesis, and cell wall modification. Finally, the early ripening phenotype in Micro-Tom tomato was reproduced in the commercial cultivar Moneymaker tomato by VIGS of the TORC genes. Collectively, these results demonstrate that TORC plays an important role in tomato fruit ripening by modulating the transcription of various ripening-related genes.
Collapse
Affiliation(s)
- Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Platform Technology Research Center, Corporate R&D, LG Chem/LG Science Park, Seoul 07796, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Seung-A Baek
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jung Won Jung
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Ho-Seok Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
14
|
Wang C, Li T, Liu Q, Li L, Feng Z, Yu S. Characterization and Functional Analysis of GhNAC82, A NAM Domain Gene, Coordinates the Leaf Senescence in Upland Cotton ( Gossypium hirsutum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1491. [PMID: 35684264 PMCID: PMC9182992 DOI: 10.3390/plants11111491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/27/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In the process of growth and development, cotton exhibits premature senescence under various abiotic stresses, impairing yield and fiber quality. NAC (NAM, ATAF1,2, and CUC2) protein widely distributed in land plants, play the critical role in responding to abiotic stress and regulating leaf senescence. We have identified and functional analyzed a NAM domain gene GhNAC82 in upland cotton, it was located on the A11 chromosome 4,921,702 to 4,922,748 bp, only containing one exon. The spatio-temporal expression pattern analysis revealed that it was highly expressed in root, torus, ovule and fiber development stage. The results of qRT-PCR validated that GhNAC82 negatively regulated by salt stress, drought stress, H2O2 stress, IAA treatment, and ethylene treatment, positively regulated by the ABA and MeJA treatment. Moreover, heterologous overexpression of GhNAC82 results in leaf premature senescence and delays root system development in Arabidopsis thaliana. The phenotype of delayed-senescence was performed after silencing GhNAC82 by VIGS in premature cotton. Taken together, GhNAC82 was involved in different abiotic stress pathways and play important roles in negatively regulating leaf premature senescence.
Collapse
Affiliation(s)
- Chenlei Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Qibao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
| | - Shuxun Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| |
Collapse
|
15
|
Wang C, Liu H, Huang L, Chen H, Lu X, Zhou B. LcNAC13 Is Involved in the Reactive Oxygen Species-Dependent Senescence of the Rudimentary Leaves in Litchi chinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:886131. [PMID: 35615126 PMCID: PMC9125249 DOI: 10.3389/fpls.2022.886131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Litchi is an important evergreen fruit tree. Floral formation in litchi is induced by low temperatures (LTs). However, unstable flowering is a challenge for litchi production in times of global warming and climate change. Previous studies have shown that the methyl viologen dichloride hydrate-generated reactive oxygen species (ROS) could promote flowering. Leaves in the panicles may affect the development of the inflorescence in litchi under high-temperature condition. In this study, potted litchi trees were transferred to growth chambers at LT and high temperature (HT). From a previous dataset of the RNA sequencing of the ROS-treated rudimentary leaves, a NAC transcription factor-encoding gene LcNAC13 was identified. By genetic transformation of LcNAC13 to Arabidopsis thaliana and tobacco, it was found that the ROS-induced senescence of the leaves was accelerated. Silencing LcNAC13 by virus-induced gene silencing (VIGS) delayed ROS-dependent senescence. Our results suggested that LcNAC13 regulates rudimentary leaf senescence. Our study provided a new target gene for the future molecular breeding of new cultivars that could flower under global warming conditions.
Collapse
Affiliation(s)
- Congcong Wang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Hao Liu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Lijie Huang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Houbin Chen
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingyu Lu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Biyan Zhou
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Abdirad S, Ghaffari MR, Majd A, Irian S, Soleymaniniya A, Daryani P, Koobaz P, Shobbar ZS, Farsad LK, Yazdanpanah P, Sadri A, Mirzaei M, Ghorbanzadeh Z, Kazemi M, Hadidi N, Haynes PA, Salekdeh GH. Genome-Wide Expression Analysis of Root Tips in Contrasting Rice Genotypes Revealed Novel Candidate Genes for Water Stress Adaptation. FRONTIERS IN PLANT SCIENCE 2022; 13:792079. [PMID: 35265092 PMCID: PMC8899714 DOI: 10.3389/fpls.2022.792079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 06/02/2023]
Abstract
Root system architecture (RSA) is an important agronomic trait with vital roles in plant productivity under water stress conditions. A deep and branched root system may help plants to avoid water stress by enabling them to acquire more water and nutrient resources. Nevertheless, our knowledge of the genetics and molecular control mechanisms of RSA is still relatively limited. In this study, we analyzed the transcriptome response of root tips to water stress in two well-known genotypes of rice: IR64, a high-yielding lowland genotype, which represents a drought-susceptible and shallow-rooting genotype; and Azucena, a traditional, upland, drought-tolerant and deep-rooting genotype. We collected samples from three zones (Z) of root tip: two consecutive 5 mm sections (Z1 and Z2) and the following next 10 mm section (Z3), which mainly includes meristematic and maturation regions. Our results showed that Z1 of Azucena was enriched for genes involved in cell cycle and division and root growth and development whereas in IR64 root, responses to oxidative stress were strongly enriched. While the expansion of the lateral root system was used as a strategy by both genotypes when facing water shortage, it was more pronounced in Azucena. Our results also suggested that by enhancing meristematic cell wall thickening for insulation purposes as a means of confronting stress, the sensitive IR64 genotype may have reduced its capacity for root elongation to extract water from deeper layers of the soil. Furthermore, several members of gene families such as NAC, AP2/ERF, AUX/IAA, EXPANSIN, WRKY, and MYB emerged as main players in RSA and drought adaptation. We also found that HSP and HSF gene families participated in oxidative stress inhibition in IR64 root tip. Meta-quantitative trait loci (QTL) analysis revealed that 288 differentially expressed genes were colocalized with RSA QTLs previously reported under drought and normal conditions. This finding warrants further research into their possible roles in drought adaptation. Overall, our analyses presented several major molecular differences between Azucena and IR64, which may partly explain their differential root growth responses to water stress. It appears that Azucena avoided water stress through enhancing growth and root exploration to access water, whereas IR64 might mainly rely on cell insulation to maintain water and antioxidant system to withstand stress. We identified a large number of novel RSA and drought associated candidate genes, which should encourage further exploration of their potential to enhance drought adaptation in rice.
Collapse
Affiliation(s)
- Somayeh Abdirad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Ahmad Majd
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Parisa Daryani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Laleh Karimi Farsad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Yazdanpanah
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Amirhossein Sadri
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Zahra Ghorbanzadeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mehrbano Kazemi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Naghmeh Hadidi
- Department of Clinical Research and Electronic Microscope, Pasteur Institute of Iran, Tehran, Iran
| | - Paul A. Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
17
|
Baldoni E, Frugis G, Martinelli F, Benny J, Paffetti D, Buti M. A Comparative Transcriptomic Meta-Analysis Revealed Conserved Key Genes and Regulatory Networks Involved in Drought Tolerance in Cereal Crops. Int J Mol Sci 2021; 22:13062. [PMID: 34884864 PMCID: PMC8657901 DOI: 10.3390/ijms222313062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drought affects plant growth and development, causing severe yield losses, especially in cereal crops. The identification of genes involved in drought tolerance is crucial for the development of drought-tolerant crops. The aim of this study was to identify genes that are conserved key players for conferring drought tolerance in cereals. By comparing the transcriptomic changes between tolerant and susceptible genotypes in four Gramineae species, we identified 69 conserved drought tolerant-related (CDT) genes that are potentially involved in the drought tolerance of all of the analysed species. The CDT genes are principally involved in stress response, photosynthesis, chlorophyll biogenesis, secondary metabolism, jasmonic acid signalling, and cellular transport. Twenty CDT genes are not yet characterized and can be novel candidates for drought tolerance. The k-means clustering analysis of expression data highlighted the prominent roles of photosynthesis and leaf senescence-related mechanisms in differentiating the drought response between tolerant and sensitive genotypes. In addition, we identified specific transcription factors that could regulate the expression of photosynthesis and leaf senescence-related genes. Our analysis suggests that the balance between the induction of leaf senescence and maintenance of photosynthesis during drought plays a major role in tolerance. Fine-tuning of CDT gene expression modulation by specific transcription factors can be the key to improving drought tolerance in cereals.
