1
|
Li Z, Ma Y, Liu Y, Wang Y, Wang X. Geographical patterns and environmental influencing factors of variations in Asterothamnus centraliasiaticus seed traits on Qinghai-Tibetan plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1366512. [PMID: 38606068 PMCID: PMC11006976 DOI: 10.3389/fpls.2024.1366512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Introduction Seed traits related to recruitment directly affect plant fitness and persistence. Understanding the key patterns and influencing factors of seed trait variations is conducive to assessing plant colonization and habitat selection. However, the variation patterns of the critical seed traits of shrub species are usually underrepresented and disregarded despite their vital role in alpine desert ecosystems. Methods This study gathered seeds from 21 Asterothamnus centraliasiaticus populations across the Qinghai-Tibetan Plateau, analyzing geographical patterns of seed traits to identify external environmental influences. Additionally, it explored how seed morphology and nutrients affect germination stress tolerance, elucidating direct and indirect factors shaping seed trait variations. Results The results present substantial intraspecific variations in the seed traits of A. centraliasiaticus. Seed traits except seed length-to-width ratio (LWR) all vary significantly with geographic gradients. In addition, the direct and indirect effects of climatic variables and soil nutrients on seed traits were verified in this study. Climate mainly influences seed nutrients, and soil nutrients significantly affect seed morphology and seed nutrients. Furthermore, climate directly impacts seed germination drought tolerance index (GDTI) and germination saline-alkali tolerance index (GSTI). Seed germination cold tolerance index (GCTI) is influenced by climate and soil nutrients (mostly SOC). GDTI and GSTI are prominently influenced by seed morphology (largely the seed thousand-grain weight (TGW)), and GCTI is evidently affected by seed nutrients (mainly the content of soluble protein (CSP)). Discussion The findings of this study amply explain seed trait variation patterns of shrubs in alpine desert ecosystems, possessing significant importance for understanding the mechanism of shrub adaptation to alpine desert ecosystems, predicting the outcomes of environmental change, and informing conservation efforts. This study can be a valuable reference for managing alpine desert ecosystems on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
| | - YuShou Ma
- *Correspondence: YuShou Ma, ; Ying Liu,
| | - Ying Liu
- *Correspondence: YuShou Ma, ; Ying Liu,
| | | | | |
Collapse
|
2
|
Zhao M, Zhang H, Yan H, Qiu L, Baskin CC. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species. FRONTIERS IN PLANT SCIENCE 2018; 9:234. [PMID: 29535748 PMCID: PMC5835038 DOI: 10.3389/fpls.2018.00234] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/09/2018] [Indexed: 05/22/2023]
Abstract
Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species (Chloris virgata, Kochia scoparia, Lespedeza hedysaroides, Astragalus adsurgens, Leonurus artemisia, and Dracocephalum moldavica) and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed), but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.
Collapse
Affiliation(s)
- Ming Zhao
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Life Sciences, Northeast Normal University, Changchun, China
| | - Hongxiang Zhang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Hongxiang Zhang, Hong Yan,
| | - Hong Yan
- College of Life Sciences, Northeast Normal University, Changchun, China
- *Correspondence: Hongxiang Zhang, Hong Yan,
| | - Lu Qiu
- College of Life Sciences, Northeast Normal University, Changchun, China
| | - Carol C. Baskin
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Cui S, Hayashi Y, Otomo M, Mano S, Oikawa K, Hayashi M, Nishimura M. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana. J Biol Chem 2016; 291:19734-45. [PMID: 27466365 DOI: 10.1074/jbc.m116.748814] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 02/02/2023] Open
Abstract
Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis.
Collapse
Affiliation(s)
- Songkui Cui
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the RIKEN Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, the Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan, and
| | - Yasuko Hayashi
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Masayoshi Otomo
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Shoji Mano
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the Laboratory of Biological Diversity, Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
| | - Kazusato Oikawa
- the Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Makoto Hayashi
- the Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama 526-0829, Japan
| | - Mikio Nishimura
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan,
| |
Collapse
|
4
|
Huang LM, Lai CP, Chen LFO, Chan MT, Shaw JF. Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance. BOTANICAL STUDIES 2015; 56:33. [PMID: 28510842 PMCID: PMC5432905 DOI: 10.1186/s40529-015-0114-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND SFARs (seed fatty acid reducers) belonging to the GDSL lipases/esterases family have been reported to reduce fatty acid storage and composition in mature Arabidopsis seeds. GDSL lipases/esterases are hydrolytic enzymes that possess multifunctional properties, such as broad substrate specificity, regiospecificity, and stereoselectivity. Studies on the physiological functions and biochemical characteristics of GDSL lipases/esterases in plants are limited, so it is important to elucidate the molecular functions of GDSL-type genes. RESULTS We found that SFAR4 (At3g48460), a fatty acid reducer belonging to the Arabidopsis GDSL lipases/esterases family, was intensely expressed in embryo protrusion, early seedlings, and pollen. The characterization of recombinant SFAR4 protein indicated that it has short-length p-nitrophenyl esterase activity. In addition, SFAR4 enhanced the expression of genes involved in fatty acid metabolism during seed germination and seedling development. SFAR4 elevated the expression of COMATOSE, which transports fatty acids into peroxisomes, and of LACS6 and LACS7, which deliver long-chain acetyl-CoA for β-oxidation. Furthermore, SFAR4 increased the transcription of PED1 and PNC1, which function in importing peroxisomal ATP required for fatty acid degradation. SFAR4 has another function on tolerance to high glucose concentrations but had no significant effects on the expression of the glucose sensor HXK1. CONCLUSIONS The results demonstrated that SFAR4 is a GDSL-type esterase involved in fatty acid metabolism during post-germination and seedling development in Arabidopsis. We suggested that SFAR4 plays an important role in fatty acid degradation, thus reducing the fatty acid content.
