1
|
Morya VK, Shahid H, Lang J, Kwak MK, Park SH, Noh KC. Advancements in Therapeutic Approaches for Degenerative Tendinopathy: Evaluating Efficacy and Challenges. Int J Mol Sci 2024; 25:11846. [PMID: 39519397 PMCID: PMC11545934 DOI: 10.3390/ijms252111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Degenerative tendinopathy results from the accumulation of minor injuries following unsuccessful tendon repair during acute tendon injuries. The process of tendon repair is prolonged and varies between individuals, making it susceptible to reinjury. Moreover, treating chronic tendinopathy often requires expensive and extensive rehabilitation, along with a variety of combined therapies to facilitate recovery. This condition significantly affects the quality of life of affected individuals, underscoring the urgent need for more efficient and cost-effective treatment options. Although traditional treatments have improved significantly and are being used as substitutes for surgical interventions, the findings have been inconsistent and conflicting. This review aims to clarify these issues by exploring the strengths and limitations of current treatments as well as recent innovations in managing various forms of degenerative tendinopathy.
Collapse
Affiliation(s)
- Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hamzah Shahid
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun Lang
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sin-Hye Park
- Department of Food Science & Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu-Cheol Noh
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Hallym University Sacred Heart Hospital, Anyang-si 14068, Republic of Korea
| |
Collapse
|
2
|
Yoon JP, Park SJ, Choi YS, Kim DH, Lee HJ, Park EJJ, Chung SW. Current research trends on the effect of diabetes mellitus on rotator cuff tendon healing/tendinopathy. Arch Orthop Trauma Surg 2024; 144:2491-2500. [PMID: 38698293 DOI: 10.1007/s00402-024-05350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Rotator cuff tendon tears are a leading cause of shoulder pain. They are challenging to treat, and tendon-bone healing has a high failure rate despite successful surgery. Tendons connect the muscles and bones, which make them important for the body's overall mobility and stability. Metabolic diseases, including diabetes or high blood pressure, can affect the healing process after repair of a damaged tendon. With a global incidence of 9.3%, diabetes is considered as a significant risk factor for rotator cuff tendon healing because it causes structural, inflammatory, and vascular changes in the tendon. However, the mechanisms of how diabetes affects tendon healing remain unknown. Several factors have been suggested, including glycation product accumulation, adipokine dysregulation, increased levels of reactive oxygen species, apoptosis, inflammatory cytokines, imbalanced matrix-metalloproteinase-to-tissue-inhibitor ratio, and impaired angiogenesis and differentiation of the tendon sheath. Despite the effects of diabetes on tendon function and healing, few treatments are available to improve recovery in these patients. This review summarizes the current literature on the pathophysiological changes of the tendon in diabetes and hyperlipidemia. Preclinical and clinical evidence regarding the association between diabetes and tendon healing is presented. Moreover, current approaches to improve tendon healing in patients with diabetes are reviewed.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea
| | - Sung-Jin Park
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea.
| | - Yoon Seong Choi
- Department of Carbon Hybrid Fiber Science, Kyungpook National University, Daegu, Korea
| | - Dong-Hyun Kim
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea
| | - Hyun Joo Lee
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea
| | - Eugene Jae Jin Park
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok-Ro, Jung-Gu, Daegu, 41944, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
3
|
Cho W, Oh H, Abd El-Aty AM, Hacimuftuoglu A, Jeong JH, Jung TW. Therapeutic potential of ginsenoside compound K in managing tenocyte apoptosis and extracellular matrix damage in diabetic tendinopathy. Tissue Cell 2024; 86:102275. [PMID: 37979397 DOI: 10.1016/j.tice.2023.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
The prevalence of tendinopathy in patients with diabetes is well documented. Despite efforts to improve diabetes management, there is a lack of research on therapeutic agents targeting the core features of tendinopathy, namely, tenocyte apoptosis and extracellular matrix (ECM) damage. In this study, we investigated the potential of ginsenoside compound K (CK), known for its antidiabetic properties, to mitigate tenocyte apoptosis, inflammation, oxidative stress, and the metalloproteinase (MMP) system under hyperglycemic conditions. Our research also aimed to unravel the molecular mechanism underlying the effects of CK. The assessment of apoptosis involved observing intracellular chromatin condensation and measuring caspase 3 activity. To gauge oxidative stress, we examined cellular ROS levels and hydrogen peroxide and malondialdehyde concentrations. Western blotting was employed to determine the expression of various proteins. Our findings indicate that CK treatment effectively countered high glucose-induced apoptosis, inflammation, and oxidative stress in cultured tenocytes. Furthermore, CK normalized the expression of MMP-9, MMP-13, and TIMP-1. Notably, CK treatment boosted the expression of PPARγ and antioxidant enzymes. We conducted small interfering (si) RNA experiments targeting PPARγ, revealing its role in mediating CK's effects on tendinopathy features in hyperglycemic tenocytes. In conclusion, these in vitro results offer valuable insights into the potential therapeutic role of CK in managing tendinopathy among individuals with diabetes. By addressing crucial aspects of tendinopathy, CK presents itself as a promising avenue for future research and treatment development in this domain.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, the Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea.
| |
Collapse
|
4
|
Burton I, McCormack A. Nutritional Supplements in the Clinical Management of Tendinopathy: A Scoping Review. J Sport Rehabil 2023:1-12. [PMID: 37146985 DOI: 10.1123/jsr.2022-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/02/2023] [Accepted: 02/24/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION Tendinopathy has a high prevalence and incidence in the general population and among athletes, with a lack of consensus among medical practitioners on optimal management strategies. The objective of this scoping review was to evaluate current research on the use of nutritional supplements for treating tendinopathies, including what supplements have been used and what outcomes, outcome measures, and intervention parameters have been reported. METHODS Databases searched included Embase, SPORTDiscus, the Cochrane Library, MEDLINE, CINAHL, and AMED. This scoping review considered primary studies investigating nutritional supplements for tendinopathies and was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews. RESULTS A total of 1527 articles were identified with 16 included in the review. Studies investigated a range of nutritional supplements in the clinical management of various tendinopathies, including several commercially available proprietary blends of several ingredients. TendoActive (mucopolysaccharides, type I collagen, and vitamin C) was used in 2 studies, TENDISULFUR (methylsulfonylmethane, hydrolyzed collagen, L-arginine, L-lysine, vitamin C, bromelain, chondroitin, glucosamine, Boswellia, and myrrh) was used in 3 studies, and Tenosan (arginine-L-alpha ketoglutarate, hydrolyzed collagen type I, methylsulfonylmethane, vitamin C, bromelain, and vinitrox) was used in 2 studies. Collagen peptides were used in 2 studies, with omega-3 fatty acids, combined fatty acids and antioxidants, turmeric rhizome combined with Boswellia, β-hydroxy β-methylbutyric, vitamin C in isolation and combined with gelatin, and creatine investigated in one study each. CONCLUSION Despite a paucity of studies to date, findings from this review suggest that several nutritional compounds may be beneficial in the clinical management of tendinopathies, by exerting anti-inflammatory effects and improving tendon healing. Nutritional supplements may have potential as an adjunctive method to standard treatment methods such as exercise, where their pain-relieving, anti-inflammatory, and structural tendon effects may augment the positive functional outcomes gained from progressive exercise rehabilitation.
Collapse
Affiliation(s)
- Ian Burton
- Portlethen Medical Centre, Aberdeenshire, NHS Grampian, Aberdeen,United Kingdom
| | | |
Collapse
|
5
|
Furukawa T, Kurosawa T, Mifune Y, Inui A, Nishimoto H, Ueda Y, Kataoka T, Yamaura K, Mukohara S, Yoshikawa T, Shinohara I, Kato T, Tanaka S, Kusunose M, Hoshino Y, Matsushita T, Kuroda R. Elicitation of Inhibitory Effects for AGE-Induced Oxidative Stress in Rotator Cuff-Derived Cells by Apocynin. Curr Issues Mol Biol 2023; 45:3434-3445. [PMID: 37185749 PMCID: PMC10137139 DOI: 10.3390/cimb45040225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Advanced glycation end-products (AGEs) play a critical supportive role during musculoskeletal disorders via glycosylation and oxidative stress. Though apocynin, identified as a potent and selective inhibitor of NADPH oxidase, has been reported to be involved in pathogen-induced reactive oxygen species (ROS), its role in age-related rotator cuff degeneration has not been well clarified. Therefore, this study aims to evaluate the in vitro effects of apocynin on human rotator cuff-derived cells. Twelve patients with rotator cuff tears (RCTs) participated in the study. Supraspinatus tendons from patients with RCTs were collected and cultured. After the preparation of RC-derived cells, they were divided into four groups (control group, control + apocynin group, AGEs group, AGEs + apocynin group), and gene marker expression, cell viability, and intracellular ROS production were evaluated. The gene expression of NOX, IL-6, and the receptor for AGEs (RAGE) was significantly decreased by apocynin. We also examined the effect of apocynin in vitro. The results showed that ROS induction and increasing apoptotic cells after treatment of AGEs were significantly decreased, and cell viability increased considerably. These results suggest that apocynin can effectively reduce AGE-induced oxidative stress by inhibiting NOX activation. Thus, apocynin is a potential prodrug in preventing degenerative changes of the rotor cuff.
Collapse
Affiliation(s)
- Takahiro Furukawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Takashi Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Yasuhiro Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Takeshi Kataoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Shuya Tanaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Masaya Kusunose
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| |
Collapse
|
6
|
Huang YT, Wu YF, Wang HK, Yao CCJ, Chiu YH, Sun JS, Chao YH. Cyclic mechanical stretch regulates the AMPK/Egr1 pathway in tenocytes via Ca2+-mediated mechanosensing. Connect Tissue Res 2022; 63:590-602. [PMID: 35229695 DOI: 10.1080/03008207.2022.2044321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Mechanical stimuli are essential for the maintenance of tendon tissue homeostasis. The study aims to elucidate the mechanobiological mechanisms underlying the maintenance of tenocyte homeostasis by cyclic mechanical stretch under high-glucose (HG) condition. MATERIALS AND METHODS Primary tenocytes were isolated from rat Achilles tendon and 2D-cultured under HG condition. The in vitro effects of a single bout, 2-h cyclic biaxial stretch session (1 Hz, 8%) on primary rat tenocytes were explored through Flexcell system. Cell viability, tenogenic gene expression, intracellular calcium concentration, focal adhesion kinase (FAK) expression, and signaling pathway activation were analyzed in tenocytes with or without mechanical stretch. RESULTS Mechanical stretch increased tenocyte proliferation and upregulated early growth response protein 1 (Egr1) expression. An increase in intracellular calcium was observed after 30 min of stretching. Mechanical stretch phosphorylated FAK, calmodulin-dependent protein kinase kinase 2 (CaMKK2), and 5' adenosine monophosphate-activated protein kinase (AMPK) in a time-dependent manner, and these effects were abrogated after blocking intracellular calcium. Inhibition of FAK, CaMKK2, and AMPK downregulated the expression of Egr1. In addition, mechanical stretch reinforced cytoskeletal organization via calcium (Ca2+)/FAK signaling. CONCLUSIONS Our study demonstrated that mechanical stretch-induced calcium influx activated CaMKK2/AMPK signaling and FAK-cytoskeleton reorganization, thereby promoting the expression of Egr1, which may help maintain tendon cell characteristics and homeostasis in the context of diabetic tendinopathy.