Collapse
Affiliation(s)
- Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Alfonso Corti 12, 20133 Milan, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, 00015 Monterotondo, Italy;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Jubina Benny
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90133 Palermo, Italy;
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy;
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy;
| |
Collapse
|
18
|
Liu C, Chen S, Wang S, Zhao X, Li K, Chen S, Qu GZ. A genome wide transcriptional study of Populus alba x P. tremula var. glandulosa in response to nitrogen deficiency stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1277-1293. [PMID: 34220043 PMCID: PMC8212198 DOI: 10.1007/s12298-021-01012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/17/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Poplar 84 K (Populus alba x P. tremula var. glandulosa) is a good resource for genetic engineering due to its rapid growth and wide adaptability, and it is also an excellent ornamental tree species. In this study, we used 84 K plantlets grown in the nitrogen-limited medium as experimental materials to explore the molecular mechanism in 84 K leaves under nitrogen deficiency. A total of 5,868 differentially expressed genes (DEGs) were identified using the transcriptional information from RNA-seq data. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment results revealed that the DEGs were mainly involved in energy metabolism and anthocyanin biosynthesis. We then identified differentially expressed transcription factors (TFs) and constructed TF centered gene co-expression networks for chlorophyll and anthocyanin biosynthesis pathway genes. Twenty potential regulators were finally identified. We speculated the transcription factors that control the pigmentation in leaves with the MYB-bHLH-WD40 (MBW) pigment regulatory model. Such identification will clarify the genetic basis of the secondary metabolism in 84 K, and being a source of candidate genes for future plant genetic engineering. Our work broadens the researchers' understanding of the regulation of anthocyanin synthesis in trees and provides new perspectives for ornamental 84 K poplar breeding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01012-3.
Collapse
Affiliation(s)
- Caixia Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Sui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guan-zheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
19
|
Melo BP, Lourenço-Tessutti IT, Fraga OT, Pinheiro LB, de Jesus Lins CB, Morgante CV, Engler JA, Reis PAB, Grossi-de-Sá MF, Fontes EPB. Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Sci Rep 2021; 11:11178. [PMID: 34045652 PMCID: PMC8160357 DOI: 10.1038/s41598-021-90767-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 01/16/2023] Open
Abstract
NACs are plant-specific transcription factors involved in controlling plant development, stress responses, and senescence. As senescence-associated genes (SAGs), NACs integrate age- and stress-dependent pathways that converge to programmed cell death (PCD). In Arabidopsis, NAC-SAGs belong to well-characterized regulatory networks, poorly understood in soybean. Here, we interrogated the soybean genome and provided a comprehensive analysis of senescence-associated Glycine max (Gm) NACs. To functionally examine GmNAC-SAGs, we selected GmNAC065, a putative ortholog of Arabidopsis ANAC083/VNI2 SAG, and the cell death-promoting GmNAC085, an ANAC072 SAG putative ortholog, for analyses. Expression analysis of GmNAC065 and GmNAC085 in soybean demonstrated (i) these cell death-promoting GmNACs display contrasting expression changes during age- and stress-induced senescence; (ii) they are co-expressed with functionally different gene sets involved in stress and PCD, and (iii) are differentially induced by PCD inducers. Furthermore, we demonstrated GmNAC065 expression delays senescence in Arabidopsis, a phenotype associated with enhanced oxidative performance under multiple stresses, higher chlorophyll, carotenoid and sugar contents, and lower stress-induced PCD compared to wild-type. In contrast, GmNAC085 accelerated stress-induced senescence, causing enhanced chlorophyll loss, ROS accumulation and cell death, decreased antioxidative system expression and activity. Accordingly, GmNAC065 and GmNAC085 targeted functionally contrasting sets of downstream AtSAGs, further indicating that GmNAC85 and GmNAC065 regulators function inversely in developmental and environmental PCD.
Collapse
Affiliation(s)
- Bruno Paes Melo
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil.
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil.
- Pole Sophia Agrobiotech, Institute Nacional de la Recherche Agronomique, INRAE, Sophia Antipolis, France.
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil.
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- Pole Sophia Agrobiotech, Institute Nacional de la Recherche Agronomique, INRAE, Sophia Antipolis, France
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Otto Teixeira Fraga
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil
| | - Luanna Bezerra Pinheiro
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Camila Barrozo de Jesus Lins
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Janice Almeida Engler
- Pole Sophia Agrobiotech, Institute Nacional de la Recherche Agronomique, INRAE, Sophia Antipolis, France
| | - Pedro Augusto Braga Reis
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil
| | - Maria Fátima Grossi-de-Sá
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Elizabeth Pacheco Batista Fontes
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil.
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil.
| |
Collapse
|
20
|
Su Y, Huang Y, Dong X, Wang R, Tang M, Cai J, Chen J, Zhang X, Nie G. Exogenous Methyl Jasmonate Improves Heat Tolerance of Perennial Ryegrass Through Alteration of Osmotic Adjustment, Antioxidant Defense, and Expression of Jasmonic Acid-Responsive Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:664519. [PMID: 34025701 PMCID: PMC8137847 DOI: 10.3389/fpls.2021.664519] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 05/14/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is an important cool-season grass species that is widely cultivated in temperate regions worldwide but usually sensitive to heat stress. Jasmonates (JAs) may have a positive effect on plant tolerance under heat stress. In this study, results showed that exogenous methyl jasmonic acid (MeJA) could significantly improve heat tolerance of perennial ryegrass through alteration of osmotic adjustment, antioxidant defense, and the expression of JA-responsive genes. MeJA-induced heat tolerance was involved in the maintenance of better relative water content (RWC), the decline of chlorophyll (Chl) loss for photosynthetic maintenance, as well as maintained lower electrolyte leakage (EL) and malondialdehyde (MDA) content under heat condition, so as to avoid further damage to plants. Besides, results also indicated that exogenous MeJA treatment could increase the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), thus enhancing the scavenging ability of reactive oxygen species, alleviating the oxidative damage caused by heat stress. Heat stress and exogenous MeJA upregulated transcript levels of related genes (LpLOX2, LpAOC, LpOPR3, and LpJMT) in JA biosynthetic pathway, which also could enhance the accumulation of JA and MeJA content. Furthermore, some NAC transcription factors and heat shock proteins may play a positive role in enhancing resistance of perennial ryegrass with heat stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinquan Zhang
- Department of Forage Science, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- Department of Forage Science, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Suzuki G, Lucob-Agustin N, Kashihara K, Fujii Y, Inukai Y, Gomi K. Rice MEDIATOR25, OsMED25, is an essential subunit for jasmonate-mediated root development and OsMYC2-mediated leaf senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110853. [PMID: 33775361 DOI: 10.1016/j.plantsci.2021.110853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The Mediator multiprotein complex acts as a universal adaptor between transcription factors (TFs) and RNA polymerase II. MEDIATOR25 (MED25) has an important role in jasmonic acid (JA) signaling in Arabidopsis. However, no research has been conducted on the role of MED25 in JA signaling in rice, which is one of the most important food crops globally and is a model plant for molecular studies in other monocotyledonous species. In the present study, we isolated the loss-of function mutant of MED25, osmed25, through the map-based cloning and phenotypic complementation analysis by the introduction of OsMED25 and investigated the role of OsMED25 in JA signaling in rice. The osmed25 mutants had longer primary (seminal) roots than those of the wild-type (WT) and exhibited JA-insensitive phenotypes. S-type lateral root densities in osmed25 mutants were lower than those in the WT, whereas L-type lateral root densities in osmed25 mutants were higher than those in the WT. Furthermore, the osmed25 mutants retarded JA-regulated leaf senescence under dark-induced senescence. Mutated osmed25 protein could not interact with OsMYC2, which is a positive TF in JA signaling in rice. The expression of JA-responsive senescence-associated genes was not upregulated in response to JA in the osmed25 mutants. The results suggest that OsMED25 participates in JA-mediated root development and OsMYC2-mediated leaf senescence in rice.
