1
|
Ci Z, Wang H, Luo J, Wei C, Chen J, Wang D, Zhou Y. Application of Nanomaterials Targeting Immune Cells in the Treatment of Chronic Inflammation. Int J Nanomedicine 2024; 19:13925-13946. [PMID: 39735324 PMCID: PMC11682674 DOI: 10.2147/ijn.s497590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Chronic inflammation is a common characteristic of all kinds of diseases, including autoimmune diseases, metabolic diseases, and tumors. It is distinguished by the presence of low concentrations of inflammatory factors stimulating the body for an extended period, resulting in a persistent state of infection. This condition is manifested by the aggregation and infiltration of mononuclear cells, lymphocytes, and other immune cells, leading to tissue hyperplasia and lesions. Although various anti-inflammatory medications, including glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs), have shown strong therapeutic effects, they lack specificity and targeting ability, and require high dosages, which can lead to severe adverse reactions. Nanoparticle drug delivery mechanisms possess the capacity to minimize the effect on healthy cells or tissues due to their targeting capabilities and sustained drug release properties. However, most nanosystems can only target the inflammatory sites rather than specific types of immune cells, leaving room for further improvement in the therapeutic effects of nanomaterials. This article reviews the current research progress on the role of diverse immune cells in inflammation, focusing on the functions of neutrophils and macrophages during inflammation. It provides an overview of the domestic and international applications of nanomaterials in targeted therapy for inflammation, aiming to establish a conceptual foundation for the utilization of nanomaterials targeting immune cells in the treatment of chronic inflammation and offer new perspectives for the avoidance and management of inflammation.
Collapse
Affiliation(s)
- Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingxia Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Biology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
2
|
Muro S, Seki M, Hurst JR, Petullo D, Marshall J, Bowen K, Darken PF, Duncan EA, Megally A, Patel M. Triple Therapy with Budesonide/Glycopyrronium/Formoterol Fumarate Dihydrate versus Dual Therapies for Patients with COPD and Phenotypic Features of Asthma: A Pooled Post Hoc Analysis of KRONOS and ETHOS. Int J Chron Obstruct Pulmon Dis 2024; 19:2729-2737. [PMID: 39691156 PMCID: PMC11649577 DOI: 10.2147/copd.s478349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Background We evaluated the inhaled corticosteroid/long-acting muscarinic antagonist/long-acting β2-agonist (ICS/LAMA/LABA) triple therapy with budesonide/glycopyrronium/formoterol fumarate dihydrate (BGF) versus dual LAMA/LABA and ICS/LABA therapies in patients with chronic obstructive pulmonary disease (COPD) and phenotypic features of asthma (bronchodilator reversibility and elevated blood eosinophils), but no asthma diagnosis, for whom treatment guidelines are limited. Patients and methods KRONOS (NCT02497001) and ETHOS (NCT02465567) enrolled patients with moderate-to-very-severe COPD, no current asthma diagnosis, and either ≥0 (KRONOS) or ≥1 (ETHOS) moderate/severe exacerbations in the prior year. This pooled post hoc analysis evaluated trough forced expiratory volume in 1 second (FEV1) and FEV1 area under the curve from hours 0 to 4 (AUC0-4) change from baseline over 12-24 weeks, moderate/severe exacerbation rates, and St George's Respiratory Questionnaire (SGRQ) total score over 24 weeks with ICS/LAMA/LABA (BGF 320/14.4/10 µg), LAMA/LABA (glycopyrronium/formoterol fumarate dihydrate [GFF] 14.4/10 µg), and ICS/LABA (budesonide/formoterol fumarate dihydrate [BFF] 320/10 µg) in patients with phenotypic features of asthma defined as reversibility to salbutamol and blood eosinophils ≥300 cells/mm3. Analyses were not adjusted for multiplicity. Results BGF improved trough FEV1 and FEV1 AUC0-4 versus GFF (least squares mean [LSM] difference [95% confidence interval (CI)] 125 [39-211] and 153 [59-247] mL) and BFF (LSM difference [95% CI] 118 [30-207] and 146 [49-243] mL). Exacerbation rates were estimated to be lower with BGF versus GFF and BFF (respective rate ratios [95% CI] 0.28 [0.19-0.43] and 0.69 [0.45-1.05]) and SGRQ total score was estimated to be improved with BGF versus GFF and BFF (respective LSM differences [95% CI] -5.18 [-8.11 to -2.24] and -1.09 [-4.08 to 1.91]). Conclusion BGF was estimated to have benefits on lung function, exacerbations, and health-related quality of life versus dual therapies in patients with COPD and phenotypic features of asthma. Trial Registration ClinicalTrials.gov NCT02497001 and NCT02465567.
Collapse
Affiliation(s)
- Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | | | - John R Hurst
- UCL Respiratory, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Arnold IC, Munitz A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat Rev Immunol 2024; 24:858-877. [PMID: 38982311 DOI: 10.1038/s41577-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Eosinophils are bone marrow-derived granulocytes that are traditionally associated with type 2 immune responses, such as those that occur during parasite infections and allergy. Emerging evidence demonstrates the remarkable functional plasticity of this elusive cell type and its pleiotropic functions in diverse settings. Eosinophils broadly contribute to tissue homeostasis, host defence and immune regulation, predominantly at mucosal sites. The scope of their activities primarily reflects the breadth of their portfolio of secreted mediators, which range from cytotoxic cationic proteins and reactive oxygen species to multiple cytokines, chemokines and lipid mediators. Here, we comprehensively review basic eosinophil biology that is directly related to their activities in homeostasis, protective immunity, regeneration and cancer. We examine how dysregulation of these functions contributes to the physiopathology of a broad range of inflammatory diseases. Furthermore, we discuss recent findings regarding the tissue compartmentalization and adaptation of eosinophils, shedding light on the factors that likely drive their functional diversification within tissues.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
4
|
Singh G, García-Bernalt Diego J, Warang P, Park SC, Chang LA, Noureddine M, Laghlali G, Bykov Y, Prellberg M, Yan V, Singh S, Pache L, Cuadrado-Castano S, Webb B, García-Sastre A, Schotsaert M. Outcome of SARS-CoV-2 reinfection depends on genetic background in female mice. Nat Commun 2024; 15:10178. [PMID: 39580470 PMCID: PMC11585546 DOI: 10.1038/s41467-024-54334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
Antigenically distinct SARS-CoV-2 variants increase the reinfection risk for vaccinated and previously exposed population due to antibody neutralization escape. COVID-19 severity depends on many variables, including host immune responses, which differ depending on genetic predisposition. To address this, we perform immune profiling of female mice with different genetic backgrounds -transgenic K18-hACE2 and wild-type 129S1- infected with the severe B.1.351, 30 days after exposure to the milder BA.1 or severe H1N1. Prior BA.1 infection protects against B.1.351-induced morbidity in K18-hACE2 but aggravates disease in 129S1. H1N1 protects against B.1.351-induced morbidity only in 129S1. Enhanced severity in B.1.351 re-infected 129S1 is characterized by an increase of IL-10, IL-1β, IL-18 and IFN-γ, while in K18-hACE2 the cytokine profile resembles naïve mice undergoing their first viral infection. Enhanced pathology during 129S1 reinfection cannot be attributed to weaker adaptive immune responses to BA.1. Infection with BA.1 causes long-term differential remodeling and transcriptional changes in the bronchioalveolar CD11c+ compartment. K18-hACE2 CD11c+ cells show a strong antiviral defense expression profile whereas 129S1 CD11c+ cells present a more pro-inflammatory response upon restimulation. In conclusion, BA.1 induces cross-reactive adaptive immune responses in K18-hACE2 and 129S1, but reinfection outcome correlates with differential CD11c+ cells responses in the alveolar space.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Yonina Bykov
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Prellberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Higham A, Beech A, Singh D. The relevance of eosinophils in chronic obstructive pulmonary disease: inflammation, microbiome, and clinical outcomes. J Leukoc Biol 2024; 116:927-946. [PMID: 38941350 DOI: 10.1093/jleuko/qiae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024] Open
Abstract
Chronic obstructive pulmonary disease is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction, and poorly reversible airflow obstruction. A subgroup of patients with chronic obstructive pulmonary disease has higher blood eosinophil counts, associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 inflammation. Emerging evidence shows that patients with chronic obstructive pulmonary disease with increased pulmonary eosinophil counts have an altered airway microbiome. Higher blood eosinophil counts are also associated with increased lung function decline, implicating type 2 inflammation in progressive pathophysiology in chronic obstructive pulmonary disease. We provide a narrative review of the role of eosinophils and type 2 inflammation in the pathophysiology of chronic obstructive pulmonary disease, encompassing the lung microbiome, pharmacological targeting of type 2 pathways in chronic obstructive pulmonary disease, and the clinical use of blood eosinophil count as a chronic obstructive pulmonary disease biomarker.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
- Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, M23 9QZ, United Kingdom
| |
Collapse
|
6
|
Gu KM, Jung JW, Kang MJ, Kim DK, Choi H, Cho YJ, Jang SH, Lee CH, Oh YM, Park JS, Kim JY. Eosinophilia Is a Favorable Marker for Pneumonia in Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2024; 87:465-472. [PMID: 38710525 PMCID: PMC11468446 DOI: 10.4046/trd.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/10/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) expressing eosinophilia experience slightly fewer episodes of community-acquired pneumonia (CAP), than those without eosinophilia. However, the severity and burden of hospitalized pneumonia patients with COPD involving eosinophilia have not been assessed. METHODS We evaluated the differences in clinical characteristics between patients with CAP and COPD with or without eosinophilia by a post hoc analysis of a prospective, multi-center, cohort study data. RESULTS Of 349 CAP patients with COPD, 45 (12.9%) had eosinophilia (blood eosinophil ≥300 cells/μL). Patients with eosinophilia had a lower sputum culture percentile (8.1% vs. 23.4%, p<0.05), a lower percentile of neutrophils (70.3% vs. 80.2%, p<0.05), reduced C-reactive protein levels (30.6 mg/L vs. 86.6 mg/L, p<0.05), and a lower pneumonia severity index score (82.5 vs. 90.0, p<0.05), than those without eosinophilia. The duration of antibiotic treatment (8.0 days vs. 10.0 days, p<0.05) and hospitalization (7.0 days vs. 9.0 days, p<0.05) were shorter in eosinophilic patients. The cost of medical care per day (256.4 US$ vs. 291.0 US$, p<0.05), cost for the medication (276.4 US$ vs. 349.9 US$, p<0.05), and cost for examination (685.5 US$ vs. 958.1 US$, p<0.05) were lower in patients with eosinophilia than those without eosinophilia. CONCLUSION Eosinophilia serves as a favorable marker for the severity of pneumonia, health-care consumption, and cost of medical care in patients with CAP and COPD.