Collapse
Affiliation(s)
- Yu-Ting Huang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Fu Wu
- Department of Kinesiology and Community Health, College of Applied Health Science, University of Illinois Urbana-Champaign, Illinois, USA
| | - Hsing-Kuo Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Chen Jane Yao
- Graduate Institute of Clinical Dentistry and Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Heng Chiu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedics, School of Medicine, China Medical University, Tai-Chung, Taiwan
| | - Yuan-Hung Chao
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Park YH, Kim W, Kim JY, Choi GW, Kim HJ. Clinical Impact of Metabolic Syndrome on Eccentric Exercises for Chronic Insertional Achilles Tendinopathy. J Foot Ankle Surg 2022; 61:726-729. [PMID: 34887161 DOI: 10.1053/j.jfas.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/21/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Metabolic syndrome is one factor known to contribute to the development of tendinopathies. The aim of this study was to compare the clinical outcomes of eccentric calf-muscle exercise for treatment of chronic insertional Achilles tendinopathy in patients with or without metabolic syndrome. Twenty-eight patients with chronic insertional Achilles tendinopathy and metabolic syndrome who performed eccentric calf-muscle exercise were retrospectively compared with 28 age- and sex-matched controls without metabolic syndrome. Comparisons between the 2 groups were made by evaluating the Visual Analog Scale for pain, patient satisfaction, and amount of pain medications needed during 3 months of follow-up. Two-way analysis of variance with repeated measures showed that the pain scales in the metabolic syndrome group were higher than those in the control group during the follow-up period (F[1,54] = 24.45, p < .001). The patient satisfaction ratings were lower and the amount of required pain medication was higher in the metabolic syndrome group (p < .001 and p < .001, respectively). Eccentric calf-muscle exercises for chronic insertional Achilles tendinopathy were less effective in patients with metabolic syndrome. Therefore, these patients should be managed with a combination of other treatment modalities rather than eccentric exercise alone.
Collapse
Affiliation(s)
- Young Hwan Park
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, Korea
| | - Woon Kim
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, Korea
| | - Jae Young Kim
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, Korea
| | - Gi Won Choi
- Department of Orthopedic Surgery, Korea University Ansan Hospital, Ansan, Korea
| | - Hak Jun Kim
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, Korea.
| |
Collapse
|
8
|
Veronez A, Pires LA, de Aro AA, do Amaral MEC, Marretto Esquisatto MA. Effect of exercising in water on the fibrocartilage of the deep digital flexor tendon in rats with induced diabetes. Tissue Cell 2022; 76:101764. [DOI: 10.1016/j.tice.2022.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022]
|
9
|
Sikes KJ, McConnell A, Serkova N, Cole B, Frisbie D. Untargeted metabolomics analysis identifies creatine, myo-inositol, and lipid pathway modulation in a murine model of tendinopathy. J Orthop Res 2022; 40:965-976. [PMID: 34081345 PMCID: PMC8639838 DOI: 10.1002/jor.25112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023]
Abstract
Tendinopathy has been broadly characterized as alterations in cell proliferation, extracellular matrix turnover/synthesis, and inflammatory alterations. However, the underlying glucose metabolism pathways which contribute to these responses have not been well explored. The potential link between glucose metabolism and tendon pathology is interesting from a global standpoint since the development of spontaneous tendinopathy is associated with systemic metabolic disorders including diabetes mellitus. Therefore, the overarching goal of this study was to understand the potential pathogenic role of glucose metabolism-driven mechanisms in the development of tendinopathy. To test this, we have utilized an untargeted metabolomics approach to discover pathways which may be altered following tendinopathic injury and treadmill running in an established murine model of TGF-β1 induced tendinopathy. While specific tendon glucose alterations were not observed via metabolomics or 18 F-fluoroeoxyglucose (FDG) positron emission tomography/microcomputed tomography imaging (18 F-FDG PET/CT), metabolites including creatinine, D-chiro-inositol, and lipids were dysregulated following tendon injury. As novel pathways for manipulation, the creatine pathway, myo-inositol pathway, and lipid signaling may lead to the development of enhanced preventative strategies and therapeutic options for all patients who suffer from tendon-related injuries.
Collapse
Affiliation(s)
- Katie J. Sikes
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Anna McConnell
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Natalie Serkova
- Department of Radiology, University of Colorado Denver, Denver, CO 80045
| | - Brian Cole
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - David Frisbie
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
10
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|
11
|
Lui PPY, Yung PSH. Inflammatory mechanisms linking obesity and tendinopathy. J Orthop Translat 2022; 31:80-90. [PMID: 34976728 PMCID: PMC8666605 DOI: 10.1016/j.jot.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic tendinopathy is a debilitating tendon disorder with disappointing treatment outcomes. This review focuses on the potential roles of chronic low-grade inflammation in promoting tendinopathy in obesity. A systematic literature search was performed to identify all clinical studies supporting the actions of obesity-associated inflammatory mediators in the development of tendinopathy. The mechanisms of obesity-induced chronic inflammation in adipose tissue are firstly reviewed. Common inflammatory mediators potentially linking obesity and the development of tendinopathy, and their association with mechanical overuse, are discussed, along with pre-clinical evidences and a systematic literature search on clinical studies. The potential contribution of local adipose tissues in the promotion of inflammation, pain and tendon degeneration is then discussed. The future research directions are proposed. Translational potential statement Better understanding of the roles of obesity-associated inflammatory mediators on tendons will clarify the pathophysiological drivers of tendinopathy in patients with obesity and identify possible treatment targets. Further studies on the mechanisms of obesity-induced chronic inflammation on tendon are a promising direction for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Corresponding author. Room 74037, 5/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, China.
| | | |
Collapse
|
12
|
Xu K, Zhang L, Ren Z, Wang T, Zhang Y, Zhao X, Yu T. Evaluating the role of type 2 diabetes mellitus in rotator cuff tendinopathy: Development and analysis of a novel rat model. Front Endocrinol (Lausanne) 2022; 13:1042878. [PMID: 36299460 PMCID: PMC9588920 DOI: 10.3389/fendo.2022.1042878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To establish and validate an intact rotator cuff rat model for exploring the pathophysiological effects of type 2 diabetes on the rotator cuff tendon in vivo. METHODS A total of 45 adult male rats were randomly divided into a control group (n = 9) and type 2 diabetes group (n=36). The rats were sacrificed at 2 weeks (T2DM-2w group, n=9), 4 weeks (T2DM-4w group, n=9), 8 weeks (T2DM-8w group, n=9), and 12 weeks (T2DM-12w group, n=9) after successful modeling of type 2 diabetes. Bilateral shoulder samples were collected for gross observation and measurement, protein expression(enzyme-linked immunosorbent assay,ELISA), histological evaluation, biomechanical testing, and gene expression (real-time quantitative polymerase chain reaction, qRT-PCR). RESULTS Protein expression showed that the expression of IL-6 and Advanced glycation end products (AGEs)in serum increased in type 2 diabetic group compared with the non-diabetic group. Histologically, collagen fibers in rotator cuff tendons of type 2 diabetic rats were disorganized, ruptured, and with scar hyperplasia, neovascularization, and extracellular matrix disturbances, while Bonar score showed significant and continuously aggravated tendinopathy over 12 weeks. The biomechanical evaluation showed that the ultimate load of rotator cuff tendons in type 2 diabetic rats gradually decreased, and the ultimate load was negatively correlated with AGEs content. Gene expression analysis showed increased expression of genes associated with matrix remodeling (COL-1A1), tendon development (TNC), and fatty infiltration (FABP4) in tendon specimens from the type 2 diabetic group. CONCLUSION Persistent type 2 diabetes is associated with the rupture of collagen fiber structure, disturbance in the extracellular matrix, and biomechanical decline of the rotator cuff tendon. The establishment of this new rat model of rotator cuff tendinopathy provides a valuable research basis for studying the cellular and molecular mechanisms of diabetes-induced rotator cuff tendinopathy.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongkai Ren
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Traumatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Zhao
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xia Zhao, ; Tengbo Yu,
| | - Tengbo Yu
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xia Zhao, ; Tengbo Yu,
| |
Collapse
|
13
|
Cannata F, Vadalà G, Ambrosio L, Napoli N, Papalia R, Denaro V, Pozzilli P. The impact of type 2 diabetes on the development of tendinopathy. Diabetes Metab Res Rev 2021; 37:e3417. [PMID: 33156563 DOI: 10.1002/dmrr.3417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022]
Abstract
Tendinopathy is a chronic and often painful condition affecting both professional athletes and sedentary subjects. It is a multi-etiological disorder caused by the interplay among overload, ageing, smoking, obesity (OB) and type 2 diabetes (T2D). Several studies have identified a strong association between tendinopathy and T2D, with increased risk of tendon pain, rupture and worse outcomes after tendon repair in patients with T2D. Moreover, consequent immobilization due to tendon disorder has a strong impact on diabetes management by reducing physical activity and worsening the quality of life. Multiple investigations have been performed to analyse the causal role of the individual metabolic factors occurring in T2D on the development of tendinopathy. Chronic hyperglycaemia, advanced glycation end-products, OB and insulin resistance have been shown to contribute to the development of diabetic tendinopathy. This review aims to explore the relationship between tendinopathy and T2D, in order to define the contribution of metabolic factors involved in the degenerative process and to discuss possible strategies for the clinical management of diabetic tendinopathy.