Collapse
Affiliation(s)
- Go Suzuki
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Nonawin Lucob-Agustin
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Keita Kashihara
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yumi Fujii
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
22
|
Current Understanding of Leaf Senescence in Rice. Int J Mol Sci 2021; 22:ijms22094515. [PMID: 33925978 PMCID: PMC8123611 DOI: 10.3390/ijms22094515] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity. Leaf senescence is a complex and tightly regulated process, with coordinated actions of multiple pathways, responding to a sophisticated integration of leaf age and various environmental signals. Many studies have been carried out to understand the leaf senescence-associated molecular mechanisms including the chlorophyll breakdown, phytohormonal and transcriptional regulation, interaction with environmental signals, and associated metabolic changes. The metabolic reprogramming and nutrient recycling occurring during leaf senescence highlight the fundamental role of this developmental stage for the nutrient economy at the whole plant level. The strong impact of the senescence-associated nutrient remobilization on cereal productivity and grain quality is of interest in many breeding programs. This review summarizes our current knowledge in rice on (i) the actors of chlorophyll degradation, (ii) the identification of stay-green genotypes, (iii) the identification of transcription factors involved in the regulation of leaf senescence, (iv) the roles of leaf-senescence-associated nitrogen enzymes on plant performance, and (v) stress-induced senescence. Compiling the different advances obtained on rice leaf senescence will provide a framework for future rice breeding strategies to improve grain yield.
Collapse
|
23
|
Mao Y, Xu J, Wang Q, Li G, Tang X, Liu T, Feng X, Wu F, Li M, Xie W, Lu Y. A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2790-2806. [PMID: 33481006 DOI: 10.1093/jxb/erab023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/30/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Although plant-specific NAC transcription factors play crucial roles in response to abiotic stress, few reports describe the regulation of NAC genes in maize (Zea mays) by the cis-natural antisense transcripts (cis-NATs). In this study, 521 NAC genes from Gramineae were classified, of which 51 NAC genes contained cis-NATs. ZmNAC48 and cis-NATZmNAC48 co-localized to the same cell nucleus, and both transcripts responded to drought stress. Arabidopsis plants overexpressing ZmNAC48 had improved drought tolerance, lower rate of water loss, enhanced stomatal closure, and higher rates of survival. Transient expression in both maize protoplasts and tobacco leaves indicated that cis-NATZmNAC48 reduced ZmNAC48 expression. Western blotting and ribosome profiling analyses confirmed that cis-NATZmNAC48 lacked protein coding potential. Furthermore, the cis-NAT-derived small-interfering RNAs (nat-siRNAs) generated from the overlapping regions of ZmNAC48 and cis-NATZmNAC48 were detected in maize and transgenic Arabidopsis. Cis-NATZmNAC48 overexpressing maize showed higher water loss rate, increased stomatal opening, and had more dead leaves. Expression of ZmNAC48 and nat-siRNA was decreased in these plants. Taken together, our study indicates that both ZmNAC48 and cis-NATZmNAC48 are involved in plant drought stress responses, and that the double-stranded RNA-dependent mechanism is involved in the interaction between cis-NATZmNAC48 and ZmNAC48. Additionally, cis-NATZmNAC48 may negatively regulate ZmNAC48 to affect stomatal closure of maize.
Collapse
Affiliation(s)
- Yan Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Qi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Guobang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xin Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Tianhong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Fengkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Menglu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Wubing Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| |
Collapse
|
24
|
Carrillo-Bermejo EA, Gamboa-Tuz SD, Pereira-Santana A, Keb-Llanes MA, Castaño E, Figueroa-Yañez LJ, Rodriguez-Zapata LC. The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress. JOURNAL OF PLANT RESEARCH 2020; 133:897-909. [DOI: https:/doi.org/10.1007/s10265-020-01230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/20/2020] [Accepted: 10/08/2020] [Indexed: 03/08/2024]
|
25
|
Carrillo-Bermejo EA, Gamboa-Tuz SD, Pereira-Santana A, Keb-Llanes MA, Castaño E, Figueroa-Yañez LJ, Rodriguez-Zapata LC. The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress. JOURNAL OF PLANT RESEARCH 2020; 133:897-909. [PMID: 33094397 DOI: 10.1007/s10265-020-01230-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/20/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Climate change has caused serious problems related to the productivity of agricultural crops directly affecting human well-being. Plants have evolved to produce molecular mechanisms in response to environmental stresses, such as transcription factors (TFs), to cope with abiotic stress. The NAC proteins constitute a plant-specific family of TFs involved in plant development processes and tolerance to biotic and abiotic stress. Sugarcane is a perennial grass that accumulates a large amount of sucrose and is a crucial agro-industry crop in tropical regions. Our previous transcriptome analyses on sugarcane that were exposed to drought conditions revealed significant increases in the expression of several NAC TFs through all of the time-point stress conditions. In this work, we characterize all previously detected sugarcane NAC genes, utilizing phylogenetics and expression analyses. Furthermore, we characterized a sugarcane NAC gene orthologous to the senescence-associated genes AtNAP and OsNAP via transient expression in tobacco calluses, from Arabidopsis and rice respectively, thus we named it the SoNAP gene. Transient localization assays on onion epidermal cells confirmed the nuclear localization of the SoNAP. Expression analysis showed that the SoNAP gene was induced by high salinity, drought, and abscisic acid treatments. The overexpression of the SoNAP gene in tobacco calluses caused a senescence associated phenotype. Overall, our results indicated that the SoNAP gene from sugarcane is transcriptionally induced under abiotic stress conditions and conserved the predicted senescence-associated functions when it was overexpressed in a heterologous plant model. This work provides key insights about the senescence mechanisms related to abiotic stress and it provides a benchmark for future work on the improvement of this economically important crop.
Collapse
Affiliation(s)
| | - Samuel David Gamboa-Tuz
- Biotechnology Unit, Centro de Investigacion Cientifica de Yucatan, 97205, Mérida, Yucatan, Mexico
| | - Alejandro Pereira-Santana
- Industrial Biotechnology Unit, Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Zapopan, Jalisco, Mexico
- Direccion de Catedras, Consejo Nacional de Ciencia y Tecnologia, Ciudad de Mexico, Mexico
| | - Miguel A Keb-Llanes
- Biotechnology Unit, Centro de Investigacion Cientifica de Yucatan, 97205, Mérida, Yucatan, Mexico
| | - Enrique Castaño
- Plant Biochemistry and Molecular Biology Unit, Centro de Investigacion Cientifica de Yucatan, 97205, Mérida, Yucatán, Mexico
| | - Luis Joel Figueroa-Yañez
- Industrial Biotechnology Unit, Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Zapopan, Jalisco, Mexico.
| | - Luis C Rodriguez-Zapata
- Biotechnology Unit, Centro de Investigacion Cientifica de Yucatan, 97205, Mérida, Yucatan, Mexico.
| |
Collapse
|
26
|
Kanojia A, Gupta S, Benina M, Fernie AR, Mueller-Roeber B, Gechev T, Dijkwel PP. Developmentally controlled changes during Arabidopsis leaf development indicate causes for loss of stress tolerance with age. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6340-6354. [PMID: 32720687 PMCID: PMC7586751 DOI: 10.1093/jxb/eraa347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/24/2020] [Accepted: 07/22/2020] [Indexed: 05/26/2023]
Abstract
Leaf senescence is the final stage of leaf development and is induced by the gradual occurrence of age-related changes (ARCs). The process of leaf senescence has been well described, but the cellular events leading to this process are still poorly understood. By analysis of progressively ageing, but not yet senescing, Arabidopsis thaliana rosette leaves, we aimed to better understand processes occurring prior to the onset of senescence. Using gene expression analysis, we found that as leaves mature, genes responding to oxidative stress and genes involved in stress hormone biosynthesis and signalling were up-regulated. A decrease in primary metabolites that provide protection against oxidative stress was a possible explanation for the increased stress signature. The gene expression and metabolomics changes occurred concomitantly to a decrease in drought, salinity, and dark stress tolerance of individual leaves. Importantly, stress-related genes showed elevated expression in the early ageing mutant old5 and decreased expression in the delayed ageing mutant ore9. We propose that the decreased stress tolerance with age results from the occurrence of senescence-inducing ARCs that is integrated into the leaf developmental programme, and that this ensures a timely and certain death.