Collapse
Affiliation(s)
- Kang-Mo Gu
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jae-Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deog Kyeom Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hayoung Choi
- Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Seung Hun Jang
- Division of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Chang-Hoon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Sook Park
- Department of Software Convergence, Seoul Women’s University College of Interdisciplinary Studies for Emerging Industries, Seoul, Republic of Korea
| | - Jae Yeol Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Shehabeldin M, Gao J, Cho Y, Chong R, Tabib T, Li L, Smardz M, Gaffen SL, Diaz PI, Lafyatis R, Little SR, Sfeir C. Therapeutic delivery of CCL2 modulates immune response and restores host-microbe homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2400528121. [PMID: 39186644 PMCID: PMC11388407 DOI: 10.1073/pnas.2400528121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/11/2024] [Indexed: 08/28/2024] Open
Abstract
Many chronic inflammatory diseases are attributed to disturbances in host-microbe interactions, which drive immune-mediated tissue damage. Depending on the anatomic setting, a chronic inflammatory disease can exert unique local and systemic influences, which provide an exceptional opportunity for understanding disease mechanism and testing therapeutic interventions. The oral cavity is an easily accessible environment that allows for protective interventions aiming at modulating the immune response to control disease processes driven by a breakdown of host-microbe homeostasis. Periodontal disease (PD) is a prevalent condition in which quantitative and qualitative changes of the oral microbiota (dysbiosis) trigger nonresolving chronic inflammation, progressive bone loss, and ultimately tooth loss. Here, we demonstrate the therapeutic benefit of local sustained delivery of the myeloid-recruiting chemokine (C-C motif) ligand 2 (CCL2) in murine ligature-induced PD using clinically relevant models as a preventive, interventional, or reparative therapy. Local delivery of CCL2 into the periodontium inhibited bone loss and accelerated bone gain that could be ascribed to reduced osteoclasts numbers. CCL2 treatment up-regulated M2-macrophage and downregulated proinflammatory and pro-osteoclastic markers. Furthermore, single-cell ribonucleic acid (RNA) sequencing indicated that CCL2 therapy reversed disease-associated transcriptomic profiles of murine gingival macrophages via inhibiting the triggering receptor expressed on myeloid cells-1 (TREM-1) signaling in classically activated macrophages and inducing protein kinase A (PKA) signaling in infiltrating macrophages. Finally, 16S ribosomal ribonucleic acid (rRNA) sequencing showed mitigation of microbial dysbiosis in the periodontium that correlated with a reduction in microbial load in CCL2-treated mice. This study reveals a novel protective effect of CCL2 local delivery in PD as a model for chronic inflammatory diseases caused by a disturbance in host-microbe homeostasis.
Collapse
Affiliation(s)
- Mostafa Shehabeldin
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jin Gao
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yejin Cho
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Rong Chong
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Matthew Smardz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
- University at Buffalo Microbiome Center, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Steven R Little
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Charles Sfeir
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
8
|
Liao K, Wang F, Xia C, Xu Z, Zhong S, Bi W, Ruan J. The cGAS-STING pathway in COPD: targeting its role and therapeutic potential. Respir Res 2024; 25:302. [PMID: 39113033 PMCID: PMC11308159 DOI: 10.1186/s12931-024-02915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic obstructive pulmonary disease(COPD) is a gradually worsening and fatal heterogeneous lung disease characterized by airflow limitation and increasingly decline in lung function. Currently, it is one of the leading causes of death worldwide. The consistent feature of COPD is airway inflammation. Several inflammatory factors are known to be involved in COPD pathogenesis; however, anti-inflammatory therapy is not the first-line treatment for COPD. Although bronchodilators, corticosteroids and roflumilast could improve airflow and control symptoms, they could not reverse the disease. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway plays an important novel role in the immune system and has been confirmed to be a key mediator of inflammation during infection, cellular stress, and tissue damage. Recent studies have emphasized that abnormal activation of cGAS-STING contributes to COPD, providing a direction for new treatments that we urgently need to develop. Here, we focused on the cGAS-STING pathway, providing insight into its molecular mechanism and summarizing the current knowledge on the role of the cGAS-STING pathway in COPD. Moreover, we explored antagonists of cGAS and STING to identify potential therapeutic strategies for COPD that target the cGAS-STING pathway.
Collapse
Affiliation(s)
- Kexin Liao
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fengshuo Wang
- College of Pharmacy, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Chenhao Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ze Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Sen Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Wenqi Bi
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jingjing Ruan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
9
|
Kim GD, Lim EY, Shin HS. Macrophage Polarization and Functions in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:5631. [PMID: 38891820 PMCID: PMC11172060 DOI: 10.3390/ijms25115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), the major leading cause of mortality worldwide, is a progressive and irreversible respiratory condition characterized by peripheral airway and lung parenchymal inflammation, accompanied by fibrosis, emphysema, and airflow limitation, and has multiple etiologies, including genetic variance, air pollution, and repetitive exposure to harmful substances. However, the precise mechanisms underlying the pathogenesis of COPD have not been identified. Recent multiomics-based evidence suggests that the plasticity of alveolar macrophages contributes to the onset and progression of COPD through the coordinated modulation of numerous transcription factors. Therefore, this review focuses on understanding the mechanisms and functions of macrophage polarization that regulate lung homeostasis in COPD. These findings may provide a better insight into the distinct role of macrophages in COPD pathogenesis and perspective for developing novel therapeutic strategies targeting macrophage polarization.
Collapse
Affiliation(s)
- Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (G.-D.K.); (E.Y.L.)
| | - Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (G.-D.K.); (E.Y.L.)
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (G.-D.K.); (E.Y.L.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
10
|
Yehia D, Leung C, Sin DD. Clinical utilization of airway inflammatory biomarkers in the prediction and monitoring of clinical outcomes in patients with chronic obstructive pulmonary disease. Expert Rev Mol Diagn 2024; 24:409-421. [PMID: 38635513 DOI: 10.1080/14737159.2024.2344777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) accounts for 545 million people living with chronic respiratory disorders and is the third leading cause of morbidity and mortality around the world. COPD is a progressive disease, characterized by episodes of acute worsening of symptoms such as cough, dyspnea, and sputum production. AREAS COVERED Airway inflammation is a prominent feature of COPD. Chronic airway inflammation results in airway structural remodeling and emphysema. Persistent airway inflammation is a treatable trait of COPD and plays a significant role in disease development and progression. In this review, the authors summarize the current and emerging biomarkers that reveal the heterogeneity of airway inflammation subtypes, clinical outcomes, and therapeutic response in COPD. EXPERT OPINION Airway inflammation can be broadly categorized as eosinophilic (type 2 inflammation) and non-eosinophilic (non-type 2 inflammation) in COPD. Currently, blood eosinophil counts are incorporated in clinical practice guidelines to identify COPD patients who are at a higher risk of exacerbations and lung function decline, and who are likely to respond to inhaled corticosteroids. As new therapeutics are being developed for the chronic management of COPD, it is essential to identify biomarkers that will predict treatment response.
Collapse
Affiliation(s)
- Dina Yehia
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Pang X, Liu X. Immune Dysregulation in Chronic Obstructive Pulmonary Disease. Immunol Invest 2024; 53:652-694. [PMID: 38573590 DOI: 10.1080/08820139.2024.2334296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease whose incidence increase with age and is characterised by chronic inflammation and significant immune dysregulation. Inhalation of toxic substances cause oxidative stress in the lung tissue as well as airway inflammation, under the recruitment of chemokines, immune cells gathered and are activated to play a defensive role. However, persistent inflammation damages the immune system and leads to immune dysregulation, which is mainly manifested in the reduction of the body's immune response to antigens, and immune cells function are impaired, further destroy the respiratory defensive system, leading to recurrent lower respiratory infections and progressive exacerbation of the disease, thus immune dysregulation play an important role in the pathogenesis of COPD. This review summarizes the changes of innate and adaptive immune-related cells during the pathogenesis of COPD, aiming to control COPD airway inflammation and improve lung tissue remodelling by regulating immune dysregulation, for further reducing the risk of COPD progression and opening new avenues of therapeutic intervention in COPD.
Collapse
Affiliation(s)
- Xichen Pang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Athanazio RA, Bernal Villada L, Avdeev SN, Wang HC, Ramírez-Venegas A, Sivori M, Dreyse J, Pacheco M, Man SK, Noriega-Aguirre L, Farouk H. Rate of severe exacerbations, healthcare resource utilisation and clinical outcomes in patients with COPD in low-income and middle-income countries: results from the EXACOS International Study. BMJ Open Respir Res 2024; 11:e002101. [PMID: 38637115 PMCID: PMC11029392 DOI: 10.1136/bmjresp-2023-002101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/16/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION The EXAcerbations of Chronic obstructive lung disease (COPD) and their OutcomeS (EXACOS) International Study aimed to quantify the rate of severe exacerbations and examine healthcare resource utilisation (HCRU) and clinical outcomes in patients with COPD from low-income and middle-income countries. METHODS EXACOS International was an observational, cross-sectional study with retrospective data collection from medical records for a period of up to 5 years. Data were collected from 12 countries: Argentina, Brazil, Chile, Colombia, Costa Rica, Dominican Republic, Guatemala, Hong Kong, Mexico, Panama, Russia and Taiwan. The study population comprised patients ≥40 years of age with COPD. Outcomes/variables included the prevalence of severe exacerbations, the annual rate of severe exacerbations and time between severe exacerbations; change in lung function over time (measured by the forced expiratory volume in 1 s (FEV1)); peripheral blood eosinophil counts (BECs) and the prevalence of comorbidities; treatment patterns; and HCRU. RESULTS In total, 1702 patients were included in the study. The study population had a mean age of 69.7 years, with 69.4% males, and a mean body mass index of 26.4 kg/m2. The mean annual prevalence of severe exacerbations was 20.1%, and 48.4% of patients experienced ≥1 severe exacerbation during the 5-year study period. As the number of severe exacerbations increased, the interval between successive exacerbations decreased. A statistically significant decrease in mean (SD) FEV1 from baseline to post-baseline was observed in patients with ≥1 severe exacerbation (1.23 (0.51) to 1.13 (0.52) L; p=0.0000). Mean BEC was 0.198 x109 cells/L, with 64.7% of patients having a BEC ≥0.1 x109 cells/L and 21.3% having a BEC ≥0.3 x109 cells/L. The most common comorbidity was hypertension (58.3%). An increasing number of severe exacerbations per year was associated with greater HCRU. DISCUSSION The findings presented here indicate that effective treatment strategies to prevent severe exacerbations in patients with COPD remain a significant unmet need in low-income and middle-income countries.
Collapse
Affiliation(s)
- Rodrigo Abensur Athanazio
- Pulmonology Division, Heart Institute-InCor-Clinical Hospital, Faculty of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sergey N Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Martín Sivori
- Pneumology Unit, Dr J M Ramos Mejía Pulmonology University Center, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Jorge Dreyse
- Department of Internal Medicine and Critical Care Center, Clínica Las Condes and School of Medicine Universidad Finis Terrae, Santiago, Chile
| | - Manuel Pacheco
- Internal Medicine Research Group, Universidad Tecnológica de Pereira, Pereira, Colombia
- Fundación Universitaria Visión de las Américas y Respiremos Unidad de Neumología, Pereira, Colombia
| | - Sin Kit Man
- Department of Medicine and Geriatrics, Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong Special Administrative Region (HKSAR), Tuen Mun, People's Republic of China
| | - Lorena Noriega-Aguirre
- Center for Diagnosis and Treatment of Respiratory Diseases (CEDITER), Panama City, Panama
| | | |
Collapse
|
13
|
Luo L, Tang J, Du X, Li N. Chronic obstructive pulmonary disease and the airway microbiome: A review for clinicians. Respir Med 2024; 225:107586. [PMID: 38460708 DOI: 10.1016/j.rmed.2024.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex heterogeneous disease characterized by progressive airflow limitation and chronic inflammation. The progressive development and long-term repeated acute exacerbation of COPD make many patients still unable to control the deterioration of the disease after active treatment, and even eventually lead to death. An increasing number of studies have shown that the occurrence and development of COPD are closely related to the composition and changes of airway microbiome. This article reviews the interaction between COPD and airway microbiome, the potential mechanisms of interaction, and the treatment methods related to microbiome. We elaborated the internal correlation between airway microbiome and different stages of COPD, inflammatory endotypes, glucocorticoid and antibiotic treatment, analyze the pathophysiological mechanisms such as the "vicious cycle" hypothesis, abnormal inflammation-immune response of the host and the "natural selection" of COPD to airway microbiome, introduce the treatment of COPD related to microbiome and emphasize the predictive value of airway microbiome for the progression, exacerbation and prognosis of COPD, as well as the guiding role for clinical management of patients, in order to provide a new perspective for exploring the pathogenesis of COPD, and also provide clues and guidance for finding new treatment targets.