Collapse
Affiliation(s)
- Li-Min Huang
- Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan City, 701 Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., SinShih Dist., Tainan, 74145 Taiwan
| | - Chia-Ping Lai
- Department of Food and Beverage Management, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City, 74448 Taiwan
| | - Long-Fang O. Chen
- Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan City, 701 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115 Taiwan
| | - Ming-Tsair Chan
- Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan City, 701 Taiwan
- Agriculture Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115 Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., SinShih Dist., Tainan, 74145 Taiwan
| | - Jei-Fu Shaw
- Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan City, 701 Taiwan
- Department of Biological Science and Technology, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City, 84001 Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung, Taichung, 402 Taiwan
| |
Collapse
|
5
|
Fischer S, Hanf S, Frosch T, Gleixner G, Popp J, Trumbore S, Hartmann H. Pinus sylvestris switches respiration substrates under shading but not during drought. THE NEW PHYTOLOGIST 2015; 207:542-550. [PMID: 25944481 DOI: 10.1111/nph.13452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Reduced carbon (C) assimilation during prolonged drought forces trees to rely on stored C to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major C storage pool and apparently the main respiratory substrate in plants, strongly declines with decreasing plant hydration. Yet no empirical evidence has been produced to what degree other C storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to C limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ(13) C of respired CO2 and concentrations of the major storage compounds, that is, carbohydrates, lipids and amino acids. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees, the fraction of carbohydrates used in respiration did not decline but respiration rates were strongly reduced. The lower consumption and potentially allocation from other organs may have caused initial carbohydrate content to remain constant during the experiment. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate shift cannot provide an efficient means to counterbalance C limitation under natural drought.
Collapse
Affiliation(s)
- Sarah Fischer
- Max-Planck Institute for Biogeochemistry, Hans Knoll Str. 10, 07745, Jena, Germany
| | - Stefan Hanf
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University, Helmholtzweg 4, 07743, Jena, Germany
| | - Gerd Gleixner
- Max-Planck Institute for Biogeochemistry, Hans Knoll Str. 10, 07745, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University, Helmholtzweg 4, 07743, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743, Jena, Germany
| | - Susan Trumbore
- Max-Planck Institute for Biogeochemistry, Hans Knoll Str. 10, 07745, Jena, Germany
| | - Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Hans Knoll Str. 10, 07745, Jena, Germany
| |
Collapse
|
6
|
Meng H, Jiang L, Xu B, Guo W, Li J, Zhu X, Qi X, Duan L, Meng X, Fan Y, Zhang C. Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness. PLoS One 2014; 9:e101905. [PMID: 25000295 PMCID: PMC4084893 DOI: 10.1371/journal.pone.0101905] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/12/2014] [Indexed: 01/16/2023] Open
Abstract
Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3−. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3− conditions, and further enhanced under NO3− limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3− during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3− as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.
Collapse
Affiliation(s)
- Hongyan Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, People’s Republic of China
| | - Bosi Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Wenzhu Guo
- Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jinglai Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiuqing Zhu
- Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiaoquan Qi
- Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lixin Duan
- Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xianbin Meng
- Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, People’s Republic of China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Dyson BC, Webster RE, Johnson GN. GPT2: a glucose 6-phosphate/phosphate translocator with a novel role in the regulation of sugar signalling during seedling development. ANNALS OF BOTANY 2014; 113:643-52. [PMID: 24489010 PMCID: PMC3936590 DOI: 10.1093/aob/mct298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS GPT2, a glucose 6-phosphate/phosphate translocator, plays an important role in environmental sensing in mature leaves of Arabidopsis thaliana. Its expression has also been detected in arabidopsis seeds and seedlings. In order to examine the role of this protein early in development, germination and seedling growth were studied. METHODS Germination, greening and establishment of seedlings were monitored in both wild-type Arabidopsis thaliana and in a gpt2 T-DNA insertion knockout line. Seeds were sown on agar plates in the presence or absence of glucose and abscisic acid. Relative expression of GPT2 in seedlings was measured using quantitative PCR. KEY RESULTS Plants lacking GPT2 expression were delayed (25-40 %) in seedling establishment, specifically in the process of cotyledon greening (rather than germination). This phenotype could not be rescued by glucose in the growth medium, with greening being hypersensitive to glucose. Germination itself was, however, hyposensitive to glucose in the gpt2 mutant. CONCLUSIONS The expression of GPT2 modulates seedling development and plays a crucial role in determining the response of seedlings to exogenous sugars during their establishment. This allows us to conclude that endogenous sugar signals function in controlling germination and the transition from heterotrophic to autotrophic growth, and that the partitioning of glucose 6-phosphate, or related metabolites, between the cytosol and the plastid modulates these developmental responses.
