1
|
Liu C, Yang P, Wang X, Xiang B, E G, Huang Y. Candidate circRNAs related to skeletal muscle development in Dazu black goats. Anim Biotechnol 2024; 35:2286609. [PMID: 38032316 DOI: 10.1080/10495398.2023.2286609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Circular RNA (CircRNA), as a classical noncoding RNA, has been proven to regulate skeletal muscle development (SMD). However, the molecular genetic basis of circRNA regulation in muscle cells remains unclear. In this study, the expression patterns of circRNAs in the longissimus dorsi muscle at embryonic day 75 and postnatal day 1 in DBGs were investigated to identify the key circRNAs that play an important role in SMD in goats. A total of 140 significantly and differentially expressed circRNAs (DEcircRNAs) were identified among the groups at different developmental stages. Among the 116 host genes (HGs) of DEcircRNAs, 76 were significantly and differentially expressed, which was confirmed by previous RNA_seq data. Furthermore, the expression pattern of 10 DEcircRNAs with RT-qPCR was verified, which showed 80% concordance rate with that of RNA_seq datasets. Moreover, the authenticity of seven randomly selected DEcircRNAs was verified by PCR Sanger sequencing. Based on the functional annotation results, among the 76 significantly and differentially expressed HGs, 74 were enriched in 845 GO terms, whereas 35 were annotated to 85 KEGG pathways. The results of this study could provide a comprehensive understanding of the genetic basis of circRNAs involved in SMD and muscle growth.
Collapse
Affiliation(s)
- Chengli Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Pu Yang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Xiao Wang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Baiju Xiang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Guangxin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yongfu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Singh A, Pore SK, Bhattacharyya J. Encapsulation of telmisartan inside insulinoma-cell-derived extracellular vesicles outperformed biomimetic nanovesicles in modulating the pancreatic inflammatory microenvironment. J Mater Chem B 2024; 12:10294-10308. [PMID: 39269191 DOI: 10.1039/d4tb00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition, characterized by hyperglycaemia, oxidative imbalance, pancreatic β-cell death, and insulin insufficiency. Angiotensin II (Ang II) increases oxidative stress, inflammation, and apoptosis, and Ang II type 1 receptor (AT1R) blockers (ARBs) can ameliorate inflammatory response and oxidative stress. However, like other small-molecule drugs, free ARBs show poor in vivo efficacy and dose-limiting toxicities. Hence, in this study, we developed nano-formulations of telmisartan (TEL), an ARB, by encapsulating it inside a murine insulinoma cell-derived extracellular vesicle (nanoTEL) and a bio-mimetic lipid nanovesicle (lipoTEL). Both nano-formulations showed spherical morphology and sustained release of TEL. In vitro, nanoTEL restored oxidative equilibrium, attenuated reactive oxygen species levels, enhanced the uptake of glucose analogue, and increased the expression of glucose transporter protein 4 better than lipoTEL. In a streptozotocin-induced murine model of diabetes, nanoTEL lowered blood glucose levels, improved glucose tolerance, and promoted insulin synthesis and secretion significantly better than lipoTEL. Moreover, nanoTEL was found superior in ameliorating the pancreatic inflammatory microenvironment by regulating NF-κBp65, HIF-1α, and PPAR-γ expression; modulating IL-1β, IL-6, tumor necrosis factor-α, IL-10, and IL-4 levels and inducing the polarization of macrophage from M1 to M2. Further, nanoTEL administration induced angiogenesis and promoted the proliferation of pancreatic cells to restore the structural integrity of the islets of Langerhans more efficiently than lipoTEL. These findings collectively suggest that nanoTEL outperforms lipoTEL in restoring the function of pancreatic β-cells by modulating the pancreatic inflammatory microenvironment and show potential for the treatment of DM.
Collapse
Affiliation(s)
- Anjali Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science Delhi, New Delhi 110029, India.
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, 201313, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science Delhi, New Delhi 110029, India.
| |
Collapse
|
3
|
Ávila DL, Fernandes-Braga W, Silva JL, Santos EA, Campos G, Leocádio PCL, Capettini LSA, Aguilar EC, Alvarez-Leite JI. Capsaicin Improves Systemic Inflammation, Atherosclerosis, and Macrophage-Derived Foam Cells by Stimulating PPAR Gamma and TRPV1 Receptors. Nutrients 2024; 16:3167. [PMID: 39339767 PMCID: PMC11435000 DOI: 10.3390/nu16183167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Capsaicin, a bioactive compound found in peppers, is recognized for its anti-inflammatory, antioxidant, and anti-lipidemic properties. This study aimed to evaluate the effects of capsaicin on atherosclerosis progression. METHODS Apolipoprotein E knockout mice and their C57BL/6 controls were utilized to assess blood lipid profile, inflammatory status, and atherosclerotic lesions. We also examined the influence of capsaicin on cholesterol influx and efflux, and the role of TRPV1 and PPARγ signaling pathways in bone marrow-derived macrophages. RESULTS Capsaicin treatment reduced weight gain, visceral adiposity, blood triglycerides, and total and non-HDL cholesterol. These improvements were associated with a reduction in atherosclerotic lesions in the aorta and carotid. Capsaicin also improved hepatic oxidative and inflammatory status. Systemic inflammation was also reduced, as indicated by reduced leukocyte rolling and adhesion on the mesenteric plexus. Capsaicin decreased foam cell formation by reducing cholesterol influx through scavenger receptor A and increasing cholesterol efflux via ATP-binding cassette transporter A1, an effect primarily linked to TRPV1 activation. CONCLUSIONS These findings underscore the potential of capsaicin as a promising agent for atherosclerosis prevention, highlighting its comprehensive role in modulating lipid metabolism, foam cell formation, and inflammatory responses.
Collapse
Affiliation(s)
- Danielle Lima Ávila
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Weslley Fernandes-Braga
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Janayne Luihan Silva
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Elandia Aparecida Santos
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gianne Campos
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | | | - Edenil Costa Aguilar
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | |
Collapse
|
4
|
Imenshahidi M, Roohbakhsh A, Hosseinzadeh H. Effects of telmisartan on metabolic syndrome components: a comprehensive review. Biomed Pharmacother 2024; 171:116169. [PMID: 38228033 DOI: 10.1016/j.biopha.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Telmisartan is an antagonist of the angiotensin II receptor used in the management of hypertension (alone or in combination with other antihypertensive agents. It belongs to the drug class of angiotensin II receptor blockers (ARBs). Among drugs of this class, telmisartan shows particular pharmacologic properties, including a longer half-life than any other angiotensin II receptor blockers that bring higher and persistent antihypertensive activity. In hypertensive patients, telmisartan has superior efficacy than other antihypertensive drugs (losartan, valsartan, ramipril, atenolol, and perindopril) in controlling blood pressure, especially towards the end of the dosing interval. Telmisartan has a partial PPARγ-agonistic effect whilst does not have the safety concerns of full agonists of PPARγ receptors (thiazolidinediones). Moreover, telmisartan has an agonist activity on PPARα and PPARδ receptors and modulates the adipokine levels. Thus, telmisartan could be considered as a suitable alternative option, with multi-benefit for all components of metabolic syndrome including hypertension, diabetes mellitus, obesity, and hyperlipidemia. This review will highlight the role of telmisartan in metabolic syndrome and the main mechanisms of action of telmisartan are discussed and summarized. Many studies have demonstrated the useful properties of telmisartan in the prevention and improving of metabolic syndrome and this well-tolerated drug can be greatly proposed in the treatment of different components of metabolic syndrome. However, larger and long-duration studies are needed to confirm these findings in long-term observational studies and prospective trials and to determine the optimum dose of telmisartan in metabolic syndrome.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Song Y, Wei D, Raza SHA, Zhao Y, Jiang C, Song X, Wu H, Wang X, Luoreng Z, Ma Y. Research progress of intramuscular fat formation based on co-culture. Anim Biotechnol 2023; 34:3216-3236. [PMID: 36200856 DOI: 10.1080/10495398.2022.2127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.
Collapse
Affiliation(s)
- Yaping Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | | | - Yiang Zhao
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| |
Collapse
|
6
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Shi M, Mathai ML, Xu G, Su XQ, McAinch AJ. The effect of dietary supplementation with blueberry, cyanidin-3-O-β-glucoside, yoghurt and its peptides on gene expression associated with glucose metabolism in skeletal muscle obtained from a high-fat-high-carbohydrate diet induced obesity model. PLoS One 2022; 17:e0270306. [PMID: 36112580 PMCID: PMC9481010 DOI: 10.1371/journal.pone.0270306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity is a leading global health problem contributing to various chronic diseases, including type II diabetes mellitus (T2DM). The aim of this study was to investigate whether blueberries, yoghurt, and their respective bioactive components, Cyanidin-3-O-β-glucoside (C3G) and peptides alone or in combinations, alter the expression of genes related to glucose metabolism in skeletal muscles from diet-induced obese mice. In extensor digitorum longus (EDL), yoghurt up-regulated the expression of activation of 5’adenosine monophosphate-activated protein kinase (AMPK), insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3 kinase (PI3K) and glucose transporter 4 (GLUT4), and down-regulated the expression of angiotensin II receptor type 1 (AGTR-1). The combination of blueberries and yoghurt down-regulated the mRNA expression of AGTR-1 and Forkhead box protein O1 (FoxO1) in the EDL. Whereas the combination of C3G and peptides down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression in the EDL. In the soleus, blueberries and yoghurt alone, and their combination down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression. In summary blueberries and yoghurt, regulated multiple genes associated with glucose metabolism in skeletal muscles, and therefore may play a role in the management and prevention of T2DM.
