1
|
Wang YM, Feng LS, Xu A, Ma XH, Zhang MT, Zhang J. Copper ions: The invisible killer of cardiovascular disease (Review). Mol Med Rep 2024; 30:210. [PMID: 39301641 PMCID: PMC11425066 DOI: 10.3892/mmr.2024.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Copper, a vital trace element, is indispensable for the maintenance of physiological functioning, particularly in the cardiac system. Unlike other forms of cell death such as iron death and apoptosis, copper‑induced cell death has gained increasing recognition as a significant process influencing the development of cardiovascular diseases. The present review highlights the significance of maintaining copper homeostasis in addressing cardiovascular diseases. This review delves into the crucial roles of copper in physiology, including the metabolic pathways and its absorption, transport and excretion. It provides detailed insights into the mechanisms underlying cardiovascular diseases resulting from both excess and deficient copper levels. Additionally, it summarizes strategies for treating copper imbalances through approaches such as copper chelators and ion carriers while discussing their limitations and future prospects.
Collapse
Affiliation(s)
- Yi-Ming Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Ao Xu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Xiao-Han Ma
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Miao-Tiao Zhang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Jie Zhang
- Cardiovascular Department, Xi'an Fifth Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
2
|
Jia D, Liu L, Liu W, Li J, Jiang X, Xin Y. Copper metabolism and its role in diabetic complications: A review. Pharmacol Res 2024; 206:107264. [PMID: 38876443 DOI: 10.1016/j.phrs.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Disturbances in copper (Cu) homeostasis have been observed in diabetes and associated complications. Cu is an essential micronutrient that plays important roles in various fundamental biological processes. For example, diabetic cardiomyopathy is associated with elevated levels of Cu in the serum and tissues. Therefore, targeting Cu may be a novel treatment strategy for diabetic complications. This review provides an overview of physiological Cu metabolism and homeostasis, followed by a discussion of Cu metabolism disorders observed during the occurrence and progression of diabetic complications. Finally, we discuss the recent therapeutic advances in the use of Cu coordination complexes as treatments for diabetic complications and their potential mechanisms of action. This review contributes to a complete understanding of the role of Cu in diabetic complications and demonstrates the broad application prospects of Cu-coordinated compounds as potential therapeutic agents.
Collapse
Affiliation(s)
- Dongkai Jia
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Lulu Liu
- Department of Emergency and Critical Medicine, the Second Hospital of Jilin University, Changchun 130012, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Fontes A, Jauch AT, Sailer J, Engler J, Azul AM, Zischka H. Metabolic Derangement of Essential Transition Metals and Potential Antioxidant Therapies. Int J Mol Sci 2024; 25:7880. [PMID: 39063122 PMCID: PMC11277342 DOI: 10.3390/ijms25147880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis, nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and metabolism. The balance between metal deficiency and excess is typically ensured by several extracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However, provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellularly, mitochondria are the organelles that require the tightest control concerning reactive oxygen species production, which inevitably leaves them to be one of the most vulnerable targets of metal toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause secondary effects decreasing patients' quality of life. New therapeutic options based on synthetic or natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly address the cellular metabolism of transition metals, consequences of their overload, and current therapies, followed by their potential role in inducing oxidative stress and remedies thereof.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adrian T. Jauch
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Judith Sailer
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Jonas Engler
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| |
Collapse
|
4
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
5
|
Pan Z, Huang L, Gan Y, Xia Y, Yu W. The Molecular Mechanisms of Cuproptosis and Small-Molecule Drug Design in Diabetes Mellitus. Molecules 2024; 29:2852. [PMID: 38930917 PMCID: PMC11206814 DOI: 10.3390/molecules29122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In the field of human health research, the homeostasis of copper (Cu) is receiving increased attention due to its connection to pathological conditions, including diabetes mellitus (DM). Recent studies have demonstrated that proteins associated with Cu homeostasis, such as ATOX1, FDX1, ATP7A, ATPB, SLC31A1, p53, and UPS, also contribute to DM. Cuproptosis, characterized by Cu homeostasis dysregulation and Cu overload, has been found to cause the oligomerization of lipoylated proteins in mitochondria, loss of iron-sulfur protein, depletion of glutathione, production of reactive oxygen species, and cell death. Further research into how cuproptosis affects DM is essential to uncover its mechanism of action and identify effective interventions. In this article, we review the molecular mechanism of Cu homeostasis and the role of cuproptosis in the pathogenesis of DM. The study of small-molecule drugs that affect these proteins offers the possibility of moving from symptomatic treatment to treating the underlying causes of DM.