Collapse
Affiliation(s)
- Beth C. Dyson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Rachel E. Webster
- The Manchester Museum, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Giles N. Johnson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
- For correspondence. E-mail
| |
Collapse
|
8
|
Heisel TJ, Li CY, Grey KM, Gibson SI. Mutations in HISTONE ACETYLTRANSFERASE1 affect sugar response and gene expression in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:245. [PMID: 23882272 PMCID: PMC3713338 DOI: 10.3389/fpls.2013.00245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/19/2013] [Indexed: 05/23/2023]
Abstract
Nutrient response networks are likely to have been among the first response networks to evolve, as the ability to sense and respond to the levels of available nutrients is critical for all organisms. Although several forward genetic screens have been successful in identifying components of plant sugar-response networks, many components remain to be identified. Toward this end, a reverse genetic screen was conducted in Arabidopsis thaliana to identify additional components of sugar-response networks. This screen was based on the rationale that some of the genes involved in sugar-response networks are likely to be themselves sugar regulated at the steady-state mRNA level and to encode proteins with activities commonly associated with response networks. This rationale was validated by the identification of hac1 mutants that are defective in sugar response. HAC1 encodes a histone acetyltransferase. Histone acetyltransferases increase transcription of specific genes by acetylating histones associated with those genes. Mutations in HAC1 also cause reduced fertility, a moderate degree of resistance to paclobutrazol and altered transcript levels of specific genes. Previous research has shown that hac1 mutants exhibit delayed flowering. The sugar-response and fertility defects of hac1 mutants may be partially explained by decreased expression of AtPV42a and AtPV42b, which are putative components of plant SnRK1 complexes. SnRK1 complexes have been shown to function as central regulators of plant nutrient and energy status. Involvement of a histone acetyltransferase in sugar response provides a possible mechanism whereby nutritional status could exert long-term effects on plant development and metabolism.
Collapse
Affiliation(s)
| | | | | | - Susan I. Gibson
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of MinnesotaSaint Paul, MN, USA
| |
Collapse
|
9
|
Zienkiewicz A, Zienkiewicz K, Rejón JD, Rodríguez-García MI, Castro AJ. New insights into the early steps of oil body mobilization during pollen germination. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:293-302. [PMID: 23132905 PMCID: PMC3528035 DOI: 10.1093/jxb/ers332] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In some plants, pollen grains accumulate storage lipids that serve as energy supply during germination. Here, three enzymes involved in early steps of oil body mobilization in the male gametophyte were functionally characterized for the first time. The effect of extracellular sugars on pollen performance and oil body dynamics was also analysed. Olive pollen oil bodies showed phospholipase A, lipase, and lipoxygenase activities on their surface. Enzyme activity levels increased during germination with a maximum after 3h. Removal of extracellular sugars from the germination medium did not affect pollen performance but increased enzyme activity rates and sped up oil body mobilization. Inhibitors seriously hampered pollen germination and pollen tube growth, leading to a characteristic accumulation of oil bodies in the germinative aperture. It can be concluded that storage lipids are sufficient for proper olive pollen germination. A lipase and a lipoxygenase are likely involved in oil body mobilization. Extracellular sugars may modulate their function, while a phospholipase A may promote their access to the storage lipids.
Collapse
Affiliation(s)
- Agnieszka Zienkiewicz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- Department of Cell Biology, Nicolaus Copernicus University, 87–100 Toruń, Poland
| | - Krzysztof Zienkiewicz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- Department of Physiology and Molecular Biology of Plants, Nicolaus Copernicus University, 87–100 Toruń, Poland
| | - Juan David Rejón
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - María Isabel Rodríguez-García
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - Antonio Jesús Castro
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PA, Krueger S, Wic S, Neuhaus HE, Büttner M. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. PLANT PHYSIOLOGY 2011; 157:1664-76. [PMID: 21984725 PMCID: PMC3327193 DOI: 10.1104/pp.111.186825] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/06/2011] [Indexed: 05/18/2023]
Abstract
Subcellular sugar partitioning in plants is strongly regulated in response to developmental cues and changes in external conditions. Besides transitory starch, the vacuolar sugars represent a highly dynamic pool of instantly accessible metabolites that serve as energy source and osmoprotectant. Here, we present the molecular identification and functional characterization of the vacuolar glucose (Glc) exporter Arabidopsis (Arabidopsis thaliana) Early Responsive to Dehydration-Like6 (AtERDL6). We demonstrate tonoplast localization of AtERDL6 in plants. In Arabidopsis, AtERDL6 expression is induced in response to factors that activate vacuolar Glc pools, like darkness, heat stress, and wounding. On the other hand, AtERDL6 transcript levels drop during conditions that trigger Glc accumulation in the vacuole, like cold stress and external sugar supply. Accordingly, sugar analyses revealed that Aterdl6 mutants have elevated vacuolar Glc levels and that Glc flux across the tonoplast is impaired under stress conditions. Interestingly, overexpressor lines indicated a very similar function for the ERDL6 ortholog Integral Membrane Protein from sugar beet (Beta vulgaris). Aterdl6 mutant plants display increased sensitivity against external Glc, and mutant seeds exhibit a 10% increase in seed weight due to enhanced levels of seed sugars, proteins, and lipids. Our findings underline the importance of vacuolar Glc export during the regulation of cellular Glc homeostasis and the composition of seed reserves.