Collapse
Affiliation(s)
- Min Shi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
| | - Michael L. Mathai
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Guoqin Xu
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Xiao Q. Su
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
8
|
Borém LMA, Freitas DF, Machado AS, Paraíso AF, Caldas BV, Neto JFR, Lima JP, Guimarães ALS, de Paula AMB, Santos SHS. Angiotensin II type 1 receptor (AT1) blockade by Telmisartan attenuates hepatic steatosis in high-fat fed mice reducing Resistin, TRL4, and Myd88 expression. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Telmisartan is a non-peptide angiotensin II receptor antagonist which acts by ACE/AngII/AT1 axis blockade (ARB). In the last years increasing evidence of its metabolic benefits pointed out this drug as the most promising ARB for nonalcoholic fatty liver disease (NAFLD) treatment. The aim of the present study was to investigate the Telmisartan effect on treating NAFLD in mice fed with a high-fat diet evaluating liver gene modulation. Twenty-four male mice were divided into four groups and fed for 60 days with a standard diet (ST), standard diet plus TEL (ST+TEL 5 mg/kg/day by gavage for 4 weeks), high-fat diet (HFD), or high-fat diet plus TEL (HFD+TEL 5 mg/kg/day by gavage for 4 weeks). Body weight, lipid profile, insulin, alanine transaminase, and aspartate aminotransferase were evaluated. Liver histology was analyzed. US imaging was performed to access liver dimension and echogenicity and also epididymal fat pad thickness. The expression of proinflammatory resistin/TRL4/MYD88 pathway was analyzed.
Results
The main findings showed that TEL reduced the resistin, TRL4, and Myd88 liver expression in the HFD + TEL group when compared to the obese control group (HFD). Decreased hepatic steatosis in the HFD + TEL group demonstrated by US measurements of the liver longitudinal axis and echogenicity were observed. In addition, TEL reduced epididymal adipose pad thickness, body weight, transaminases, and improved glucose tolerance test and HDL cholesterol.
Conclusions
We observed that Telmisartan treatment improved metabolism, decreasing NAFLD.
Graphical Abstract
Telmisartan improves metabolic and lipid profile and liver steatosis of obese mice
Collapse
|
9
|
Jang YN, Lee YJ, Han YM, Kim HM, Seo HS, Jeong JH, Park SY, Jung TW. Fimasartan Ameliorates Deteriorations in Glucose Metabolism in a High Glucose State by Regulating Skeletal Muscle and Liver Cells. Yonsei Med J 2022; 63:530-538. [PMID: 35619576 PMCID: PMC9171673 DOI: 10.3349/ymj.2022.63.6.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Since diabetes and hypertension frequently occur together, it is thought that these conditions may have a common pathogenesis. This study was designed to evaluate the anti-diabetic function of the anti-hypertensive drug fimasartan on C2C12 mouse skeletal muscle and HepG2 human liver cells in a high glucose state. MATERIALS AND METHODS The anti-diabetic effects and mechanism of fimasartan were identified using Western blot, glucose uptake tests, oxygen consumption rate (OCR) analysis, adenosine 5'-triphosphate (ATP) enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining for diabetic biomarkers in C2C12 cells. Protein biomarkers for glycogenolysis and glycogenesis were evaluated by Western blotting and ELISA in HepG2 cells. RESULTS The protein levels of phosphorylated 5' adenosine monophosphate-activated protein kinase (p-AMPK), p-AKT, insulin receptor substrate-1 (IRS-1), and glucose transporter type 4 (Glut4) were elevated in C2C12 cells treated with fimasartan. These increases were reversed by peroxisome proliferator-activated receptor delta (PPARδ) antagonist. ATP, OCR, and glucose uptake were increased in cells treated with 200 µM fimasartan. Protein levels of glycogen phosphorylase, glucose synthase, phosphorylated glycogen synthase, and glycogen synthase kinase-3 (GSK-3) were decreased in HepG2 cells treated with fimasartan. However, these effects were reversed following the addition of the PPARδ antagonist GSK0660. CONCLUSION In conclusion, fimasartan ameliorates deteriorations in glucose metabolism as a result of a high glucose state by regulating PPARδ in skeletal muscle and liver cells.
Collapse
Affiliation(s)
- Yoo Na Jang
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Department of Medicine, Graduate School, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yong Jik Lee
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
- Laboratory of Genomics and Translational Medicine, Department of Internal Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Yoon Mi Han
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
| | - Hyun Min Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Department of Medical Science, Korea University College of Medicine, Seoul, Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea
- Department of Medical Science, Korea University College of Medicine, Seoul, Korea.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
10
|
Mansour RM, El Sayed NS, Ahmed MAE, El-Sahar AE. Addressing Peroxisome Proliferator-Activated Receptor-gamma in 3-Nitropropionic Acid-Induced Striatal Neurotoxicity in Rats. Mol Neurobiol 2022; 59:4368-4383. [PMID: 35553009 PMCID: PMC9167199 DOI: 10.1007/s12035-022-02856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
Telmisartan (TEL) is an angiotensin II type 1 receptor blocker and a partial activator of peroxisome proliferator-activated receptor-gamma (PPARγ), which regulates inflammatory and apoptotic pathways. Increasing evidence has demonstrated the PPARγ agonistic property of TEL in several brain disorders. This study aims to explore the neuroprotective impact of TEL in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats. The PPARγ effect of TEL was affirmed by using the PPARγ agonist pioglitazone (PIO), and the antagonist GW9662. 3-NP led to a significant reduction in body weight alongside motor and cognitive functioning. The striata of the 3-NP-treated rats showed energy-deficit, microglia-mediated inflammatory reactions, apoptotic damage as well as histopathological lesions. PIO and TEL improved motor and cognitive perturbations induced by 3-NP, as confirmed by striatal histopathological examination, energy restoration, and neuronal preservation. Both drugs improved mitochondrial biogenesis evidenced by elevated mRNA expression of PPARγ, PGC-1α, and TFAM, alongside increased striatal ATP and SDH. The mitochondrial effect of TEL was beyond PPARγ activation. As well, their anti-inflammatory effect was attributed to suppression of microglial activation, and protein expression of pS536 p65 NF-κB with marked attenuation of striatal inflammatory mediator's release. Anti-inflammatory cytokine IL-10 expression was concurrently increased. TEL effectively participated in neuronal survival as it promoted phosphorylation of Akt/GSK-3β, further increased Bcl-2 expression, and inhibited cleavage of caspase-3. Interestingly, co-treatment with GW9662 partially revoked the beneficial effects of TEL. These findings recommend that TEL improves motor and cognitive performance, while reducing neuronal inflammation and apoptosis in 3-NP-induced neurotoxicity via a PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Riham M Mansour
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6Th of October City, Giza, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6Th of October City, Giza, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| |
Collapse
|
11
|
Han Y, Lu Z, Chen S, Zhong C, Yan M, Wang H, Meng M, Liu M. Abdominal Massage Alleviates Skeletal Muscle Insulin Resistance by Regulating the AMPK/SIRT1/PGC-1α Signaling Pathway. Cell Biochem Biophys 2021; 79:895-903. [PMID: 33966249 PMCID: PMC8558202 DOI: 10.1007/s12013-021-00983-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Abdominal massage (AM), a traditional Chinese medicine-based treatment method, has received considerable attention in the recent years. The aim of the present study was to investigate the effect of AM on high-fat diet (HFD)-induced insulin resistance (IR) in comparison with resveratrol (RSV) treatment. Forty-eight male Sprague-Dawley rats were randomly divided into the following four groups: standard chow diet (control group), high-fat diet (model group), HFD + abdominal massage (AM group), and HFD + resveratrol (RSV group). A rat model of IR was established by feeding HFD to rats for 8 weeks followed by treatment with AM or RSV for 4 weeks. The underlying HFD-induced IR molecular mechanisms were studied in rat serum and skeletal muscles. RSV and AM significantly improved glucose intolerance, hyperglycemia, obesity, and significantly reduced lipid accumulation [triglyceride (TC), total cholesterol (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C)], adipocytokine [free fatty acids (FFA), adiponectin (ADPN)] and serum pro-inflammatory cytokines (IL-6 and TNF-α) secretion. In addition, AM activated the AMPK/SIRT1 signaling pathway in rat skeletal muscle. In conclusion, our results showed that AM could improve IR by regulating the secretion of adipocytokines, pro-inflammatory cytokines as well as related signaling pathways in the skeletal muscle of rats, which might provide insights into development of new treatment methods for the clinical treatment of IR.
Collapse
Affiliation(s)
- Yiran Han
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, PR China
| | - Zeyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Shaotao Chen
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, PR China
| | - Chongwen Zhong
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, PR China
| | - Minghui Yan
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, PR China
| | - Heran Wang
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, PR China
| | - Meng Meng
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, PR China
| | - Mingjun Liu
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, PR China.
| |
Collapse
|
12
|
Bernardo A, Malara M, Bertuccini L, De Nuccio C, Visentin S, Minghetti L. The Antihypertensive Drug Telmisartan Protects Oligodendrocytes from Cholesterol Accumulation and Promotes Differentiation by a PPAR-γ-Mediated Mechanism. Int J Mol Sci 2021; 22:ijms22179434. [PMID: 34502342 PMCID: PMC8431237 DOI: 10.3390/ijms22179434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Our previous studies have demonstrated that specific peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists play a fundamental role in oligodendrocyte progenitor (OP) differentiation, protecting them against oxidative and inflammatory damage. The antihypertensive drug Telmisartan (TLM) was shown to act as a PPAR-γ modulator. This study investigates the TLM effect on OP differentiation and validates its capability to restore damage in a pharmacological model of Niemann-Pick type C (NPC) disease through a PPAR-γ-mediated mechanism. For the first time in purified OPs, we demonstrate that TLM-induced PPAR-γ activation downregulates the type 1 angiotensin II receptor (AT1), the level of which naturally decreases during differentiation. Like other PPAR-γ agonists, we show that TLM promotes peroxisomal proliferation and promotes OP differentiation. Furthermore, TLM can offset the OP maturation arrest induced by a lysosomal cholesterol transport inhibitor (U18666A), which reproduces an NPC1-like phenotype. In the NPC1 model, TLM also reduces cholesterol accumulation within peroxisomal and lysosomal compartments and the contacts between lysosomes and peroxisomes, revealing that TLM can regulate intracellular cholesterol transport, crucial for myelin formation. Altogether, these data indicate a new potential use of TLM in hypomyelination pathologies such as NPC1, underlining the possible repositioning of the drug already used in other pathologies.