Collapse
Affiliation(s)
- Francesca Cannata
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Ambrosio
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Nicola Napoli
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Paolo Pozzilli
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
14
|
Mukohara S, Mifune Y, Inui A, Nishimoto H, Kurosawa T, Yamaura K, Yoshikawa T, Kuroda R. In vitro and in vivo tenocyte-protective effectiveness of dehydroepiandrosterone against high glucose-induced oxidative stress. BMC Musculoskelet Disord 2021; 22:519. [PMID: 34090401 PMCID: PMC8180149 DOI: 10.1186/s12891-021-04398-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. This study aimed to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. METHODS Tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. Further, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. RESULTS In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower while type I collagen expression was significantly higher in the DHEA group than in the control group. CONCLUSIONS DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover, which are affected by hyperglycemic conditions. DHEA is a potential preventive drug for diabetic tendinopathy.
Collapse
Affiliation(s)
- Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Takashi Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| |
Collapse
|
15
|
Ackerman JE, Best KT, Muscat SN, Loiselle AE. Metabolic Regulation of Tendon Inflammation and Healing Following Injury. Curr Rheumatol Rep 2021; 23:15. [PMID: 33569739 DOI: 10.1007/s11926-021-00981-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review seeks to provide an overview of the role of inflammation and metabolism in tendon cell function, tendinopathy, and tendon healing. We have summarized the state of knowledge in both tendon and enthesis. RECENT FINDINGS Recent advances in the field include a substantial improvement in our understanding of tendon cell biology, including the heterogeneity of the tenocyte environment during homeostasis, the diversity of the cellular milieu during in vivo tendon healing, and the effects of inflammation and altered metabolism on tendon cell function in vitro. In addition, the mechanisms by which altered systemic metabolism, such as diabetes, disrupts tendon homeostasis continue to be better understood. A central conclusion of this review is the critical need to better define fundamental cellular and signaling mechanisms of inflammation and metabolism during tendon homeostasis, tendinopathy, and tendon healing in order to identify therapies to enhance or maintain tendon function.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Katherine T Best
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Samantha N Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
| |
Collapse
|
16
|
|
17
|
Lu PP, Chen MH, Dai GC, Li YJ, Shi L, Rui YF. Understanding cellular and molecular mechanisms of pathogenesis of diabetic tendinopathy. World J Stem Cells 2020; 12:1255-1275. [PMID: 33312397 PMCID: PMC7705468 DOI: 10.4252/wjsc.v12.i11.1255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence of an increased incidence of tendon disorders in people with diabetes mellitus. Diabetic tendinopathy is an important cause of chronic pain, restricted activity, and even tendon rupture in individuals. Tenocytes and tendon stem/progenitor cells (TSPCs) are the dominant cellular components associated with tendon homeostasis, maintenance, remodeling, and repair. Some previous studies have shown alterations in tenocytes and TSPCs in high glucose or diabetic conditions that might cause structural and functional variations in diabetic tendons and even accelerate the development and progression of diabetic tendinopathy. In this review, the biomechanical properties and histopathological changes in diabetic tendons are described. Then, the cellular and molecular alterations in both tenocytes and TSPCs are summarized, and the underlying mechanisms involved are also analyzed. A better understanding of the underlying cellular and molecular pathogenesis of diabetic tendinopathy would provide new insight for the exploration and development of effective therapeutics.
Collapse
Affiliation(s)
- Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Min-Hao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ying-Juan Li
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
18
|
Tan HY, Tan SL, Teo SH, Roebuck MM, Frostick SP, Kamarul T. Development of a novel in vitro insulin resistance model in primary human tenocytes for diabetic tendinopathy research. PeerJ 2020; 8:e8740. [PMID: 32587790 PMCID: PMC7304430 DOI: 10.7717/peerj.8740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) had been reported to be associated with tendinopathy. However, the underlying mechanisms of diabetic tendinopathy still remain largely to be discovered. The purpose of this study was to develop insulin resistance (IR) model on primary human tenocytes (hTeno) culture with tumour necrosis factor-alpha (TNF-α) treatment to study tenocytes homeostasis as an implication for diabetic tendinopathy. Methods hTenowere isolated from human hamstring tendon. Presence of insulin receptor beta (INSR-β) on normal tendon tissues and the hTeno monolayer culture were analyzed by immunofluorescence staining. The presence of Glucose Transporter Type 1 (GLUT1) and Glucose Transporter Type 4 (GLUT4) on the hTeno monolayer culture were also analyzed by immunofluorescence staining. Primary hTeno were treated with 0.008, 0.08, 0.8 and 8.0 µM of TNF-α, with and without insulin supplement. Outcome measures include 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) assay to determine the glucose uptake activity; colourimetric total collagen assay to quantify the total collagen expression levels; COL-I ELISA assay to measure the COL-I expression levels and real-time qPCR to analyze the mRNA gene expressions levels of Scleraxis (SCX), Mohawk (MKX), type I collagen (COL1A1), type III collagen (COL3A1), matrix metalloproteinases (MMP)-9 and MMP-13 in hTeno when treated with TNF-α. Apoptosis assay for hTeno induced with TNF-α was conducted using Annexin-V FITC flow cytometry analysis. Results Immunofluorescence imaging showed the presence of INSR-β on the hTeno in the human Achilles tendon tissues and in the hTeno in monolayer culture. GLUT1 and GLUT4 were both positively expressed in the hTeno. TNF-α significantly reduced the insulin-mediated 2-NBDG uptake in all the tested concentrations, especially at 0.008 µM. Total collagen expression levels and COL-I expression levels in hTeno were also significantly reduced in hTeno treated with 0.008 µM of TNF-α. The SCX, MKX and COL1A1 mRNA expression levels were significantly downregulated in all TNF-α treated hTeno, whereas the COL3A1, MMP-9 and MMP-13 were significantly upregulated in the TNF–α treated cells. TNF-α progressively increased the apoptotic cells at 48 and 72 h. Conclusion At 0.008 µM of TNF-α, an IR condition was induced in hTeno, supported with the significant reduction in glucose uptake, as well as significantly reduced total collagen, specifically COL-I expression levels, downregulation of candidate tenogenic markers genes (SCX and MKX), and upregulation of ECM catabolic genes (MMP-9 and MMP-13). Development of novel IR model in hTeno provides an insight on how tendon homeostasis could be affected and can be used as a tool for further discovering the effects on downstream molecular pathways, as the implication for diabetic tendinopathy.
Collapse
Affiliation(s)
- Hui Yee Tan
- Tissue Engineering Group (TEG), National Orthopaedics Centre of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Sik Loo Tan
- Tissue Engineering Group (TEG), National Orthopaedics Centre of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Seow Hui Teo
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Margaret M Roebuck
- Musculoskeletal Science Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, Other, United Kingdom
| | - Simon P Frostick
- Musculoskeletal Science Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, Other, United Kingdom
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedics Centre of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| |
Collapse
|
19
|
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020; 2020:4143802. [PMID: 32566279 PMCID: PMC7261331 DOI: 10.1155/2020/4143802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.
Collapse
|
20
|
Kurosawa T, Mifune Y, Inui A, Nishimoto H, Ueda Y, Kataoka T, Yamaura K, Mukohara S, Kuroda R. Evaluation of apocynin in vitro on high glucose-induced oxidative stress on tenocytes. Bone Joint Res 2020; 9:23-28. [PMID: 32435452 PMCID: PMC7229300 DOI: 10.1302/2046-3758.991.bjr-2019-0074.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aims The purpose of this study was to evaluate the in vitro effects of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and a downregulator of intracellular reactive oxygen species (ROS), on high glucose-induced oxidative stress on tenocytes. Methods Tenocytes from normal Sprague-Dawley rats were cultured in both control and high-glucose conditions. Apocynin was added at cell seeding, dividing the tenocytes into four groups: the control group; regular glucose with apocynin (RG apo+); high glucose with apocynin (HG apo+); and high glucose without apocynin (HG apo–). Reactive oxygen species production, cell proliferation, apoptosis and messenger RNA (mRNA) expression of NOX1 and 4, and interleukin-6 (IL-6) were determined in vitro. Results Expression of NOX1, NOX4, and IL-6 mRNA in the HG groups was significantly higher compared with that in the RG groups, and NOX1, NOX4, and IL-6 mRNA expression in the HG apo+ group was significantly lower compared with that in the HG apo– group. Cell proliferation in the RG apo+ group was significantly higher than in the control group and was also significantly higher in the HG apo+ group than in the HG apo– group. Both the ROS accumulation and the amounts of apoptotic cells in the HG groups were greater than those in the RG groups and were significantly less in the HG apo+ group than in the HG apo– group. Conclusion Apocynin reduced ROS production and cell death via NOX inhibition in high-glucose conditions. Apocynin is therefore a potential prodrug in the treatment of diabetic tendinopathy. Cite this article:Bone Joint Res 2020;9(1):23–28.
Collapse
Affiliation(s)
- T Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - A Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - H Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Kataoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - K Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - S Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - R Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
21
|
Yan LP, Castaño IM, Sridharan R, Kelly D, Lemoine M, Cavanagh BL, Dunne NJ, McCarthy HO, O'Brien FJ. Collagen/GAG scaffolds activated by RALA-siMMP-9 complexes with potential for improved diabetic foot ulcer healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111022. [PMID: 32993972 DOI: 10.1016/j.msec.2020.111022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Impaired wound healing of diabetic foot ulcers has been linked to high MMP-9 levels at the wound site. Strategies aimed at the simultaneous downregulation of the MMP-9 level in situ and the regeneration of impaired tissue are critical for improved diabetic foot ulcer (DFU) healing. To fulfil this aim, collagen/GAG (Col/GAG) scaffolds activated by MMP-9-targeting siRNA (siMMP-9) were developed in this study. The siMMP-9 complexes were successfully formed by mixing the RALA cell penetrating peptide with siMMP-9. The complexes formulated at N:P ratios of 6 to 15 had a diameter around 100 nm and a positive zeta potential about 40 mV, making them ideal for cellular uptake. In 2 dimensional (2D) culture of human fibroblasts, the cellular uptake of the complexes surpassed 60% and corresponded to a 60% reduction in MMP-9 gene expression in low glucose culture. In high glucose culture, which induces over-expression of MMP-9 and therefore serves as an in vitro model mimicking conditions in DFU, the MMP-9 gene could be downregulated by around 90%. In the 3D culture of fibroblasts, the siMMP-9 activated Col/GAG scaffolds displayed excellent cytocompatibility and ~60% and 40% MMP-9 gene downregulation in low and high glucose culture, respectively. When the siMMP-9 complexes were applied to THP-1 macrophages, the primary cell type producing MMP-9 in DFU, MMP-9 gene expression was significantly reduced by 70% and 50% for M0 and M1 subsets, in 2D culture. In the scaffolds, the MMP-9 gene and protein level of M1 macrophages decreased by around 50% and 30% respectively. Taken together, this study demonstrates that the RALA-siMMP-9 activated Col/GAG scaffolds possess high potential as a promising regenerative platform for improved DFU healing.