Collapse
|
11
|
Shkolnik-Inbar D, Bar-Zvi D. Expression of ABSCISIC ACID INSENSITIVE 4 (ABI4) in developing Arabidopsis seedlings. PLANT SIGNALING & BEHAVIOR 2011; 6:694-6. [PMID: 21448003 PMCID: PMC3172839 DOI: 10.4161/psb.6.5.14978] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 05/20/2023]
Abstract
We have recently demonstrated that the transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis thaliana. ( 1) In that study, we provided a direct demonstration of ABI4 expression in phloem companion cells and parenchyma of the vascular system in the mature regions of the roots. Although also studied in mature plants, ABI4 has been studied primarily in germinating seedlings, and its expression has been assumed by some researchers to be restricted to early germination stages. We thus constructed transgenic Arabidopsis plants expressing an ABI4:GUS construct, and followed ABI4 promoter activity during seedling development, focusing on the roots.
Collapse
Affiliation(s)
- Doron Shkolnik-Inbar
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | |
Collapse
|
12
|
Cottage A, Gray JC. Timing the switch to phototrophic growth: a possible role of GUN1. PLANT SIGNALING & BEHAVIOR 2011; 6:578-582. [PMID: 21673514 PMCID: PMC3142397 DOI: 10.4161/psb.6.4.14900] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 05/29/2023]
Abstract
In young Arabidopsis seedlings, retrograde signalling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings. ( 1) Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the "early" anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.
Collapse
Affiliation(s)
- Amanda Cottage
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
13
|
Modelling the peroxisomal carbon leak during lipid mobilization in Arabidopsis. Biochem Soc Trans 2011; 38:1230-3. [PMID: 20863290 DOI: 10.1042/bst0381230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutation of the ACN1 (acetate non-utilizing 1) locus of Arabidopsis results in altered acetate assimilation into gluconeogenic sugars and anapleurotic amino acids and leads to an overall depression in primary metabolite levels by approx. 50% during seedling development. Levels of acetyl-CoA were higher in acn1 compared with wild-type, which is counterintuitive to the activity of ACN1 as a peroxisomal acetyl-CoA synthetase. We hypothesize that ACN1 recycles free acetate to acetyl-CoA within peroxisomes in order that carbon remains fed into the glyoxylate cycle. When ACN1 is not present, carbon in the form of acetate can leak out of peroxisomes and is reactivated to acetyl-CoA within the cytosol. Kinetic models incorporating estimates of carbon input and pathway dynamics from a variety of literature sources have proven useful in explaining how ACN1 may prevent the carbon leak and even contribute to the control of peroxisomal carbon metabolism.
Collapse
|
14
|
Tonini PP, Purgatto E, Buckeridge MS. Effects of abscisic acid, ethylene and sugars on the mobilization of storage proteins and carbohydrates in seeds of the tropical tree Sesbania virgata (Leguminosae). ANNALS OF BOTANY 2010; 106:607-16. [PMID: 20705626 PMCID: PMC2944982 DOI: 10.1093/aob/mcq159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/08/2010] [Accepted: 07/01/2010] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. METHODS Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, α-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. KEY RESULTS The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased α-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased α-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. CONCLUSIONS These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.
Collapse
Affiliation(s)
- Patricia Pinho Tonini
- University of São Paulo, Institute of Bioscience, Department of Botany, Postal Code 11461, São Paulo – SP, Brazil
| | - Eduardo Purgatto
- University of São Paulo, Faculty of Pharmaceutical Science, Department of Food and Experimental Nutrition, Postal Code 66083, São Paulo – SP, Brazil
| | - Marcos Silveira Buckeridge
- University of São Paulo, Institute of Bioscience, Department of Botany, Postal Code 11461, São Paulo – SP, Brazil
| |
Collapse
|
15
|
Cottage A, Mott EK, Kempster JA, Gray JC. The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3773-86. [PMID: 20605896 PMCID: PMC2921207 DOI: 10.1093/jxb/erq186] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 05/18/2023]
Abstract
Developing seedlings of the Arabidopsis gun1 (genomes uncoupled1) mutant, which is defective in retrograde plastid-to-nucleus signalling, show several previously unrecognized mutant phenotypes. gun1 seedlings accumulated less anthocyanin than wild-type seedlings when grown in the presence of 2% (w/v) sucrose, due to lower amounts of transcripts of early anthocyanin biosynthesis genes in gun1. Norflurazon and lincomycin, which induce retrograde signalling, further decreased the anthocyanin content of sucrose-treated seedlings, and altered the temporal pattern of anthocyanin accumulation. Lincomycin treatment altered the spatial pattern of sucrose-induced anthocyanin accumulation, suggesting that plastids provide information for the regulation of anthocyanin biosynthesis in Arabidopsis seedlings. The temporal pattern of accumulation of LHCB1 transcripts differed between wild-type and gun1 seedlings, and gun1 seedlings were more sensitive to sucrose suppression of LHCB1 transcript accumulation than wild-type seedlings. Growth and development of gun1 seedlings was more sensitive to exogenous 2% sucrose than wild-type seedlings and, in the presence of lincomycin, cotyledon expansion was enhanced in gun1 seedlings compared to the wild type. gun1 seedlings were more sensitive than wild-type seedlings to the inhibition of seedling growth and development by abscisic acid. These observations clearly implicate GUN1 and plastid signalling in the regulation of seedling development and anthocyanin biosynthesis, and indicate a complex interplay between sucrose and plastid signalling pathways.