Collapse
Affiliation(s)
- Antonietta Bernardo
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
- Correspondence: ; Tel.: +39-06-4990-2927
| | | | - Lucia Bertuccini
- Core Facilities, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Chiara De Nuccio
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00169 Rome, Italy; (C.D.N.); (L.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00169 Rome, Italy; (C.D.N.); (L.M.)
| |
Collapse
|
13
|
Atractylodes chinensis Water Extract Ameliorates Obesity via Promotion of the SIRT1/AMPK Expression in High-Fat Diet-Induced Obese Mice. Nutrients 2021; 13:nu13092992. [PMID: 34578872 PMCID: PMC8470677 DOI: 10.3390/nu13092992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity remains a continuing global health concern, as it is associated with an increased risk of many chronic diseases. Atractylodes chinensis Koidz. (Ac) is traditionally used in the treatment of inflammatory diseases, such as arthritis, hepatitis, and gastric ulcers. Despite the diverse pharmacological activities of Ac, scientific evidence for the use of Ac in obesity is still limited. Therefore, the present study aimed to determine the anti-obesity effects of Ac. C57BL/6N mice were divided into five groups as follows: chow diet group (CON), 45% HFD group, HFD + oral administration of orlistat group, and HFD + oral administration of Ac groups. RT-PCR and western blotting were used to examine the expression of molecules relating to obesity progression. Ac-administered mice showed dramatically decreased body weight and weight gain compared to the high-fat diet (HFD)-fed mice. In addition, Ac administration attenuated the protein expression levels of adipogenic transcription factors in the white adipose tissue (WAT) and livers of HFD-fed mice. Furthermore, Ac administration declined the expression levels of lipogenic genes, while enhancing those of the fatty acid oxidation genes in the WAT of HFD-fed mice. Importantly, Ac administration highly upregulated the AMP-activated kinase (AMPK) and sirtuin 1 (SIRT1) expression levels in WAT of the HFD-induced obese mouse model. Our results provide evidence that Ac can effectively ameliorate weight gain and adipose tissue expansion.
Collapse
|
14
|
Zhu L, Yang X, Li J, Jia X, Bai X, Zhao Y, Cheng W, Shu M, Zhu Y, Jin S. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system. J Genet Genomics 2021; 48:134-146. [PMID: 33931338 DOI: 10.1016/j.jgg.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/13/2023]
Abstract
Gene therapy has become the most effective treatment for monogenic diseases. Congenital LEPTIN deficiency is a rare autosomal recessive monogenic obesity syndrome caused by mutations in the Leptin gene. Ob/ob mouse is a monogenic obesity model, which carries a homozygous point mutation of C to T in Exon 2 of the Leptin gene. Here, we attempted to edit the mutated Leptin gene in ob/ob mice preadipocytes and inguinal adipose tissues using CRISPR/Cas9 to correct the C to T mutation and restore the production of LEPTIN protein by adipocytes. The edited preadipocytes exhibit a correction of 5.5% of Leptin alleles and produce normal LEPTIN protein when differentiated into mature adipocytes. The ob/ob mice display correction of 1.67% of Leptin alleles, which is sufficient to restore the production and physiological functions of LEPTIN protein, such as suppressing appetite and alleviating insulin resistance. Our study suggests CRISPR/Cas9-mediated in situ genome editing as a feasible therapeutic strategy for human monogenic diseases, and paves the way for further research on efficient delivery system in potential future clinical application.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pediatrics, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Yang
- Department of Pharmacology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Jia
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangli Bai
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenzhuo Cheng
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Zhu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
15
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
16
|
Zheng J, Ding J, Liao M, Qiu Z, Yuan Q, Mai W, Dai Y, Zhang H, Wu H, Wang Y, Liao Y, Chen X, Cheng X. Immunotherapy against angiotensin II receptor ameliorated insulin resistance in a leptin receptor-dependent manner. FASEB J 2020; 35:e21157. [PMID: 33155736 DOI: 10.1096/fj.202000300r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
The angiotensin II type 1 receptor (AT1R) signaling pathway is reported to modulate glucose metabolism. Targeting AT1R, our group invented ATRQβ-001 vaccine, a novel immunotherapeutic strategy to block the activation of AT1R. Here, we evaluated the therapeutic efficacy of ATRQβ-001 vaccine in insulin resistance, and investigated the mechanism. Our results showed that ATRQβ-001 vaccine and specific monoclonal antibody against epitope ATR-001 (McAb-ATR) decreased fasting serum insulin concentration and improved glucose and insulin tolerance in ob/ob mice. These beneficial effects were verified in high-fat diet-induced obese mice. McAb-ATR activated insulin signaling in skeletal muscle and insulin-resistant C2C12 myotubes without affecting liver or white adipose tissue of ob/ob mice. Mechanistically, the favorable impact of McAb-ATR on insulin resistance was abolished in db/db mice and in C2C12 myotubes with leptin receptor knockdown. AT1R knockdown also eradicated the effects of McAb-ATR in C2C12 myotubes. Furthermore, McAb-ATR treatment was able to activate the leptin receptor-mediated JAK2/STAT3 signaling in skeletal muscle of ob/ob mice and C2C12 myotubes. Additionally, angiotensin II downregulated the leptin signaling in skeletal muscle of ob/ob and diet-induced obese mice. We demonstrated that ATRQβ-001 vaccine and McAb-ATR improved whole-body insulin resistance and regulated glucose metabolism in skeletal muscle in a leptin receptor-dependent manner. Our data suggest that immunotherapy targeting AT1R is a novel strategy for treating insulin resistance.
Collapse
Affiliation(s)
- Jiayu Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxing Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyang Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchen Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wuqian Mai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Dai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongrong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailang Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Yang J, Suo H, Song J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit Rev Food Sci Nutr 2020; 61:3857-3875. [PMID: 32815398 DOI: 10.1080/10408398.2020.1809344] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria control various processes in cellular metabolic homeostasis, such as adenosine triphosphate production, generation and clearance of reactive oxygen species, control of intracellular Ca2+ and apoptosis, and are thus a critical therapeutic target for metabolic syndrome (MetS). The mitochondrial targeted antioxidant mitoquinone (MitoQ) reduces mitochondrial oxidative stress, prevents impaired mitochondrial dynamics, and increases mitochondrial turnover by promoting autophagy (mitophagy) and mitochondrial biogenesis, which ultimately contribute to the attenuation of MetS conditions, including obesity, insulin resistance, hypertension and cardiovascular disease. The regulatory effect of MitoQ on mitochondrial homeostasis is mediated through AMPK and its downstream signaling pathways, including MTOR, SIRT1, Nrf2 and NF-κB. However, there are few reviews focusing on the critical role of MitoQ as a therapeutic agent in the treatment of MetS. The purpose of this review is to summarize the mitochondrial role in the pathogenesis of MetS, especially in obesity and type 2 diabetes, and discuss the effect and underlying mechanism of MitoQ on mitochondrial homeostasis in MetS.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China.,Graduate School, Chongqing Technology and Business University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Sanz R, Mazzei L, Santino N, Ingrasia M, Manucha W. Vitamin D-mitochondria cross-talk could modulate the signaling pathway involved in hypertension development: a translational integrative overview. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 32:144-155. [PMID: 32456803 DOI: 10.1016/j.arteri.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022]
Abstract
Vitamin D deficiency is a worldwide pandemic and results in osteoporosis, hypertension, and other cardiovascular diseases. At the cellular level, it produces significant oxidative stress, inflammatory markers, and mitochondrial damage. There is increasing evidence about the role of vitamin D in the regulation of the renin-angiotensin-aldosterone system (RAAS). Moreover, there is evidence of involvement in cardiovascular complications, as well as in the immune system disorders. Vitamin D values below 25ng/mL are related to an increase in vascular tone mediated by smooth muscle contraction. Furthermore, it can produce direct effects on vascular smooth muscle cells, RAAS over-regulation, modulation of calcium metabolism, and secondary hyperparathyroidism. All this predisposes patients to develop hypertrophy of the left ventricle and vascular wall, causing hypertension. In this work, a review is presented of the main mechanisms involved in the development of hypertension due to vitamin D deficiency. Among them are the link established between the levels of extra-mitochondrial inorganic phosphate, its main regulatory hormones -such as vitamin D-, the cardiovascular system, reactive oxygen species, and mitochondrial metabolism. The role of the mitochondrial vitamin D receptor and the regulation of the respiratory chain could influence arterial remodelling since its activation would reduce oxidative damage and preserve cell life. However, there are aspects not yet understood about the intricate signalling network that appeared simple in experimental trials, but complex in clinical studies. In this way, the completion of new studies as VITAL, could clarify, and thus support or refute the possible benefits of vitamin D in hypertensive cardiovascular disease.