Collapse
Affiliation(s)
- Lingxin Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Junli Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xianzhi Du
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Na Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
14
|
Xiong K, Ao K, Wei W, Dong J, Li J, Yang Y, Tang B, Li Y. Periodontitis aggravates COPD through the activation of γδ T cell and M2 macrophage. mSystems 2024; 9:e0057223. [PMID: 38214520 PMCID: PMC10878042 DOI: 10.1128/msystems.00572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic systemic inflammatory disease with high morbidity and mortality. Periodontitis exacerbates COPD progression; however, the immune mechanisms by which periodontitis affects COPD remain unclear. Here, by constructing periodontitis and COPD mouse models, we demonstrated that periodontitis and COPD could mutually aggravate disease progression. For the first time, we found that the progression was associated with the activation of γδ T cells and M2 macrophages, and M2 polarization of macrophages was affected by γδ T cells activation. In the lung tissues of COPD with periodontitis, the activation of γδ T cells finally led to the increase of IL 17 and IFN γ expression and M2 macrophage polarization. Furthermore, we found that the periodontitis-associated bacteria Porphyromonas gingivalis (P. gingivalis) promoted the activation of γδ T cells and M2 macrophages ex vivo. The data from clinical bronchoalveolar lavage fluid (BALF) samples were consistent with the in vivo and ex vivo experiments. For the first time, our results identified the crucial role of γδ T-M2 immune mechanism in mediating periodontitis-promoted COPD progression. Therefore, targeting at periodontitis treatment and the γδ T-M2 immune mechanism might provide a new practical strategy for COPD prevention or control.IMPORTANCEPeriodontitis exacerbates chronic obstructive pulmonary disease (COPD) progression. For the first time, the current study identified that the impact of periodontitis on COPD progression was associated with the activation of γδ T cells and M2 macrophages and that M2 polarization of macrophages was affected by γδ T cells activation. The results indicated that targeting at periodontitis treatment and the γδ T-M2 immune mechanism might provide a new practical strategy for COPD prevention or control.
Collapse
Affiliation(s)
- Kaixin Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Singh G, Warang P, García-Bernalt Diego J, Chang L, Bykov Y, Singh S, Pache L, Cuadrado-Castano S, Webb B, Garcia-Sastre A, Schotsaert M. Host immune responses associated with SARS-CoV-2 Omicron infection result in protection or pathology during reinfection depending on mouse genetic background. RESEARCH SQUARE 2023:rs.3.rs-3637405. [PMID: 38077015 PMCID: PMC10705603 DOI: 10.21203/rs.3.rs-3637405/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid emergence of antigenic distinct SARS-CoV-2 variants implies a greater risk of reinfection as viruses can escape neutralizing antibodies induced by vaccination or previous viral exposure. Disease severity during COVID-19 depends on many variables such as age-related comorbidities, host immune status and genetic variation. The host immune response during infection with SARS-CoV-2 may contribute to disease severity, which can range from asymptomatic to severe with fatal outcome. Furthermore, the extent of host immune response activation may rely on underlying genetic predisposition for disease or protection. To address these questions, we performed immune profiling studies in mice with different genetic backgrounds - transgenic K18-hACE2 and wild-type 129S1 mice - subjected to reinfection with the severe disease-causing SARS-CoV-2 B.1.351 variant, 30 days after experimental milder BA.1 infection. BA.1 preinfection conferred protection against B.1.351-induced morbidity in K18-hACE2 mice but aggravated disease in 129S1 mice. We found that he cytokine/chemokine profile in B.1.351 re-infected 129S1mice is similar to that during severe SARS-CoV-2 infection in humans and is characterized by a much higher level of IL-10, IL-1β, IL-18 and IFN-γ, whereas in B.1.351 re-infected K18-hACE2 mice, the cytokine profile echoes the signature of naïve mice undergoing viral infection for the first time. Interestingly, the enhanced pathology observed in 129S1 mice upon reinfection cannot be attributed to a less efficient induction of adaptive immune responses to the initial BA.1 infection, as both K18-hACE2 and 129S1 mice exhibited similar B and T cell responses at 30 DPI against BA.1, with similar anti-BA.1 or B.1.351 spike-specific ELISA binding titers, levels of germinal center B-cells, and SARS-CoV-2-Spike specific tissue-resident T-cells. Long-term effects of BA.1 infection are associated with differential transcriptional changes in bronchoalveolar lavage-derived CD11c + immune cells from K18-hACE2 and 129S1, with K18-hACE2 CD11c + cells showing a strong antiviral defense gene expression profile whereas 129S1 CD11c + cells showed a more pro-inflammatory response. In conclusion, initial infection with BA.1 induces cross-reactive adaptive immune responses in both K18-hACE2 and 129S1 mice, however the different disease outcome of reinfection seems to be driven by differential responses of CD11c + cells in the alveolar space.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- Sanford Burnham Prebys Medical Discovery Institute
| | | | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming
| | | | | |
Collapse
|
16
|
Qian Y, Cai C, Sun M, Lv D, Zhao Y. Analyses of Factors Associated with Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Review. Int J Chron Obstruct Pulmon Dis 2023; 18:2707-2723. [PMID: 38034468 PMCID: PMC10683659 DOI: 10.2147/copd.s433183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is the exacerbation of a range of respiratory symptoms during the stable phase of chronic obstructive pulmonary disease (COPD). AECOPD is thus a dangerous stage and key event in the course of COPD, as its deterioration and frequency seriously affects the quality of life of patients and shortens their survival. Acute exacerbations occur and develop due to many factors such as infection, tobacco smoke inhalation, air pollution, comorbidities, airflow limitation, various biomarkers, history of previous deterioration, natural killer cell abnormalities, immunoglobulin G deficiency, genetics, abnormal muscle and nutritional status, negative psychology, and seasonal temperature changes. There is relatively limited research on the impact of the role of standardized management on the alleviation of AECOPD. However, with the establishment of relevant prevention and management systems and the promotion of artificial intelligence technology and Internet medical approaches, long-term effective and standardized management of COPD patients may help to achieve the quality of life and disease prognosis in COPD patients and reduce the risk of AE.
Collapse
Affiliation(s)
- Yang Qian
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Chenting Cai
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Mengqing Sun
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Dan Lv
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Yun Zhao
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
17
|
Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, Rennard SI. Does Chronic Obstructive Pulmonary Disease Originate from Different Cell Types? Am J Respir Cell Mol Biol 2023; 69:500-507. [PMID: 37584669 PMCID: PMC10633838 DOI: 10.1165/rcmb.2023-0175ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023] Open
Abstract
The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey L. Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Irina Petrache
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | - Francesca Polverino
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Farrah Kheradmand
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Ian M. Adcock
- Department of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
18
|
Kapellos TS, Conlon TM, Yildirim AÖ, Lehmann M. The impact of the immune system on lung injury and regeneration in COPD. Eur Respir J 2023; 62:2300589. [PMID: 37652569 DOI: 10.1183/13993003.00589-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
COPD is a devastating respiratory condition that manifests via persistent inflammation, emphysema development and small airway remodelling. Lung regeneration is defined as the ability of the lung to repair itself after injury by the proliferation and differentiation of progenitor cell populations, and becomes impaired in the COPD lung as a consequence of cell intrinsic epithelial stem cell defects and signals from the micro-environment. Although the loss of structural integrity and lung regenerative capacity are critical for disease progression, our understanding of the cellular players and molecular pathways that hamper regeneration in COPD remains limited. Intriguingly, despite being a key driver of COPD pathogenesis, the role of the immune system in regulating lung regenerative mechanisms is understudied. In this review, we summarise recent evidence on the contribution of immune cells to lung injury and regeneration. We focus on four main axes: 1) the mechanisms via which myeloid cells cause alveolar degradation; 2) the formation of tertiary lymphoid structures and the production of autoreactive antibodies; 3) the consequences of inefficient apoptotic cell removal; and 4) the effects of innate and adaptive immune cell signalling on alveolar epithelial proliferation and differentiation. We finally provide insight on how recent technological advances in omics technologies and human ex vivo lung models can delineate immune cell-epithelium cross-talk and expedite precision pro-regenerative approaches toward reprogramming the alveolar immune niche to treat COPD.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps University of Marburg, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
19
|
Moon HG, Kim SJ, Kim KH, Kim YM, Rehman J, Lee H, Wu YC, Lee SSY, Christman JW, Ackerman SJ, Kim M, You S, Park GY. CX 3CR 1+ Macrophage Facilitates the Resolution of Allergic Lung Inflammation via Interacting CCL26. Am J Respir Crit Care Med 2023; 207:1451-1463. [PMID: 36790376 PMCID: PMC10263139 DOI: 10.1164/rccm.202209-1670oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 02/16/2023] Open
Abstract
Rationale: The resolution of inflammation is an active process coordinated by mediators and immune cells to restore tissue homeostasis. However, the mechanisms for resolving eosinophilic allergic lung inflammation triggered by inhaled allergens have not been fully elucidated. Objectives: Our objectives were to investigate the cellular mechanism of tissue-resident macrophages involved in the resolution process of eosinophilic lung inflammation. Methods: For the study, we used the institutional review board-approved protocol for human subsegmental bronchoprovocation with allergen, mouse models for allergic lung inflammation, and novel transgenic mice, including a conditional CCL26 knockout. The samples were analyzed using mass cytometry, single-cell RNA sequencing, and biophysical and immunological analyses. Measurements and Main Results: We compared alveolar macrophage (AM) subsets in the BAL before and after allergen provocation. In response to provocation with inhaled allergens, the subsets of AMs are dynamically changed in humans and mice. In the steady state, the AM subset expressing CX3CR1 is a relatively small fraction in bronchoalveolar space and lung tissue but drastically increases after allergen challenges. This subset presents unique patterns of gene expression compared with classical AMs, expressing high C1q family genes. CX3CR1+ macrophages are activated by airway epithelial cell-derived CCL26 via a receptor-ligand interaction. The binding of CCL26 to the CX3CR1+ receptor induces CX3CR1+ macrophages to secrete C1q, subsequently facilitating the clearance of eosinophils. Furthermore, the depletion of CX3CR1 macrophages or CCL26 in airway epithelial cells delays the resolution of allergic lung inflammation displaying prolonged tissue eosinophilia. Conclusions: These findings indicate that the CCL26-CX3CR1 pathway is pivotal in resolving eosinophilic allergic lung inflammation.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | - Seung-jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | - Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | | | | | - Hyun Lee
- Department of Medicinal Chemistry & Pharmacognosy, Center for Biomolecular Sciences
| | | | | | - John W. Christman
- Section of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Center, The Ohio State University, Columbus, Ohio
| | - Steven J. Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Minhyung Kim
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Sungyoung You
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
20
|
Mormile M, Mormile I, Fuschillo S, Rossi FW, Lamagna L, Ambrosino P, de Paulis A, Maniscalco M. Eosinophilic Airway Diseases: From Pathophysiological Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24087254. [PMID: 37108417 PMCID: PMC10138384 DOI: 10.3390/ijms24087254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Eosinophils play a key role in airway inflammation in many diseases, such as allergic and non-allergic asthma, chronic rhinosinusitis with nasal polyps, and chronic obstructive pulmonary disease. In these chronic disabling conditions, eosinophils contribute to tissue damage, repair, remodeling, and disease persistence through the production a variety of mediators. With the introduction of biological drugs for the treatment of these respiratory diseases, the classification of patients based on clinical characteristics (phenotype) and pathobiological mechanisms (endotype) has become mandatory. This need is particularly evident in severe asthma, where, despite the great scientific efforts to understand the immunological pathways underlying clinical phenotypes, the identification of specific biomarkers defining endotypes or predicting pharmacological response remains unsatisfied. In addition, a significant heterogeneity also exists among patients with other airway diseases. In this review, we describe some of the immunological differences in eosinophilic airway inflammation associated with severe asthma and other airway diseases and how these factors might influence the clinical presentation, with the aim of clarifying when eosinophils play a key pathogenic role and, therefore, represent the preferred therapeutic target.