Collapse
Affiliation(s)
| | | | | | - John C. Gray
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
16
|
Borek S, Ratajczak L. Storage lipids as a source of carbon skeletons for asparagine synthesis in germinating seeds of yellow lupine (Lupinus luteus L.). JOURNAL OF PLANT PHYSIOLOGY 2010; 167:717-724. [PMID: 20170979 DOI: 10.1016/j.jplph.2009.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 05/28/2023]
Abstract
The (14)C-acetate metabolism and regulatory functions of sucrose and sodium fluoride (NaF) were examined in embryo axes and cotyledons isolated from yellow lupine seeds and grown in vitro. After 15 min of incubating organs in solutions of labeled acetate, more radioactivity was found in amino acids (particularly in glutamate, asparagine and glutamine) than in sugars. After 120 min of incubation, (14)C was still localized mainly in amino acids (particularly in asparagine and glutamate). The (14)C atoms from position C-1 of acetate were mostly localized in the liberated (14)CO(2), whereas those from position C-2 were incorporated chiefly into amino acids, sugars and the insoluble fraction of the studied organs. The addition of NaF caused a decrease in the amount of (14)C incorporated into amino acids and in the insoluble fraction. The influence of NaF on incorporation of (14)C into sugars differed between organs. In embryo axes, NaF inhibited this process, but in cotyledons it stimulated (14)C incorporation into glucose. The release of (14)CO(2) with the C-1 and C-2 carbon atoms from acetate was more intensive in embryo axes and cotyledons grown on a medium without sucrose. This process was markedly limited by NaF, which inhibits glycolysis and gluconeogenesis. Alternative pathways of carbon flow from fatty acids to asparagine are discussed.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University, Poznań, Poland.
| | | |
Collapse
|
17
|
Voigt EL, Almeida TD, Chagas RM, Ponte LFA, Viégas RA, Silveira JAG. Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:80-9. [PMID: 18448194 DOI: 10.1016/j.jplph.2008.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/15/2008] [Accepted: 02/25/2008] [Indexed: 05/09/2023]
Abstract
Seedling establishment is a critical process to crop productivity, especially under saline conditions. This work was carried out to investigate the hypothesis that reserve mobilization is coordinated with salt-induced inhibition of seedling growth due to changes in source-sink relations. To test this hypothesis, cashew nuts (Anacardium occidentale) were sown in vermiculite irrigated daily with distilled water (control) or 50mM NaCl and they were evaluated at discrete developmental stages from the seed germination until the whole seedling establishment. The salt treatment coordinately delayed the seedling growth and the cotyledonary reserve mobilization. However, these effects were more pronounced at late seedling establishment than in earlier stages. The storage protein mobilization was affected by salt stress before the lipid and starch breakdown. The globulin fraction represented the most important storage proteins of cashew cotyledons, and its mobilization was markedly delayed by NaCl along the seedling establishment. Free amino acids were mostly retained in the cotyledons of salt-treated seedlings when the mobilization of storage proteins, lipids and starch was strongly delayed. Proline was not considerably accumulated in the cotyledons of cashew seedlings as a response to NaCl salinity. According to these results it is noteworthy that the salt-induced inhibition of seedling growth is narrowly coordinated with the delay of reserve mobilization and the accumulation of hydrolysis products in cotyledons. Also, it was evidenced that free amino acids, especially those related to nitrogen transport, are potential signals involved in the regulation of storage protein hydrolysis during cashew seedling establishment under NaCl salinity.
Collapse
Affiliation(s)
- Eduardo Luiz Voigt
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Metabolismo de Plantas, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Wawrzynska A, Christiansen KM, Lan Y, Rodibaugh NL, Innes RW. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. PLANT PHYSIOLOGY 2008; 148:1510-22. [PMID: 18815384 PMCID: PMC2577273 DOI: 10.1104/pp.108.127605] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 09/05/2008] [Indexed: 05/18/2023]
Abstract
Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling.
Collapse
Affiliation(s)
- Anna Wawrzynska
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
19
|
Kato A, Inouhe M. Mannose accommodation of Vigna angularis cells on solid agar medium involves its possible conversion to sucrose mediated by enhanced phosphomannose isomerase activity. JOURNAL OF PLANT RESEARCH 2008; 121:339-349. [PMID: 18301863 DOI: 10.1007/s10265-008-0150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/18/2008] [Indexed: 05/26/2023]
Abstract
Mannose is an unusable carbon source for many plants. In our study we compared the effects of mannose and sucrose on growth and sucrose levels in azuki bean (Vigna angularis) cells grown in liquid media and in solid media. The suspension cells grew actively in a liquid medium containing 90 mM sucrose but not in that containing 90 mM mannose, where the intracellular sucrose levels were reduced to 20% or less of those in sucrose-grown cells. These results suggested that the limited conversion of mannose to sucrose resulted in cell growth inhibition. When sucrose-grown suspension cells (1 x 10(5)) were transferred onto agar medium containing mannose, they grew little initially, but, after a month lag period, they started to form many callus colonies at a high apparent variation rate (1.3 x 10(-3)). Time-course studies for sugar and enzyme analysis revealed that the mannose-accommodated cells were capable of converting mannose to sucrose, with enhanced phosphomannose isomerase activity. The mannose-accommodated cells actively grew in liquid medium with sucrose but lost their ability to grow with mannose again, suggesting a specific trait of callus culture for mannose utilization. The possible differences in the metabolic activities and other physiological characteristics are discussed between callus and suspension cells.