Collapse
Affiliation(s)
- Le-Ping Yan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland.
| | - Irene Mencía Castaño
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland
| | - Rukmani Sridharan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland
| | - Domhnall Kelly
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland
| | - Mark Lemoine
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, Dublin, Ireland.
| |
Collapse
|
22
|
Huang LY, Yen IC, Tsai WC, Lee SY. Rhodiola crenulata Suppresses High Glucose-Induced Matrix Metalloproteinase Expression and Inflammatory Responses by Inhibiting ROS-Related HMGB1-TLR4 Signaling in Endothelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:91-105. [DOI: 10.1142/s0192415x20500056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rhodiola crenulata, a popular folk medicine for anti-altitude sickness in Tibet, has been shown to have protective effects against high glucose (HG)-induced endothelial cell dysfunction in human umbilical vein endothelial cells (HUVECs). However, its mechanisms of action are unclear. Here, we aimed to examine the effects and the mechanisms of action of Rhodiola crenulata extract (RCE) on matrix metalloproteinases (MMPs) and inflammatory responses under HG conditions. HUVECs were pretreated with RCE or untreated and then exposed to 33[Formula: see text]mM glucose medium for 24[Formula: see text]h. The levels of oxidative stress markers, MMPs, endogenous tissue inhibitors of MMPs (TIMPs), and adhesion molecules were determined. Zymography assays were also carried out. We found that RCE significantly decreased HG-induced increases in reactive oxygen species (ROS) and activation of MAPK and NF-[Formula: see text]B pathways. In addition, RCE not only significantly reduced the expression and activities of MMPs but also upregulated TIMP protein levels. Consistently, HG-induced activation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response protein (MyD88) signaling pathway, intracellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and high mobility group box 1 (HMGB1) as well as endothelial cell apoptosis was inhibited by RCE treatment. RCE exerts protective effects on endothelial cells against HG insult, partially by suppressing the HMGB1/TLR4 axis. These findings indicate that Rhodiola crenulata may be a potential therapeutic agent for diabetes-associated vascular diseases.
Collapse
Affiliation(s)
- Li-Yen Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Cheng Tsai
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
23
|
Lewis T, Zeisig E, Gaida JE. Does glucocorticoid exposure explain the association between metabolic dysfunction and tendinopathy? Endocr Connect 2020; 9:EC-19-0555.R1. [PMID: 31967969 PMCID: PMC7040857 DOI: 10.1530/ec-19-0555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND While metabolic health is acknowledged to affect connective tissue structure and function, the mechanisms are unclear. Glucocorticoids are present in almost every cell type throughout the body and control key physiological processes such as energy homeostasis, stress response, inflammatory and immune processes, and cardiovascular function. Glucocorticoid excess manifests as visceral adiposity, dyslipidaemia, insulin resistance, and type 2 diabetes. As these metabolic states are also associated with tendinopathy and tendon rupture, it may be that glucocorticoids excess is the link between metabolic health and tendinopathy. OBJECTIVE To synthesise current knowledge linking glucocorticoids exposure to tendon structure and function. METHODS Narrative literature review. RESULTS We provide an overview of endogenous glucocorticoid production, regulation, and signalling. Next we review the impact that oral glucocorticoid has on risk of tendon rupture and the effect that injected glucocorticoid has on resolution of symptoms. Then we highlight the clinical and mechanistic overlap between tendinopathy and glucocorticoid excess in the areas of visceral adiposity, dyslipidaemia, insulin resistance and type 2 diabetes. In these areas, we highlight the role of glucocorticoids and how these hormones might underpin the connection between metabolic health and tendon dysfunction. CONCLUSIONS There are several plausible pathways through which glucocorticoids might mediate the connection between metabolic health and tendinopathy.
Collapse
Affiliation(s)
- Trevor Lewis
- Physiotherapy Department, Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Eva Zeisig
- Department of Surgical and Perioperative Sciences, Umeå Univerisity, Umeå, Sweden
| | - Jamie E Gaida
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, Australian Capital Territory, Australia
| |
Collapse
|
24
|
Kwan CK, Fu SC, Yung PSH. A high glucose level stimulate inflammation and weaken pro-resolving response in tendon cells - A possible factor contributing to tendinopathy in diabetic patients. Asia Pac J Sports Med Arthrosc Rehabil Technol 2020; 19:1-6. [PMID: 31871896 PMCID: PMC6915841 DOI: 10.1016/j.asmart.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Tendinopathy is a chronic disorder that affects a huge population, and is causing high socioeconomical impacts worldwide. Tendinopathy was reported to be more prevalent in diabetic patients, and chronic inflammation was proposed to play an important role in its development. It was also known that diabetic patients present in a pro-inflammatory state. There is a possibility that the high glucose environment in diabetic patients lead to chronic inflammation in the tendon, and eventually the development of tendinopathy. In this study, we would simulate the diabetic environment in an in vitro setup, to assess the effect of a high glucose level on cultured tendinopathic and healthy tendon derived stem cells (TDSCs) under inflammatory stress. We would first like to assess whether there are differences between the inflammatory response in tendinopathic and healthy TDSCs. We would then investigate whether a high glucose level may lead to changes in the inflammatory response in healthy tendon cells. METHODS Tendinopathic TDSCs were cultured from 2 torn rotator cuff tendons and 1 ruptured patellar tendon. Healthy TDSCs were cultured from 3 gender matched healthy hamstring tendons. Cells were stimulated by either 2ng/ml IL-1B for 24 hours, 11.1 mmol/L glucose for 24 hours, or both. mRNA was collected and processed for qPCR targeting B-actin, ALOX12, ALOX15, FPR1, FPR2, ChemR23, and COX2. RESULTS Upregulation of FPR1 (p=0.050) ChemR23 (p=0.050), ALOX15 (p=0.050) was significantly weakened when comparing tendinopathic and healthy TDSCs stimulated with IL-1b. The upregulation of ALOX15 (p=0.050), was significantly lower in stimulated healthy TDSCs in a high glucose environment when comparing with those stimulated under a regular glucose level. A high glucose level also induced upregulation of COX2 (p=0.046) in healthy TDSCs and tendinopathic TDSCs (p=0.050). CONCLUSION The results of this study provide a possible explanation to the increased risk to develop tendinopathy in diabetic patients. Chronic inflammation observed in tendinopathy may be due to the weakening of pro-resolving responses in tendinopathic TDSCs, and a high glucose environment may lead to chronic inflammation and ultimately tendinopathy by persistent stimulation and weakening of pro-resolving response in healthy TDSCs.
Collapse
Affiliation(s)
- Cheuk-Kin Kwan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
- Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Sai-Chuen Fu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
- Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Patrick Shu-hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
- Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
25
|
Nichols AE, Oh I, Loiselle AE. Effects of Type II Diabetes Mellitus on Tendon Homeostasis and Healing. J Orthop Res 2020; 38:13-22. [PMID: 31166037 PMCID: PMC6893090 DOI: 10.1002/jor.24388] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Over 300,000 tendon repairs are performed annually in the United States to repair damage to tendons as a result of either acute trauma or chronic tendinopathy. Individuals with type II diabetes mellitus (T2DM) are four times more likely to experience tendinopathy, and up to five times more likely to experience a tendon tear or rupture than non-diabetics. As nearly 10% of the US population is diabetic, with an additional 33% pre-diabetic, this is a particularly problematic health care challenge. Tendon healing in general is challenging and often unsatisfactory due to the formation of mechanically inferior scar-tissue rather than regeneration of native tendon structure. In T2DM tendons, there is evidence of an amplified scar tissue response, which may be associated with the increased the risk of rupture or impaired restoration of range of motion. Despite the dramatic effect of T2DM on tendon function and outcomes following injury, there are few therapies available to promote improved healing in these patients. Several recent studies have enhanced our understanding of the pro-inflammatory environment of T2DM healing and have assessed potential treatment approaches to mitigate pathological progression in pre-clinical models of diabetic tendinopathy. This review discusses the current state of knowledge of diabetic tendon healing from molecular to mechanical disruptions and identifies promising approaches and critical knowledge gaps as the field moves toward identification of novel therapeutic strategies to maintain or restore tendon function in diabetic patients. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:13-22, 2020.
Collapse
Affiliation(s)
- Anne E.C. Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642
| | - Irvin Oh
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642,Corresponding Author Alayna E. Loiselle, PhD, Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, Phone: (585) 275-7239, Fax: (585) 276-2177,
| |
Collapse
|
26
|
Kamel R, El-batanony R, Salama A. Pioglitazone-loaded three-dimensional composite polymeric scaffolds: A proof of concept study in wounded diabetic rats. Int J Pharm 2019; 570:118667. [DOI: 10.1016/j.ijpharm.2019.118667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
27
|
Patel SH, Yue F, Saw SK, Foguth R, Cannon JR, Shannahan JH, Kuang S, Sabbaghi A, Carroll CC. Advanced Glycation End-Products Suppress Mitochondrial Function and Proliferative Capacity of Achilles Tendon-Derived Fibroblasts. Sci Rep 2019; 9:12614. [PMID: 31471548 PMCID: PMC6717202 DOI: 10.1038/s41598-019-49062-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Debilitating cases of tendon pain and degeneration affect the majority of diabetic individuals. The high rate of tendon degeneration persists even when glucose levels are well controlled, suggesting that other mechanisms may drive tendon degeneration in diabetic patients. The purpose of this study was to investigate the impact of advanced glycation end-products on tendon fibroblasts to further our mechanistic understanding of the development and progression of diabetic tendinopathy. We proposed that advanced glycation end-products would induce limitations to mitochondrial function and proliferative capacity in tendon-derived fibroblasts, restricting their ability to maintain biosynthesis of tendon extracellular matrix. Using an in-vitro cell culture system, rat Achilles tendon fibroblasts were treated with glycolaldehyde-derived advanced glycation end-products (0, 50, 100, and 200 μg/ml) for 48 hours in normal glucose (5.5 mM) and high glucose (25 mM) conditions. We demonstrate that tendon fibroblasts treated with advanced glycation end-products display reduced ATP production, electron transport efficiency, and proliferative capacity. These impairments were coupled with alterations in mitochondrial DNA content and expression of genes associated with extracellular matrix remodeling, mitochondrial energy metabolism, and apoptosis. Our findings suggest that advanced glycation end-products disrupt tendon fibroblast homeostasis and may be involved in the development and progression of diabetic tendinopathy.