Collapse
Affiliation(s)
- Zhaowen Pan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Lan Huang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Yuanyuan Gan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Yan Xia
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| |
Collapse
|
6
|
Hu R, Huang Y, Jiang X, Xu Y, Zheng Z, Shi Y, Liu Y. Maternal dietary copper deficiency induces cardiomyopathy and liver injury in mice by activating autophagy. Nutr Res 2024; 126:1-10. [PMID: 38555686 DOI: 10.1016/j.nutres.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Maternal nutritional deficiencies during pregnancy result in birth defects and elevate the risk of cardiovascular diseases and metabolic diseases. Accumulating evidence suggests that deficiency of copper, a fundamental trace element involved in several pivotal physiological processes, promotes the onset of multiple diseases, notably heart and liver diseases. Yet, exploration into the effects of maternal copper deficiency (CuD) on offspring is still limited. In this study, we hypothesized that maternal CuD induced cardiomyopathy and liver injury in offspring through the activation of autophagy. We established a maternal CuD mouse model by feeding pregnant C57BL/6 mice with a CuD diet until the end of the experiment. Echocardiography, histological analysis, western blotting, and quantitative polymerase chain reaction were performed on offspring at postnatal day 14. We found that maternal CuD caused growth retardation and early postnatal death in the offspring. Furthermore, our results revealed that CuD induced cardiac systolic dysfunction, cardiac hypertrophy, hepatic steatosis, and liver injury. Moreover, higher expression of LC3 and lower expression of p62 were observed in the heart tissues and liver tissues of CuD mice compared with the control group, indicating that CuD induced autophagy activation. In conclusion, maternal CuD caused severely deleterious effects on the heart and liver of the offspring via activating autophagy.
Collapse
Affiliation(s)
- Ruixiang Hu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China
| | - Yipu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xin Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yi Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhirui Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuansen Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
7
|
Chen N, Guo L, Wang L, Dai S, Zhu X, Wang E. Sleep fragmentation exacerbates myocardial ischemia‒reperfusion injury by promoting copper overload in cardiomyocytes. Nat Commun 2024; 15:3834. [PMID: 38714741 PMCID: PMC11076509 DOI: 10.1038/s41467-024-48227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/23/2024] [Indexed: 05/10/2024] Open
Abstract
Sleep disorders increase the risk and mortality of heart disease, but the brain-heart interaction has not yet been fully elucidated. Cuproptosis is a copper-dependent type of cell death activated by the excessive accumulation of intracellular copper. Here, we showed that 16 weeks of sleep fragmentation (SF) resulted in elevated copper levels in the male mouse heart and exacerbated myocardial ischemia-reperfusion injury with increased myocardial cuproptosis and apoptosis. Mechanistically, we found that SF promotes sympathetic overactivity, increases the germination of myocardial sympathetic nerve terminals, and increases the level of norepinephrine in cardiac tissue, thereby inhibits VPS35 expression and leads to impaired ATP7A related copper transport and copper overload in cardiomyocytes. Copper overload further leads to exacerbated cuproptosis and apoptosis, and these effects can be rescued by excision of the sympathetic nerve or administration of copper chelating agent. Our study elucidates one of the molecular mechanisms by which sleep disorders aggravate myocardial injury and suggests possible targets for intervention.
Collapse
Affiliation(s)
- Na Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lizhe Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Sisi Dai
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaocheng Zhu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.
| |
Collapse
|
8
|
Cai L, Tan Y, Holland B, Wintergerst K. Diabetic Cardiomyopathy and Cell Death: Focus on Metal-Mediated Cell Death. Cardiovasc Toxicol 2024; 24:71-84. [PMID: 38321349 PMCID: PMC11517829 DOI: 10.1007/s12012-024-09836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Cardiac myocyte death is an essential initiator of the pathogenesis and progression of various etiological cardiomyopathies, including diabetic cardiomyopathy (DCM), a disease that has been reported since 1972. Cardiac cell death has been detected in the hearts of patients with diabetes and in animal models, and the role of cell death in the pathogenesis of DCM has been extensively investigated. The first review by the authors, specifically focusing on "Cell death and diabetic cardiomyopathy," was published in the journal, Cardiovascular Toxicology in 2003. Over the past two decades, studies investigating the role of cardiac cell death in the pathogenesis of DCM have gained significant attention, resulting in the discovery of several new kinds of cell death involving different mechanisms, including apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis. After the 20th anniversary of the review published in 2003, we now provide an update with a focus on the potential role of metal-mediated cell death, ferroptosis, and cuproptosis in the development of DCM in compliance with this special issue. The intent of our review is to further stimulate work in the field to advance the body of knowledge and continue to drive efforts to develop more advanced therapeutic approaches to prevent cell death, particularly metal-dependent cell death, and, ultimately, to reduce or prevent the development of DCM.
Collapse
Affiliation(s)
- Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA.
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA.