Collapse
Affiliation(s)
- Aakansha Kanojia
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Saurabh Gupta
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
27
|
Molecular and Biochemical Differences in Leaf Explants and the Implication for Regeneration Ability in Rorippa aquatica (Brassicaceae). PLANTS 2020; 9:plants9101372. [PMID: 33076473 PMCID: PMC7602576 DOI: 10.3390/plants9101372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/26/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022]
Abstract
Plants have a high regeneration capacity and some plant species can regenerate clone plants, called plantlets, from detached vegetative organs. We previously outlined the molecular mechanisms underlying plantlet regeneration from Rorippa aquatica (Brassicaceae) leaf explants. However, the fundamental difference between the plant species that can and cannot regenerate plantlets from vegetative organs remains unclear. Here, we hypothesized that the viability of leaf explants is a key factor affecting the regeneration capacity of R. aquatica. To test this hypothesis, the viability of R. aquatica and Arabidopsis thaliana leaf explants were compared, with respect to the maintenance of photosynthetic activity, senescence, and immune response. Time-course analyses of photosynthetic activity revealed that R. aquatica leaf explants can survive longer than those of A. thaliana. Endogenous abscisic acid (ABA) and jasmonic acid (JA) were found at low levels in leaf explant of R. aquatica. Time-course transcriptome analysis of R. aquatica and A. thaliana leaf explants suggested that senescence was suppressed at the transcriptional level in R. aquatica. Application of exogenous ABA reduced the efficiency of plantlet regeneration. Overall, our results propose that in nature, plant species that can regenerate in nature can survive for a long time.
Collapse
|
28
|
Lim C, Kang K, Shim Y, Sakuraba Y, An G, Paek NC. Rice ETHYLENE RESPONSE FACTOR 101 Promotes Leaf Senescence Through Jasmonic Acid-Mediated Regulation of OsNAP and OsMYC2. FRONTIERS IN PLANT SCIENCE 2020; 11:1096. [PMID: 32765572 PMCID: PMC7378735 DOI: 10.3389/fpls.2020.01096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/05/2020] [Accepted: 07/03/2020] [Indexed: 05/02/2023]
Abstract
Leaf senescence is the final stage of leaf development and an important step that relocates nutrients for grain filling in cereal crops. Senescence occurs in an age-dependent manner and under unfavorable environmental conditions such as deep shade, water deficit, and high salinity stresses. Although many transcription factors that modulate leaf senescence have been identified, the mechanisms that regulate leaf senescence in response to environmental conditions remain elusive. Here, we show that rice (Oryza sativa) ETHYLENE RESPONSE FACTOR 101 (OsERF101) promotes the onset and progression of leaf senescence. OsERF101 encodes a predicted transcription factor and OsERF101 transcript levels rapidly increased in rice leaves during dark-induced senescence (DIS), indicating that OsERF101 is a senescence-associated transcription factor. Compared with wild type, the oserf101 T-DNA knockout mutant showed delayed leaf yellowing and higher chlorophyll contents during DIS and natural senescence. Consistent with its delayed-yellowing phenotype, the oserf101 mutant exhibited downregulation of genes involved in chlorophyll degradation, including rice NAM, ATAF1/2, and CUC2 (OsNAP), STAY-GREEN (SGR), NON-YELLOW COLORING 1 (NYC1), and NYC3 during DIS. After methyl jasmonate treatment to induce rapid leaf de-greening, the oserf101 leaves retained more chlorophyll compared with wild type, indicating that OsERF101 is involved in promoting jasmonic acid (JA)-induced leaf senescence. Consistent with the involvement of JA, the expression of the JA signaling genes OsMYC2/JA INSENSITIVE 1 (OsJAI1) and CORONATINE INSENSITIVE 1a (OsCOI1a), was downregulated in the oserf101 leaves during DIS. Transient transactivation and chromatin immunoprecipitation assays revealed that OsERF101 directly binds to the promoter regions of OsNAP and OsMYC2, which activate genes involved in chlorophyll degradation and JA signaling-mediated leaf senescence. These results demonstrate that OsERF101 promotes the onset and progression of leaf senescence through a JA-mediated signaling pathway.
Collapse
Affiliation(s)
- Chaemyeong Lim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, South Korea
| | - Yejin Shim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yasuhito Sakuraba
- Graduate School of Agricultural and Life Sciences, Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
29
|
Nie G, Yang X, Yang Z, Zhong M, Zhu Y, Zhou J, Appiah C, Liao Z, Feng G, Zhang X. Genome-wide investigation of the NAC transcript factor family in perennial ryegrass (Lolium perenne L.) and expression analysis under various abiotic stressor. Genomics 2020; 112:4224-4231. [PMID: 32640275 DOI: 10.1016/j.ygeno.2020.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022]
Abstract
NAC is one of the largest family of plant-specific transcription factors, and it plays important roles in plant development and stress responses. The study identified 72 LpNACs genes from the perennial ryegrass genome database. Gene length, MW and pI of NAC family transcription factors varied, but the gene structure and motifs were relatively conserved in bioinformatics analysis. Phylogenetic analyses of perennial ryegrass, rice and Arabidopsis were performed to study the evolutionary and functional relationships in various species. The expression of LpNAC genes that respond to various abiotic stresses including high salinity, ABA, high temperature, polyethylene glycol (PEG) and heavy metal was comprehensively analyzed. The present study provides a basic understanding of the NAC gene family in perennial ryegrass for further abiotic stress studies and improvements in breeding.
Collapse
Affiliation(s)
- Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinying Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongfu Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Minyi Zhong
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongqun Zhu
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jie Zhou
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Charlotte Appiah
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongchao Liao
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
30
|
Forlani S, Cozzi C, Rosa S, Tadini L, Masiero S, Mizzotti C. HEBE, a novel positive regulator of senescence in Solanum lycopersicum. Sci Rep 2020; 10:11021. [PMID: 32620827 PMCID: PMC7335192 DOI: 10.1038/s41598-020-67937-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2019] [Accepted: 06/11/2020] [Indexed: 11/29/2022] Open
Abstract
Leaf senescence and plant aging are traits of great interest for breeders. Senescing cells undergo important physiological and biochemical changes, while cellular structures such as chloroplasts are degraded with dramatic metabolic consequences for the whole plant. The possibility of prolonging the photosynthetic ability of leaves could positively impact the plant's life span with benefits for biomass production and metabolite accumulation; plants with these characteristics display a stay-green phenotype. A group of plant transcription factors known as NAC play a pivotal role in controlling senescence: here we describe the involvement of the tomato NAC transcription factor Solyc12g036480, which transcript is present in leaves and floral buds. Since its silencing delays leaf senescence and prevents plants from ageing, we renamed Solyc12g0364 HḖBĒ, for the Greek goddess of youth. In this manuscript we describe how HEB downregulation negatively affects the progression of senescence, resulting in changes in transcription of senescence-promoting genes, as well as the activity of enzymes involved in chlorophyll degradation, thereby explaining the stay-green phenotype.