Collapse
Affiliation(s)
- Raúl Sanz
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina
| | - Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina
| | - Nicolás Santino
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina
| | - Marco Ingrasia
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina.
| |
Collapse
|
19
|
Huang Y, Li Y, Liu Q, Zhang J, Zhang Z, Wu T, Tang Q, Huang C, Li R, Zhou J, Zhang G, Zhao Y, Huang H, He J. Telmisartan attenuates obesity-induced insulin resistance via suppression of AMPK mediated ER stress. Biochem Biophys Res Commun 2020; 523:787-794. [PMID: 31948761 DOI: 10.1016/j.bbrc.2019.12.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023]
Abstract
Telmisartan is a known angiotensin II (Ang II) AT1 receptor blocker (ARB). While the beneficial effect of Telmisartan on glucose and lipid metabolism has been reported, the underlying molecular mechanism remained unclear. The endoplasmic reticulum (ER) stress is considered as one of important factors contributing to insulin resistance. In this study, we found that Telmisartan alleviated diet-induced obesity and insulin resistance, suppressed inflammation in adipose tissue, and alleviated hepatic steatosis. Furthermore, we showed that Telmisartan suppressed ER stress by activating AMP-activated protein kinase (AMPK) signaling pathway in vivo. In differentiated 3T3-L1 adipocytes, Telmisartan also improved palmitate acid (PA) induced ER stress. Compound C, an AMPK inhibitor, could abolish beneficial effect of Telmisartan on ER stress. Our data indicated Telmisartan improved obesity-induced insulin resistance through suppression of ER stress by activation of AMPK. These results provided the evidence that Telmisartan may have therapeutic potential for the treatment of obesity and type II diabetes.
Collapse
Affiliation(s)
- Ya Huang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Jinhang Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Zijing Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Tong Wu
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Qin Tang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Cuiyuan Huang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Rui Li
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Jian Zhou
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Guorong Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Yingnan Zhao
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Hui Huang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China
| | - Jinhan He
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, China.
| |
Collapse
|
20
|
Wang H, Xu H, Duan Y, Chen L. MicroRNA-337-3p suppresses cell viability, apoptosis, and autophagy by modulating PPARγ expression in androgen-dependent human prostate cancer. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1736188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Hao Wang
- Department of Urology, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Hanfeng Xu
- Department of Urology, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Youjun Duan
- Department of Urology, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Libo Chen
- Department of Urology, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
21
|
Sardu C, D'Onofrio N, Torella M, Portoghese M, Loreni F, Mureddu S, Signoriello G, Scisciola L, Barbieri M, Rizzo MR, Galdiero M, De Feo M, Balestrieri ML, Paolisso G, Marfella R. Pericoronary fat inflammation and Major Adverse Cardiac Events (MACE) in prediabetic patients with acute myocardial infarction: effects of metformin. Cardiovasc Diabetol 2019; 18:126. [PMID: 31570103 PMCID: PMC6767640 DOI: 10.1186/s12933-019-0931-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/OBJECTIVES Pericoronary adipose tissue inflammation might lead to the development and destabilization of coronary plaques in prediabetic patients. Here, we evaluated inflammation and leptin to adiponectin ratio in pericoronary fat from patients subjected to coronary artery bypass grafting (CABG) for acute myocardial infarction (AMI). Furthermore, we compared the 12-month prognosis of prediabetic patients compared to normoglycemic patients (NG). Finally, the effect of metformin therapy on pericoronary fat inflammation and 12-months prognosis in AMI-prediabetic patients was also evaluated. METHODS An observational prospective study was conducted on patients with first AMI referred for CABG. Participants were divided in prediabetic and NG-patients. Prediabetic patients were divided in two groups; never-metformin-users and current-metformin-users receiving metformin therapy for almost 6 months before CABG. During the by-pass procedure on epicardial coronary portion, the pericoronary fat was removed from the surrounding stenosis area. The primary endpoints were the assessments of Major-Adverse-Cardiac-Events (MACE) at 12-month follow-up. Moreover, inflammatory tone was evaluated by measuring pericoronary fat levels of tumor necrosis factor-α (TNF-α), sirtuin 6 (SIRT6), and leptin to adiponectin ratio. Finally, inflammatory tone was correlated to the MACE during the 12-months follow-up. RESULTS The MACE was 9.1% in all prediabetic patients and 3% in NG-patients. In prediabetic patients, current-metformin-users presented a significantly lower rate of MACE compared to prediabetic patients never-metformin-users. In addition, prediabetic patients showed higher inflammatory tone and leptin to adiponectin ratio in pericoronary fat compared to NG-patients (P < 0.001). Prediabetic never-metformin-users showed higher inflammatory tone and leptin to adiponectin ratio in pericoronary fat compared to current-metformin-users (P < 0.001). Remarkably, inflammatory tone and leptin to adiponectin ratio was significantly related to the MACE during the 12-months follow-up. CONCLUSION Prediabetes increase inflammatory burden in pericoronary adipose tissue. Metformin by reducing inflammatory tone and leptin to adiponectin ratio in pericoronary fat may improve prognosis in prediabetic patients with AMI. Trial registration Clinical Trial NCT03360981, Retrospectively Registered 7 January 2018.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Portoghese
- Department of Cardiac Surgery, Santissima Annunziata Hospital, Sassari, Italy
| | - Francesco Loreni
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simone Mureddu
- Department of Cardiac Surgery, Santissima Annunziata Hospital, Sassari, Italy
| | - Giuseppe Signoriello
- Department of Mental Health and Public Medicine, Section of Statistic, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marisa De Feo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.
| |
Collapse
|
22
|
Park SB, Lee SY, Jung WH, Lee J, Jeong HG, Hong J, Kang D, Kim KY. Development of in vitro three-dimensional co-culture system for metabolic syndrome therapeutic agents. Diabetes Obes Metab 2019; 21:1146-1157. [PMID: 30609258 DOI: 10.1111/dom.13628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 01/08/2023]
Abstract
AIMS There are many obstacles to overcome in the development of new drugs for metabolic diseases, including efficacy and toxicity problems in later stages of drug development. To overcome these problems and predict efficacy and toxicity in early stages, we constructed a new model of insulin resistance in terms of communication between 3T3-L1 adipocytes and RAW264.7 macrophages by three-dimensional (3D) culture. RESULTS In this study, results focused on the functional resemblance between 3D co-culture of adipocytes and macrophages and adipose tissue in diabetic mice. The 3D mono-culture preadipocytes showed good cell viability and induced cell differentiation to adipocytes, without cell confluence or cell-cell contact and interaction. The 3D co-cultured preadipocytes with RAW264.7 macrophages induced greater insulin resistance than two-dimensional and 3D mono-cultured adipocytes. Additionally, we demonstrated that 3D co-culture model had functional metabolic similarity to adipose tissue in diabetic mice. We utilized this 3D co-culture system to screen PPARγ antagonists that might have potential as therapeutic agents for diabetes as demonstrated by an in vivo assay. CONCLUSION This in vitro 3D co-culture system could serve as a next-generation platform to accelerate the development of therapeutics for metabolic diseases.
Collapse
Affiliation(s)
- Sung B Park
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sun Y Lee
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Won H Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Junhee Lee
- Department of Nature-Inspired Nano Convergence System, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Hye G Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Ki Y Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Expression of Longevity Genes Induced by a Low-Dose Fluvastatin and Valsartan Combination with the Potential to Prevent/Treat "Aging-Related Disorders". Int J Mol Sci 2019; 20:ijms20081844. [PMID: 31013989 PMCID: PMC6514706 DOI: 10.3390/ijms20081844] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of aging-related disorders may be decreased through strategies influencing the expression of longevity genes. Although numerous approaches have been suggested, no effective, safe, and easily applicable approach is yet available. Efficacy of low-dose fluvastatin and valsartan, separately or in combination, on the expression of the longevity genes in middle-aged males, was assessed. Stored blood samples from 130 apparently healthy middle-aged males treated with fluvastatin (10 mg daily), valsartan (20 mg daily), fluvastatin-valsartan combination (10 and 20 mg, respectively), and placebo (control) were analyzed. They were taken before and after 30 days of treatment and, additionally, five months after treatment discontinuation. The expression of the following longevity genes was assessed: SIRT1, PRKAA, KLOTHO, NFE2L2, mTOR, and NF-κB. Treatment with fluvastatin and valsartan in combination significantly increased the expression of SIRT1 (1.8-fold; p < 0.0001), PRKAA (1.5-fold; p = 0.262) and KLOTHO (1.7-fold; p < 0.0001), but not NFE2L2, mTOR and NF-κB. Both fluvastatin and valsartan alone significantly, but to a lesser extent, increased the expression of SIRT1, and did not influence the expression of other genes. Five months after treatment discontinuation, genes expression decreased to the basal levels. In addition, analysis with previously obtained results revealed significant correlation between SIRT1 and both increased telomerase activity and improved arterial wall characteristics. We showed that low-dose fluvastatin and valsartan, separately and in combination, substantially increase expression of SIRT1, PRKAA, and KLOTHO genes, which may be attributed to their so far unreported pleiotropic beneficial effects. This approach could be used for prevention of ageing (and longevity genes)–related disorders.
Collapse
|
24
|
Telmisartan induces browning of fully differentiated white adipocytes via M2 macrophage polarization. Sci Rep 2019; 9:1236. [PMID: 30718686 PMCID: PMC6362091 DOI: 10.1038/s41598-018-38399-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
Telmisartan is a well-known anti-hypertensive drug acting as an angiotensin 2 receptor blocker (ARB), but it also possesses partial PPARγ agonistic activity and induces insulin sensitivity. In the present study, we investigated the effects of telmisartan on macrophage polarization in association with its browning capacity, because PPARγ plays a key role in M2 polarization and in the browning of white adipocytes. Telmisartan induced M2 marker expression in murine macrophages concentration dependently, which was confirmed by flow cytometry. Both PPARγ and PPARδ activations appear to be responsible for telmisartan-induced M2 polarization. Telmisartan-treated conditioned medium (Tel-CM) of RAW264.7 cells and of bone marrow derived macrophages (BMDM) induced the expressions of browning markers in fully differentiated white adipocytes with reduced lipid droplets, and increased oxygen consumption rate and mitochondrial biogenesis. Levels of catecholamines (CA) released into the conditioned medium as well as intracellular tyrosine hydroxylase (TH) mRNAs were found to be increased by telmisartan, and browning effects of Tel-CM were lessened by β3 receptor antagonist (L-748,337), suggesting CA secreted into CM play a role in Tel-CM-induced adipocyte browning. Acute administration of telmisartan (2 weeks, p.o.) to C57BL/6J mice increased the expressions of browning markers and M2 markers in white adipose tissues, whereas macrophage depletion by clodronate liposome pretreatment attenuated the telmisartan-induced expressions of browning markers. Together, telmisartan was observed to induce the browning of fully differentiated white adipocytes, at least in part, via PPAR activation-mediated M2 polarization.