Collapse
Affiliation(s)
- Shivam H Patel
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Shannon K Saw
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Rachel Foguth
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN, USA
| | | | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Arman Sabbaghi
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Chad C Carroll
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Dubey NK, Wei HJ, Yu SH, Williams DF, Wang JR, Deng YH, Tsai FC, Wang PD, Deng WP. Adipose-derived Stem Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory Cascade. Aging Dis 2019; 10:483-496. [PMID: 31164994 PMCID: PMC6538220 DOI: 10.14336/ad.2018.0616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is well-known to exert complications such as retinopathy, cardiomyopathy and neuropathy. However, in recent years, an elevated osteoarthritis (OA) complaints among diabetics have been observed, portending the risk of diabetic OA. Since formation of advanced glycation end products (AGE) is believed to be the etiology of various diseases under hyperglycemic conditions, we firstly established that streptozotocin-induced DM could potentiate the development of OA in C57BL/6J mouse model, and further explored the intra-articularly administered adipose-derived stem cell (ADSC) therapy focusing on underlying AGE-associated mechanism. Our results demonstrated that hyperglycemic mice exhibited OA-like structural impairments including a proteoglycan loss and articular cartilage fibrillations in knee joint. Highly expressed levels of carboxymethyl lysine (CML), an AGE and their receptors (RAGE), which are hallmarks of hyperglycemic microenvironment were manifested. The elevated oxidative stress in diabetic OA knee-joint was revealed through increased levels of malondialdehyde (MDA). Further, oxidative stress-activated nuclear factor kappa B (NF-κB), the marker of proinflammatory signalling pathway was also accrued; and levels of matrix metalloproteinase-1 and 13 were upregulated. However, ADSC treatment attenuated all OA-like changes by 4 weeks, and dampened levels of CML, RAGE, MDA, NF-κB, MMP-1 and 13. These results suggest that during repair and regeneration, ADSCs inhibited glycation-mediated inflammatory cascade and rejuvenated cartilaginous tissue, thereby promoting knee-joint integrity in diabetic milieu.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- 1Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Jian Wei
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,3School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Hsun Yu
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - David F Williams
- 5Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA
| | - Joseph R Wang
- 6Department of Periodontics, College of Dental Medicine, Columbia University, New York, USA
| | - Yue-Hua Deng
- 7Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Feng-Chou Tsai
- 8Stem Cell Research Center, Cosmetic Clinic Group, Taipei, Taiwan
| | - Peter D Wang
- 4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,9Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Win-Ping Deng
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,10Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
29
|
de Oliveira AR, da Silva FS, Bortolin RH, Marques DEDS, Ramos GV, Marqueti RC, da Silva NB, Medeiros KCDP, Corrêa MA, Lima JPMS, de Rezende AA, Ackermann PW, Abreu BJ, de Brito Vieira WH. Effect of photobiomodulation and exercise on early remodeling of the Achilles tendon in streptozotocin-induced diabetic rats. PLoS One 2019; 14:e0211643. [PMID: 30716140 PMCID: PMC6361457 DOI: 10.1371/journal.pone.0211643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to compare the treatment effects of laser photobiomodulation (LPBM) therapy and aerobic exercise on the biomechanical properties, tissue morphology and the expression of tendon matrix molecules during early remodeling of Achilles tendon (AT) injury in diabetic rats. Animals were randomly assigned to five groups: injured non diabetic (I, n = 15), injured diabetic (ID, n = 15), injured diabetic plus LPBM (IDL, n = 16), injured diabetic plus aerobic exercise (IDE, n = 16) and injured diabetic plus aerobic exercise and LPBM (IDEAL, n = 17). Type 1 diabetes was induced via a single intravenous injection of Streptozotocin at a dose of 40 mg/kg. A partial tenotomy was performed in the right AT. LPBM was performed with an indium-gallium-aluminum-phosphide 660 nm 10 mW laser device (spot size 0.04 cm2, power density 250 mW/cm2, irradiation duration 16 s, energy 0.16 J, energy density 4 J/cm2) on alternate days for a total of 9 sessions over 3 weeks (total energy 1.44 J), using a stationary contact technique to a single point over the dorsal aspect of the AT. Moderate aerobic exercise was performed on a motorized treadmill (velocity 9 m/min for 60 minutes). At 3 weeks post-injury, biomechanical analyzes as well as assessment of fibroblast number and orientation were performed. Collagen 1 (Col1) and 3 (Col3) and matrix metalloproteinases (MMPs) -3 and 13 protein distributions were studied by immunohistochemistry; while Col1 and Col3 and MMP-2 and 9 gene expression were assessed by quantitative RT-PCR (qRT-PCR). IDEAL exhibited significant increases in several biomechanical parameters in comparison to the other groups. Moreover, IDEAL presented stronger Col1 immunoreactivity when compared to ID, and weaker Col3 immunoreactivity than IDE. Both IDL and IDEAL demonstrated weaker expression of MMP-3 in comparison to I, while IDL presented no expression of MMP-13 when compared to ID. ID, IDL and IDE showed an increased number of fibroblasts in comparison to I, while IDEAL decreased the number of these cells in comparison to ID and IDE. IDL and IDEAL groups exhibited decreased angular dispersion among the fibroblasts when compared to I. The gene expression results showed that IDE demonstrated a downregulation in Col1 mRNA expression in comparison to I and ID. IDEAL demonstrated upregulation of Col1 mRNA expression when compared to IDL or IDE alone and increased MMP-2 expression when compared to IDL and IDE. MMP-9 expression was upregulated in IDEAL when compared to I, IDL and IDE. Our results suggest a beneficial interaction of combining both treatment strategies i.e., aerobic exercise and LPBM, on the biomechanical properties, tissue morphology and the expression of matrix molecules in diabetic tendons.
Collapse
MESH Headings
- Achilles Tendon/metabolism
- Achilles Tendon/physiopathology
- Animals
- Collagen Type I/metabolism
- Collagen Type III/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Fibroblasts/metabolism
- Low-Level Light Therapy/methods
- Male
- Metalloendopeptidases/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin/pharmacology
- Tendon Injuries/etiology
- Tendon Injuries/metabolism
- Tendon Injuries/physiopathology
- Tendon Injuries/therapy
- Up-Regulation/physiology
- Wound Healing/physiology
Collapse
Affiliation(s)
| | - Flávio Santos da Silva
- Department of Health Sciences, Federal University of the Semiarid Region, Mossoró, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paul W. Ackermann
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bento J. Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
30
|
McQuilling JP, Sanders M, Poland L, Sanders M, Basadonna G, Waldrop NE, Mowry KC. Dehydrated Amnion/Chorion Improves Achilles Tendon Repair in a Diabetic Animal Model. WOUNDS : A COMPENDIUM OF CLINICAL RESEARCH AND PRACTICE 2019; 31:19-25. [PMID: 30372415 PMCID: PMC7989034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Healing of tendon injuries is often plagued by significant scar formation and compromised biomechanical function. For those with diabetes, these injuries are further complicated by alterations to the extracellular matrix of the tendon, poor circulation, and delayed wound healing; consequently, complications and re-rupture rates for patients with diabetes are reported higher than the typical patient population. Placental derived membranes, specifically dehydrated human amnion/chorion membranes (dACMs), have been utilized clinically as an adhesion barrier, and these membranes have been shown to reduce scarring and aid in tissue repair. OBJECTIVE The purpose of this study was to evaluate the effect of dACMs on tendon repair in a diabetic model with impaired healing. MATERIALS AND METHODS Using a type II diabetic model (BBZDR/WOR rats), a full-thickness injury was made through the Achilles tendon and repaired using a modified Kessler method. Repaired tendons were wrapped with dACM or left unwrapped as a control (n = 15/group; n = 30 total). Tendons were retrieved at 14 (n = 5/group; n = 10 total) or 28 days (n = 10/group; n = 20 total) and evaluated using histology, immunofluorescence, and biomechanical testing. RESULTS Treatment of tendons with dACM resulted in reduced failure rates, increased cell migration, and improved mechanical properties (compared with unwrapped controls). The dACM-treated tendons also showed changes in the production of several important biomarkers to tendon healing at both 14 and 28 days; most notably, Scleraxis was found to be upregulated in dACM-treated tendons. CONCLUSIONS This study highlights a promising treatment option for this challenging clinical population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katie C. Mowry
- Organogenesis Inc, Research and Development, Birmingham, AL
| |
Collapse
|
31
|
Setyopranoto I, Malueka RG, Panggabean AS, Widyadharma IPE, Sadewa AH, Lamsudin R, Wibowo S. Association between Increased Matrix Metalloproteinase-9 (MMP-9) Levels with Hyperglycaemia Incidence in Acute Ischemic Stroke Patients. Open Access Maced J Med Sci 2018; 6:2067-2072. [PMID: 30559862 PMCID: PMC6290450 DOI: 10.3889/oamjms.2018.459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND: Hyperglycemia is common in acute stroke patients. Hyperglycemia can induce the production of reactive oxygen species, causing increased activity of matrix metalloproteinase-9 (MMP-9). AIM: This study aimed to determine an association between the increased levels of MMP-9 and the incidence of hyperglycemia in acute ischemic stroke patients. METHODS: This is a case-control study. Acute ischemic stroke patients admitted to the Stroke Unit of a reference hospital in Yogyakarta, Indonesia was divided into the hyperglycemic and non-hyperglycemic group. Demographic and clinical characteristics of each subject were recorded, and blood levels of MMP-9 were measured. Seventy-one patients were recruited, 40 subjects in the hyperglycemic group and 31 subjects in the non-hyperglycemic group. RESULTS: The median levels of blood MMP-9 level in the hyperglycemic and non-hyperglycemic group were 974.37 and 748.48 ng/mL, respectively, and the difference was statistically not significant (95% CI, 191.24-2849.53; p = 0.07). When the calculated cut-off point of 600.99 ng/mL was used, the proportion of patients with higher MMP-9 levels was significantly more in the hyperglycemic group compared with the ones in the non-hyperglycemic group (82.5% and 54.8%, respectively; OR = 3.88; p = 0.011). CONCLUSION: We concluded that the proportion of patients with MMP-9 level >600.99 ng/mL was significantly higher in acute ischemic stroke patients with hyperglycemia.