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Brian Holland
- Division of Cardiology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kupper Wintergerst
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
9
|
Wang M, Xu X, Li J, Gao Z, Ding Y, Chen X, Xiang Q, Shen L. Integrated bioinformatics and experiment revealed that cuproptosis is the potential common pathogenesis of three kinds of primary cardiomyopathy. Aging (Albany NY) 2023; 15:14210-14241. [PMID: 38085668 PMCID: PMC10756114 DOI: 10.18632/aging.205298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Cuproptosis is a recently reported new mode of programmed cell death which might be a potential co-pathogenesis of three kinds of primary cardiomyopathy. However, no investigation has reported a clear relevance between primary cardiomyopathy and cuproptosis. In this study, the differential cuproptosis-related genes (CRGs) shared by three kinds of primary cardiomyopathy were identified in training sets. As a result, four CRGs shared by three kinds of primary cardiomyopathy were acquired and they were mainly related to biological processes such as cell death and immuno-inflammatory response through differential analysis, correlation analysis, GSEA, GSVA and immune cell infiltration analysis. Then, three key CRGs (K-CRGs) with high diagnostic value were identified by LASSO regression. The results of nomogram, machine learning, ROC analysis, calibration curve and decision curve indicated that the K-CRGs exhibited outstanding performance in the diagnosis of three kinds of primary cardiomyopathy. After that, in each disease, two molecular subtypes clusters were distinguished. There were many differences between different clusters in the biological processes associated with cell death and immunoinflammation and K-CRGs had excellent molecular subtype identification efficacy. Eventually, results from validation datasets and in vitro experiments verified the role of K-CRGs in diagnosis of primary cardiomyopathy, identification of primary cardiomyopathic molecular subtypes and pathogenesis of cuproptosis. In conclusion, this study found that cuproptosis might be the potential common pathogenesis of three kinds of primary cardiomyopathy and K-CRGs might be promising biomarkers for the diagnosis and molecular subtypes identification of primary cardiomyopathy.
Collapse
Affiliation(s)
- Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaozhuo Xu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianghong Li
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Gao
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Le Shen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
10
|
Chang W, Li P. Copper and Diabetes: Current Research and Prospect. Mol Nutr Food Res 2023; 67:e2300468. [PMID: 37863813 DOI: 10.1002/mnfr.202300468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Indexed: 10/22/2023]
Abstract
Copper is an essential trace metal for normal cellular functions; a lack of copper is reported to impair the function of important copper-binding enzymes, while excess copper could lead to cell death. Numerous studies have shown an association between dietary copper consumption or plasma copper levels and the incidence of diabetes/diabetes complications. And experimental studies have revealed multiple signaling pathways that are triggered by copper shortages or copper overload in diabetic conditions. Moreover, studies show that treated with copper chelators improve vascular function, maintain copper homeostasis, inhibit cuproptosis, and reduce cell toxicity, thereby alleviating diabetic neuropathy, retinopathy, nephropathy, and cardiomyopathy. However, the mechanisms reported in these studies are inconsistent or even contradictory. This review summarizes the precise and tight regulation of copper homeostasis processes, and discusses the latest progress in the association of diabetes and dietary copper/plasma copper. Further, the study pays close attention to the therapeutic potential of copper chelators and copper in diabetes and its complications, and hopes to provide new insight for the treatment of diabetes.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
11
|
Ryaboshapkina M, Ye R, Ye Y, Birnbaum Y. Effects of Dapagliflozin on Myocardial Gene Expression in BTBR Mice with Type 2 Diabetes. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07517-1. [PMID: 37914900 DOI: 10.1007/s10557-023-07517-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is approved for the treatment of type 2 diabetes, heart failure, and chronic kidney disease. DAPA-HF and DELIVER trial results demonstrate that the cardiovascular protective effect of dapagliflozin extends to non-diabetic patients. Hence, the mechanism-of-action may extend beyond glucose-lowering and is not completely elucidated. We have previously shown that dapagliflozin reduces cardiac hypertrophy, inflammation, fibrosis, and apoptosis and increases ejection fraction in BTBR mice with type 2 diabetes. METHODS We conducted a follow-up RNA-sequencing study on the heart tissue of these animals and performed differential expression and Ingenuity Pathway analysis. Selected markers were confirmed by RT-PCR and Western blot. RESULTS SGLT2 had negligible expression in heart tissue. Dapagliflozin improved cardiac metabolism by decreasing glycolysis and pyruvate utilization enzymes, induced antioxidant enzymes, and decreased expression of hypoxia markers. Expression of inflammation, apoptosis, and hypertrophy pathways was decreased. These observations corresponded to the effects of dapagliflozin in the clinical trials.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Regina Ye
- University of Texas at Austin, Austin, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yochai Birnbaum
- The Section of Cardiology, The Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Li X, Ling J, Hu Q, Fang C, Mei K, Wu Y, Huang J, Ling Q, Chen Y, Yu P, Liu X, Li J. Association of serum copper (Cu) with cardiovascular mortality and all-cause mortality in a general population: a prospective cohort study. BMC Public Health 2023; 23:2138. [PMID: 37915007 PMCID: PMC10621106 DOI: 10.1186/s12889-023-17018-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Copper (Cu) homeostasis and Cu-induced cell death are gaining recognition as crucial processes in the pathogenesis of cardiovascular disease (CVD). Circulating Cu associated with CVD and mortality is yet to be fully elucidated. OBJECTIVE This national prospective cohort study is to estimate relationship between serum Cu and the risk of CVD and all-cause mortality. METHODS This study included participants from the National Health and Nutrition Examination Survey 2011-2016. Weighted Cox proportional hazards regression analysis and exposure-response curves were applied. RESULTS This included 5,412 adults, representing 76,479,702 individuals. During a mean of 5.85 years of follow-up (31,653 person-years), 96 CVD and 356 all-cause mortality events occurred. Age and sex-adjusted survival curves showed that individuals with higher levels of serum Cu experienced increased CVD and all-cause death rates (tertiles, p < 0.05). Compared with the participant in tertile 1 of serum Cu (< 16.31 mol/L), those in tertile 3 (≥ 19.84 mol/L) were significantly associated with CVD mortality (HR: 7.06, 95%CI: 1.85,26.96), and all-cause mortality (HR: 2.84, 95% CI: 1.66,4.87). The dose-response curve indicated a linear relationship between serum Cu and CVD mortality (p -nonlinear = 0.48) and all-cause (p -nonlinear = 0.62). A meta-analysis included additional three prospective cohorts with 13,189 patients confirmed the association between higher serum Cu and CVD (HR: 2.08, 95% CI: 1.63,2.65) and all-cause mortality (HR: 1.89, 95%CI: 1.58,2.25). CONCLUSION The present study suggests excessive serum Cu concentrations are associated with the risk of CVD and all-cause mortality in American adults. Our findings and the causal relationships require further investigation.