Collapse
Affiliation(s)
- Sara Forlani
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Carolina Cozzi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Stefano Rosa
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Luca Tadini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Simona Masiero
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| | - Chiara Mizzotti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
31
|
A RING-Type E3 Ubiquitin Ligase, OsGW2, Controls Chlorophyll Content and Dark-Induced Senescence in Rice. Int J Mol Sci 2020; 21:ijms21051704. [PMID: 32131496 PMCID: PMC7084548 DOI: 10.3390/ijms21051704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/03/2023] Open
Abstract
Leaf senescence is the final stage of plant development. Many internal and external factors affect the senescence process in rice (Oryza sativa L.). In this study, we identified qCC2, a major quantitative trait locus (QTL) for chlorophyll content using a population derived from an interspecific cross between O. sativa (cv. Hwaseong) and Oryza grandiglumis. The O. grandiglumis allele at qCC2 increased chlorophyll content and delayed senescence. GW2 encoding E3 ubiquitin ligase in the qCC2 region was selected as a candidate for qCC2. To determine if GW2 is allelic to qCC2, a gw2-knockout mutant (gw2-ko) was examined using a dark-induced senescence assay. gw2-ko showed delayed leaf senescence in the dark with down-regulated expression of senescence-associated genes (SAGs) and chlorophyll degradation genes (CDGs). The association of the GW2 genotype with the delayed senescence phenotype was confirmed in an F2 population. RNA-seq analysis was conducted to investigate 30-day-old leaf transcriptome dynamics in Hwaseong and a backcross inbred line-CR2002-under dark treatment. This resulted in the identification of genes involved in phytohormone signaling and associated with senescence. These results suggested that transcriptional regulation was associated with delayed senescence in CR2002, and RING-type E3 ubiquitin ligase GW2 was a positive regulator of leaf senescence in rice.
Collapse
|
32
|
Bai J, Wang X, Wu H, Ling F, Zhao Y, Lin Y, Wang R. Comprehensive construction strategy of bidirectional green tissue-specific synthetic promoters. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:668-678. [PMID: 31393049 PMCID: PMC7004895 DOI: 10.1111/pbi.13231] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/27/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 05/03/2023]
Abstract
Bidirectional green tissue-specific promoters have important application prospects in genetic engineering and crop genetic improvement. However, there is no report on the application of them, mainly due to undiscovered natural bidirectional green tissue-specific promoters and the lack of a comprehensive approach for the synthesis of these promoters. In order to compensate for this vacancy, the present study reports a novel strategy for the expression regulatory sequence selection and the bidirectional green tissue-specific synthetic promoter construction. Based on this strategy, seven promoters were synthesized and introduced into rice by agrobacterium-mediated transformation. The functional identification of these synthetic promoters was performed by the expression pattern of GFP and GUS reporter genes in two reverse directions in transgenic rice. The results indicated that all the synthetic promoters possessed bidirectional expression activities in transgenic rice, and four synthetic promoters (BiGSSP2, BiGSSP3, BiGSSP6, BiGSSP7) showed highly bidirectional expression efficiencies specifically in green tissues (leaf, sheath, panicle, stem), which could be widely applied to agricultural biotechnology. Our study provided a feasible strategy for the construction of synthetic promoters, and we successfully created four bidirectional green tissue-specific synthetic promoters. It is the first report on bidirectional green tissue-specific promoters that could be efficiently applied in genetic engineering.
Collapse
Affiliation(s)
- Jiuyuan Bai
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| | - Xin Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| | - Hao Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Fei Ling
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Yun Zhao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Rui Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| |
Collapse
|
33
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|
34
|
Li X, Xie L, Zheng H, Cai M, Cheng Z, Bai Y, Li J, Gao J. Transcriptome profiling of postharvest shoots identifies PheNAP2- and PheNAP3-promoted shoot senescence. TREE PHYSIOLOGY 2019; 39:2027-2044. [PMID: 31595958 DOI: 10.1093/treephys/tpz100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The juvenile shoots of Phyllostachys edulis have been used as a food source for thousands of years, and it is recognized as a potential source of nutraceuticals. However, its rapid senescence restricts bamboo production and consumption, and the underlying molecular mechanisms of rapid shoot senescence remain largely unclear. In the present study, transcriptome profiling was employed to investigate the molecular regulation of postharvest senescence in shoots, along with physiological assays and anatomical dissections. Results revealed a distinct shift in expression postharvest, specifically transitions from cellular division and differentiation to the relocation of nutrients and programmed cell death. A number of regulatory and signaling factors were induced during postharvest senescence. Moreover, transcription factors, including NAM, ATAF and CUC (NAC) transcription factors, basic helix-loop-helix transcription factors, basic region/leucine zipper transcription factors, MYB transcription factors and WRKY transcription factors, were critical for shoot postharvest senescence, of which NACs were the most abundant. PheNAP2 and PheNAP3 were induced in postharvest shoots and found to promote leaf senescence in Arabidopsis by inducing the expression of AtSAG12 and AtSAG113. PheNAP2 and PheNAP3 could both restore the stay-green Arabidopsis nap to the wild-type phenotype either under normal growth condition or under abscisic acid treatment. Collectively, these results suggest that PheNAPs may promote shoot senescence. These findings provide a systematic view of shoot senescence and will inform future studies on the underlying molecular mechanisms responsible for shoot degradation during storage.
Collapse
Affiliation(s)
- Xiangyu Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Lihua Xie
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Huifang Zheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Miaomiao Cai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Yucong Bai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Juan Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| |
Collapse
|
35
|
Bengoa Luoni S, Astigueta FH, Nicosia S, Moschen S, Fernandez P, Heinz R. Transcription Factors Associated with Leaf Senescence in Crops. PLANTS (BASEL, SWITZERLAND) 2019; 8:E411. [PMID: 31614987 PMCID: PMC6843677 DOI: 10.3390/plants8100411] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/01/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables. Different crops present a delay in leaf senescence with an important impact on grain yield trough the maintenance of the photosynthetic leaf area during the reproductive stage. Additionally, because of the temporal gap between the onset and phenotypic detection of the senescence process, candidate genes are key tools to enable the early detection of this process. In this sense and given the importance of some transcription factors as hub genes in senescence pathways, we present a comprehensive review on senescence-associated transcription factors, in model plant species and in agronomic relevant crops. This review will contribute to the knowledge of leaf senescence process in crops, thus providing a valuable tool to assist molecular crop breeding.
Collapse
Affiliation(s)
- Sofia Bengoa Luoni
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
| | - Francisco H Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
| | - Salvador Nicosia
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Universidad Nacional de Lujan, Cruce Rutas Nac. 5 y 7, Lujan, Buenos Aires 6700, Argentina.
| | - Sebastian Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Famaillá, Tucumán 4142, Argentina.
| | - Paula Fernandez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires 1686, Argentina.
| | - Ruth Heinz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires 1686, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina.
| |
Collapse
|
36
|
Shim Y, Kang K, An G, Paek NC. Rice DNA-Binding One Zinc Finger 24 (OsDOF24) Delays Leaf Senescence in a Jasmonate-Mediated Pathway. PLANT & CELL PHYSIOLOGY 2019; 60:2065-2076. [PMID: 31135055 DOI: 10.1093/pcp/pcz105] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/14/2019] [Accepted: 05/22/2019] [Indexed: 05/24/2023]
Abstract
Leaf senescence is the final stage of leaf development and in cereal crops, the timing of senescence relative to grain filling has major effects on agronomic traits such as yield. Although many genetic factors are involved in the regulation of leaf senescence in cereals, the key regulators remain to be determined. Plant transcription factors with a conserved DOF (DNA-binding one zinc finger) domain play roles in multiple physiological processes. Here, we show a novel function for OsDOF24 as a repressor of leaf senescence in rice (Oryza sativa). In wild-type leaves, OsDOF24 expression rapidly decreased during natural senescence (NS) and dark-induced senescence (DIS). The gain-of-function mutant osdof24-D, which contains an enhancer-trap T-DNA in the OsDOF24 promoter, exhibited delayed leaf yellowing during NS and DIS. Transgenic plants overexpressing OsDOF24 showed the same phenotype during DIS. Reverse-transcription quantitative real-time PCR analysis revealed that senescence-associated genes (Osl85, Osl57 and OsNAP) and chlorophyll degradation genes (NYC1, NYC3 and SGR) were downregulated in the osdof24-D mutant during dark incubation. Among the phytohormones, only methyl jasmonate induced OsDOF24 expression. Furthermore, the reduced expression of jasmonate biosynthesis-related genes (OsLOX2, OsLOX8, OsHI-LOX, OsAOS1 and OsAOS2) in osdof24-D decreased endogenous jasmonate levels, resulting in delayed leaf senescence under DIS conditions. Yeast one-hybrid assays showed that OsDOF24 binds to the promoter region of OsAOS1. Taken together, our results demonstrate that OsDOF24 suppresses the induction of leaf senescence during vegetative growth by deactivating jasmonate biosynthetic pathways.