Collapse
Affiliation(s)
- Mauro Mormile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Lamagna
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Mauro Maniscalco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| |
Collapse
|
21
|
Lv H, Hua Q, Wang Y, Gao Z, Liu P, Qin D, Xu Y. Mapping the knowledge structure and emerging trends of efferocytosis research: a bibliometric analysis. Am J Transl Res 2023; 15:1386-1402. [PMID: 36915780 PMCID: PMC10006791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Efferocytosis refers to the physiological clearance process of apoptotic cells by specialized and non-phagocytes and it is essential in human health and disease. However, there is a lack of comprehensive and objective reports on the current status of efferocytosis research. Here, we visually analyzed the hotspots and trending issues of efferocytosis research with bibliometric analysis. METHODS Relevant publications were obtained from the Web of Science Core Collection on February 18, 2022. We performed bibliometric and visual analysis using CiteSpace, VOSviewer, Microsoft Excel 2019, and the online Bibliometric platform. RESULTS A total of 1007 publications on efferocytosis were retrieved. The number of efferocytosis studies increased rapidly from 2006 to 2021. The country that published the most efferocytosis related articles was the USA and the most productive institutions were Harvard University and Brigham and Women's Hospital. The most prolific and influential author was I. Tabas of Columbia University. Frontiers in Immunology published the most research papers on efferocytosis, the while Journal of Immunology had the highest co-citation frequency. The high-frequency keywords were "efferocytosis", "inflammation", "apoptotic cells", "macrophages", and "apoptosis". The analysis of keywords with the strongest citation bursts identified "cell" and "resolution" as emerging hotspots. CONCLUSION Our results demonstrated that efferocytosis research increased steadily within the past decade. Current efferocytosis studies focus on three main aspects: mechanisms, basic biology, and potential role in disease. The research trends included the cellular players of the efferocytosis process and the role of efferocytosis in inflammation resolution. This bibliometric analysis presented a comprehensive overview of efferocytosis research and provided valuable references and ideas for scholars interested in this field.
Collapse
Affiliation(s)
- Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Yunfei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Ziang Gao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University Wuhan, Hubei, China.,Department of Rhinology and Allergy, Renmin Hospital of Wuhan University Wuhan, Hubei, China.,Hubei Province Key Laboratory of Allergy and Immunology Wuhan, Hubei, China
| |
Collapse
|
22
|
Venegas Garrido C, Mukherjee M, Bhalla A, Nair P. Airway autoimmunity, asthma exacerbations, and response to biologics. Clin Exp Allergy 2022; 52:1365-1378. [PMID: 35993511 DOI: 10.1111/cea.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 01/26/2023]
Abstract
Biologic therapies in asthma are indicated in severe disease, and they are directed against specific inflammatory modulators that contribute to pathogenesis and severity. Currently approved biologics target T2 cytokines (IgE, IL-5, IL-4/IL-13, and TLSP) and have demonstrated efficacy in clinical outcomes such as exacerbation rate and oral corticosteroid dose reductions, blood and airway eosinophil depletion, and lung function improvement. However, a proportion of these patients may show inadequate responses to biologics, with either initial lack of improvement or clinical and functional worsening after an optimal initial response. Exacerbations while on a biologic may be due to several reasons, including imprecise identification of the dominant effector pathway contributing to severity, additional inflammatory pathways that are not targeted by the biologic, inaccuracies of the biomarker used to guide therapy, inadequate dosing schedules, intercurrent airway infections, anti-drug neutralizing antibodies, and a novel phenomenon of autoimmune responses in the airways interfering with the effectiveness of the monoclonal antibodies. This review, illustrated using case scenarios, describes the underpinnings of airway autoimmune responses in driving exacerbations while patients are being treated with biologics, device a strategy to evaluate such exacerbations, an algorithm to switch between biologics, and perhaps to consider two biologics concurrently.
Collapse
Affiliation(s)
- Carmen Venegas Garrido
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manali Mukherjee
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anurag Bhalla
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Banaganapalli B, Mallah B, Alghamdi KS, Albaqami WF, Alshaer DS, Alrayes N, Elango R, Shaik NA. Integrative weighted molecular network construction from transcriptomics and genome wide association data to identify shared genetic biomarkers for COPD and lung cancer. PLoS One 2022; 17:e0274629. [PMID: 36194576 PMCID: PMC9531836 DOI: 10.1371/journal.pone.0274629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multifactorial progressive airflow obstruction in the lungs, accounting for high morbidity and mortality across the world. This study aims to identify potential COPD blood-based biomarkers by analyzing the dysregulated gene expression patterns in blood and lung tissues with the help of robust computational approaches. The microarray gene expression datasets from blood (136 COPD and 6 controls) and lung tissues (16 COPD and 19 controls) were analyzed to detect shared differentially expressed genes (DEGs). Then these DEGs were used to construct COPD protein network-clusters and functionally enrich them against gene ontology annotation terms. The hub genes in the COPD network clusters were then queried in GWAS catalog and in several cancer expression databases to explore their pathogenic roles in lung cancers. The comparison of blood and lung tissue datasets revealed 63 shared DEGs. Of these DEGs, 12 COPD hub gene-network clusters (SREK1, TMEM67, IRAK2, MECOM, ASB4, C1QTNF2, CDC42BPA, DPF3, DET1, CCDC74B, KHK, and DDX3Y) connected to dysregulations of protein degradation, inflammatory cytokine production, airway remodeling, and immune cell activity were prioritized with the help of protein interactome and functional enrichment analysis. Interestingly, IRAK2 and MECOM hub genes from these COPD network clusters are known for their involvement in different pulmonary diseases. Additional COPD hub genes like SREK1, TMEM67, CDC42BPA, DPF3, and ASB4 were identified as prognostic markers in lung cancer, which is reported in 1% of COPD patients. This study identified 12 gene network- clusters as potential blood based genetic biomarkers for COPD diagnosis and prognosis.
Collapse
Affiliation(s)
- Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (BB); (NAS)
| | - Bayan Mallah
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kawthar Saad Alghamdi
- Department of Biology, Faculty of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Walaa F. Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Dalal Sameer Alshaer
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nuha Alrayes
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A. Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (BB); (NAS)
| |
Collapse
|
24
|
DI Stefano A, Gnemmi I, Dossena F, Ricciardolo FL, Maniscalco M, Lo Bello F, Balbi B. Pathogenesis of COPD at the cellular and molecular level. Minerva Med 2022; 113:405-423. [PMID: 35138077 DOI: 10.23736/s0026-4806.22.07927-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic inflammatory responses in the lung of patients with stable mild-to severe forms of COPD play a central role in the definition, comprehension and monitoring of the disease state. A better understanding of the COPD pathogenesis can't avoid a detailed knowledge of these inflammatory changes altering the functional health of the lung during the disease progression. We here summarize and discuss the role and principal functions of the inflammatory cells populating the large, small airways and lung parenchyma of patients with COPD of increasing severity in comparison with healthy control subjects: T and B lymphocytes, NK and Innate Lymphoid cells, macrophages, and neutrophils. The differential inflammatory distribution in large and small airways of patients is also discussed. Furthermore, relevant cellular mechanisms controlling the homeostasis and the "normal" balance of these inflammatory cells and of structural cells in the lung, such as autophagy, apoptosis, necroptosis and pyroptosis are as well presented and discussed in the context of the COPD severity.
Collapse
Affiliation(s)
- Antonino DI Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno, Novara, Italy -
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno, Novara, Italy
| | - Francesca Dossena
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno, Novara, Italy
| | - Fabio L Ricciardolo
- Rare Lung Disease Unit and Severe Asthma Centre, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital Orbassano, University of Turin, Turin, Italy
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Telese, Benevento, Italy
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno, Novara, Italy
| |
Collapse
|
25
|
Tajbakhsh A, Gheibihayat SM, Mortazavi D, Medhati P, Rostami B, Savardashtaki A, Momtazi-Borojeni AA. The Effect of Cigarette Smoke Exposure on Efferocytosis in Chronic Obstructive Pulmonary Disease; Molecular Mechanisms and Treatment Opportunities. COPD 2021; 18:723-736. [PMID: 34865568 DOI: 10.1080/15412555.2021.1978419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cigarette smoking-related inflammation, cellular stresses, and tissue destruction play a key role in lung disease, such as chronic obstructive pulmonary disease (COPD). Notably, augmented apoptosis and impaired clearance of apoptotic cells, efferocytosis, contribute to the chronic inflammatory response and tissue destruction in patients with COPD. Of note, exposure to cigarette smoke can impair alveolar macrophages efferocytosis activity, which leads to secondary necrosis formation and tissue inflammation. A better understanding of the processes behind the effect of cigarette smoke on efferocytosis concerning lung disorders can help to design more efficient treatment approaches and also delay the development of lung disease, such as COPD. To this end, we aimed to seek mechanisms underlying the impairing effect of cigarette smoke on macrophages-mediated efferocytosis in COPD. Further, available therapeutic opportunities for restoring efferocytosis activity and ameliorating respiratory tract inflammation in smokers with COPD were also discussed.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Pourya Medhati
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Rostami
- Health & Treatment Center of Rostam, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iran's National Elites Foundation, Tehran, Iran
| |
Collapse
|
26
|
D’Anna SE, Maniscalco M, Cappello F, Carone M, Motta A, Balbi B, Ricciardolo FLM, Caramori G, Di Stefano A. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med 2021; 53:135-150. [PMID: 32997525 PMCID: PMC7877965 DOI: 10.1080/07853890.2020.1831050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD) patients, bacterial and viral infections play a relevant role in worsening lung function and, therefore, favour disease progression. The inflammatory response to lung infections may become a specific indication of the bacterial and viral infections. We here review data on the bacterial-viral infections and related airways and lung parenchyma inflammation in stable and exacerbated COPD, focussing our attention on the prevalent molecular pathways in these different clinical conditions. The roles of macrophages, autophagy and NETosis are also briefly discussed in the context of lung infections in COPD. Controlling their combined response may restore a balanced lung homeostasis, reducing the risk of lung function decline. KEY MESSAGE Bacteria and viruses can influence the responses of the innate and adaptive immune system in the lung of chronic obstructive pulmonary disease (COPD) patients. The relationship between viruses and bacterial colonization, and the consequences of the imbalance of these components can modulate the inflammatory state of the COPD lung. The complex actions involving immune trigger cells, which activate innate and cell-mediated inflammatory responses, could be responsible for the clinical consequences of irreversible airflow limitation, lung remodelling and emphysema in COPD patients.