Collapse
Affiliation(s)
- Xiaozhong Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jitao Ling
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingwen Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Changchang Fang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Kaibo Mei
- Department of Anesthesiology, The People's Hospital of Shanggrao, Shanggrao, Jiangxi, China
| | - Yifan Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jingyi Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qin Ling
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yixuan Chen
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China.
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou, Guangdong, China.
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
13
|
Yang L, Yang P, Lip GYH, Ren J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol Sci 2023; 44:573-585. [PMID: 37500296 DOI: 10.1016/j.tips.2023.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Copper (Cu) homeostasis is gaining increasing attention in human health as both Cu overload and deficiency evokes pathological changes including cardiovascular diseases (CVDs). Cu supplementation, nanocarriers, and chelators have all exhibited therapeutic promise in some human diseases, although how Cu dyshomeostasis and cuproptosis, a novel form of regulated cell death, contribute to CVD pathology remains elusive. Here, we discuss Cu dyshomeostasis and the potential role of cuproptosis in various CVDs. We evaluate underlying cellular mechanisms, aiming to provide some insights regarding the utility of targeting Cu dyshomeostasis and cuproptosis as a novel strategy in the management of CVDs.
Collapse
Affiliation(s)
- Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Pingping Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Elevated hippocampal copper in cases of type 2 diabetes. EBioMedicine 2022; 86:104317. [DOI: 10.1016/j.ebiom.2022.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
|
15
|
Zhang J, Yu Y, Mekhail MA, Wu H, Green KN. A macrocyclic molecule with multiple antioxidative activities protects the lens from oxidative damage. Front Chem 2022; 10:996604. [PMID: 36385982 PMCID: PMC9650109 DOI: 10.3389/fchem.2022.996604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/05/2022] [Indexed: 10/25/2023] Open
Abstract
Growing evidence links oxidative stress to the development of a cataract and other diseases of the eye. Treatments for lens-derived diseases are still elusive outside of the standard surgical interventions, which still carry risks today. Therefore, a potential drug molecule OHPy2N2 was explored for the ability to target multiple components of oxidative stress in the lens to prevent cataract formation. Several pathways were identified. Here we show that the OHPy2N2 molecule activates innate catalytic mechanisms in primary lens epithelial cells to prevent damage induced by oxidative stress. This protection was linked to the upregulation of Nuclear factor erythroid-2-related factor 2 and downstream antioxidant enzyme for glutathione-dependent glutaredoxins, based on Western Blot methods. The anti-ferroptotic potential was established by showing that OHPy2N2 increases levels of glutathione peroxidase, decreases lipid peroxidation, and readily binds iron (II) and (III). The bioenergetics pathway, which has been shown to be negatively impacted in many diseases involving oxidative stress, was also enhanced as evidence by increased levels of Adenosine triphosphate product when the lens epithelial cells were co-incubated with OHPy2N2. Lastly, OHPy2N2 was also found to prevent oxidative stress-induced lens opacity in an ex vivo organ culture model. Overall, these results show that there are multiple pathways that the OHPy2N2 has the ability to impact to promote natural mechanisms within cells to protect against chronic oxidative stress in the eye.
Collapse
Affiliation(s)
- Jinmin Zhang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Yu Yu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Magy A. Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, United States
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
16
|
The Molecular Mechanisms of Defective Copper Metabolism in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5418376. [PMID: 36238639 PMCID: PMC9553361 DOI: 10.1155/2022/5418376] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, connective tissue crosslinking, and antioxidant defense. Copper level has been proved to be closely related to the morbidity and mortality of cardiovascular diseases such as atherosclerosis, heart failure, and diabetic cardiomyopathy (DCM). Copper deficiency can induce cardiac hypertrophy and aggravate cardiomyopathy, while copper excess can mediate various types of cell death, such as autophagy, apoptosis, cuproptosis, pyroptosis, and cardiac hypertrophy and fibrosis. Both copper excess and copper deficiency lead to redox imbalance, activate inflammatory response, and aggravate diabetic cardiomyopathy. This defective copper metabolism suggests a specific metabolic pattern of copper in diabetes and a specific role in the pathogenesis and progression of DCM. This review is aimed at providing a timely summary of the effects of defective copper homeostasis on DCM and discussing potential underlying molecular mechanisms.