Collapse
Affiliation(s)
- Yejin Shim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Zhu Z, Li G, Yan C, Liu L, Zhang Q, Han Z, Li B. DRL1, Encoding A NAC Transcription Factor, Is Involved in Leaf Senescence in Grapevine. Int J Mol Sci 2019; 20:ijms20112678. [PMID: 31151316 PMCID: PMC6600502 DOI: 10.3390/ijms20112678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
The NAC (for NAM, ATAF1,2, and CUC2) proteins family are plant-specific transcription factors, which play important roles in leaf development and response to environmental stresses. In this study, an NAC gene, DRL1, isolated from grapevine Vitis vinifera L. "Yatomi Rose", was shown to be involved in leaf senescence. The quantity of DRL1 transcripts decreased with advancing leaf senescence in grapevine. Overexpressing the DRL1 gene in tobacco plants significantly delayed leaf senescence with respect to chlorophyll concentration, potential quantum efficiency of photosystem II (Fv/Fm), and ion leakage. Moreover, exogenous abscisic acid (ABA) markedly reduced the expression of DRL1, and the ABA and salicylic acid (SA) concentration was lower in the DRL1-overexpressing transgenic plants than in the wild-type plants. The DRL1 transgenic plants exhibited reduced sensitivity to ABA-induced senescence but no significant change in the sensitivity to jasmonic acid-, SA- or ethylene-induced senescence. Transcriptomic analysis and RNA expression studies also indicated that the transcript abundance of genes associated with ABA biosynthesis and regulation, including 9-cis-epoxycarotenoid dioxygenase (NCED1), NCED5, zeaxanthin epoxidase1 (ZEP1), ABA DEFICIENT2 (ABA2), ABA4, and ABA INSENSITIVE 2 (ABI2), was markedly reduced in the DRL1-overexpressing plants. These results suggested that DRL1 plays a role as a negative regulator of leaf senescence by regulating ABA synthesis.
Collapse
Affiliation(s)
- Ziguo Zhu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Guirong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chaohui Yan
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Li Liu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Qingtian Zhang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Zhen Han
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Bo Li
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| |
Collapse
|
38
|
Ma X, Balazadeh S, Mueller-Roeber B. Tomato fruit ripening factor NOR controls leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2727-2740. [PMID: 31002305 PMCID: PMC6506771 DOI: 10.1093/jxb/erz098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/05/2018] [Accepted: 03/16/2019] [Indexed: 05/18/2023]
Abstract
NAC transcription factors (TFs) are important regulators of expressional reprogramming during plant development, stress responses, and leaf senescence. NAC TFs also play important roles in fruit ripening. In tomato (Solanum lycopersicum), one of the best characterized NACs involved in fruit ripening is NON-RIPENING (NOR), and the non-ripening (nor) mutation has been widely used to extend fruit shelf life in elite varieties. Here, we show that NOR additionally controls leaf senescence. Expression of NOR increases with leaf age, and developmental as well as dark-induced senescence are delayed in the nor mutant, while overexpression of NOR promotes leaf senescence. Genes associated with chlorophyll degradation as well as senescence-associated genes (SAGs) show reduced and elevated expression, respectively, in nor mutants and NOR overexpressors. Overexpression of NOR also stimulates leaf senescence in Arabidopsis thaliana. In tomato, NOR supports senescence by directly and positively regulating the expression of several senescence-associated genes including, besides others, SlSAG15 and SlSAG113, SlSGR1, and SlYLS4. Finally, we find that another senescence control NAC TF, namely SlNAP2, acts upstream of NOR to regulate its expression. Our data support a model whereby NAC TFs have often been recruited by higher plants for both the control of leaf senescence and fruit ripening.
Collapse
Affiliation(s)
- Xuemin Ma
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Haus, Potsdam-Golm, Germany
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Haus, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Haus, Potsdam-Golm, Germany
| |
Collapse
|
39
|
Zheng X, Jehanzeb M, Zhang Y, Li L, Miao Y. Characterization of S40-like proteins and their roles in response to environmental cues and leaf senescence in rice. BMC PLANT BIOLOGY 2019; 19:174. [PMID: 31046677 PMCID: PMC6498481 DOI: 10.1186/s12870-019-1767-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Senescence affects the quality and yield of plants by regulating different traits of plants. A few members of S40 gene family, the barley HvS40 and the Arabidopsis AtS40-3, have been shown to play a role in leaf senescence in Barley and Arabidopsis. Although we previously reported that S40 family exist in most of plants, up to now, no more function of S40 members in plant has been demonstrated. The aim of this study was to provide the senescence related information of S40 gene family in rice as rice is a major crop that feeds about half of the human population in the world. RESULTS A total of 16 OsS40 genes were identified from the genome database of Oryza sativa L. japonica by bioinformatics analysis. Phylogenetic analysis reveals that the 16 OsS40 proteins are classified into five groups, and 4 of the 16 members belong to group I to which also the HvS40 and AtS40-3 is assigned. S40 genes of rice show high structural similarities, as 13 out of the 16 genes have no intron and the other 3 genes have only 1 or 2 introns. The expression patterns of OsS40 genes were analyzed during natural as well as stress-induced leaf senescence in correspondence with senescence marker genes. We found that 6 of them displayed differential but clearly up-regulated transcript profiles under diverse situations of senescence, including darkness, nitrogen deficiency, hormone treatments as well as pathogen infection. Furthermore, three OsS40 proteins were identified as nuclear located proteins by transient protoplast transformation assay. CONCLUSIONS Taking all findings together, we concluded that OsS40-1, OsS40-2, OsS40-12 and OsS40-14 genes have potential regulatory function of crosstalk among abiotic, biotic and developmental senescence in rice. Our results provide valuable baseline for functional validation studies of the rice S40 genes in rice leaf senescence.
Collapse
Affiliation(s)
- Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Muhammad Jehanzeb
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Li Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.
| |
Collapse
|
40
|
Hu P, Zhang K, Yang C. BpNAC012 Positively Regulates Abiotic Stress Responses and Secondary Wall Biosynthesis. PLANT PHYSIOLOGY 2019; 179:700-717. [PMID: 30530740 PMCID: PMC6426422 DOI: 10.1104/pp.18.01167] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/16/2018] [Accepted: 11/29/2018] [Indexed: 05/20/2023]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in plant biological processes and stress responses. Here, we characterized the functional roles of BpNAC012 in white birch (Betula platyphylla). We found that BpNAC012 serves as a transcriptional activator. Gain- and loss-of-function analyses revealed that the transcript level of BpNAC012 was positively associated with salt and osmotic stress tolerance. BpNAC012 activated the core sequence CGT[G/A] to induce the expression of abiotic stress-responsive downstream genes, including Δ-1-pyrroline-5-carboxylate synthetase, superoxide dismutase, and peroxidase, resulting in enhanced salt and osmotic stress tolerance in BpNAC012 overexpression transgenic birch lines. We also showed that BpNAC012 is expressed predominantly in mature stems and that RNA interference-induced suppression of BpNAC012 caused a drastic reduction in the secondary wall thickening of stem fibers. Overexpression of BpNAC012 activated the expression of secondary wall-associated downstream genes by directly binding to the secondary wall NAC-binding element sites, resulting in ectopic secondary wall deposition in the stem epidermis. Moreover, salt and osmotic stresses elicited higher expression levels of lignin biosynthetic genes and elevated lignin accumulation in BpNAC012 overexpression lines. These findings provide insight into the functions of NAC transcription factors.