Collapse
Affiliation(s)
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), Istituto di Anatomia Umana e Istologia Università degli Studi di Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS di Bari, Bari, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Fabio L. M. Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, AOU San Luigi Gonzaga, Torino, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini morfologiche e funzionali (BIOMORF), Università degli studi di Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| |
Collapse
|
27
|
Zeng Q, Wang H, Wang K, Zhou H, Wang T, Wen F. Eosinophilic phenotype was associated with better early clinical remission in elderly patients but not middle-aged patients with acute exacerbations of COPD. Int J Clin Pract 2021; 75:e14415. [PMID: 34047434 DOI: 10.1111/ijcp.14415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND There is limited evidence of the relationship between peripheral blood eosinophils and clinical remission of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) at different ages, especially in elderly patients, which was the objective of the present study. METHODS This retrospective study stratified patients by age (elderly patients >65 years old or middle-aged patients between 45 and 65 years old) and analysed the relationship between blood eosinophils (≥2% or <2%) and AECOPD clinical remission at observing time points of 7, 14, 21 and 28 days of hospitalisation. Student's t tests, Mann-Whitney U tests, Chi-squared or Fisher's exact tests were conditionally used to compare difference between groups. The unadjusted or adjusted Cox proportional hazards model was used to analyse the association between blood eosinophilic levels and cumulative clinical remission. RESULTS Of 703 AECOPD cases analysed, 616 were elderly people (>65 years), 312 of whom had eosinophilic exacerbations. There were statistically significant differences in leucocytes, eosinophils, neutrophils, lymphocytes, monocytes, high-sensitivity C-reactive protein levels (hs-CRP), and hospital costs between groups (P < .05, respectively). According to the chi-square analysis, eosinophilic exacerbation had a higher clinical remission rate at 7, 14 and 21 days (all P < .05), but not 28 days (P > .05). Among analysis through adjusted Cox proportional hazards model, eosinophilic exacerbation was significantly associated with a higher cumulative remission rate in elderly patients at 7, 14, 21 days (all P < .05), but not 28 days (P > .05). No significant association was observed in meddle-aged patients at any time points (all P > .05). CONCLUSION Eosinophilic exacerbation was associated with better early clinical remission of AECOPD patients during hospitalisation. As stratified by ages, similar results were observed in elderly patients but not middle-aged patients. Blood eosinophils at different ages may be valuable in personalised management for AECOPD.
Collapse
Affiliation(s)
- Qianglin Zeng
- Division of Respiratory Diseases, State Key Laboratory of Biotherapy of China & Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Genetics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital & Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Hao Wang
- Division of Respiratory Diseases, State Key Laboratory of Biotherapy of China & Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ke Wang
- Division of Respiratory Diseases, State Key Laboratory of Biotherapy of China & Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hui Zhou
- Laboratory of Clinical Genetics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital & Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Tao Wang
- Division of Respiratory Diseases, State Key Laboratory of Biotherapy of China & Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fuqiang Wen
- Division of Respiratory Diseases, State Key Laboratory of Biotherapy of China & Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Singh R, Belchamber KBR, Fenwick PS, Chana K, Donaldson G, Wedzicha JA, Barnes PJ, Donnelly LE. Defective monocyte-derived macrophage phagocytosis is associated with exacerbation frequency in COPD. Respir Res 2021; 22:113. [PMID: 33879129 PMCID: PMC8059282 DOI: 10.1186/s12931-021-01718-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lower airway bacterial colonisation (LABC) in COPD patients is associated with increased exacerbation frequency and faster lung function decline. Defective macrophage phagocytosis in COPD drives inflammation, but how defective macrophage function contributes to exacerbations is not clear. This study investigated the association between macrophage phagocytosis and exacerbation frequency, LABC and clinical parameters. METHODS Monocyte-derived macrophages (MDM) were generated from 92 stable COPD patients, and at the onset of exacerbation in 39 patients. Macrophages were exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, then phagocytosis measured by fluorimetry and cytokine release by ELISA. Sputum bacterial colonisation was measured by PCR. RESULTS Phagocytosis of H. influenzae was negatively correlated with exacerbation frequency (r = 0.440, p < 0.01), and was significantly reduced in frequent vs. infrequent exacerbators (1.9 × 103 RFU vs. 2.5 × 103 RFU, p < 0.01). There was no correlation for S. pneumoniae. There was no association between phagocytosis of either bacteria with age, lung function, smoking history or treatment with inhaled corticosteroids, or long-acting bronchodilators. Phagocytosis was not altered during an exacerbation, or in the 2 weeks post-exacerbation. In response to phagocytosis, MDM from exacerbating patients showed increased release of CXCL-8 (p < 0.001) and TNFα (p < 0.01) compared to stable state. CONCLUSION Impaired COPD macrophage phagocytosis of H. influenzae, but not S. pneumoniae is associated with exacerbation frequency, resulting in pro-inflammatory macrophages that may contribute to disease progression. Targeting these frequent exacerbators with drugs that improve macrophage phagocytosis may prove beneficial.
Collapse
Affiliation(s)
- R Singh
- National Heart and Lung Institute, Imperial College London, London, UK
| | - K B R Belchamber
- National Heart and Lung Institute, Imperial College London, London, UK
| | - P S Fenwick
- National Heart and Lung Institute, Imperial College London, London, UK
| | - K Chana
- National Heart and Lung Institute, Imperial College London, London, UK
| | - G Donaldson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - J A Wedzicha
- National Heart and Lung Institute, Imperial College London, London, UK
| | - P J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - L E Donnelly
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
29
|
Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, Ahn KS, Oh SR. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells 2021; 10:897. [PMID: 33919784 PMCID: PMC8070705 DOI: 10.3390/cells10040897] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the innate and adaptive immune responses of organ systems, including the lungs, to particles and pathogens. Cumulative results show that macrophages contribute to the development and progression of acute or chronic inflammatory responses through the secretion of inflammatory cytokines/chemokines and the activation of transcription factors in the pathogenesis of inflammatory lung diseases, such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), ARDS related to COVID-19 (coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)), allergic asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). This review summarizes the functions of macrophages and their associated underlying mechanisms in the development of ALI, ARDS, COVID-19-related ARDS, allergic asthma, COPD, and IPF and briefly introduces the acute and chronic experimental animal models. Thus, this review suggests an effective therapeutic approach that focuses on the regulation of macrophage function in the context of inflammatory lung diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| |
Collapse
|
30
|
Prudente R, Ferrari R, Mesquita CB, Machado LHS, Franco EAT, Godoy I, Tanni SE. Peripheral Blood Eosinophils and Nine Years Mortality in COPD Patients. Int J Chron Obstruct Pulmon Dis 2021; 16:979-985. [PMID: 33883891 PMCID: PMC8053712 DOI: 10.2147/copd.s265275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Eosinophil counts increase during chronic obstructive pulmonary disease (COPD) exacerbation and influence the response to different agents (such as inhaled and systemic corticosteroids), as well as increase the production of other inflammatory cytokines. However, few studies have evaluated the association between peripheral blood eosinophils with mortality rate. OBJECTIVE To evaluate the association between peripheral blood eosinophils and mortality rate in COPD patients over a nine-year period. STUDY DESIGN AND METHODS This cohort included 133 COPD patients assessed at baseline by spirometry, pulse oximetry (SpO2), complete blood count, body composition, dyspnea intensity [Modified Medical Research Council (mMRC)] and the six-minute distance test (6MWD). The Kaplan-Meier curve followed by a Log rank test was used to evaluate mortality rate related to eosinophil cutoff point categorization. Multivariate Cox regression analysis was performed to identify the association between eosinophils and mortality with all subjects evaluated at baseline, adjusted for age, gender, mMRC, 6MWT, forced expiratory volume in the first second (FEV1) and SpO2. RESULTS Nineteen patients did not complete follow-up and it was not possible to identify the date of death in four others. Therefore, 110 patients were included in the analysis. At baseline, 81% presented ≥150 eosinophil cells and 72% presented ≥2%. We identified a three-fold higher risk of death in those with <2% eosinophils and <150 cells. We did not identify statistical differences when using other cutoff points. CONCLUSION The decrease in number of peripheral eosinophils, with cutoff points at 2% and 150 cells, may be associated with a higher risk of death in COPD patients over nine years.
Collapse
Affiliation(s)
- Robson Prudente
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Renata Ferrari
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Carolina B Mesquita
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luiz H S Machado
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Estefânia A T Franco
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Irma Godoy
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Suzana E Tanni
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
31
|
Fieldes M, Bourguignon C, Assou S, Nasri A, Fort A, Vachier I, De Vos J, Ahmed E, Bourdin A. Targeted therapy in eosinophilic chronic obstructive pulmonary disease. ERJ Open Res 2021; 7:00437-2020. [PMID: 33855061 PMCID: PMC8039900 DOI: 10.1183/23120541.00437-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common and preventable airway disease causing significant worldwide mortality and morbidity. Lifetime exposure to tobacco smoking and environmental particles are the two major risk factors. Over recent decades, COPD has become a growing public health problem with an increase in incidence. COPD is defined by airflow limitation due to airway inflammation and small airway remodelling coupled to parenchymal lung destruction. Most patients exhibit neutrophil-predominant airway inflammation combined with an increase in macrophages and CD8+ T-cells. Asthma is a heterogeneous chronic inflammatory airway disease. The most studied subtype is type 2 (T2) high eosinophilic asthma, for which there are an increasing number of biologic agents developed. However, both asthma and COPD are complex and share common pathophysiological mechanisms. They are known as overlapping syndromes as approximately 40% of patients with COPD present an eosinophilic airway inflammation. Several studies suggest a putative role of eosinophilia in lung function decline and COPD exacerbation. Recently, pharmacological agents targeting eosinophilic traits in uncontrolled eosinophilic asthma, especially monoclonal antibodies directed against interleukins (IL-5, IL-4, IL-13) or their receptors, have shown promising results. This review examines data on the rationale for such biological agents and assesses efficacy in T2-endotype COPD patients. Patients with severe COPD and eosinophilic inflammation experience uncontrolled symptoms despite optimal pharmaceutical treatment. The development of new biomarkers is needed for better phenotyping of patients to propose innovative targeted therapy.https://bit.ly/2KzWuNO
Collapse
Affiliation(s)
- Mathieu Fieldes
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France
| | | | - Said Assou
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France
| | - Amel Nasri
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France
| | - Aurélie Fort
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, Montpellier, France
| | - Isabelle Vachier
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France
| | - John De Vos
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France.,Dept of Cell and Tissue Engineering, Montpellier University Hospital, Montpellier, France
| | - Engi Ahmed
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France
| | - Arnaud Bourdin
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, Montpellier, France
| |
Collapse
|
32
|
Tardy OR, Armitage EL, Prince LR, Evans IR. The Epidermal Growth Factor Ligand Spitz Modulates Macrophage Efferocytosis, Wound Responses and Migration Dynamics During Drosophila Embryogenesis. Front Cell Dev Biol 2021; 9:636024. [PMID: 33898424 PMCID: PMC8060507 DOI: 10.3389/fcell.2021.636024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
How multifunctional cells such as macrophages interpret the different cues within their environment and undertake an appropriate response is a key question in developmental biology. Understanding how cues are prioritized is critical to answering this - both the clearance of apoptotic cells (efferocytosis) and the migration toward damaged tissue is dependent on macrophages being able to interpret and prioritize multiple chemoattractants, polarize, and then undertake an appropriate migratory response. Here, we investigate the role of Spitz, the cardinal Drosophila epidermal growth factor (EGF) ligand, in regulation of macrophage behavior in the developing fly embryo, using activated variants with differential diffusion properties. Our results show that misexpression of activated Spitz can impact macrophage polarity and lead to clustering of cells in a variant-specific manner, when expressed either in macrophages or the developing fly heart. Spitz can also alter macrophage distribution and perturb apoptotic cell clearance undertaken by these phagocytic cells without affecting the overall levels of apoptosis within the embryo. Expression of active Spitz, but not a membrane-bound variant, can also increase macrophage migration speeds and impair their inflammatory responses to injury. The fact that the presence of Spitz specifically undermines the recruitment of more distal cells to wound sites suggests that Spitz desensitizes macrophages to wounds or is able to compete for their attention where wound signals are weaker. Taken together these results suggest this molecule regulates macrophage migration and their ability to dispose of apoptotic cells. This work identifies a novel regulator of Drosophila macrophage function and provides insights into signal prioritization and integration in vivo. Given the importance of apoptotic cell clearance and inflammation in human disease, this work may help us to understand the role EGF ligands play in immune cell recruitment during development and at sites of disease pathology.