Collapse
Affiliation(s)
- Aki Kato
- Biology and Environmental Sciences, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | | |
Collapse
|
20
|
Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. PLANTA 2008; 227:539-58. [PMID: 17929052 DOI: 10.1007/s00425-007-0637-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/23/2007] [Indexed: 05/18/2023]
Abstract
GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (Xcv). The CaGLIP1 protein was located in the vascular tissues of Arabidopsis root. The CaGLIP1 gene was preferentially expressed in pepper leaves during the compatible interaction with Xcv. Treatment with salicylic acid, ethylene and methyl jasmonate induced CaGLIP1 gene expression in pepper leaves. Sodium nitroprusside, methyl viologen, high salt, mannitol-mediated dehydration and wounding also induced early and transient CaGLIP1 expression in pepper leaf tissues. Virus-induced gene silencing of CaGLIP1 in pepper conferred enhanced resistance to Xcv, accompanied by the suppressed expression of basic PR1 (CaBPR1) and defensin (CaDEF1) genes. The CaGLIP1 lipase produced in Escherichia coli hydrolyzed the substrates of short and long chain nitrophenyl esters. The CaGLIP1-overexpressing Arabidopsis exhibited enhanced hydrolytic activity toward short and long chain nitrophenyl ester, as well as enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato and the biotrophic oomycete Hyaloperonospora parasitica. SA-induced expression of AtPR1 and AtGST1, also was delayed in CaGLIP1-overexpressing plants by SA application. During seed germination and plant growth, the CaGLIP1 transgenic plants showed drought tolerance and differential expression of drought- and abscisic acid (ABA)-inducible genes AtRD29A, AtADH and AtRab18. ABA treatment differentially regulated seed germination and gene expression in wild-type and CaGLIP1 transgenic Arabidopsis. Overexpression of CaGLIP1 also regulated glucose- and oxidative stress signaling. Together, these results indicate that CaGLIP1 modulates disease susceptibility and abiotic stress tolerance.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Storage oil mobilization starts with the onset of seed germination. Oil bodies packed with triacylglycerol (TAG) exist in close proximity with glyoxysomes, the single membrane-bound organelles that house most of the biochemical machinery required to convert fatty acids derived from TAG to 4-carbon compounds. The 4-carbon compounds in turn are converted to soluble sugars that are used to fuel seedling growth. Biochemical analysis over the last 50 years has identified the main pathways involved in this process, including beta-oxidation, the glyoxylate cycle, and gluconeogenesis. In the last few years molecular genetic dissection of the overall process in the model oilseed species Arabidopsis has provided new insight into its complexity, particularly with respect to the specific role played by individual enzymatic steps and the subcellular compartmentalization of the glyoxylate cycle. Both abscisic acid (ABA) and sugars inhibit storage oil mobilization and a substantial degree of the control appears to operate at the transcriptional level.
Collapse
Affiliation(s)
- Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, United Kingdom.
| |
Collapse
|
22
|
Tsukagoshi H, Morikami A, Nakamura K. Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci U S A 2007; 104:2543-7. [PMID: 17267611 PMCID: PMC1785360 DOI: 10.1073/pnas.0607940104] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development of plant seeds, embryos import nutrients and store massive amounts of reserves. Seed reserves are rapidly degraded and mobilized to support seedling development after germination. HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE 2 (HSI2) of Arabidopsis thaliana is a B3 DNA-binding domain protein that represses the transcription of sugar-inducible reporter gene. Although disruption of HSI2 or HSI2-Like 1 (HSL1) did not affect growth, seeds with disruption of both HSI2 and HSL1 (KK mutant) developed abortive seedlings that stopped growing 7-9 days after imbibition. KK seedlings developed swollen hypocotyls that accumulated seed storage proteins and oil on medium containing sucrose or other metabolizable sugars, and calluses developed from KK seedlings also accumulated seed storage reserves. The expression of seed maturation genes, which include LEAFY COTYLEDON-type master regulators, in KK seedlings depended on the concentration of sucrose, suggesting that sugar controls the expression of seed maturation genes. Our results suggest that HSI2 and HSL1 repress the sugar-inducible expression of the seed maturation program in seedlings and play an essential role in regulating the transition from seed maturation to seedling growth.
Collapse
Affiliation(s)
- Hironaka Tsukagoshi
- *Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; and
| | - Atsushi Morikami
- Faculty of Agriculture, Meijo University, Tenpaku, Nagoya 468-8502, Japan
| | - Kenzo Nakamura
- *Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. THE PLANT CELL 2006; 18:3415-28. [PMID: 17194765 PMCID: PMC1785414 DOI: 10.1105/tpc.106.046532] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Analysis of the Arabidopsis thaliana RING-ANK (for Really Interesting New Gene-Ankyrin) family, a subgroup of RING-type E3 ligases, identified KEEP ON GOING (KEG) as essential for growth and development. In addition to the RING-HCa and ankyrin repeats, KEG contains a kinase domain and 12 HERC2-like repeats. The RING-HCa and kinase domains were functional in in vitro ubiquitylation and phosphorylation assays, respectively. Seedlings homozygous for T-DNA insertions in KEG undergo growth arrest immediately after germination, suggestive of increased abscisic acid (ABA) signaling, a major phytohormone that plays a key role in plant development and survival under unfavorable conditions. Here, we show that KEG is a negative regulator of ABA signaling. keg roots are extremely sensitive to the inhibitory effects of ABA and exhibit hypersensitivity to exogenous glucose, consistent with the known interaction between glucose and ABA signaling. The observations that KEG accumulates high levels of ABSCISIC ACID-INSENSITIVE5 (ABI5) without exogenous ABA, interacts with ABI5 in vitro, and that loss of ABI5 rescues the growth-arrest phenotype of keg mutant seedlings indicate that KEG is required for ABI5 degradation. In this capacity, KEG is central to ABA signaling by maintaining low levels of ABI5 in the absence of stress.