Collapse
|
17
|
Ramli FF, Hashim SAS, Raman B, Mahmod M, Kamisah Y. Role of Trientine in Hypertrophic Cardiomyopathy: A Review of Mechanistic Aspects. Pharmaceuticals (Basel) 2022; 15:1145. [PMID: 36145368 PMCID: PMC9505553 DOI: 10.3390/ph15091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormality in myocardial copper homeostasis is believed to contribute to the development of cardiomyopathy. Trientine, a copper-chelating drug used in the management of patients with Wilson's disease, demonstrates beneficial effects in patients with hypertrophic cardiomyopathy. This review aims to present the updated development of the roles of trientine in hypertrophic cardiomyopathy. The drug has been demonstrated in animal studies to restore myocardial intracellular copper content. However, its mechanisms for improving the medical condition remain unclear. Thus, comprehending its mechanistic aspects in cardiomyopathy is crucial and could help to expedite future research.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Clinical Psychopharmacology Research Unit, Department of Psychiatry Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK
| | - Syed Alhafiz Syed Hashim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
18
|
Zhou G, Lan C, Yang Q, Zhong W, Gu Z, Xiang X, Mao Y, Liao X. Expression of SCO1 and SCO2 after form-deprivation myopia in Guinea pigs. Eur J Ophthalmol 2022; 32:3050-3057. [PMID: 34962434 DOI: 10.1177/11206721211070305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The retina is a highly energy-consuming tissue associated with visual development, and the reduced quality of retinal imaging can be related to myopia. Synthesis of cytochrome c oxidase 1 (SCO1) and synthesis of cytochrome c oxidase 2 (SCO2) are involved in ATP (adenosine triphosphate) synthesis and energy metabolism. This study aimed to observe the morphologic changes and investigate the expression of SCO1 and SCO2 induced by form-deprivation myopia (FDM) in the retina and sclera of guinea pigs. METHODS Thirty-six 3-week-old male guinea pigs were randomly assigned to one of two groups: (1) the model group (n = 18), in which the right eyes were covered by a thin opaque balloon as FDM group, and the left eyes were uncovered and served as the contralateral control group; (2) the blank control group (n = 18), in which bilateral eye received no manipulation. Eyeballs were enucleated for histological analysis. The retina and sclera of the guinea pigs were separated to determine the protein and mRNA expression levels of SCO1 and SCO2, respectively. RESULTS After four weeks of form deprivation (FD), the refractive degree and axial length increased significantly (P < 0.001). The retinal and scleral tissues were moderately thinner, and the ganglion cells and the cells of inner and outer nuclear layers in the retina became fewer. Compared with the contralateral control group (P < 0.001) and the blank control group (P < 0.001), the collagen content of the sclera became less in the FDM group. The protein and mRNA expression levels of SCO1 and SCO2 in the FDM group were significantly lower than those in the contralateral control group and the blank control group (P < 0.05). CONCLUSIONS The morphologies of the retina and sclera were changed, and the expression of SCO1 and SCO2 at the protein and transcription levels was significantly reduced in the FDM group. Given these changes, SCO1 and SCO2 genes may be involved in myopic progression.