Collapse
Affiliation(s)
- Ismail Setyopranoto
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Andre Stefanus Panggabean
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - I Putu Eka Widyadharma
- Department of Neurology, Faculty of Medicine, Udayana University and Sanglah General Hospital, Bali, Indonesia
| | - Ahmad Hamim Sadewa
- Department of Biochemistry, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rusdi Lamsudin
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Samekto Wibowo
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
32
|
Carvalho FR, Calado SM, Silva GA, Diogo GS, Moreira da Silva J, Reis RL, Cancela ML, Gavaia PJ. Altered bone microarchitecture in a type 1 diabetes mouse model
Ins2
Akita. J Cell Physiol 2018; 234:9338-9350. [DOI: 10.1002/jcp.27617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Filipe R. Carvalho
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Faro Portugal
- PhD Program in Biomedical Sciences, Universidade do Algarve Faro Portugal
| | - Sofia M. Calado
- PhD Program in Biomedical Sciences, Universidade do Algarve Faro Portugal
- Centre for Biomedical Research (CBMR), University of Algarve Faro Portugal
| | - Gabriela A. Silva
- Centre for Biomedical Research (CBMR), University of Algarve Faro Portugal
- Department of Biomedical Sciences and Medicine‐DCBM Universidade do Algarve Faro Portugal
| | | | | | - Rui L. Reis
- ICVS/3B’s – PT Government Associate Laboratory Guimarães Portugal
- 3B’s Research Group‐Biomaterials, Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Guimarães Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Faro Portugal
- Department of Biomedical Sciences and Medicine‐DCBM Universidade do Algarve Faro Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Faro Portugal
- Department of Biomedical Sciences and Medicine‐DCBM Universidade do Algarve Faro Portugal
| |
Collapse
|
33
|
Patel SH, Sabbaghi A, Carroll CC. Streptozotocin-induced diabetes alters transcription of multiple genes necessary for extracellular matrix remodeling in rat patellar tendon. Connect Tissue Res 2018; 59:447-457. [PMID: 29745261 DOI: 10.1080/03008207.2018.1470168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OVERVIEW Tendon collagen fibril degradation is commonly seen in tendons of diabetics, but the mechanisms responsible for these changes remain to be elucidated. We have demonstrated that streptozotocin (STZ)-induced diabetes increases tendon cell proliferation and collagen content. In the present study, we evaluated that impact of STZ-induced diabetes on mRNA transcripts involved with collagen fibril organization, extracellular matrix (ECM) remodeling, apoptosis, and proliferation. MATERIALS AND METHODS Rats were divided into four groups: nondiabetic (control, n = 9), 1 week (acute, n = 8) or 10 weeks of diabetes (chronic, n = 7), and 10 weeks of diabetes with insulin (insulin, n = 8). RNA was isolated from the patellar tendon for determination of mRNA transcripts using droplet digital PCR (ddPCR). RESULTS Transcripts for Col1a1, Col3a1, Mmp2, Timp1, Scx, Tnmd, Casp3, Casp8, and Ager were lower in acute relative to control and insulin rats (p ≤ 0.05). With the exception of Scx, transcripts for Col1a1, Col3a1, Mmp2, Timp1, Tnmd, Casp3, Casp8, and Ager were also lower in chronic when compared to control (p < 0.05). Transcripts for Col1a1, Col3a1, Mmp2, Timp1, Tnmd, Casp3, Casp8, and Ager were not different between control and insulin (p > 0.05). Transcripts for Dcn, Mmp1a, Mmp9, Pcna, Tgfbr3, Ptgs2, Ptger2, Ptges, and iNos were not altered by diabetes or insulin (p > 0.05). CONCLUSION Our findings indicated that STZ-induced diabetes results in rapid and large changes in the expression of several genes that are key to ECM remodeling, maintenance, and maturation.
Collapse
Affiliation(s)
- Shivam H Patel
- a Department of Health and Kinesiology , Purdue University , West Lafayette , IN , USA
| | - Arman Sabbaghi
- b Department of Statistics , Purdue University , West Lafayette , IN , USA
| | - Chad C Carroll
- a Department of Health and Kinesiology , Purdue University , West Lafayette , IN , USA.,c Department of Physiology , Midwestern University , Glendale , AZ , USA.,d Indiana Center for Musculoskeletal Health , Indiana University School of Medicine , Indianapolis , USA
| |
Collapse
|
34
|
Kiss K, Regős E, Rada K, Firneisz G, Baghy K, Kovalszky I. Chronic Hyperglycaemia Induced Alterations of Hepatic Stellate Cells Differ from the Effect of TGFB1, and Point toward Metabolic Stress. Pathol Oncol Res 2018; 26:291-299. [PMID: 30109568 DOI: 10.1007/s12253-018-0458-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
The deleterious effect of hyperglycemia on the biology of the liver is supported by clinical evidence. It can promote the development of fatty liver, liver fibrosis, even liver cancer as complication of diabetes mellitus. As liver fibrosis is the consequence of hepatic stellate cell (HSC) activation, the questions were addressed whether alterations induced by high glucose concentration are directly related to TGFB1 effect, or other mechanisms are activated. In order to obtain information on the response of HSC for high glucose, LX-2 cells (an immortalized human HSC cell lineage) were cultured in 15.3 mM glucose containing medium for 21 days. The effect of glucose was compared to that of TGFB1. Our data revealed that chronic exposure of high glucose concentration initiated profound alteration of LX-2 cells and the effect is different from those observed upon interaction with TGFB1. Whereas TGFB1 induced the production of extracellular matrix proteins, high glucose exposure resulted in decreased MMP2 activity, retardation of type I collagen in the endoplasmic reticulum, with decreased pS6 expression, pointing to development of endoplasmic stress and sequestration of p21CIP1/WAF1 in the cytoplasm which can promote the proliferation of LX2 cells.
Collapse
Affiliation(s)
- Katalin Kiss
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Eszter Regős
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Kristóf Rada
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Gábor Firneisz
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi utcA 46, Budapest, H-1085, Hungary
- MTA-SE Molecular Medicine Research Group, Semmelweis University, Szentkirályi utca 46. Budapest, H-1085, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary.
| |
Collapse
|
35
|
Ueda Y, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, Takase F, Kataoka T, Kokubu T, Kuroda R. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018; 7:362-372. [PMID: 29922457 PMCID: PMC5987694 DOI: 10.1302/2046-3758.75.bjr-2017-0126.r2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objectives The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined. Results In tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased. Conclusion This study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2
Collapse
Affiliation(s)
- Y Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - A Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - R Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Muto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - F Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Kataoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Kokubu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - R Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
36
|
|
37
|
Abreu BJ, de Brito Vieira WH. Metalloproteinase Changes in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 920:185-90. [PMID: 27535260 DOI: 10.1007/978-3-319-33943-6_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) constitute a group of over 20 structurally-related proteins which include a Zn(++) ion binding site that is essential for their proteolytic activities. These enzymes play important role in extracellular matrix turnover in order to maintain a proper balance in its synthesis and degradation. MMPs are associated to several physiological and pathophysiological processes, including diabetes mellitus (DM). The mechanisms of DM and its complications is subject of intense research and evidence suggests that MMPs are implicated with the development and progression of diabetic microvascular complications such as nephropathy, cardiomyopathy, retinopathy and peripheral neuropathy. Recent data has associated DM to changes in the tendon structure, including abnormalities in fiber structure and organization, increased tendon thickness, volume and disorganization obtained by image and a tendency of impairing biomechanical properties. Although not fully elucidated, it is believed that DM-induced MMP dysregulation may contribute to structural and biomechanical alterations and impaired process of tendon healing.
Collapse
Affiliation(s)
- Bento João Abreu
- Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | |
Collapse
|
38
|
The effects of high glucose on tendon-derived stem cells: implications of the pathogenesis of diabetic tendon disorders. Oncotarget 2017; 8:17518-17528. [PMID: 28407683 PMCID: PMC5392267 DOI: 10.18632/oncotarget.15418] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/07/2017] [Indexed: 12/17/2022] Open
Abstract
Patients with diabetes are at great risk to suffer many musculoskeletal disorders, such as tendinopathy, tendon rupture and impaired tendon healing. However, the pathogenesis of these tendon disorders still remains unclear. In this study, we aimed to investigate the effects of high glucose on cell proliferation, cell apoptosis and tendon-related markers expression of tendon-derived stem cells (TDSCs) in vitro. These findings might provide new insights into the pathogenesis of diabetic tendon disorders. The cell proliferative ability and apoptosis rate of TDSCs in different groups were evaluated by MTT assay and Annexin V-FITC/PI staining assay. The mRNA expression of tendon-related markers (Scleraxis and Collagen I alpha 1 chain) were assessed by qRT-PCR. The protein expression of tendon-related markers (Tenomodulin and Collagen I) were measured by Western blotting. The proliferative ability of TDSCs treated with high glucose (15mM and 25mM) decreased significantly at day1, day3 and day5. The cell apoptosis of TDSCs increased significantly when they were cultured with high glucose for 48h in vitro. The gene expression of Scleraxis and Collagen I alpha 1 chain in TDSCs decreased significantly when they were treated with high glucose for 24h and 48h. The protein expression of Tenomodulin and Collagen I in TDSCs decreased significantly when they were treated with high glucose for 24h and 48h. High glucose could inhibit cell proliferation, induce cell apoptosis and suppress the tendon-related markers expression of TDSCs in vitro. These findings might account for some pathological mechanisms underlying the pathogenesis of diabetic tendon disorders.
Collapse
|
39
|
Roh YH, Oh M, Noh JH, Gong HS, Baek GH. Effect of Metabolic Syndrome on the Functional Outcome of Corticosteroid Injection for Lateral Epicondylitis: Retrospective Matched Case-Control Study. Sci Rep 2017; 7:10845. [PMID: 28883422 PMCID: PMC5589833 DOI: 10.1038/s41598-017-11179-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023] Open
Abstract
Both obesity and diabetes mellitus are well-known risk factors for tendinopathies. We retrospectively compared the efficacy of single corticosteroid injections in treating lateral epicondylitis in patients with and without metabolic syndrome (MetS). Fifty-one patients with lateral epicondylitis and MetS were age- and sex-matched with 51 controls without MetS. Pain severity, Disability of the Arm, Shoulder, and Hand score, and grip strength were assessed at base line and at 6, 12 and 24 weeks post-injection. The pain scores in the MetS group were greater than those in the control group at 6 and 12 weeks. The disability scores and grip strength in the MetS group were significantly worse than those of the control group at 6 weeks. However, there were no significant differences at 24 weeks between the groups in terms of pain, disability scores and grip strengths. After 24 weeks, three patients (6%) in the control group and five patients (10%) in the MetS group had surgical decompression (p = 0.46). Patients with MetS are at risk for poor functional outcome after corticosteroid injection for lateral epicondylitis in the short term, but in the long term there was no difference in outcomes of steroid injection in patients with and without MetS.