Collapse
Affiliation(s)
- Ping Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040 Harbin, China
| | - Kaimin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040 Harbin, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 150040 Harbin, China
| |
Collapse
|
41
|
Asad MAU, Zakari SA, Zhao Q, Zhou L, Ye Y, Cheng F. Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants. Int J Mol Sci 2019; 20:E256. [PMID: 30634648 PMCID: PMC6359161 DOI: 10.3390/ijms20020256] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
Abiotic stresses trigger premature leaf senescence by affecting some endogenous factors, which is an important limitation for plant growth and grain yield. Among these endogenous factors that regulate leaf senescence, abscisic acid (ABA) works as a link between the oxidase damage of cellular structure and signal molecules responding to abiotic stress during leaf senescence. Considering the importance of ABA, we collect the latest findings related to ABA biosynthesis, ABA signaling, and its inhibitory effect on chloroplast structure destruction, chlorophyll (Chl) degradation, and photosynthesis reduction. Post-translational changes in leaf senescence end with the exhaustion of nutrients, yellowing of leaves, and death of senescent tissues. In this article, we review the literature on the ABA-inducing leaf senescence mechanism in rice and Arabidopsis starting from ABA synthesis, transport, signaling receptors, and catabolism. We also predict the future outcomes of investigations related to other plants. Before changes in translation occur, ABA signaling that mediates the expression of NYC, bZIP, and WRKY transcription factors (TFs) has been investigated to explain the inducing effect on senescence-associated genes. Various factors related to calcium signaling, reactive oxygen species (ROS) production, and protein degradation are elaborated, and research gaps and potential prospects are presented. Examples of gene mutation conferring the delay or induction of leaf senescence are also described, and they may be helpful in understanding the inhibitory effect of abiotic stresses and effective measures to tolerate, minimize, or resist their inducing effect on leaf senescence.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Shamsu Ado Zakari
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Qian Zhao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yu Ye
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing 210000, China.
| |
Collapse
|
42
|
Kashihara K, Onohata T, Okamoto Y, Uji Y, Mochizuki S, Akimitsu K, Gomi K. Overexpression of OsNINJA1 negatively affects a part of OsMYC2-mediated abiotic and biotic responses in rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:180-187. [PMID: 30537605 DOI: 10.1016/j.jplph.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/12/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 05/11/2023]
Abstract
The plant hormone jasmonic acid (JA) plays an important role in defense response and plant development. Jasmonate ZIM-domain (JAZ) proteins act as transcriptional repressors of plant responses to JA. In this study, we found that OsNINJA1, which is a JAZ-interacting adaptor protein, plays an important role in JA signaling that is positively regulated by the transcription factor OsMYC2 in rice. The expression of OsNINJA1 was upregulated at an early phase after JA treatment, and OsNINJA1 interacted with several OsJAZ proteins in a C domain-dependent manner. Transgenic rice plants overexpressing OsNINJA1 exhibited a JA-insensitive phenotype and were more susceptible to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae, which is one of the most serious diseases affecting rice. Furthermore, OsNINJA1 negatively affected JA-regulated leaf senescence under dark-induced senescence conditions. Finally, the expression of OsMYC2-responsive pathogenesis-related (PR) genes and senescence-associated genes (SAGs) tended to be downregulated in the OsNINJA1-overexpressing rice plants. These results indicate that OsNINJA1 acts as a negative regulator of OsMYC2-mediated JA signaling in rice.
Collapse
Affiliation(s)
- Keita Kashihara
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Tomonori Onohata
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yuki Okamoto
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yuya Uji
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Susumu Mochizuki
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Kazuya Akimitsu
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
43
|
Xing Y, Guo S, Chen X, Du D, Liu M, Xiao Y, Zhang T, Zhu M, Zhang Y, Sang X, He G, Wang N. Nitrogen Metabolism is Affected in the Nitrogen-Deficient Rice Mutant esl4 with a Calcium-Dependent Protein Kinase Gene Mutation. PLANT & CELL PHYSIOLOGY 2018; 59:2512-2525. [PMID: 30165687 DOI: 10.1093/pcp/pcy169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/08/2018] [Accepted: 08/23/2018] [Indexed: 05/05/2023]
Abstract
Calcium-dependent protein kinases are involved in various biological processes, including hormone response, growth and development, abiotic stress response, disease resistance, and nitrogen metabolism. We identified a novel mutant of a calcium-dependent protein-kinase-encoding gene, esl4, by performing map cloning. The esl4 mutant was nitrogen deficient, and expression and enzyme activities of genes related to nitrogen metabolism were down-regulated. ESL4 was mainly expressed in the vascular bundles of roots, stems, leaves, and sheaths. The ESL4 protein was localized in the cell membranes. Enzyme activity and physiological index analyzes and analysis of the expression of nitrogen metabolism and senescence-related genes indicated that ESL4 was involved in nitrogen metabolism. ESL4 overexpression in transgenic homozygous T2 plants increased nitrogen-use efficiency, improving yields when little nitrogen was available. The seed-set rates, yields per plant, numbers of grains per plant, grain nitrogen content ratios, and total nitrogen content per plant were significantly or very significantly higher for two ESL4 overexpression lines than for the control plants. These results suggest that ESL4 may function upstream of nitrogen-metabolism genes. The results will allow ESL4 to be used to breed novel cultivars for growing in low-nitrogen conditions.
Collapse
Affiliation(s)
- Yadi Xing
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shuang Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Rice Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Xinlong Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dan Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Mingming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yanhua Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tianquan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Maodi Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yingying Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xianchun Sang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guanghua He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Nan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
44
|
Marker-trait association for low-light intensity tolerance in rice genotypes from Eastern India. Mol Genet Genomics 2018; 293:1493-1506. [PMID: 30088087 DOI: 10.1007/s00438-018-1478-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
Abstract
Light intensity is a crucial environmental factor that affects photosynthesis and ultimately, grain yield in rice. However, no gene or marker directly associated with improved performance under low-light intensity under field conditions has been identified till date. With an aim of identifying genes and markers associated with improved performance (measured in terms of better yields) under low-light intensity, an integrated field screening, in silico and wet lab validation analysis was performed. Field-based screening of a diverse set of 110 genotypes led to the identification of two physiological and three morphological parameters critical for low-light tolerance in rice. In silico analysis using information available in public databases led to the identification of a set of 90 potential candidate genes which were narrowed to thirteen genic targets for possible marker-trait association. Marker-trait association on the panel of 48 diverse rice genotypes varying in their response to low-light intensity led to the identification of six markers [HvSSR02-44 (biological yield), HvSSR02-52 (spikelet fertility), HvSSR02-54 (grain yield), HvSSR06-56 (spikelet fertility), HvSSR06-69 (spikelet fertility; biological yield), HvSSR09-45 (spikelet fertility)] lying on chromosomes 2, 6 and 9 showing significant association (R2 > 0.1) for traits like grain yield/plant, biological yield and spikelet fertility under low light. Eight rice genes [including member of BBX (B-box) family] lying within 10 kb distance of these identified markers already reported for their role in response to stress or change in plant architecture in rice were also identified. The eight rice genotypes, five traits, eight genes and six markers identified in the current study will help in devising strategies to increase yield under low light intensity and pave way for future application in marker-assisted breeding.
Collapse
|
45
|
Ma X, Zhang Y, Turečková V, Xue GP, Fernie AR, Mueller-Roeber B, Balazadeh S. The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato. PLANT PHYSIOLOGY 2018; 177:1286-1302. [PMID: 29760199 PMCID: PMC6052983 DOI: 10.1104/pp.18.00292] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/07/2018] [Accepted: 05/02/2018] [Indexed: 05/18/2023]
Abstract
Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato.