Collapse
Affiliation(s)
- Olivier R. Tardy
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Emma L. Armitage
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Iwan R. Evans
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
33
|
Lee LY, Hew GSY, Mehta M, Shukla SD, Satija S, Khurana N, Anand K, Dureja H, Singh SK, Mishra V, Singh PK, Gulati M, Prasher P, Aljabali AAA, Tambuwala MM, Thangavelu L, Panneerselvam J, Gupta G, Zacconi FC, Shastri M, Jha NK, Xenaki D, MacLoughlin R, Oliver BG, Chellappan DK, Dua K. Targeting eosinophils in respiratory diseases: Biological axis, emerging therapeutics and treatment modalities. Life Sci 2021; 267:118973. [PMID: 33400932 DOI: 10.1016/j.lfs.2020.118973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Eosinophils are bi-lobed, multi-functional innate immune cells with diverse cell surface receptors that regulate local immune and inflammatory responses. Several inflammatory and infectious diseases are triggered with their build up in the blood and tissues. The mobilization of eosinophils into the lungs is regulated by a cascade of processes guided by Th2 cytokine generating T-cells. Recruitment of eosinophils essentially leads to a characteristic immune response followed by airway hyperresponsiveness and remodeling, which are hallmarks of chronic respiratory diseases. By analysing the dynamic interactions of eosinophils with their extracellular environment, which also involve signaling molecules and tissues, various therapies have been invented and developed to target respiratory diseases. Having entered clinical testing, several eosinophil targeting therapeutic agents have shown much promise and have further bridged the gap between theory and practice. Moreover, researchers now have a clearer understanding of the roles and mechanisms of eosinophils. These factors have successfully assisted molecular biologists to block specific pathways in the growth, migration and activation of eosinophils. The primary purpose of this review is to provide an overview of the eosinophil biology with a special emphasis on potential pharmacotherapeutic targets. The review also summarizes promising eosinophil-targeting agents, along with their mechanisms and rationale for use, including those in developmental pipeline, in clinical trials, or approved for other respiratory disorders.
Collapse
Affiliation(s)
- Li-Yen Lee
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Geena Suet Yin Hew
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Madhur Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
34
|
Ritchie AI, Wedzicha JA. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin Chest Med 2020; 41:421-438. [PMID: 32800196 PMCID: PMC7423341 DOI: 10.1016/j.ccm.2020.06.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andrew I Ritchie
- National Heart and Lung Institute, Guy Scadding Building, Imperial College London, Dovehouse Street, London SW3 6JY, United Kingdom
| | - Jadwiga A Wedzicha
- National Heart and Lung Institute, Guy Scadding Building, Imperial College London, Dovehouse Street, London SW3 6JY, United Kingdom.
| |
Collapse
|
35
|
Saito Z, Yoshida M, Kojima A, Tamura K, Hasegawa T, Kuwano K. Benefits and Risks of Inhaled Corticosteroid Treatment in Patients with Chronic Obstructive Pulmonary Disease Classified by Blood Eosinophil Counts. Lung 2020; 198:925-931. [PMID: 33068153 DOI: 10.1007/s00408-020-00397-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) typically includes neutrophilic airway inflammation and eosinophilic inflammation in some cases. Inhaled corticosteroid (ICS) suppresses eosinophilic inflammation of the airway and reduces acute exacerbation (AE). The present study investigated the relationship between ICS and AE in patients with COPD classified by blood eosinophil counts. METHODS Overall, 244 patients with COPD were retrospectively evaluated between 2014 and 2017 and classified into two groups based on blood eosinophil counts (≥ 300/μL and < 300/μL). These patients were then reclassified into subgroups of those with and without ICS. Differences in the characteristics and incidence of AE and pneumonia with AE in each subgroup were evaluated retrospectively. RESULTS All patients with ICS used 320 μg budesonide twice daily. In the group with blood eosinophil counts ≥ 300/μL, patients with ICS had a significantly lower incidence of AE than those without ICS (P = 0.023). Meanwhile, no significant differences were observed in incidence of AE in the group with blood eosinophil counts < 300/μL. In the group with blood eosinophil counts < 300/μL, patients with ICS had a higher incidence of pneumonia with AE (P = 0.009). Conversely, no significant differences were observed in the group with blood eosinophil counts ≥ 300/μL. CONCLUSIONS ICS significantly reduced AE in COPD patients with blood eosinophil counts ≥ 300/μL. Meanwhile, ICS significantly increased pneumonia rate in patients with blood eosinophil count < 300/μL. Blood eosinophil count may be a useful indicator to identify the benefits and risks of ICS in COPD.
Collapse
Affiliation(s)
- Zenya Saito
- Division of Respiratory Diseases, Department of Internal Medicine, Atsugi City Hospital, 1-16-36 Mizuhiki, Atsugi-shi, Kanagawa, 243-8588, Japan.
| | - Masahiro Yoshida
- Division of Respiratory Diseases, Department of Internal Medicine, Atsugi City Hospital, 1-16-36 Mizuhiki, Atsugi-shi, Kanagawa, 243-8588, Japan
| | - Ayako Kojima
- Division of Respiratory Diseases, Department of Internal Medicine, Atsugi City Hospital, 1-16-36 Mizuhiki, Atsugi-shi, Kanagawa, 243-8588, Japan
| | - Kentaro Tamura
- Division of Respiratory Diseases, Department of Internal Medicine, Atsugi City Hospital, 1-16-36 Mizuhiki, Atsugi-shi, Kanagawa, 243-8588, Japan
| | - Tsukasa Hasegawa
- Division of Respiratory Diseases, Department of Internal Medicine, Atsugi City Hospital, 1-16-36 Mizuhiki, Atsugi-shi, Kanagawa, 243-8588, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Mycroft K, Krenke R, Górska K. Eosinophils in COPD-Current Concepts and Clinical Implications. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:2565-2574. [PMID: 32251737 DOI: 10.1016/j.jaip.2020.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/03/2020] [Accepted: 03/08/2020] [Indexed: 01/20/2023]
Abstract
In recent years, heterogeneity in chronic obstructive pulmonary disease (COPD) inflammatory patterns has been recognized as a basis for more precise treatment interventions because current therapies have limited effectiveness. Eosinophilic airway inflammation in COPD has become a subject of research interest as a potential treatment target for inhaled corticosteroid therapy. However, the role of eosinophils in COPD is still unclear, and it is unknown why only some patients with COPD develop eosinophilic airway inflammation. Induced sputum analysis is the most common method of assessing the type of airway inflammation. Accessibility to sputum induction, however, is limited in clinical practice, and blood eosinophils have been proposed to serve as a surrogate marker and treatment guide. Blood eosinophil count has been shown to poorly predict sputum eosinophilia, and, moreover, it seems to be fairly unstable and affected by various factors. Nevertheless, in several trials, blood eosinophil count appeared to predict good response to inhaled corticosteroids However, biologics targeting eosinophils do not appear to be effective in COPD. In this review, we briefly summarize the current knowledge on eosinophils in COPD pathogenesis. Then, we discuss the use of blood eosinophil count in COPD in relation to the recent Global Initiative for Chronic Obstructive Pulmonary Disease recommendations, their ability to predict sputum eosinophilia, and their potential role in guiding treatment.
Collapse
Affiliation(s)
- Katarzyna Mycroft
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
37
|
Oishi K, Matsunaga K, Shirai T, Hirai K, Gon Y. Role of Type2 Inflammatory Biomarkers in Chronic Obstructive Pulmonary Disease. J Clin Med 2020; 9:jcm9082670. [PMID: 32824775 PMCID: PMC7464674 DOI: 10.3390/jcm9082670] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Airway inflammation in chronic obstructive pulmonary disease (COPD) is typically thought to be driven by Type1 immune responses, while Type2 inflammation appears to be present in definite proportions in the stable state and during exacerbations. In fact, some COPD patients showed gene expression of Type2 inflammation in the airway, and this subset was associated with the inhaled corticosteroid (ICS) response. Interestingly enough, the relationship between COPD and diseases associated with Type2 inflammation from the perspective of impaired lung development is increasingly highlighted by recent epidemiologic studies on the origin of COPD. Therefore, many researchers have shown an interest in the prevalence and the role of existent Type2 biomarkers such as sputum and blood eosinophils, exhaled nitric oxide fraction, and atopy, not only in asthma but also in COPD. Although the evidence about Type2 biomarkers in COPD is inconsistent and less robust, Type2 biomarkers have shown some potential when analyzing various clinical outcomes or therapeutic response to ICS. In this article, we review the existent and emerging Type2 biomarkers with clinically higher applicability in the management of COPD.