Collapse
|
25
|
Wen J, Zeng M, Liu Z, Zhou H, Xu H, Huang M, Zhang W. The influence of telmisartan on metformin pharmacokinetics and pharmacodynamics. J Pharmacol Sci 2018; 139:37-41. [PMID: 30538075 DOI: 10.1016/j.jphs.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Metformin is the most widely used drug among type 2 diabetes mellitus patients. However, drug interaction on metformin will influence its glucose-lowering effect or increase its side effect of lactic acidosis. In this study, a randomized, two-stage, crossover study was conducted to unveil the potential drug interaction between metformin and the anti-hypertension drug, telmisartan. Totally, 16 healthy Chinese male volunteers were enrolled. Blood samples from various time-points after drug adminstration were analyzed for metformin quantification. Oral glucose tolerance test (OGTT) was conducted 2 h after metformin administration. The AUC0-12 and Cmax of metformin in subjects co-administrated with telmisartan were significantly lower than with placebo. The geometric mean ratios (value of metformin plus telmisartan phase/value of metformin plus placebo phase) for Cmax and AUC0-12 is 0.7972 (90%CI: 0.7202-0.8824) and 0.8336 (90%CI: 0.7696-0.9028), respectively. Moreover, telmisartan co-administration significantly increased the plasma concentrations of both glucose and insulin at 0.5 h since OGTT (7.64 ± 1.86 mmol/l·min vs 6.77 ± 0.83 mmol/l·min, P = 0.040; 72.91 ± 31.98 μIU/ml·min vs 60.20 ± 24.20 μIU/ml·min, P = 0.037), though the AUC of glucose and insulin after OGTT showed no significant difference. These findings suggested that telmisartan had a significant influence on the Pharmacokinetics of metformin in healthy groups, though the influence on glucose-lowering effect was moderate.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Meizi Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - Heng Xu
- Department of Laboratory Medicine, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Huang
- School of Pharmaceutical Science, Sun Yat-Sen University, GuangZhou, GuangDong, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China.
| |
Collapse
|
26
|
Hu T, Chen Y, Jiang Q, Lin J, Li H, Wang P, Feng L. Overexpressed eNOS upregulates SIRT1 expression and protects mouse pancreatic β cells from apoptosis. Exp Ther Med 2017; 14:1727-1731. [PMID: 28810642 DOI: 10.3892/etm.2017.4669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
Loss of sirtuin 1 (SIRT1) activity may be associated with metabolic diseases, including diabetes. The aim of the present study was to investigate the potential effects of overexpressed endothelial nitric oxide synthase (eNOS) on cell proliferation and apoptosis with SIRT1 activation in the Min6 mouse pancreatic β cell line. A pcDNA3.0-eNOS plasmid was constructed and transfected into Min6 cells for 24 h prior to harvesting. eNOS expression was validated and SIRT1 expression was detected following plasmid transfection using reverse transcription-quantitative polymerase chain reaction and western blot analysis, which demonstrated that the expression levels of eNOS and SIRT1 were significantly upregulated. Furthermore, the cell proliferation and cell apoptosis of the Min6 cells were evaluated, using a cell counting kit-8 assay and flow cytometry, respectively. The results suggested that overexpressed eNOS promoted cell proliferation and inhibited cell apoptosis in Min6 cells. The interaction between eNOS and SIRT1 was explored through co-immunoprecipitation, and it found that there was a strong interaction between eNOS and SIRT1. In conclusion, overexpressed eNOS may induce SIRT1 activation, which is implied to play a protective role in Min6 cells, and eNOS may be a new therapeutic target for diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Ye Chen
- Graduate School of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Qian Jiang
- Department of Stomatology, The First Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Jun Lin
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Hewei Li
- Graduate School of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Ping Wang
- Graduate School of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Leping Feng
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
27
|
Than A, Xu S, Li R, Leow MKS, Sun L, Chen P. Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis. Signal Transduct Target Ther 2017; 2:17022. [PMID: 29263921 PMCID: PMC5661636 DOI: 10.1038/sigtrans.2017.22] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023] Open
Abstract
Brown adipose tissue dissipates energy in the form of heat. Recent studies have shown that adult humans possess both classical brown and beige adipocytes (brown-like adipocytes in white adipose tissue, WAT), and stimulating brown and beige adipocyte formation can be a new avenue to treat obesity. Angiotensin II (AngII) is a peptide hormone that plays important roles in energy metabolism via its angiotensin type 1 or type 2 receptors (AT1R and AT2R). Adipose tissue is a major source of AngII and expresses both types of its receptors, implying the autocrine and paracrine role of AngII in regulating adipose functions and self-remodeling. Here, based on the in vitro studies on primary cultures of mouse white adipocytes, we report that, AT2R activation, either by AngII or AT2R agonist (C21), induces white adipocyte browning, by increasing PPARγ expression, at least in part, via ERK1/2, PI3kinase/Akt and AMPK signaling pathways. It is also found that AngII–AT2R enhances brown adipogenesis. In the in vivo studies on mice, administration of AT1R antagonist (ZD7155) or AT2R agonist (C21) leads to the increase of WAT browning, body temperature and serum adiponectin, as well as the decrease of WAT mass and the serum levels of TNFα, triglycerides and free fatty acids. In addition, AT2R-induced browning effect is also observed in human white adipocytes, as evidenced by the increased UCP1 expression and oxygen consumption. Finally, we provide evidence that AT2R plays important roles in hormone T3-induced white adipose browning. This study, for the first time, reveals the browning and brown adipogenic effects of AT2R and suggests a potential therapeutic target to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shaohai Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ru Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Lei Sun
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Sarvani C, Sireesh D, Ramkumar KM. Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacol Res 2017; 119:412-421. [PMID: 28237513 DOI: 10.1016/j.phrs.2017.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
ER stress is provoked by the accumulation of unfolded and misfolded proteins in the ER lumen leading to perturbations in ER homeostasis. ER stress activates a signaling cascade called the Unfolded Protein Response (UPR) which triggers a set of transcriptional and translational events that restore ER homeostasis, promoting cell survival and adaptation. If this adaptive response fails, a terminal UPR program commits such cells to apoptosis. Existing preclinical and clinical evidence testify that prolonged ER stress escalates the risk of several metabolic disorders including diabetes, obesity and dyslipidemia. There have been considerable efforts to develop small molecules that are capable of ameliorating ER stress. Few naturally occurring and synthetic molecules have already been demonstrated for their efficacy in abrogating ER stress in both in vitro and in vivo models of metabolic disorders. This review provides a broad overview of the molecular mechanisms of inhibition of ER stress and its association with various metabolic diseases.
Collapse
Affiliation(s)
- Chodisetty Sarvani
- SRM Research Institute, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - Dornadula Sireesh
- SRM Research Institute, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | | |
Collapse
|
29
|
Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin. Int J Mol Sci 2017; 18:ijms18020305. [PMID: 28146117 PMCID: PMC5343841 DOI: 10.3390/ijms18020305] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1) hemeoxygenase-1 (HO-1)/thioredoxin pathway. Renal tubular cells, tunicamycin (TM)-induced ER stress, and unilateral ureteral obstruction (UUO) mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78) and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α), through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor). Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition.
Collapse
|
30
|
Zhong J, Gong W, Lu L, Chen J, Lu Z, Li H, Liu W, Liu Y, Wang M, Hu R, Long H, Wei L. Irbesartan ameliorates hyperlipidemia and liver steatosis in type 2 diabetic db/db mice via stimulating PPAR-γ, AMPK/Akt/mTOR signaling and autophagy. Int Immunopharmacol 2016; 42:176-184. [PMID: 27919004 DOI: 10.1016/j.intimp.2016.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/27/2022]
Abstract
Irbesartan (Irb), a unique subset of angiotensin II receptor blockers (ARBs) with PPAR-γ activation function, has been reported to play a role in renal dysfunction, glucose metabolism, and abnormal lipid profile in diabetic animal models and humans. However, the underlying mechanisms that improve hyperlipidemia and liver steatosis are unclear. This study investigated the effects of Irb on lipid metabolism and hepatic steatosis using the spontaneous type 2 diabetic db/db mouse model. The results demonstrated body and liver weight, food consumption, lipid content in serum and liver tissue, and liver dysfunction as well as hepatic steatosis were increased in db/db mice compared with db/m mice, whereas the increases were reversed by Irb treatment. Moreover, Irb administration resulted in an increase in LC3BII as well as the LC3BII/I ratio through activating PPAR-γ and p-AMPK and inhibiting p-Akt and p-mTOR, thereby inducing autophagy in the db/db mouse liver. Therefore, our findings suggest that Irb can ameliorate hyperlipidemia and liver steatosis by upregulating the expression of PPAR-γ, activating the AMPK/Akt/mTOR signaling pathway and inducing liver autophagy.