Collapse
Affiliation(s)
- Sophia L Stone
- Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
24
|
Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. PLANT METHODS 2006; 2:19. [PMID: 17087829 PMCID: PMC1636043 DOI: 10.1186/1746-4811-2-19] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 11/06/2006] [Indexed: 05/12/2023]
Abstract
BACKGROUND The floral dip method of transformation by immersion of inflorescences in a suspension of Agrobacterium is the method of choice for Arabidopsis transformation. The presence of a marker, usually antibiotic- or herbicide-resistance, allows identification of transformed seedlings from untransformed seedlings. Seedling selection is a lengthy process which does not always lead to easily identifiable transformants. Selection for kanamycin-, phosphinothricin- and hygromycin B-resistance commonly takes 7-10 d and high seedling density and fungal contamination may result in failure to recover transformants. RESULTS A method for identifying transformed seedlings in as little as 3.25 d has been developed. Arabidopsis T1 seeds obtained after floral dip transformation are plated on 1% agar containing MS medium and kanamycin, phosphinothricin or hygromycin B, as appropriate. After a 2-d stratification period, seeds are subjected to a regime of 4-6 h light, 48 h dark and 24 h light (3.25 d). Kanamycin-resistant and phosphinothricin-resistant seedlings are easily distinguished from non-resistant seedlings by green expanded cotyledons whereas non-resistant seedlings have pale unexpanded cotyledons. Seedlings grown on hygromycin B differ from those grown on kanamycin and phosphinothricin as both resistant and non-resistant seedlings are green. However, hygromycin B-resistant seedlings are easily identified as they have long hypocotyls (0.8-1.0 cm) whereas non-resistant seedlings have short hypocotyls (0.2-0.4 cm). CONCLUSION The method presented here is an improvement on current selection methods as it allows quicker identification of transformed seedlings: transformed seedlings are easily discernable from non-transformants in as little as 3.25 d in comparison to the 7-10 d required for selection using current protocols.
Collapse
Affiliation(s)
- Samuel J Harrison
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ellie K Mott
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Kate Parsley
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Sue Aspinall
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - John C Gray
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Amanda Cottage
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
25
|
Pena-Ahumada A, Kahmann U, Dietz KJ, Baier M. Regulation of peroxiredoxin expression versus expression of Halliwell-Asada-Cycle enzymes during early seedling development of Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2006; 89:99-112. [PMID: 16915352 DOI: 10.1007/s11120-006-9087-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
During early seedling development of oil seed plants, the transition from lipid based heterotrophic to photoautotrophic carbohydrate metabolism is accompanied with a biphasic control of the chloroplast antioxidant system. In continuous light, organellar peroxiredoxins (Prx) and thylakoid-bound ascorbate peroxidase (tAPx) are activated early in seedling development, while stromal ascorbate peroxidase (sAPx), Cu/Zn-superoxide dismutase-2 (Csd2) and monodehydroascorbate reductase (MDHAR) and the cytosolic peroxiredoxins PrxIIB, PrxIIC and PrxIID are fully activated between 2.5 and 3 days after radicle emergence (DARE). Discontinuous light synchronized the expression of chloroplast antioxidant enzymes, but defined diurnally specific typeII-Prx-patterns in the cytosol and initiated chloroplast senescence around 2.5 DARE. Carbohydrate feeding uncoupled sAPx expression from the light pattern. In contrast, sucrose-feeding did not significantly impact on Prx transcript amounts. It is concluded that upon post-germination growth Prxs are activated endogenously to provide early antioxidant protection, which is supported by the Halliwell-Asada-Cycle, whose expressional activation depends on metabolic signals provided only later in development or in day-night-cycles.
Collapse
|
26
|
Cernac A, Andre C, Hoffmann-Benning S, Benning C. WRI1 is required for seed germination and seedling establishment. PLANT PHYSIOLOGY 2006; 141:745-57. [PMID: 16632590 PMCID: PMC1475460 DOI: 10.1104/pp.106.079574] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Storage compound accumulation during seed development prepares the next generation of plants for survival. Therefore, processes involved in the regulation and synthesis of storage compound accumulation during seed development bear relevance to germination and seedling establishment. The wrinkled1 (wri1) mutant of Arabidopsis (Arabidopsis thaliana) is impaired in seed oil accumulation. The WRI1 gene encodes an APETALA2/ethylene-responsive element-binding protein transcription factor involved in the control of metabolism, particularly glycolysis, in the developing seeds. Here we investigate the role of this regulatory factor in seed germination and seedling establishment by comparing the wri1-1 mutant, transgenic lines expressing the WRI1 wild-type cDNA in the wri1-1 mutant background, and the wild type. Plants altered in the expression of the WRI1 gene showed different germination responses to the growth factor abscisic acid (ABA), sugars, and fatty acids provided in the medium. Germination of the mutant was more sensitive to ABA, sugars, and osmolites, an effect that was alleviated by increased WRI1 expression in transgenic lines. The expression of ABA-responsive genes AtEM6 and ABA-insensitive 3 (ABI3) was increased in the wri1-1 mutant. Double-mutant analysis between abi3-3 and wri1-1 suggested that WRI1 and ABI3, a transcription factor mediating ABA responses in seeds, act in parallel pathways. Addition of 2-deoxyglucose inhibited seed germination, but did so less in lines overexpressing WRI1. Seedling establishment was decreased in the wri1-1 mutant but could be alleviated by sucrose. Apart from a possible signaling role in germination, sugars in the medium were required as building blocks and energy supply during wri1-1 seedling establishment.