Collapse
Affiliation(s)
- Keiji Oishi
- Department of Medicine and Clinical Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Correspondence: ; Tel.: +81-836-22-2248
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan;
| | - Toshihiro Shirai
- Department of Respiratory Medicine, Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Keita Hirai
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
- Laboratory of Clinical Pharmacogenomics, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173-8601, Japan;
| |
Collapse
|
38
|
Gao J, Chen B, Wu S, Wu F. Blood cell for the differentiation of airway inflammatory phenotypes in COPD exacerbations. BMC Pulm Med 2020; 20:50. [PMID: 32093672 PMCID: PMC7041236 DOI: 10.1186/s12890-020-1086-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/14/2020] [Indexed: 12/03/2022] Open
Abstract
Background Measurement of sputum is frequently used to define airway inflammatory subtypes. The venous blood cell is a reliable and simple biomarker, may be used as an alternative procedure to reflect the subtypes. For the aim of verifying the hypothesis that venous blood cell can quantify sputum inflammatory cell to access the airway subtypes in chronic obstructive pulmonary disease of acute exacerbations (AECOPD) and to ascertain the accuracy of the blood cell biomarker. Methods This study evaluated 287 patients with COPD exacerbations and all four tests were performed on the same day, which are lung function test, bronchodilator reversibility test, sputum cell analysis and blood routine examination. Results There was a correlation between sputum eosinophils and blood eosinophils, blood cells derived ratios. There was a weaker relationship to neutrophils between sputum and blood. Sputum neutrophils had not any association with neutrophil/macrophage ratio (NMR) and eosinophil/lymphocyte ratio (ELR) in blood. Blood eosinophils percentage was predictive for eosinophilic COPD exacerbations with an area under the curve (AUC) of 0.672 (p = 0.012). The optimum cutpoint for blood eosinophils percentage was 0.55%. Blood eosinophils absolute count was also predictive sputum eosinophilia at 0.35 × 109/L (AUC = 0.626, p = 0.025). ELR, eosinophil/monocyte ratio (EMR) and eosinophil/neutrophil ratio (ENR) in blood were higher in COPD exacerbations with mixed granulocytic and eosinophilic subtypes. Conclusion Eosinophils/neutrophils count parameters were relationship between blood and sputum. Eosinophils in blood and the ratios (ENR, EMR and ELR) may be utilized to assess eosinophilic airway inflammation in COPD exacerbations. Due to weak relationship and poor predictive ability, more researches should be required.
Collapse
Affiliation(s)
- Jie Gao
- Department of Respiratory Medicine, Huizhou third people's Hospital, Guangzhou Medical College, 1# Xuebei Ave, Huizhou, 516002, Guangdong, China
| | - Bida Chen
- Department of Respiratory Medicine, Huizhou third people's Hospital, Guangzhou Medical College, 1# Xuebei Ave, Huizhou, 516002, Guangdong, China
| | - Sifang Wu
- Department of Respiratory Medicine, Huizhou third people's Hospital, Guangzhou Medical College, 1# Xuebei Ave, Huizhou, 516002, Guangdong, China
| | - Feng Wu
- Department of Respiratory Medicine, Huizhou third people's Hospital, Guangzhou Medical College, 1# Xuebei Ave, Huizhou, 516002, Guangdong, China.
| |
Collapse
|
39
|
Lung Macrophage Functional Properties in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:ijms21030853. [PMID: 32013028 PMCID: PMC7037150 DOI: 10.3390/ijms21030853] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by the chronic exposure of the lungs to toxic particles and gases. These exposures initiate a persistent innate and adaptive immune inflammatory response in the airways and lung tissues. Lung macrophages (LMs) are key innate immune effector cells that identify, engulf, and destroy pathogens and process inhaled particles, including cigarette smoke and particulate matter (PM), the main environmental triggers for COPD. The number of LMs in lung tissues and airspaces is increased in COPD, suggesting a potential key role for LMs in initiating and perpetuating the chronic inflammatory response that underpins the progressive nature of COPD. The purpose of this brief review is to discuss the origins of LMs, their functional properties (chemotaxis, recruitment, mediator production, phagocytosis and apoptosis) and changes in these properties due to exposure to cigarette smoke, ambient particulate and pathogens, as well as their persistent altered functional properties in subjects with established COPD. We also explore the potential to therapeutically modulate and restore LMs functional properties, to improve impaired immune system, prevent the progression of lung tissue destruction, and improve both morbidity and mortality related to COPD.
Collapse
|
40
|
Bu T, Wang LF, Yin YQ. How Do Innate Immune Cells Contribute to Airway Remodeling in COPD Progression? Int J Chron Obstruct Pulmon Dis 2020; 15:107-116. [PMID: 32021149 PMCID: PMC6966950 DOI: 10.2147/copd.s235054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, the therapeutic potential of immune-modulation during the progression of chronic obstructive pulmonary disease (COPD) has been attracting increasing interest. However, chronic inflammatory response has been over-simplified in descriptions of the mechanism of COPD progression. As a form of first-line airway defense, epithelial cells exhibit phenotypic alteration, and participate in epithelial layer disorganization, mucus hypersecretion, and extracellular matrix deposition. Dendritic cells (DCs) exhibit attenuated antigen-presenting capacity in patients with advanced COPD. Immature DCs migrate into small airways, where they promote a pro-inflammatory microenvironment and bacterial colonization. In response to damage-associated molecular patterns (DAMPs) in lung tissue affected by COPD, neutrophils are excessively recruited and activated, where they promote a proteolytic microenvironment and fibrotic repair in small airways. Macrophages exhibit decreased phagocytosis in the large airways, while they demonstrate high pro-inflammatory potential in the small airways, and mediate alveolar destruction and chronic airway inflammation. Natural killer T (NKT) cells, eosinophils, and mast cells also play supplementary roles in COPD progression; however, their cellular activities are not yet entirely clear. Overall, during COPD progression, “exhausted” innate immune responses can be observed in the large airways. On the other hand, the innate immune response is enhanced in the small airways. Approaches that inhibit the inflammatory cascade, chemotaxis, or the activation of inflammatory cells could possibly delay the progression of airway remodeling in COPD, and may thus have potential clinical significance.
Collapse
Affiliation(s)
- Tegeleqi Bu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Li Fang Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yi Qing Yin
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
41
|
Feng H, Yin Y, Ren Y, Li M, Zhang D, Xu M, Cai X, Kang J. Effect of CSE on M1/M2 polarization in alveolar and peritoneal macrophages at different concentrations and exposure in vitro. In Vitro Cell Dev Biol Anim 2020; 56:154-164. [PMID: 31898012 DOI: 10.1007/s11626-019-00426-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022]
Abstract
Cigarette smoke exposure is one of the main etiologies for chronic obstructive pulmonary disease. Moreover, cigarette smoke participates in disease progression by inducing abnormal macrophage polarization; however, the effects of cigarette smoke on M1/M2 macrophage polarization have not been established. The aim of the current study was to determine the effects of cigarette smoke extract (CSE) on M1/M2 macrophage polarization in alveolar and peritoneal macrophages (AM and PM, respectively) at different concentrations and exposure times. Rat AM and PM were cultured with CSE at different concentrations. CCK-8 was used as an indicator of cell viability, and mRNA expression of M1 (iNOS, TNF-α, and IL-1β) and M2 markers (arg-1, CD206, and TGF-β1) were measured at 3, 6, 9, 12, and 24 h using qPCR. Expressions of CD86 and CD206 proteins at 12 h were determined using flow cytometry, and the iNOS/arg-1 ratio was used to determine the polarization dominance of M1 and M2. M2 subtypes were detected at 12 h using qPCR and flow cytometry. CSE increased the expression of iNOS, TNF-α, and IL-1β mRNA, and the proportion of CD86-positive cells in AM and PM promoted M1 polarization, and M1 polarization was continuously enhanced as exposure time and concentration increased. CSE reduced the expression of arg-1, CD206, and TGF-β1 mRNA and the proportion of CD206-positive cells in AM and PM and inhibited M2 polarization. At 9-24 h of CSE exposure, the expression of arg-1 in AM and PM gradually increased, showing tendency towards activation of M2 polarization. Besides, CSE might induce M2b and M2d polarization at 12 h. After 12 h of CSE exposure, transformation from M1 to M2 polarization dominance was shown in AM; however, M1 polarization was continuously enhanced in PM within 24 h of CSE exposure. CSE promoted M1 polarization in macrophages, exhibiting dynamic regulatory effects on M2 polarization, first as a suppressor and then as a promoter. The polarization change induced by CSE on AM was more sensitive than PM.
Collapse
Affiliation(s)
- Haoshen Feng
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Yan Yin
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Yuan Ren
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Menglu Li
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Dan Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Mingtao Xu
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xu Cai
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Jian Kang
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
42
|
Huang H, Feng H, Zhuge D. M1 Macrophage Activated by Notch Signal Pathway Contributed to Ventilator-Induced Lung Injury in Chronic Obstructive Pulmonary Disease Model. J Surg Res 2019; 244:358-367. [PMID: 31323391 DOI: 10.1016/j.jss.2019.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) in chronic obstructive pulmonary disease (COPD) is still a problem. We intended to explore the role of macrophage polarity in VILI and the underlying mechanism. MATERIALS AND METHODS COPD model was created by cigarette smoke and ventilated. Macrophages were isolated, and the wet/dry (W/D) ratio was determined after modeling, and proteins in bronchoalveolar lavage fluid (BALF) were assessed by bicinchoninic acid assay. Histopathology was observed by Hematoxylin-Eosin staining. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels were measured by enzyme-linked immunosorbent assay. Macrophage polarity was assessed by flow cytometry. Protein levels were measured by Western blot and mRNA by quantitative real-time polymerase chain reaction. RESULTS Pathology statement was worsened, and the W/D ratio, protein level in BALF, TNF-α level, and IL-6 levels were elevated in cigarette smoke-induced COPD model. Notch-1 intracellular domain, hairy and enhancer of split (Hes) 1, Hes5, hairy/enhancer-of-split related with YRPW motif protein 1, CD86, TNF-α, and inducible nitric oxide synthases expressions were raised, whereas CD206, IL-4, and IL-10 expressions were decreased in macrophages after ventilation, shifting macrophage polarity to M1 phenotype. After the inhibition of Notch signaling, pathology statement was improved, and the W/D ratio, protein level in BALF, TNF-α, IL-6, Notch-1 intracellular domain, Hes1, Hes5, hairy/enhancer-of-split related with YRPW motif protein 1, CD86, TNF-α, and inducible nitric oxide synthases expressions were decreased while CD206, IL-4, and IL-10 expressions were elevated after ventilation, shifting macrophage polarity to M2 phenotype partially. CONCLUSIONS Mechanical ventilation in cigarette-induced COPD could activate the Notch signal pathway and further shift the polarity of macrophage toward M1 phenotype, leading to VILI in cigarette-induced COPD.
Collapse
Affiliation(s)
- Hongping Huang
- Department of Eastern Respiratory Medicine, Linyi People's Hospital, Linyi, China
| | - Hui Feng
- Linyi People's Hospital Office, Linyi People's Hospital, Linyi, China.
| | - Dong Zhuge
- Department of Eastern General Internal Medicine, Linyi People's Hospital, Linyi, China
| |
Collapse
|
43
|
Avdeev SN, Trushenko NV, Merzhoeva ZM, Ivanova MS, Kusraeva EV. [Eosinophilic inflammation in chronic obstructive pulmonary disease]. TERAPEVT ARKH 2019; 91:144-152. [PMID: 32598645 DOI: 10.26442/00403660.2019.10.000426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease that combines various clinical manifestations and pathophysiological mechanisms. It underlies the separation of patients with COPD by phenotypes, endotypes and a personalized therapy of this disease. The implementation of this approach is possible only with the use of appropriate biomarkers. One of the most important biomarkers of COPD is eosinophilia of blood and/or sputum, which is considered as a predictor of frequent exacerbations and the effectiveness of inhaled glucocorticosteroids in patients with COPD. The literature discusses the impact of eosinophilic inflammation on the prognosis, clinical and functional parameters in COPD, and the role of the targeted therapy in the treatment of eosinophilic COPD.