Collapse
Affiliation(s)
- Juan Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, Guangxi 530022, PR China
| | - Wangqiu Gong
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Lu Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Jing Chen
- Laboratory Medicine Center, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zibin Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - HongYu Li
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Wenting Liu
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yangyang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Haibo Long
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Lianbo Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China.
| |
Collapse
|
31
|
Zhao YC, Xu LW, Ding S, Ji QQ, Lin N, He Q, Gao LC, Su YY, Pu J, He B. Nuclear receptor retinoid-related orphan receptor α deficiency exacerbates high-fat diet-induced cardiac dysfunction despite improving metabolic abnormality. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1991-2000. [PMID: 27825849 DOI: 10.1016/j.bbadis.2016.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/08/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Retinoid-related orphan receptor α (RORα), a member of the metabolic nuclear receptor superfamily, plays a vital regulatory role in circadian rhythm and metabolism. Here, we investigated the role of RORα in high-fat diet (HFD)-induced cardiac impairments and the underlying mechanisms involved. RORα-deficient stagger mice (sg/sg) and wild type (WT) littermates were fed with either standard diet or HFD. At 20weeks after HFD treatment, RORα deficiency resulted in significantly decreased body weight gain, improved dyslipidemia and ameliorated insulin resistance (evaluated by blood biochemical and glucose/insulin tolerance tests) compared with WT control. However, compared with HFD-treated WT mice, HFD-treated sg/sg mice exhibited significantly augmented myocardial hypertrophy, cardiac fibrosis (wheat germ agglutinin, masson trichrome and sirius red staining) and cardiac dysfunction (echocardiography and hemodynamics). Mechanistically, RORα deficiency impaired mitochondrial biogenesis and function. Additionally, RORα deficiency resulted in inhibition of the AMPK-PGC1α signaling pathway. In contrast, cardiomyocyte-specific RORα overexpression ameliorated myocardial hypertrophy, fibrosis and dysfunction by restoring AMPK-PGC1α signaling, and subsequently normalizing mitochondrial biogenesis. These findings demonstrated for the first time that nuclear receptor RORα deficiency aggravated HFD-induced myocardial dysfunction at least in part by impairing mitochondrial biogenesis in association with disrupting AMPK-PGC1α signaling. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren and Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Yi-Chao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Long-Wei Xu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Qing-Qi Ji
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Nan Lin
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Qing He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Ling-Chen Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Yuan-Yuan Su
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| |
Collapse
|
32
|
Elmaci İ, Altinoz MA. A Metabolic Inhibitory Cocktail for Grave Cancers: Metformin, Pioglitazone and Lithium Combination in Treatment of Pancreatic Cancer and Glioblastoma Multiforme. Biochem Genet 2016; 54:573-618. [PMID: 27377891 DOI: 10.1007/s10528-016-9754-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) and glioblastoma multiforme (GBM) are among the human cancers with worst prognosis which require an urgent need for efficient therapies. Here, we propose to apply to treat both malignancies with a triple combination of drugs, which are already in use for different indications. Recent studies demonstrated a considerable link between risk of PC and diabetes. In experimental models, anti-diabetogenic agents suppress growth of PC, including metformin (M), pioglitazone (P) and lithium (L). L is used in psychiatric practice, yet also bears anti-diabetic potential and selectively inhibits glycogen synthase kinase-3 beta (GSK-3β). M, a biguanide class anti-diabetic agent shows anticancer activity via activating AMP-activated protein kinase (AMPK). Glitazones bind to PPAR-γ and inhibit NF-κB, triggering cell proliferation, apoptosis resistance and synthesis of inflammatory cytokines in cancer cells. Inhibition of inflammatory cytokines could simultaneously decrease tumor growth and alleviate cancer cachexia, having a major role in PC mortality. Furthermore, mutual synergistic interactions exist between PPAR-γ and GSK-3β, between AMPK and GSK-3β and between AMPK and PPAR-γ. In GBM, M blocks angiogenesis and migration in experimental models. Very noteworthy, among GBM patients with type 2 diabetes, usage of M significantly correlates with better survival while reverse is true for sulfonylureas. In experimental models, P synergies with ligands of RAR, RXR and statins in reducing growth of GBM. Further, usage of P was found to be lesser in anaplastic astrocytoma and GBM patients, indicating a protective effect of P against high-grade gliomas. L is accumulated in GBM cells faster and higher than in neuroblastoma cells, and its levels further increase with chronic exposure. Recent studies revealed anti-invasive potential of L in GBM cell lines. Here, we propose that a triple-agent regime including drugs already in clinical usage may provide a metabolic adjuvant therapy for PC and GBM.
Collapse
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
- Neuroacademy Group, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Immunology, Experimental Medicine Research Center, Istanbul, Turkey.
| |
Collapse
|
33
|
Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle. Eur J Pharmacol 2016; 780:194-201. [DOI: 10.1016/j.ejphar.2016.03.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 01/02/2023]
|
34
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
35
|
Zhang J, Zhang Y, Xiao F, Liu Y, Wang J, Gao H, Rong S, Yao Y, Li J, Xu G. The peroxisome proliferator-activated receptor γ agonist pioglitazone prevents NF-κB activation in cisplatin nephrotoxicity through the reduction of p65 acetylation via the AMPK-SIRT1/p300 pathway. Biochem Pharmacol 2015; 101:100-11. [PMID: 26673543 DOI: 10.1016/j.bcp.2015.11.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023]
Abstract
The thiazolidinedione pioglitazone, which is also a PPAR-γ agonist, now is widely used in patients with hypercholesterolemia and hypertriglyceridemia. NF-κB is a ubiquitously expressed transcription factor controlling the expression of numerous genes involved in inflammation. The aim of the present study was to evaluate whether the activation of PPAR-γ attenuates the cisplatin-induced NF-κB activation in cisplatin nephrotoxicity. The results showed that the PPAR-γ agonist pioglitazone decreased the expression of NF-κB p65 transcription target genes (e.g., IL-6, IL-1β, and TNF-α) and inhibited histological injury and inflammatory cells infiltration in cisplatin nephrotoxicity. The suppression of NF-κB activity following pioglitazone treatment inhibited the cisplatin-induced IκB-α degredation and NF-κB p65 subunit translocation. Translocation of the NF-κB p65 subunit depends on p65 acetylation, which primarily regulated by SIRT1 or p300. Notably, AMP kinase (AMPK) activation not only decreased the phosphorylation, activation and p65 interaction of p300 but also increased SIRT1 expression, activation and p65 binding, thus leading to a significant reduction in p65 acetylation. Interestingly, the reduction of IL-6, TNF-α and IL-1β, the inhibition of histological injury and the inflammatory cells infiltration following pioglitazone treatment in cisplatin nephrotoxicity were attenuated after treatment with the PPAR-γ antagonist GW9662. These results suggest that the PPAR-γ agonist pioglitazone prevents NF-κB activation in cisplatin nephrotoxicity through a reduction in p65 acetylation via the AMPK-SIRT1/p300 pathway.
Collapse
Affiliation(s)
- Jiong Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong Unversity of Science and Technology, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jin Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Hongyu Gao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
36
|
Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation. Brain Behav Immun 2015; 50:298-313. [PMID: 26188187 DOI: 10.1016/j.bbi.2015.07.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022] Open
Abstract
Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation.
Collapse
|
37
|
Bali A, Jaggi AS. Differential role of angiotensin neuropeptides in repeated exposure of immobilization stress of varying duration in mice. Life Sci 2015; 141:90-8. [DOI: 10.1016/j.lfs.2015.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/16/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
38
|
Raj R, Bhatti JS, Badada SK, Ramteke PW. Genetic basis of dyslipidemia in disease precipitation of coronary artery disease (CAD) associated type 2 diabetes mellitus (T2DM). Diabetes Metab Res Rev 2015; 31:663-71. [PMID: 25470794 DOI: 10.1002/dmrr.2630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/18/2014] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and its complications are linked to environmental, clinical, and genetic factors. This review analyses the disorders of lipids and their genetics with respect to coronary artery disease (CAD) associated with T2DM. Cell organelles, hepatitis C-virus infection, reactive oxygen species produced in mitochondria, and defective insulin signaling due to the arrest of G1 phase to S phase transition of β-cells have significant roles in the precipitation of the diseases. Adiponectin is anti-inflammatory and anti-atherosclerotic and improves insulin resistance. Low-density lipoprotein (LDL) is atherosclerotic, and LDL-cholesterol in T2DM is associated with high-cardiovascular risk. Further, LDL cholesterol reduction significantly reduces cardiovascular morbidity and mortality. High-density lipoprotein (HDL) is also anti-atherosclerotic due to HDL associated paraoxonase-1 serum enzyme, which prevents LDL oxidative modifications and the development of CAD. Moreover, elevated apolipoprotein B and apolipoprotein A-I (ApoB/ApoA-I) ratio in plasma is also a risk factor for CAD. LDL receptor, adiponectin, and endocannabinoid receptor-1 genes are independently associated with CAD and T2DM. Polymorphism of Apo E2 (epsilon2) is a positive factor to increase the T2DM risk and Apo E4 (epsilon4) is a negative factor to reduce the disease risk. Taq 1B polymorphism of cholesterol ester transfer protein (CETP) gene contributes to the development of atherosclerosis, whereas haplotypes of APOA5, APOC3, APOC4, and APOC5 genes are in the same cluster and are independently associated with high plasma triglyceride level, CAD and T2DM. In conclusion, because various genes, LDLR, CETP, APOA5, Apo E, Apo B, and Apo A-I, are associated with the precipitation of CAD associated with T2DM, a personalized diet-gene intervention therapy may be advocated to reduce the disease precipitation.