Collapse
Affiliation(s)
- Guimei Zhou
- Department of Ophthalmology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology & Optometry, 74655North Sichuan Medical College, Nanchong, China
- Innovative Platform for Basic Medicine, 74655North Sichuan Medical College, Nanchong, China
| | - Changjun Lan
- Department of Ophthalmology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology & Optometry, 74655North Sichuan Medical College, Nanchong, China
| | - Qin Yang
- Department of Ophthalmology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology & Optometry, 74655North Sichuan Medical College, Nanchong, China
| | - Weiqi Zhong
- Department of Ophthalmology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology & Optometry, 74655North Sichuan Medical College, Nanchong, China
| | - Zhiming Gu
- Department of Ophthalmology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology & Optometry, 74655North Sichuan Medical College, Nanchong, China
| | - Xiaoling Xiang
- Department of Ophthalmology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology & Optometry, 74655North Sichuan Medical College, Nanchong, China
| | - Yumei Mao
- Department of Ophthalmology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology & Optometry, 74655North Sichuan Medical College, Nanchong, China
| | - Xuan Liao
- Department of Ophthalmology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology & Optometry, 74655North Sichuan Medical College, Nanchong, China
| |
Collapse
|
19
|
Tasić D, Opačić M, Kovačević S, Nikolić Kokić A, Dimitrijević M, Nikolić D, Vojnović Milutinović D, Blagojević D, Djordjevic A, Brkljačić J. Effects of Fructose and Stress on Rat Renal Copper Metabolism and Antioxidant Enzymes Function. Int J Mol Sci 2022; 23:ijms23169023. [PMID: 36012287 PMCID: PMC9409054 DOI: 10.3390/ijms23169023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
The effects of a fructose-rich diet and chronic stress on copper metabolism in the kidneys are still understudied. We investigated whether fructose and/or chronic unpredictable stress modulate copper metabolism in a way that affects redox homeostasis, thus contributing to progression of metabolic disturbances in the kidney. We determined protein level of copper transporters, chaperones, and cuproenzymes including cytochrome c oxidase, as well as antioxidant enzymes function in the kidneys of male Wistar rats subjected to 20% liquid fructose supplementation and/or chronic stress. Liquid fructose supplementation increased level of copper chaperone of superoxide dismutase and decreased metallothionein level, while rendering the level of copper importer and copper chaperones involved in copper delivery to mitochondria and trans Golgi network unaffected. Stress had no effect on renal copper metabolism. The activity and expression of renal antioxidant enzymes remained unaltered in all experimental groups. In conclusion, fructose, independently of stress, decreased renal copper level, and modulated renal copper metabolism as to preserve vital cellular function including mitochondrial energy production and antioxidative defense, at the expense of intracellular copper storage.
Collapse
Affiliation(s)
- Danica Tasić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Miloš Opačić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Aleksandra Nikolić Kokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Milena Dimitrijević
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Dušan Nikolić
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-2078318
| |
Collapse
|
20
|
Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp Ther Med 2022; 23:324. [DOI: 10.3892/etm.2022.11253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 11/05/2022] Open
|
21
|
Liu Y, Miao J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022; 14:nu14030700. [PMID: 35277059 PMCID: PMC8838622 DOI: 10.3390/nu14030700] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, iron mobilization, connective tissue crosslinking, antioxidant defense, melanin synthesis, blood clotting, and neuron peptide maturation. Increasing lines of evidence obtained from studies of cell culture, animals, and human genetics have demonstrated that dysregulation of copper metabolism causes heart disease, which is the leading cause of mortality in the US. Defects of copper homeostasis caused by perturbed regulation of copper chaperones or copper transporters or by copper deficiency resulted in various types of heart disease, including cardiac hypertrophy, heart failure, ischemic heart disease, and diabetes mellitus cardiomyopathy. This review aims to provide a timely summary of the effects of defective copper homeostasis on heart disease and discuss potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
22
|
Aloysius Dhivya M, Sulochana KN, Devi SRB. High glucose induced inflammation is inhibited by copper chelation via rescuing mitochondrial fusion protein 2 in retinal pigment epithelial cells. Cell Signal 2022; 92:110244. [PMID: 34999205 DOI: 10.1016/j.cellsig.2022.110244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Altered trace element homeostasis is associated with diabetic complications, and studies have shown elevated copper levels in the serum of individuals with type 1 & 2 diabetes. Copper chelation has been shown to be beneficial by preventing or reversing diabetic organ damage and developing as a new treatment strategy for treating diabetic complications. Diabetic retinopathy is the major vision-threatening complication of diabetes. Recent studies have reported copper to be elevated in the serum of patients with diabetic retinopathy. Here in this study, we attempt to unravel the role of copper chelator penicillamine in retinal pigment epithelial cells exposed to high glucose (HG) and copper as a model for diabetic retinopathy. We have found that high glucose by itself and along with copper alters the mitochondrial morphology, reduces the expression of the mitochondrial fusion protein 2 (MFN2), and induces endoplasmic reticulum (ER) stress and inflammation. Copper chelation with penicillamine reduced all these changes in mitochondria, thereby rescuing the cells from mitochondrial damage and inflammation.
Collapse
Affiliation(s)
- M Aloysius Dhivya
- R S Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, College Road, Nungambakkam, Chennai 6, India; Sastra University, Trichy - Tanjore Road, Thirumalaisamudram, Thanjavur, Tamil Nadu 613401, India
| | - K N Sulochana
- R S Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, College Road, Nungambakkam, Chennai 6, India
| | - S R Bharathi Devi
- R S Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, College Road, Nungambakkam, Chennai 6, India.