Collapse
Affiliation(s)
- S N Avdeev
- Sechenov First Moscow State Medical University (Sechenov University).,Pulmonology Scientific Research Institute
| | - N V Trushenko
- Sechenov First Moscow State Medical University (Sechenov University).,Pulmonology Scientific Research Institute
| | - Z M Merzhoeva
- Sechenov First Moscow State Medical University (Sechenov University).,Pulmonology Scientific Research Institute
| | - M S Ivanova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E V Kusraeva
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
44
|
Toraldo DM, Conte L. Influence of the Lung Microbiota Dysbiosis in Chronic Obstructive Pulmonary Disease Exacerbations: The Controversial Use of Corticosteroid and Antibiotic Treatments and the Role of Eosinophils as a Disease Marker. J Clin Med Res 2019; 11:667-675. [PMID: 31636780 PMCID: PMC6785281 DOI: 10.14740/jocmr3875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease associated with loss of lung function, poorer quality of life, co-morbidities, significant mortality, and higher health care costs. Frequent acute exacerbations of COPD are sudden worsening of symptoms, the nature of which is associated with bacterial or viral infections. However, one-third of exacerbations remain of undetermined origin. Although it is largely discussed and controversial, current guidelines recommend treatment of exacerbations with bronchodilators, antibiotics, and systemic corticosteroids; this is despite being associated with limited benefits in term of reducing mortality, side effects and without paying attention to the heterogeneity of these exacerbations. Increasing evidence suggests that the lung microbiota plays an important role in COPD and numerous studies have reported differences in the microbiota between healthy and disease states, as well as between exacerbations and stable COPD, leading to the hypothesis that frequent acute exacerbation is more likely to experience significant changes in lung microbiota composition. These findings will need further examination to explain the causes of lung dysbiosis, namely microbial composition, the host response, including the recruitment of eosinophils, lifestyle, diet, cigarette smoking and the use of antibiotics and corticosteroids. It is now important to assess: 1) Whether alterations in the lung microbiota contribute to disease pathogenesis, especially in exacerbations of unknown origin; 2) The role of eosinophils; and 3) Whether the microbiota of the lung can be manipulated therapeutically to improve COPD exacerbation event and disease progression. In summary, we hypothesize that the alterations of the lung microbiota may explain the undetermined origins of exacerbations and that there is an urgent need to facilitate the design of intervention studies that aim at conserving the lung microbial flora.
Collapse
Affiliation(s)
- Domenico Maurizio Toraldo
- Department of Rehabilitation, Respiratory Care Unit, ASL/Lecce, Italy
- Both authors contributed equally to this manuscript
| | - Luana Conte
- Laboratory of Biomedical Physics and Environment, Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, “V. Fazzi” Hospital, Lecce, Italy
- Both authors contributed equally to this manuscript
| |
Collapse
|
45
|
Majewski S, Tworek D, Szewczyk K, Kiszałkiewicz J, Kurmanowska Z, Brzeziańska-Lasota E, Jerczyńska H, Antczak A, Piotrowski WJ, Górski P. Overexpression of chitotriosidase and YKL-40 in peripheral blood and sputum of healthy smokers and patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1611-1631. [PMID: 31413557 PMCID: PMC6660640 DOI: 10.2147/copd.s184097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Despite the absence of endogenous chitin in humans, chitinases are present in the serum of healthy subjects and their levels are increased in a variety of chronic inflammatory conditions. It has been shown that chitotriosidase and structurally related chitinase-like protein-YKL-40 contribute to the pathogenesis of COPD. However, details regarding the relation of their systemic and local airways levels remain unknown. Objectives To examine peripheral blood and sputum chitotriosidase and YKL-40 expression in smokers and patients with COPD. Methods Forty patients with COPD, 20 healthy smokers and 10 healthy never-smokers were studied. Serum and induced sputum chitotriosidase protein and activity levels, YKL-40 concentrations, and their gene expression in sputum cells and peripheral blood mononuclear cells (PBMC) were evaluated. Results Both chitotriosidase protein levels and activity were higher in sputum obtained from COPD subjects compared to healthy never-smokers (P<0.05 and P<0.01, respectively). A similar pattern was observed for PBMC chitotriosidase mRNA expression (P<0.001). YKL-40 serum concentrations were elevated in healthy smokers and COPD subjects compared to healthy never-smokers (P<0.001 and P<0.01, respectively). In sputum, YKL-40 levels were increased in COPD compared to healthy never-smokers (P<0.01). PBMC YKL-40 mRNA expression was increased in COPD and healthy smokers compared to healthy never-smokers (P<0.0001). No associations were found between chitotriosidase or YKL-40 peripheral blood levels and sputum levels. Conclusions Our results demonstrate that chitotriosidase and YKL-40 are overexpressed in peripheral blood and airways in both healthy smokers and COPD subjects which may indicate smoking-related activation of macrophages, neutrophils, and epithelial cells.
Collapse
Affiliation(s)
- Sebastian Majewski
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Damian Tworek
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| | - Karolina Szewczyk
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland
| | | | - Zofia Kurmanowska
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland
| | | | - Hanna Jerczyńska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Lodz, Poland
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| | | | - Paweł Górski
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
46
|
Sapey E, Bafadhel M, Bolton CE, Wilkinson T, Hurst JR, Quint JK. Building toolkits for COPD exacerbations: lessons from the past and present. Thorax 2019; 74:898-905. [PMID: 31273049 PMCID: PMC6824608 DOI: 10.1136/thoraxjnl-2018-213035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/03/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
In the nineteenth century, it was recognised that acute attacks of chronic bronchitis were harmful. 140 years later, it is clearer than ever that exacerbations of chronic obstructive pulmonary disease (ECOPD) are important events. They are associated with significant mortality, morbidity, a reduced quality of life and an increasing reliance on social care. ECOPD are common and are increasing in prevalence. Exacerbations beget exacerbations, with up to a quarter of in-patient episodes ending with readmission to hospital within 30 days. The healthcare costs are immense. Yet despite this, the tools available to diagnose and treat ECOPD are essentially unchanged, with the last new intervention (non-invasive ventilation) introduced over 25 years ago.An ECOPD is 'an acute worsening of respiratory symptoms that results in additional therapy'. This symptom and healthcare utility-based definition does not describe pathology and is unable to differentiate from other causes of an acute deterioration in breathlessness with or without a cough and sputum. There is limited understanding of the host immune response during an acute event and no reliable and readily available means to identify aetiology or direct treatment at the point of care (POC). Corticosteroids, short acting bronchodilators with or without antibiotics have been the mainstay of treatment for over 30 years. This is in stark contrast to many other acute presentations of chronic illness, where specific biomarkers and mechanistic understanding has revolutionised care pathways. So why has progress been so slow in ECOPD? This review examines the history of diagnosing and treating ECOPD. It suggests that to move forward, there needs to be an acceptance that not all exacerbations are alike (just as not all COPD is alike) and that clinical presentation alone cannot identify aetiology or stratify treatment.
Collapse
Affiliation(s)
- Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Charlotte Emma Bolton
- Respiratory Medicine, Nottingham Respiratory BRU, University of Nottingham, Nottingham, UK
| | - Thomas Wilkinson
- Clinical and Experimental Medicine, University of Southampton, Southampton, UK
| | - John R Hurst
- Academic Unit of Respiratory Medicine, UCL Medical School, London, UK
| | - Jennifer K Quint
- Respiratory Epidemiology, Occupational Medicine and Public Health, Imperial College London, London, UK
| |
Collapse
|
47
|
George L, Wright A, Mistry V, Sutcliffe A, Chachi L, Haldar K, Ramsheh MY, Richardson M, van der Merwe R, Martin U, Newbold P, Brightling CE. Sputum Streptococcus pneumoniae is reduced in COPD following treatment with benralizumab. Int J Chron Obstruct Pulmon Dis 2019; 14:1177-1185. [PMID: 31239655 PMCID: PMC6559763 DOI: 10.2147/copd.s198302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
We hypothesized whether the reduction in eosinophilic airway inflammation in patients with chronic obstructive pulmonary disease (COPD) following treatment with benralizumab, a humanized, afucosylated, monoclonal antibody that binds to interleukin-5 receptor α, increases the airway bacterial load. Analysis of sputum samples of COPD patients participating in a Phase II trial of benralizumab indicated that sputum 16S rDNA load and Streptococcus pneumoniae were reduced following treatment with benralizumab. However, in vitro, eosinophils did not affect the killing of the common airway pathogens S. pneumoniae or Haemophilus influenzae. Thus, benralizumab may have an indirect effect upon airway bacterial load.
Collapse
Affiliation(s)
- Leena George
- Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Adam Wright
- Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Vijay Mistry
- Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Amanda Sutcliffe
- Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Latifa Chachi
- Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Koirobi Haldar
- Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Mohammadali Yavari Ramsheh
- Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Matthew Richardson
- Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Ubaldo Martin
- Global Medical Affairs, AstraZeneca, Gaithersburg, MD, USA
| | - Paul Newbold
- Global Medical Affairs, AstraZeneca, Gaithersburg, MD, USA
| | - Christopher E Brightling
- Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
48
|
de Groot LES, van der Veen TA, Martinez FO, Hamann J, Lutter R, Melgert BN. Oxidative stress and macrophages: driving forces behind exacerbations of asthma and chronic obstructive pulmonary disease? Am J Physiol Lung Cell Mol Physiol 2018; 316:L369-L384. [PMID: 30520687 DOI: 10.1152/ajplung.00456.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is a common feature of obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Lung macrophages are key innate immune cells that can generate oxidants and are known to display aberrant polarization patterns and defective phagocytic responses in these diseases. Whether these characteristics are linked in one way or another and whether they contribute to the onset and severity of exacerbations in asthma and COPD remain poorly understood. Insight into oxidative stress, macrophages, and their interactions may be important in fully understanding acute worsening of lung disease. This review therefore highlights the current state of the art regarding the role of oxidative stress and macrophages in exacerbations of asthma and COPD. It shows that oxidative stress can attenuate macrophage function, which may result in impaired responses toward exacerbating triggers and may contribute to exaggerated inflammation in the airways.
Collapse
Affiliation(s)
- Linsey E S de Groot
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - T Anienke van der Veen
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen , Groningen , The Netherlands.,Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Fernando O Martinez
- Department of Biochemical Sciences, University of Surrey , Guildford , United Kingdom
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen , Groningen , The Netherlands.,Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
49
|
Brusselle G, Pavord ID, Landis S, Pascoe S, Lettis S, Morjaria N, Barnes N, Hilton E. Blood eosinophil levels as a biomarker in COPD. Respir Med 2018; 138:21-31. [DOI: 10.1016/j.rmed.2018.03.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022]
|
50
|
Dysregulated Functions of Lung Macrophage Populations in COPD. J Immunol Res 2018; 2018:2349045. [PMID: 29670919 PMCID: PMC5835245 DOI: 10.1155/2018/2349045] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/29/2017] [Indexed: 01/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway obstruction, and emphysema. Innate immune cells play a pivotal role in the disease's progression, and in particular, lung macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung macrophage functions in COPD.
Collapse
|