Collapse
Affiliation(s)
- Resal Raj
- Department of Computational Biology and Bioinformatics, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Deemed to be University, Allahabad, India
| | - Jasvinder Singh Bhatti
- Department of Biotechnology & Bioinformatics, SGGS College, Sector 26, Chandigarh, India
| | | | - Pramod W Ramteke
- Department of Biological Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Deemed to be University, Allahabad, India
| |
Collapse
|
39
|
Lin CM, Tsai JT, Chang CK, Cheng JT, Lin JW. Development of telmisartan in the therapy of spinal cord injury: pre-clinical study in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4709-17. [PMID: 26316709 PMCID: PMC4544623 DOI: 10.2147/dddt.s86616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decrease of peroxisome proliferator-activated receptors-δ (PPARδ) expression has been observed after spinal cord injury (SCI). Increase of PPARδ may improve the damage in SCI. Telmisartan, the antihypertensive agent, has been mentioned to increase the expression of PPARδ. Thus, we are going to screen the effectiveness of telmisartan in SCI for the development of it in clinical application. METHODS In the present study, we used compressive SCI in rats. Telmisartan was then used to evaluate the influence in rats after SCI. Change in PPARδ expression was identified by Western blots. Also, behavioral tests were performed to check the recovery of damage. RESULTS Recovery of damage from SCI was observed in telmisartan-treated rats. Additionally, this action of telmisartan was inhibited by GSK0660 at the dose sufficient to block PPARδ. However, metformin at the dose enough to activate adenosine monophosphate-activated protein kinase failed to produce similar action as telmisartan. Thus, mediation of adenosine monophosphate-activated protein kinase in this action of telmisartan can be rule out. Moreover, telmisartan reversed the expressions of PPARδ in rats with SCI. CONCLUSION The obtained data suggest that telmisartan can improve the damage of SCI in rats through an increase in PPARδ expression. Thus, telmisartan is useful to be developed as an agent in the therapy of SCI.
Collapse
Affiliation(s)
- Chien-Min Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Chen Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Juei-Tang Cheng
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan City, Taiwan
| | - Jia-Wei Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| |
Collapse
|
40
|
Investigations in foot shock stress of variable intensity in mice: Adaptation and role of angiotensin II. Eur J Pharmacol 2015; 761:86-94. [DOI: 10.1016/j.ejphar.2015.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023]
|
41
|
Takata T, Munemura C, Fukui T, Fukuda S, Murawaki Y. Influence of Olmesartan on Sirtuin 1 mRNA Expression in 5/6 Nephrectomized Spontaneously Hypertensive Rats. Yonago Acta Med 2015; 58:63-68. [PMID: 26306055 PMCID: PMC4546957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Recent studies revealed that sirtuin 1 (SIRT1) has a relation to the mechanism of transforming growth factor-beta (TGF-beta) mediated apoptosis in glomerular mesangial cells and plays an important role in blood pressure regulation. It has been suggested that SIRT1 contributes to the renoprotective effect of angiotensin receptor blocker (ARB), but this has not yet become clearly recognized. In this study, we examined the relationship between SIRT1 and the therapeutic effect of olmesartan on renal injury in nephrectomized spontaneously hypertensive rats (SHRs). METHODS Male Wistar rats and 5/6 nephrectomized (5/6Nx) SHRs were assigned to 5 groups as follows: group A, Wistar rats; group B, Wistar rats administered high-dose olmesartan (15 mg/kg/day); group C, 5/6Nx SHRs; group D, 5/6Nx SHRs administered low-dose (3 mg/kg/day) olmesartan; and group E, 5/6Nx SHRs administered high-dose olmesartan. The drugs were administered for 12 weeks. Blood pressure and urinary protein excretion were measured every 4 weeks. Serum creatinine, glomerular sclerosis, SIRT1 mRNA level, TGF-beta mRNA level and klotho mRNA level were measured at the end of the examination. RESULTS Systolic blood pressure, urinary protein excretion, serum creatinine and glomerular sclerosis in Wistar rats were significantly lower than that of 5/6Nx SHRs. Among 5/6Nx SHRs, high doses of olmesartan significantly decreased urinary protein excretion, serum creatinine and glomerular sclerosis compared to the non-treated and low-dose olmesartan groups. Expression of SIRT1 and klotho mRNA were significantly downregulated in 5/6Nx SHRs; however, olmesartan did not attribute to any change in gene expression. Expression of TGF-beta mRNA was significantly increased in 5/6Nx SHRs, and olmesartan did not affect the level of TGF-beta mRNA expression. CONCLUSION Expression of SIRT1 is decreased in 5/6Nx SHRs compared to Wistar rats. Olmesartan suppressed glomerular sclerosis, but did not increase the expression of SIRT1, suggesting that the renoprotective effect of olmesartan is independent of the SIRT1 pathway.
Collapse
Affiliation(s)
- Tomoaki Takata
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Chishio Munemura
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takeaki Fukui
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Satoko Fukuda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yoshikazu Murawaki
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
42
|
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H15-44. [PMID: 25934099 DOI: 10.1152/ajpheart.00459.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR), renin angiotensin system blockade (RAS-bl), and rapamycin-mediated mechanistic target of rapamycin (mTOR) inhibition increase survival and retard aging across species. Previously, we have summarized CR and RAS-bl's converging effects, and the mitochondrial function changes associated with their physiological benefits. mTOR inhibition and enhanced sirtuin and KLOTHO signaling contribute to the benefits of CR in aging. mTORC1/mTORC2 complexes contribute to cell growth and metabolic regulation. Prolonged mTORC1 activation may lead to age-related disease progression; thus, rapamycin-mediated mTOR inhibition and CR may extend lifespan and retard aging through mTORC1 interference. Sirtuins by deacetylating histone and transcription-related proteins modulate signaling and survival pathways and mitochondrial functioning. CR regulates several mammalian sirtuins favoring their role in aging regulation. KLOTHO/fibroblast growth factor 23 (FGF23) contribute to control Ca(2+), phosphate, and vitamin D metabolism, and their dysregulation may participate in age-related disease. Here we review how mTOR inhibition extends lifespan, how KLOTHO functions as an aging suppressor, how sirtuins mediate longevity, how vitamin D loss may contribute to age-related disease, and how they relate to mitochondrial function. Also, we discuss how RAS-bl downregulates mTOR and upregulates KLOTHO, sirtuin, and vitamin D receptor expression, suggesting that at least some of RAS-bl benefits in aging are mediated through the modulation of mTOR, KLOTHO, and sirtuin expression and vitamin D signaling, paralleling CR actions in age retardation. Concluding, the available evidence endorses the idea that RAS-bl is among the interventions that may turn out to provide relief to the spreading issue of age-associated chronic disease.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - Felipe Inserra
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - León Ferder
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| |
Collapse
|
43
|
Zheng T, Yang X, Wu D, Xing S, Bian F, Li W, Chi J, Bai X, Wu G, Chen X, Zhang Y, Jin S. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway. Br J Pharmacol 2015; 172:3284-301. [PMID: 25754463 DOI: 10.1111/bph.13120] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent reports have suggested that salidroside could protect cardiomyocytes from oxidative injury and stimulate glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase (AMPK). The aim of this study was to evaluate the therapeutic effects of salidroside on diabetic mice and to explore the underlying mechanisms. EXPERIMENTAL APPROACH The therapeutic effects of salidroside on type 2 diabetes were investigated. Increasing doses of salidroside (25, 50 and 100 mg·kg(-1) ·day(-1)) were administered p.o. to db/db mice for 8 weeks. Biochemical analysis and histopathological examinations were conducted to evaluate the therapeutic effects of salidroside. Primary cultured mouse hepatocytes were used to further explore the underlying mechanisms in vitro. KEY RESULTS Salidroside dramatically reduced blood glucose and serum insulin levels and alleviated insulin resistance. Hypolipidaemic effects and amelioration of liver steatosis were observed after salidroside administration. In vitro, salidroside dose-dependently induced an increase in the phosphorylations of AMPK and PI3K/Akt, as well as glycogen synthase kinase 3β (GSK3β) in hepatocytes. Furthermore, salidroside-stimulated AMPK activation was found to suppress the expression of PEPCK and glucose-6-phosphatase. Salidroside-induced AMPK activation also resulted in phosphorylation of acetyl CoA carboxylase, which can reduce lipid accumulation in peripheral tissues. In isolated mitochondria, salidroside inhibited respiratory chain complex I and disturbed oxidation/phosphorylation coupling and moderately depolarized the mitochondrial membrane potential, resulting in a transient increase in the AMP/ATP ratio. CONCLUSIONS AND IMPLICATIONS Salidroside exerts an antidiabetic effect by improving the cellular metabolic flux through the activation of a mitochondria-related AMPK/PI3K/Akt/GSK3β pathway.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Dan Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Shasha Xing
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Fang Bian
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Wenjing Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Jiangyang Chi
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Xiangli Bai
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Guangjie Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Xiaoqian Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Yonghui Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Si Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.,Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
44
|
Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. Renin-angiotensin system: an old player with novel functions in skeletal muscle. Med Res Rev 2015; 35:437-63. [PMID: 25764065 DOI: 10.1002/med.21343] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle.