| |
Collapse
|
23
|
Gorący I, Rębacz-Maron E, Korbecki J, Gorący J. Concentrations of Mg, Ca, Fe, Cu, Zn, P and anthropometric and biochemical parameters in adults with chronic heart failure. PeerJ 2021; 9:e12207. [PMID: 34760349 PMCID: PMC8567860 DOI: 10.7717/peerj.12207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background The study investigated the relationship between the concentrations of Mg, Ca, Fe, Cu, Zn, P and anthropometric and biochemical parameters in the blood serum of patients with heart failure (HF) and the potential influence on the development and progression of HF. Material & methods The study included 214 patients (155 men and 59 women), aged 40–87 years, presenting symptoms or signs typical of HF (according to the NYHA functional classification). Serum concentrations were determined for Mg, Ca, Fe, Cu, Zn, P, C-reactive protein (CRP), creatinine, urea, triglyceride levels (TG), total cholesterol (CH), high density protein (HDL), low density protein (LDL). The levels of macro-and microminerals were analysed using inductively coupled serum optical emission spectrometry (ICP-OES). Results Our study confirmed the role of known risk factors in the development of heart failure, including: overweight, diabetes, hypertension, high triglycerides (TG), high total cholesterol (CH), high levels of low density protein (LDL) and reduced levels of high density protein (HDL), high CRP, high creatinine. Moreover, deficient serum concentrations of Mg (47% of the studied men and 54% of the women) and Cu (in 44% of men and more than 30% of women) were observed, as well as subnormal serum Fe (2% of women) and Zn (1% of men). Elevated serum Ca was found in 50% of men and 49% of women. In 44% of the studied men and 52% of the studied women, P levels in serum were also above-average. The study revealed a significant positive correlation between serum levels of Ca and Mg, and also Ca and Cu in women. In men, serum Cu was positively correlated with Mg and Ca concentrations. In patients from group 1 (NYHA I–II), Mg content was positively correlated with Ca and Cu. In this patient group, Ca was also positively associated with Cu content in serum. In group 2 (NYHA III-IV), serum Mg concentration was significantly positively correlated with that of Cu and Ca. Conclusions Changes in the serum concentrations of macro-and microminerals may significantly affect the severity of HF in Polish patients.
Collapse
Affiliation(s)
- Iwona Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Rębacz-Maron
- Institute of Biology, Department of Ecology and Anthropology, University of Szczecin, Szczecin, Poland
| | - Jan Korbecki
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
| | - Jarosław Gorący
- Clinic of Cardiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
24
|
Mandour AS, Mahmoud AE, Ali AO, Matsuura K, Samir H, Abdelmageed HA, Ma D, Yoshida T, Hamabe L, Uemura A, Watanabe G, Tanaka R. Expression of cardiac copper chaperone encoding genes and their correlation with cardiac function parameters in goats. Vet Res Commun 2021; 45:305-317. [PMID: 34227027 DOI: 10.1007/s11259-021-09811-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Copper deficiency (CuD) is a common cause of oxidative cardiac tissue damage in ruminants. The expression of copper chaperone (Cu-Ch) encoding genes enables an in-depth understanding of copper-associated disorders, but no previous studies have been undertaken to highlight Cu-Ch disturbances in heart tissue in ruminants due to CuD. The current study aimed to investigate the Cu-Ch mRNA expression in the heart of goats after experimental CuD and highlight their relationship with the cardiac measurements. Eleven male goats were enrolled in this study and divided into the control group (n = 4) and CuD group (n = 7), which received copper-reducing dietary regimes for 7 months. Heart function was evaluated by electrocardiography and echocardiography, and at the end of the experiment, all animals were sacrificed and the cardiac tissues were collected for histopathology and quantitative mRNA expression by real-time PCR. In the treatment group, cardiac measurements revealed increased preload and the existence of cardiac dilatation, and significant cardiac tissue damage by histopathology. Also, the relative mRNA expression of Cu-Ch encoding genes; ATP7A, CTr1, LOX, COX17, as well as ceruloplasmin (CP), troponin I3 (TNNI3), glutathione peroxidase (GPX1), and matrix metalloprotease inhibitor (MMPI1) genes were significantly down-regulated in CuD group. There was a significant correlation between investigated genes and some cardiac function measurements; meanwhile, a significant inverse correlation was observed between histopathological score and ATP7B, CTr1, LOX, and COX17. In conclusion, this study revealed that CuD induces cardiac dilatation and alters the mRNA expression of Cu-Ch genes, in addition to TNNI3, GPX1, and MMPI1 that are considered key factors in clinically undetectable CuD-induced cardiac damage in goats which necessitate further studies for feasibility as biomarkers.
Collapse
Affiliation(s)
- Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt. .,Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan.