Collapse
Affiliation(s)
- Young Hak Roh
- Department of Orthopaedic Surgery, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Minjoon Oh
- Department of Orthopaedic Surgery, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Jung Ho Noh
- Department of Orthopaedic Surgery, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-si, Gangwon-do, 200-722, South Korea.
| | - Hyun Sik Gong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173 Gumi-ro, Bundang-gu, Sungnam, 13620, South Korea
| | - Goo Hyun Baek
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
40
|
Ursini F, Arturi F, Nicolosi K, Ammendolia A, D’Angelo S, Russo E, Naty S, Bruno C, De Sarro G, Olivieri I, Grembiale RD. Plantar fascia enthesopathy is highly prevalent in diabetic patients without peripheral neuropathy and correlates with retinopathy and impaired kidney function. PLoS One 2017; 12:e0174529. [PMID: 28358891 PMCID: PMC5373572 DOI: 10.1371/journal.pone.0174529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Aim of this study was to evaluate the prevalence of plantar fascia (PF) enthesopathy in Type 2 diabetes mellitus (T2DM) patients without distal peripheral neuropathy (DPN). METHODS We recruited 50 T2DM patients without DPN and 50 healthy controls. DPN was excluded using the Michigan Neuropathy Screening Instrument (MNSI). All patients underwent a bilateral sonographicevaluation of the enthesealportion of the PF. RESULTS PF thickness was significantly higher in T2DM patients (p<0.0001). T2DM patients presented a higher prevalence of entheseal thickening (p = 0.002), enthesophyte (p = 0.02) and cortical irregularity (p = 0.02). The overall sum of abnormalities was higher in T2DM patients (p<0.0001), as was the percentage of bilateral involvement (p = 0.005). In a logistic regression analysis, retinopathy predicted entheseal thickening (OR 3.5, p = 0.05) and enthesophytes (OR 5.13, p = 0.001); reduced eGFR predicted enthesophytes (OR 2.93, p = 0.04); body mass index (BMI) predicted cortical irregularity (OR 0.87, p = 0.05); mean glucose predicted enthesophyte (OR 1.01, p = 0.03); LDL cholesterol predicted cortical irregularity (OR 0.98, p = 0.02). CONCLUSIONS Our data suggest that T2DM is associated with PF enthesopathyindependently of DPN.
Collapse
Affiliation(s)
- Francesco Ursini
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
- * E-mail:
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Kassandra Nicolosi
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Salvatore D’Angelo
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Saverio Naty
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Caterina Bruno
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | | | - Ignazio Olivieri
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| | - Rosa Daniela Grembiale
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
41
|
High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway. Sci Rep 2017; 7:44199. [PMID: 28266660 PMCID: PMC5339827 DOI: 10.1038/srep44199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is associated with higher risk of tendinopathy, which reduces tolerance to exercise and functional activities and affects lifestyle and glycemic control. Expression of tendon-related genes and matrix metabolism in tenocytes are essential for maintaining physiological functions of tendon. However, the molecular mechanisms involved in diabetic tendinopathy remain unclear. We hypothesized that high glucose (HG) alters the characteristics of tenocyte. Using in vitro 2-week culture of tenocytes, we found that expression of tendon-related genes, including Egr1, Mkx, TGF-β1, Col1a2, and Bgn, was significantly decreased in HG culture and that higher glucose consumption occurred. Down-regulation of Egr1 by siRNA decreased Scx, Mkx, TGF-β1, Col1a1, Col1a2, and Bgn expression. Blocking AMPK activation with Compound C reduced the expression of Egr1, Scx, TGF-β1, Col1a1, Col1a2, and Bgn in the low glucose condition. In addition, histological examination of tendons from diabetic mice displayed larger interfibrillar space and uneven glycoprotein deposition. Thus, we concluded that high glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway and the expression of downstream tendon-related genes in tenocytes. The findings render a molecular basis of the mechanism of diabetic tendinopathy and may help develop preventive and therapeutic strategies for the pathology.
Collapse
|
42
|
Chung SW, Choi BM, Kim JY, Lee YS, Yoon JP, Oh KS, Park KS. Altered Gene and Protein Expressions in Torn Rotator Cuff Tendon Tissues in Diabetic Patients. Arthroscopy 2017; 33:518-526.e1. [PMID: 27789071 DOI: 10.1016/j.arthro.2016.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To analyze and compare the gene and protein expression characteristics in torn rotator cuff tendon tissues between diabetic and nondiabetic patients. METHODS This was a pilot study. Twelve samples of rotator cuff tendon tissue from diabetic patients (mean age, 62.3 ± 9.9 years) and 12 age- and sex-matched nondiabetic tendon tissues (62.3 ± 9.9 years) were acquired from the torn tendon end of medium rotator cuff tears during arthroscopic surgery, after applying the same inclusion and exclusion criteria. Expressions of various genes of interest, including collagens I and III, matrix metalloprotease (MMP)-2, MMP-3, MMP-9, MMP-13, interleukin (IL)-1, IL-6, insulin-like growth factor-1, vascular endothelial growth factor, tenomodulin, tumor necrosis factor-α, and p53, were analyzed with real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, immunohistochemistry and western blot assay were performed for the genes that revealed significantly different expressions in real-time qRT-PCR between groups. RESULTS Gene expression levels of MMP-9, MMP-13, IL-6, and tenomodulin were significantly higher in the diabetic than in the nondiabetic group by real-time qRT-PCR analyses (P = .011, .004, .009, and .010, respectively). The density of cells expressing MMP-9 and IL-6 was significantly increased in the torn tendons of the diabetic patients on immunohistochemical analysis, and the density of MMP-9 and IL-6 protein expressions was significantly higher in the diabetic group on western blot (P = .018 and .044, respectively). CONCLUSIONS Diabetic torn cuff tendon tissues showed MMP-9 and IL-6 overexpressions compared with controls. CLINICAL RELEVANCE The overexpressions of MMP-9 and IL-6 may be one of the explanations for the high healing failure rate after rotator cuff repair in the diabetic patients.
Collapse
Affiliation(s)
- Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Bo Mi Choi
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ja Yeon Kim
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yong-Soo Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jong Pil Yoon
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Oh
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea; Korea University College of Medicine, Seoul, Republic of Korea.
| | - Kyung Sik Park
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
43
|
Ursini F, Arturi F, D'Angelo S, Amara L, Nicolosi K, Russo E, Naty S, Bruno C, De Sarro G, Olivieri I, Grembiale RD. High Prevalence of Achilles Tendon Enthesopathic Changes in Patients with Type 2 Diabetes Without Peripheral Neuropathy. J Am Podiatr Med Assoc 2017; 107:99-105. [PMID: 27723381 DOI: 10.7547/16-059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Metabolic disorders are known to alter the mechanical properties of tendons. We sought to evaluate the prevalence of asymptomatic Achilles tendon enthesopathic changes in patients with type 2 diabetes mellitus (T2DM) without peripheral neuropathy. METHODS We recruited 43 patients with T2DM and 40 controls. Neuropathy was excluded with the Michigan Neuropathy Scoring Instrument. Bilateral ultrasonography of the Achilles tendon enthesis was performed. RESULTS Patients with T2DM had a higher prevalence of hypoechogenicity (26.7% versus 2.5%; P = .0001), entheseal thickening (24.4% versus 8.7%; P = .007), and enthesophytes (74.4% versus 57.5%; P = .02). No differences were found in the number of patients with erosions (1.2% versus 0%; P > .99), cortical irregularities (11.6% versus 3.7%; P = .09), bursitis (5.8% versus 3.7%; P = .72), or tears (2.3% versus 1.2%; P > .99). The mean ± SD sum of abnormalities was higher in patients with T2DM (1.5 ± 1.1 versus 0.7 ± 0.6; P < .0001), as was the percentage of bilateral involvement (72.1% versus 45.0%; P = .01). Mean ± SD thickness did not differ between patients and controls (4.4 ± 1.1 mm versus 4.2 ± 0.8 mm; P = .07). CONCLUSIONS According to our data, there is an elevated prevalence of asymptomatic Achilles tendon enthesopathic changes in patients with T2DM independent of peripheral neuropathy.
Collapse
Affiliation(s)
- Francesco Ursini
- Department of Health Sciences, University of Catanzaro “Magna Graecia,” Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia,” Catanzaro, Italy
| | - Salvatore D'Angelo
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| | - Lewa Amara
- Department of Health Sciences, University of Catanzaro “Magna Graecia,” Catanzaro, Italy
| | - Kassandra Nicolosi
- Department of Health Sciences, University of Catanzaro “Magna Graecia,” Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro “Magna Graecia,” Catanzaro, Italy
| | - Saverio Naty
- Department of Health Sciences, University of Catanzaro “Magna Graecia,” Catanzaro, Italy
| | - Caterina Bruno
- Department of Health Sciences, University of Catanzaro “Magna Graecia,” Catanzaro, Italy
| | | | - Ignazio Olivieri
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| | - Rosa Daniela Grembiale
- Department of Health Sciences, University of Catanzaro “Magna Graecia,” Catanzaro, Italy
| |
Collapse
|
44
|
Lui PPY. Tendinopathy in diabetes mellitus patients-Epidemiology, pathogenesis, and management. Scand J Med Sci Sports 2017; 27:776-787. [PMID: 28106286 DOI: 10.1111/sms.12824] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 12/15/2022]
Abstract
Chronic tendinopathy is a frequent and disabling musculo-skeletal problem affecting the athletic and general populations. The affected tendon is presented with local tenderness, swelling, and pain which restrict the activity of the individual. Tendon degeneration reduces the mechanical strength and predisposes it to rupture. The pathogenic mechanisms of chronic tendinopathy are not fully understood and several major non-mutually exclusive hypotheses including activation of the hypoxia-apoptosis-pro-inflammatory cytokines cascade, neurovascular ingrowth, increased production of neuromediators, and erroneous stem cell differentiation have been proposed. Many intrinsic and extrinsic risk/causative factors can predispose to the development of tendinopathy. Among them, diabetes mellitus is an important risk/causative factor. This review aims to appraise the current literature on the epidemiology and pathology of tendinopathy in diabetic patients. Systematic reviews were done to summarize the literature on (a) the association between diabetes mellitus and tendinopathy/tendon tears, (b) the pathological changes in tendon under diabetic or hyperglycemic conditions, and (c) the effects of diabetes mellitus or hyperglycemia on the outcomes of tendon healing. The potential mechanisms of diabetes mellitus in causing and exacerbating tendinopathy with reference to the major non-mutually exclusive hypotheses of the pathogenic mechanisms of chronic tendinopathy as reported in the literature are also discussed. Potential strategies for the management of tendinopathy in diabetic patients are presented.