Collapse
Affiliation(s)
- Claudio Cabello-Verrugio
- Laboratorio de Biología y Fisiopatología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
45
|
Bahi A, Nurulain SM, Ojha S. Ethanol intake and ethanol-conditioned place preference are reduced in mice treated with the bioflavonoid agent naringin. Alcohol 2014; 48:677-85. [PMID: 25288222 DOI: 10.1016/j.alcohol.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/14/2014] [Accepted: 06/20/2014] [Indexed: 10/24/2022]
Abstract
Recently, PPAR-γ activation has emerged as a potential treatment for alcoholism. However, the adverse effects of synthetic PPAR-γ activators, despite being effective drugs, prompted the need for novel PPAR-γ agonists that retain efficacy and potency with a lower potential of side effects. Hence, naringin, a bioflavonoid isolated from citrus fruits and recently identified as a natural ligand of PPAR-γ, has begun to be evaluated for treatment of alcoholism. It is well known to possess several therapeutic benefits in addition to its anti-anxiety and antidepressant properties. In the present study, we assessed whether naringin treatment possesses anti-ethanol reward properties in C57BL/6 mice. We used the two-bottle choice drinking paradigm and ethanol-induced conditioned place preference (CPP) to examine the effect of naringin treatment on ethanol drinking. Results have shown that, compared with vehicle, naringin (10-100 mg/kg) significantly and dose-dependently decreased voluntary ethanol intake and preference in a two-bottle choice drinking paradigm [3-15% (v/v) escalating over 2 weeks], with no significant effect observed on saccharin [0.02-0.08% (w/v)] or on quinine [15-60 μM (w/v)] intake. In addition, there was no significant difference in blood ethanol concentration (BEC) between groups following naringin administration of 3 g of ethanol/kg body weight. Interestingly, when mice were treated with vehicle or naringin (30 mg/kg) before injection of ethanol (1.5 g/kg) during conditioning days, naringin inhibited the acquisition of ethanol-CPP. More importantly, these effects were significantly attenuated when mice were pre-injected with the peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662. Taken together, the present findings are the first to implicate naringin and PPAR-γ receptors in the behavioral and reward-related effects of ethanol and raise the question of whether specific drugs that target PPAR-γ receptors could potentially reduce excessive ethanol consumption and preference.
Collapse
|
46
|
Prevention of metabolic disorders with telmisartan and indapamide in a Chinese population with high-normal blood pressure. Hypertens Res 2014; 38:123-31. [PMID: 25273554 DOI: 10.1038/hr.2014.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
Abstract
High-normal blood pressure is considered a precursor of stage 1 hypertension that is associated with metabolic disorders. This study aims to investigate whether the pharmacologic treatment of high-normal blood pressure affects metabolism, especially in abdominally obese individuals, and the pharmacoeconomics of two antihypertensive agents, telmisartan and indapamide. Subjects with high-normal blood pressure were randomly assigned to receive telmisartan, indapamide or placebo for 3 years. All the subjects were instructed to modify their lifestyle to reduce blood pressure throughout the study. A total of 221 subjects were randomly assigned to telmisartan, 213 to indapamide and 230 to placebo. After the 3-year intervention, blood pressure was lower in the telmisartan and indapamide groups (P<0.05), FPG in the telmisartan group was lower during the first 2 years (P<0.05) and no characteristic differences were found in those with abdominal obesity among the three groups (P>0.05). The percentage of subjects with metabolic syndrome was significantly decreased in the telmisartan and indapamide groups (P<0.05), but was only significantly decreased in the telmisartan group for subjects with abdominal obesity (P<0.05). The acquisition cost for telmisartan was ~1.86 times higher than for indapamide for a similar antihypertensive effect. The intervention for high-normal blood pressure with telmisartan and indapamide appeared to be feasible and reduced the risk of metabolic syndrome. Telmisartan was more effective, whereas indapamide had better pharmacoeconomic benefits.
Collapse
|
47
|
Li BH, Liao SQ, Yin YW, Long CY, Guo L, Cao XJ, Liu Y, Zhou Y, Gao CY, Zhang LL, Li JC. Telmisartan-induced PPARγ activity attenuates lipid accumulation in VSMCs via induction of autophagy. Mol Biol Rep 2014; 42:179-86. [DOI: 10.1007/s11033-014-3757-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/17/2014] [Indexed: 01/05/2023]
|
48
|
Lu TM, Tsai JY, Chen YC, Huang CY, Hsu HL, Weng CF, Shih CC, Hsu CP. Downregulation of Sirt1 as aging change in advanced heart failure. J Biomed Sci 2014. [PMID: 24913149 DOI: 10.1186/1423-0127-21-57.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In congestive heart failure the balance between cell death and cell survival in cardiomyocytes is compromised. Sirtuin 1 (Sirt1) activates cell survival machinery and has been shown to be protective against ischemia/reperfusion injury in murine heart. The role of Sirt1 in heart failure, especially in human hearts is not clear. RESULTS The expression of Sirt1 and other (associated) downstream molecules in human cardiomyocytes from patients with advanced heart failure was examined. Sirt1 was down-regulated (54.92% ± 7.80% in advanced heart failure samples compared with healthy control cardiomyocytes). The modulation of molecules involved in cardiomyocyte survival and death in advanced heart failure were also examined. The expression of Mn-superoxide dismutase and thioredoxin1, as well as an antiapoptotic molecule, Bcl-xL, were all significantly reduced in advanced heart failure cardiomyoctes (0.71 ± 0.02-fold, 0.61 ± 0.05-fold, and 0.53 ± 0.08-fold vs. control, respectively); whereas the expression of proapoptotic molecule Bax was significantly increased (1.62 ± 0.18-fold vs. control). Increased TUNEL-positive number of cardiomyocytes and oxidative stress, confirmed by 8-hydorxydeoxyguanosine staining, were associated with advanced heart failure. The AMPK-Nampt-Sirt1 axis also showed inhibition in advanced heart failure in addition to severely impaired AMPK activation. Increased p53 (acetyl form) and decreased FoxO1 translocation in the nucleus may be the mechanism of down-regulation of antioxidants and up-regulation of proapoptotic molecules due to low expression of Sirt1. CONCLUSION In advanced heart failure, low Sirt1 expression, like aging change may be a significant contributing factor in the downregulation of antioxidants and upregulation of proapoptotic molecules through the p53, FoxO1, and oxidative stress pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chiao-Po Hsu
- National Yang-Ming University, Institute of Clinical Medicine, School of Medicine, Taipei, Taiwan.
| |
Collapse
|
49
|
Lu TM, Tsai JY, Chen YC, Huang CY, Hsu HL, Weng CF, Shih CC, Hsu CP. Downregulation of Sirt1 as aging change in advanced heart failure. J Biomed Sci 2014; 21:57. [PMID: 24913149 PMCID: PMC4113120 DOI: 10.1186/1423-0127-21-57] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/21/2014] [Indexed: 01/05/2023] Open
Abstract
Background In congestive heart failure the balance between cell death and cell survival in cardiomyocytes is compromised. Sirtuin 1 (Sirt1) activates cell survival machinery and has been shown to be protective against ischemia/reperfusion injury in murine heart. The role of Sirt1 in heart failure, especially in human hearts is not clear. Results The expression of Sirt1 and other (associated) downstream molecules in human cardiomyocytes from patients with advanced heart failure was examined. Sirt1 was down-regulated (54.92% ± 7.80% in advanced heart failure samples compared with healthy control cardiomyocytes). The modulation of molecules involved in cardiomyocyte survival and death in advanced heart failure were also examined. The expression of Mn-superoxide dismutase and thioredoxin1, as well as an antiapoptotic molecule, Bcl-xL, were all significantly reduced in advanced heart failure cardiomyoctes (0.71 ± 0.02-fold, 0.61 ± 0.05-fold, and 0.53 ± 0.08-fold vs. control, respectively); whereas the expression of proapoptotic molecule Bax was significantly increased (1.62 ± 0.18-fold vs. control). Increased TUNEL-positive number of cardiomyocytes and oxidative stress, confirmed by 8-hydorxydeoxyguanosine staining, were associated with advanced heart failure. The AMPK-Nampt-Sirt1 axis also showed inhibition in advanced heart failure in addition to severely impaired AMPK activation. Increased p53 (acetyl form) and decreased FoxO1 translocation in the nucleus may be the mechanism of down-regulation of antioxidants and up-regulation of proapoptotic molecules due to low expression of Sirt1. Conclusion In advanced heart failure, low Sirt1 expression, like aging change may be a significant contributing factor in the downregulation of antioxidants and upregulation of proapoptotic molecules through the p53, FoxO1, and oxidative stress pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chiao-Po Hsu
- National Yang-Ming University, Institute of Clinical Medicine, School of Medicine, Taipei, Taiwan.
| |
Collapse
|
50
|
Chang CH, Chang YC, Wu LC, Lin JW, Chuang LM, Lai MS. Different angiotensin receptor blockers and incidence of diabetes: a nationwide population-based cohort study. Cardiovasc Diabetol 2014; 13:91. [PMID: 24886542 PMCID: PMC4039330 DOI: 10.1186/1475-2840-13-91] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
Background Angiotensin receptor blockers (ARBs) have been shown to exert various peroxisome proliferator-activated receptor gamma (PPARγ) binding activities and insulin-sensitizing effects. The objective of this study was to investigate the association of different ARBs with new-onset diabetes mellitus. Methods In the respective cohort, a total of 492,530 subjects who initiated ARB treatment between January 2004 and December 2009 were identified from Taiwan National Health Insurance Database. The primary outcome was newly diagnosed diabetes, defined as at least one hospital admission or two or more outpatient visits within a year with an ICD-9-CM code 250. Cox proportional regression was used to estimate the risk of diabetes associated with each ARB, using losartan as the reference. Results A total of 65,358 incident diabetes cases were identified out of 1,771,173 person-years. Olmesartan initiators had a small but significantly increased risk of developing diabetes after adjusting for baseline characteristics and mean daily dose (hazard ratio [HR], 1.07; 95% confidence interval [CI], 1.03-1.12). After excluding those followed for less than one year, the increase in diabetes risk are more pronounced (HR, 1.09; 95% CI, 1.05-1.14). This association was consistent across all subgroup analyses. Similar results were observed when a more strict definition of diabetes combining both diabetes diagnosis and anti-diabetic treatment was used. On the other hand, there was no difference in diabetes risk between telmisartan and losartan. Conclusions Among all ARBs, olmesartan might be associated with a slightly increased risk of diabetes mellitus. Our data suggest differential diabetes risks associated with ARBs beyond a class effect.
Collapse
Affiliation(s)
| | | | | | - Jou-Wei Lin
- Institute of Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | | | | |
Collapse
|