Collapse
Affiliation(s)
- Xuemin Ma
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Veronika Turečková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, 78371 Olomouc, Czech Republic
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
46
|
Mathew IE, Agarwal P. May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors. Bioessays 2018; 40:e1800018. [PMID: 29938806 DOI: 10.1002/bies.201800018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Plant-specific NAC transcription factors (TFs) evolve during the transition from aquatic to terrestrial plant life and are amplified to become one of the biggest TF families. This is because they regulate genes involved in water conductance and cell support. They also control flower and fruit formation. The review presented here focuses on various properties, regulatory intricacies, and developmental roles of NAC family members. Processes controlled by NACs depend majorly on their transcriptional properties. NACs can function as both activators and/or repressors. Additionally, their homo/hetero dimerization abilities can also affect DNA binding and activation properties. The active protein levels are dependent on the regulatory cascades. Because NACs regulate both development and stress responses in plants, in-depth knowledge about them has the potential to help guide future crop improvement studies.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
47
|
Zeng DD, Yang CC, Qin R, Alamin M, Yue EK, Jin XL, Shi CH. A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.). PLANT CELL REPORTS 2018; 37:933-946. [PMID: 29572657 DOI: 10.1007/s00299-018-2280-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/20/2017] [Accepted: 03/14/2018] [Indexed: 05/24/2023]
Abstract
A rice receptor-like kinase gene OSBBS1/OsRLCK109 was identified; this gene played vital roles in leaf senescence and the salt stress response. Early leaf senescence can cause negative effects on rice yield, but the underlying molecular regulation is not fully understood. bilateral blade senescence 1 (bbs1), an early leaf senescence mutant with a premature senescence phenotype that occurs mainly performing at the leaf margins, was isolated from a rice mutant population generated by ethylmethane sulfonate (EMS) treatment. The mutant showed premature leaf senescence beginning at the tillering stage and exhibited severe symptoms at the late grain-filling stage. bbs1 showed accelerated dark-induced leaf senescence. The OsBBS1 gene was cloned by a map-based cloning strategy, and a guanine (G) insertion was found in the first exon of LOC_Os03g24930. This gene encodes a receptor-like cytoplasmic kinase and was named OsRLCK109 in a previous study. Transgenic LOC_Os03g24930 knockout plants generated by a CRISPR/Cas9 strategy exhibited similar early leaf senescence phenotypes as did the bbs1 mutant, which confirmed that LOC_Os03g24930 was the OsBBS1 gene. OsBBS1/OsRLCK109 was expressed in all detected tissues and was predominantly expressed in the main vein region of mature leaves. The expression of OsBBS1 could be greatly induced by salt stress, and the bbs1 mutant exhibited hypersensitivity to salt stress. In conclusion, this is the first identification of OsRLCKs participating in leaf senescence and playing critical roles in the salt stress response in rice (Oryza sativa L.).
Collapse
Affiliation(s)
- Dong-Dong Zeng
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Cheng-Cong Yang
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Ran Qin
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Md Alamin
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Er-Kui Yue
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Li Jin
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Hai Shi
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
48
|
Akhter D, Qin R, Nath UK, Alamin M, Jin X, Shi C. The Brown Midrib Leaf (bml) Mutation in Rice (Oryza sativa L.) Causes Premature Leaf Senescence and the Induction of Defense Responses. Genes (Basel) 2018; 9:genes9040203. [PMID: 29642546 PMCID: PMC5924545 DOI: 10.3390/genes9040203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
Isolating and characterizing mutants with altered senescence phenotypes is one of the ways to understand the molecular basis of leaf aging. Using ethyl methane sulfonate mutagenesis, a new rice (Oryza sativa) mutant, brown midrib leaf (bml), was isolated from the indica cultivar ‘Zhenong34’. The bml mutants had brown midribs in their leaves and initiated senescence prematurely, at the onset of heading. The mutants had abnormal cells with degraded chloroplasts and contained less chlorophyll compared to the wild type (WT). The bml mutant showed excessive accumulation of reactive oxygen species (ROS), increased activities of superoxide dismutase, catalase, and malondialdehyde, upregulation of senescence-induced STAY-GREEN genes and senescence-related transcription factors, and down regulation of photosynthesis-related genes. The levels of abscisic acid (ABA) and jasmonic acid (JA) were increased in bml with the upregulation of some ABA and JA biosynthetic genes. In pathogen response, bml demonstrated higher resistance against Xanthomonas oryzae pv. oryzae and upregulation of four pathogenesis-related genes compared to the WT. A genetic study confirmed that the bml trait was caused by a single recessive nuclear gene (BML). A map-based cloning using insertion/deletion markers confirmed that BML was located in the 57.32kb interval between the L5IS7 and L5IS11 markers on the short arm of chromosome 5. A sequence analysis of the candidate region identified a 1 bp substitution (G to A) in the 5′-UTR (+98) of bml. BML is a candidate gene associated with leaf senescence, ROS regulation, and disease response, also involved in hormone signaling in rice. Therefore, this gene might be useful in marker-assisted backcrossing/gene editing to improve rice cultivars.
Collapse
Affiliation(s)
- Delara Akhter
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Ran Qin
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Md Alamin
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
| | - Xiaoli Jin
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
| | - Chunhai Shi
- Department of Agronomy, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
49
|
Li Z, Woo HR, Guo H. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:811-823. [PMID: 29309664 DOI: 10.1093/jxb/erx345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased. In this review, we focus on transcription factors that play regulatory roles in Arabidopsis leaf senescence, and describe the relationships among gene duplication, gene expression level, and senescence phenotypes. Previous findings and our re-analysis demonstrate the widespread existence of duplicate SAG pairs and a correlation between gene expression levels in duplicate genes and senescence-related phenotypic severity of the corresponding mutants. We also highlight effective and powerful tools that are available for functional analyses of redundant SAGs. We propose that the study of duplicate SAG pairs offers a unique opportunity to understand the regulation of leaf senescence and can guide the investigation of the functions of redundant SAGs via reverse genetic approaches.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
50
|
Lee D, Lee G, Kim B, Jang S, Lee Y, Yu Y, Seo J, Kim S, Lee YH, Lee J, Kim S, Koh HJ. Identification of a Spotted Leaf Sheath Gene Involved in Early Senescence and Defense Response in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1274. [PMID: 30233619 PMCID: PMC6134203 DOI: 10.3389/fpls.2018.01274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/17/2018] [Accepted: 08/14/2018] [Indexed: 05/05/2023]
Abstract
Lesion mimic mutants (LMMs) commonly exhibit spontaneous cell death similar to the hypersensitive defense response that occurs in plants in response to pathogen infection. Several lesion mimic mutants have been isolated and characterized, but their molecular mechanisms remain largely unknown. Here, a spotted leaf sheath (sles) mutant derived from japonica cultivar Koshihikari is described. The sles phenotype differed from that of other LMMs in that lesion mimic spots were observed on the leaf sheath rather than on leaves. The sles mutant displayed early senescence, as shown, by color loss in the mesophyll cells, a decrease in chlorophyll content, and upregulation of chlorophyll degradation-related and senescence-associated genes. ROS content was also elevated, corresponding to increased expression of genes encoding ROS-generating enzymes. Pathogenesis-related genes were also activated and showed improved resistance to pathogen infection on the leaf sheath. Genetic analysis revealed that the mutant phenotype was controlled by a single recessive nuclear gene. Genetic mapping and sequence analysis showed that a single nucleotide substitution in the sixth exon of LOC_Os07g25680 was responsible for the sles mutant phenotype and this was confirmed by T-DNA insertion line. Taken together, our results revealed that SLES was associated with the formation of lesion mimic spots on the leaf sheath resulting early senescence and defense responses. Further examination of SLES will facilitate a better understanding of the molecular mechanisms involved in ROS homeostasis and may also provide opportunities to improve pathogen resistance in rice.
Collapse
Affiliation(s)
- Dongryung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Gileung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Backki Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Su Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Yunjoo Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Yoye Yu
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jeonghwan Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, South Korea
| | - Joohyun Lee
- Department of Applied Bioscience, Graduate School of Konkuk University, Seoul, South Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women's University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- *Correspondence: Hee-Jong Koh
| |
Collapse
|