Collapse
Affiliation(s)
- P P Y Lui
- Headquarter, Hospital Authority, Hong Kong SAR, China
| |
Collapse
|
45
|
Leguina-Ruzzi A, Valderas JP. BLT2 expression improves skin integrity and protects from alterations caused by hyperglycemia in type 2 diabetes. DERMATO-ENDOCRINOLOGY 2016; 9:e1267078. [PMID: 28405264 PMCID: PMC5386100 DOI: 10.1080/19381980.2016.1267078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes (T2D) can go undiagnosed for years, leading to a stage where chronic high blood sugar produces complications such as delayed wound healing. Reports have shown that BLT2 activation improves keratinocyte migration and wound healing, as well as protecting the epidermal barrier through the promotion of actin polymerization. The goal of this study was to elucidate the role of BLT2 expression in skin epithelial integrity in T2D. For this purpose, we used both wild type (WT) and BLT2 knockout mice in a model, in which a T2D-like phenotype was induced by keeping the animals on a high fat (HF) diet over 5 weeks. In a parallel in vitro approach, we cultured BLT2-transfected HaCaT cells at both low and high glucose concentrations for 48 h. Structure, transepithelial resistance (TEER), IL-1ß, IL-8 or CXCL2, MMP9, Filaggrin, Loricrin and Keratin 10 (K10) were evaluated ex vivo and in vitro. Additionally, wound healing (WH) was studied in vitro. The skin from T2D and BLT2 knockout mice showed a reduction in TEER and the expression of IL-1ß, and in increase in CXCL2, MMP9, Filaggrin, Loricrin and K10 expression. The structure suggested an atrophic epidermis; however, the skin was dramatically affected in the BLT2 knockout mice kept on a HF diet. HaCaT-BLT2 cells presented as an organized monolayer and showed higher TEER and wound healing compared with vector only-transfected HaCaT-Mock cells. Likewise, alterations in the expression of skin inflammatory, matrix degradation and differentiation markers under low and high glucose conditions were less severe than in HaCaT-Mock cells. Our results suggest that BLT2 improves epithelial integrity and function by regulating differentiation markers, cytokines and MMP9. Furthermore, BLT2 attenuates the damaging effects of high glucose levels, thereby accelerating wound healing.
Collapse
Affiliation(s)
| | - Juan P Valderas
- Departamento de Ciencias Médicas, Facultad de Medicina Odontología, Universidad de Antofagasta , Antofagasta, Chile
| |
Collapse
|
46
|
Argyropoulos AJ, Robichaud P, Balimunkwe RM, Fisher GJ, Hammerberg C, Yan Y, Quan T. Alterations of Dermal Connective Tissue Collagen in Diabetes: Molecular Basis of Aged-Appearing Skin. PLoS One 2016; 11:e0153806. [PMID: 27104752 PMCID: PMC4841569 DOI: 10.1371/journal.pone.0153806] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022] Open
Abstract
Alterations of the collagen, the major structural protein in skin, contribute significantly to human skin connective tissue aging. As aged-appearing skin is more common in diabetes, here we investigated the molecular basis of aged-appearing skin in diabetes. Among all known human matrix metalloproteinases (MMPs), diabetic skin shows elevated levels of MMP-1 and MMP-2. Laser capture microdissection (LCM) coupled real-time PCR indicated that elevated MMPs in diabetic skin were primarily expressed in the dermis. Furthermore, diabetic skin shows increased lysyl oxidase (LOX) expression and higher cross-linked collagens. Atomic force microscopy (AFM) further indicated that collagen fibrils were fragmented/disorganized, and key mechanical properties of traction force and tensile strength were increased in diabetic skin, compared to intact/well-organized collagen fibrils in non-diabetic skin. In in vitro tissue culture system, multiple MMPs including MMP-1 and MM-2 were induced by high glucose (25 mM) exposure to isolated primary human skin dermal fibroblasts, the major cells responsible for collagen homeostasis in skin. The elevation of MMPs and LOX over the years is thought to result in the accumulation of fragmented and cross-linked collagen, and thus impairs dermal collagen structural integrity and mechanical properties in diabetes. Our data partially explain why old-looking skin is more common in diabetic patients.
Collapse
Affiliation(s)
- Angela J. Argyropoulos
- Department of Psychiatry, University of Washington, Seattle, Washington, United States of America
| | - Patrick Robichaud
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Rebecca Mutesi Balimunkwe
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gary J. Fisher
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Craig Hammerberg
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
47
|
Oliva F, Piccirilli E, Berardi AC, Frizziero A, Tarantino U, Maffulli N. Hormones and tendinopathies: the current evidence. Br Med Bull 2016; 117:39-58. [PMID: 26790696 DOI: 10.1093/bmb/ldv054] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tendinopathies negatively affect the quality of life of millions of people, but we still do not know the factors involved in the development of tendon conditions. SOURCES OF DATA Published articles in English in PubMed and Google Scholar up to June 2015 about hormonal influence on tendinopathies onset. One hundred and two papers were included following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. AREAS OF AGREEMENT In vitro and in vivo, tenocytes showed changes in their morphology and in their functional properties according to hormonal imbalances. AREAS OF CONTROVERSY Genetic pattern, sex, age and comorbidities can influence the hormonal effect on tendons. GROWING POINTS The increasing prevalence of metabolic disorders prompts to investigate the possible connection between metabolic problems and musculoskeletal diseases. AREAS TIMELY FOR DEVELOPING RESEARCH The influence of hormones on tendon structure and metabolism needs to be further investigated. If found to be significant, multidisciplinary preventive and therapeutic strategies should then be developed.
Collapse
Affiliation(s)
- Francesco Oliva
- Department of Orthopaedics and Traumatology, University of Rome 'Tor Vergata', Roma, Italy
| | - Eleonora Piccirilli
- School of Specialization of Orthopaedics and Traumatology, University of Rome 'Tor Vergata', Roma, Italy
| | - Anna C Berardi
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Antonio Frizziero
- Department of Physical and Rehabilitation Medicine, University of Padua, Padua, Italy
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, University of Rome 'Tor Vergata', Roma, Italy
| | - Nicola Maffulli
- Centre for Sports and Exercise Medicine, Queen Mary University of London Barts, London, UK The London School of Medicine and Dentistry, Mile End Hospital London, London, UK Department of Physical and Rehabilitation Medicine, University of Salerno, Fisciano, Italy
| |
Collapse
|
48
|
Rees J, Gaida JE, Silbernagel KG, Zwerver J, Anthony JS, Scott A. Rehabilitation of Tendon Problems in Patients with Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:199-208. [PMID: 27535262 DOI: 10.1007/978-3-319-33943-6_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise is crucial in the management of diabetes mellitus and its associated complications. However, individuals with diabetes have a heightened risk of musculoskeletal problems, including tendon pathologies. Diabetes has a significant impact on the function of tendons due to the accumulation of advanced glycation end-products in the load-bearing collagen. In addition, tendon vascularity and healing may be reduced due to diabetes-induced changes in the peripheral vascular system, and impaired synthesis of collagen and glycosaminoglycan. The current chapter presents an evidence-based discussion of considerations for the rehabilitation of tendon problems in people with diabetes. The following conditions are discussed in detail - calcific tendinopathy, tenosynovitis, tendon rupture, and non-calcifying tendinopathy. Common diabetes-related findings are presented, along with their potential impact on tendinopathy management and suggested modifications to standard tendinopathy treatment protocols. A holistic approach should be used to optimize musculotendinous function, including a comprehensive exercise prescription addressing strength, flexibility, and aerobic fitness.
Collapse
Affiliation(s)
- Jonathan Rees
- Department of Rheumatology, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK
- Academic Department of Sport and Exercise Medicine, Queen Mary College, London, UK
- Department of Sport and Exercise Medicine, Fortius Clinic, London, UK
| | - Jamie E Gaida
- University of Canberra Research Institute for Sport and Exercise (UCRISE), Discipline of Physiotherapy, University of Canberra, Canberra, ACT, Australia
| | | | - Johannes Zwerver
- Center for Sports Medicine, UMC Groningen, 30.001, 9700, RB Groningen, The Netherlands
| | - Joseph S Anthony
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Alex Scott
- Department of Physical Therapy, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
49
|
Does type 1 diabetes mellitus affect Achilles tendon response to a 10 km run? A case control study. BMC Musculoskelet Disord 2015; 16:345. [PMID: 26556589 PMCID: PMC4641391 DOI: 10.1186/s12891-015-0803-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background Achilles tendon structure deteriorates 2-days after maximal loading in elite athletes. The load-response behaviour of tendons may be altered in type 1 diabetes mellitus (T1DM) as hyperglycaemia accelerates collagen cross-linking. This study compared Achilles tendon load-response in participants with T1DM and controls. Methods Achilles tendon structure was quantified at day-0, day-2 and day-4 after a 10 km run. Ultrasound tissue characterisation (UTC) measures tendon structural integrity by classifying pixels as echo-type I, II, III or IV. Echo-type I has the most aligned collagen fibrils and IV has the least. Results Participants were 7 individuals with T1DM and 10 controls. All regularly ran distances greater than 5 km and VISA-A scores indicated good tendon function (T1DM = 94 ± 11, control = 94 ± 10). There were no diabetic complications and HbA1c was 8.7 ± 2.6 mmol/mol for T1DM and 5.3 ± 0.4 mmol/mol for control groups. Baseline tendon structure was similar in T1DM and control groups – UTC echo-types (I-IV) and anterior-posterior thickness were all p > 0.05. No response to load was seen in either T1DM or control group over the 4-days post exercise. Conclusion Active individuals with T1DM do not have a heightened Achilles tendon response to load, which suggests no increased risk of tendon injury. We cannot extrapolate these findings to sedentary individuals with T1DM.
Collapse
|
50
|
Gorski DJ, Xiao W, Li J, Luo W, Lauer M, Kisiday J, Plaas A, Sandy J. Deletion of ADAMTS5 does not affect aggrecan or versican degradation but promotes glucose uptake and proteoglycan synthesis in murine adipose derived stromal cells. Matrix Biol 2015; 47:66-84. [DOI: 10.1016/j.matbio.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/22/2023]
|