Collapse
Affiliation(s)
- Alex Cernac
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, USA
| | | | | | | |
Collapse
|
27
|
Penfield S, Pinfield-Wells HM, Graham IA. Storage reserve mobilisation and seedling establishment in Arabidopsis. THE ARABIDOPSIS BOOK 2006; 4:e0100. [PMID: 22303229 PMCID: PMC3243371 DOI: 10.1199/tab.0100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
| | | | - Ian A. Graham
- Corresponding author: CNAP, Department of Biology, University of York, PO BOX 373, York YO10 5YW, UK.
| |
Collapse
|
28
|
Gibson SI. Control of plant development and gene expression by sugar signaling. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:93-102. [PMID: 15653406 DOI: 10.1016/j.pbi.2004.11.003] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coordination of development with the availability of nutrients, such as soluble sugars, may help ensure an adequate supply of building materials and energy with which to carry out specific developmental programs. For example, in-vivo and in-vitro experiments suggest that increasing sugar levels delay seed germination and stimulate the induction of flowering and senescence in at least some plant species. Higher sugar concentrations can also increase the number of tubers formed by potatoes and can stimulate the formation of adventitious roots by Arabidopsis. New insights into the mechanisms by which sugar-response pathways interact with other response pathways have been provided by microarray experiments examining sugar-regulated gene expression under different light and nitrogen conditions.
Collapse
Affiliation(s)
- Susan I Gibson
- Department of Plant Biology, University of Minnesota, 122 Cargill Building, 1500 Gortner Avenue, St. Paul, Minnesota 55108-1095, USA.
| |
Collapse
|
29
|
Dekkers BJW, Schuurmans JAMJ, Smeekens SCM. Glucose delays seed germination in Arabidopsis thaliana. PLANTA 2004; 218:579-88. [PMID: 14648119 DOI: 10.1007/s00425-003-1154-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 10/13/2003] [Indexed: 05/18/2023]
Abstract
Here we report that glucose delays germination of Arabidopsis thaliana (L.) Heynh. seeds at concentrations below those known to inhibit early seedling development. This inhibition acts on embryo growth and is independent of hexokinase (HXK) function. Hormones and hormone inhibitors were applied to the germination media and several hormone biosynthesis and signalling mutants were tested on glucose media to investigate a possible role of abscisic acid (ABA), gibberellin and ethylene in the glucose-induced germination delay. Results indicate that the germination inhibition by glucose cannot be antagonized by ethylene or gibberellin and is independent of the HXK1/ABA/ ABI4 signalling cascade. These findings suggest that there is a separate regulatory pathway independent of ABI2/ ABI4/ ABI5. Thus, in a relatively short time frame sugars utilize different signalling cascades to inhibit germination and post-germination growth, underlining the complexity of sugar responses.
Collapse
Affiliation(s)
- Bas J W Dekkers
- Department of Plant Biology, Molecular Plant Physiology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|
30
|
Price J, Li TC, Kang SG, Na JK, Jang JC. Mechanisms of glucose signaling during germination of Arabidopsis. PLANT PHYSIOLOGY 2003; 132:1424-38. [PMID: 12857824 PMCID: PMC167082 DOI: 10.1104/pp.103.020347] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Revised: 03/19/2003] [Accepted: 04/18/2003] [Indexed: 05/19/2023]
Abstract
Glucose (Glc) signaling, along with abscisic acid (ABA) signaling, has been implicated in regulating early plant development in Arabidopsis. It is generally believed that high levels of exogenous Glc cause ABA accumulation, which results in a delay of germination and an inhibition of seedling development-a typical stress response. To test this hypothesis and decipher the complex interactions that occur in the signaling pathways, we determined the effects of sugar and ABA on one developmental event, germination. We show that levels of exogenous Glc lower than previously cited could delay the rate of seed germination in wild-ecotype seeds. Remarkably, this effect could not be mimicked by an osmotic effect, and ABA was still involved. With higher concentrations of Glc, previously known Glc-insensitive mutants gin2 and abi4 exhibited germination kinetics similar to wild type, indicating that Glc-insensitive phenotypes are not the same for all developmental stages of growth and that the signaling properties of Glc vary with concentration. Higher concentrations of Glc were more potent in delaying seed germination. However, Glc-delayed seed germination was not caused by increased cellular ABA concentration, rather Glc appeared to slow down the decline of endogenous ABA. Except for the ABA-insensitive mutants, all tested genotypes appeared to have similar ABA perception during germination, where germination was correlated with the timing of ABA drop to a threshold level. In addition, Glc was found to modulate the transcription of genes involved in ABA biosynthesis and perception only after germination, suggesting a critical role of the developmental program in sugar sensing. On the basis of an extensive phenotypic, biochemical, and molecular analysis, we suggest that exogenous Glc application creates specific signals that vary with concentration and the developmental stage of the plant and that Glc-induced fluctuations in endogenous ABA level generate a different set of signals than those generated by external ABA application.
Collapse
Affiliation(s)
- John Price
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|