| | - Ahmed E Mahmoud
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Asmaa O Ali
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.,Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Hend A Abdelmageed
- Department of Bacteriology, Animal Health Research Institute, Agriculture Research Center, Ismailia Lab, Ismailia, Egypt.,Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Danfu Ma
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Akiko Uemura
- Department of Veterinary Surgery, Division of Veterinary Research, Obihiro University of Agriculture and Veterinary Medicine, 080-8555, Hokkaido, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| |
Collapse
|
25
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
26
|
Li C, Wang T, Xiao Y, Li K, Meng X, James Kang Y. COMMD1 upregulation is involved in copper efflux from ischemic hearts. Exp Biol Med (Maywood) 2021; 246:607-616. [PMID: 33653183 PMCID: PMC7934151 DOI: 10.1177/1535370220969844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
Copper depletion is associated with myocardial ischemic infarction, in which copper metabolism MURR domain 1 (COMMD1) is increased. The present study was undertaken to test the hypothesis that the elevated COMMD1 is responsible for copper loss from the ischemic myocardium, thus worsening myocardial ischemic injury. Mice (C57BL/6J) were subjected to left anterior descending coronary artery permanent ligation to induce myocardial ischemic infarction. In the ischemic myocardium, copper reduction was associated with a significant increase in the protein level of COMMD1. A tamoxifen-inducible, cardiomyocyte -specific Commd1 knockout mouse (C57BL/6J) model (COMMD1CMC▲/▲) was generated using the Cre-LoxP recombination system. COMMD1CMC▲/▲ and wild-type littermates were subjected to the same permanent ligation of left anterior descending coronary artery. At the 7th day after ischemic insult, COMMD1 deficiency suppressed copper loss in the heart, along with preservation of vascular endothelial growth factor and vascular endothelial growth factor receptor 1 expression and the integrity of the vascular system in the ischemic myocardium. Corresponding to this change, infarct size of ischemic heart was reduced and myocardial contractile function was well preserved in COMMD1CMC▲/▲ mice. These results thus demonstrate that upregulation of COMMD1 is at least partially responsible for copper efflux from the ischemic heart. Cardiomyocyte-specific deletion of COMMD1 helps preserve the availability of copper for angiogenesis, thus suppressing myocardial ischemic dysfunction.
Collapse
Affiliation(s)
- Chen Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Xiao
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
27
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
28
|
Nakai K, Endo K, Yoshida F, Koka M, Yamada N, Satoh T, Tsurubuchi T, Matsumura A, Matsumoto Y, Sakurai H. Boron analysis and imaging of cells with 2-hr BPA exposure by using micro-proton particle-induced gamma-ray emission (PIGE). Appl Radiat Isot 2020; 165:109334. [PMID: 32739796 DOI: 10.1016/j.apradiso.2020.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Particle-induced gamma-ray emission (PIGE), which measures prompt gamma rays at 428 keV from 10B (p, p'γ) 7Be, was used to confirm the boron distribution within 2hr-BPA-exposed cells. Distribution images of potassium, phosphate, and boron and the whole spectrum showed the ratios of boron counts to total (%) as follows: control group: 1.35 ± 0.073%; 2hr boron exposure group: 2.33 ± 0.35%; and boron exposure/wash group: 1.58 ± 0.095%. Micro-beam PIXE/PIGE can be a promising tool for visualization of intracellular Boron.
Collapse
Affiliation(s)
- Kei Nakai
- Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki, Ibaraki, 300-0331, Japan; Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Keita Endo
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Fumiyo Yoshida
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masashi Koka
- Takasaki Advanced Radiation Research Institute, National Institute for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma, 370-1292, Japan
| | - Naoto Yamada
- Takasaki Advanced Radiation Research Institute, National Institute for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma, 370-1292, Japan
| | - Takahiro Satoh
- Takasaki Advanced Radiation Research Institute, National Institute for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma, 370-1292, Japan
| | - Takao Tsurubuchi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
29
|
Abstract
The management of heart failure has changed significantly over the last 30 years, leading to improvements in the quality of life and outcomes, at least for patients with a substantially reduced left ventricular ejection fraction (HFrEF). This has been made possible by the identification of various pathways leading to the development and progression of heart failure, which have been successfully targeted with effective therapies. Meanwhile, many other potential targets of treatment have been identified, and the list is constantly expanding. In this review, we summarise planned and ongoing trials exploring the potential benefit, or harm, of old and new pharmacological interventions that might offer further improvements in treatment for those with HFrEF and extend success to the treatment of patients with heart failure with preserved left ventricular ejection fraction (HFpEF) and other heart failure phenotypes.
Collapse
Affiliation(s)
- Pierpaolo Pellicori
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| | - Muhammad Javed Iqbal Khan
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Fraser John Graham
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - John G F Cleland
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
- National Heart & Lung Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield Hospitals, Imperial College, London, UK
| |
Collapse
|
30
|
Zhang S, Liu H, Amarsingh GV, Cheung CCH, Wu D, Narayanan U, Zhang L, Cooper GJS. Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure. Metallomics 2019; 12:259-272. [PMID: 31821401 DOI: 10.1039/c9mt00223e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes impairs systemic copper regulation, and acts as a major independent risk factor for heart failure (HF) wherein mitochondrial dysfunction is a key pathogenic process. Here we asked whether diabetes might alter mitochondrial structure/function and thus impair cardiac performance by damaging myocellular pathways that mediate cell-copper homeostasis. We measured activity of major mitochondria-resident copper-enzymes cytochrome c oxidase (mt-Cco) and superoxide dismutase 1 (mt-Sod1); expression of three main mitochondrial copper-chaperones [Cco copper chaperone 17 (Cox17), Cox11, and mitochondria-resident copper chaperone for Sod1 (mt-Ccs)]; of copper-dependent Cco-assembly protein Sco1; and regulation of mitochondrial biogenesis, in left-ventricular (LV) tissue from groups of non-diabetic-control, untreated-diabetic, and divalent-copper-selective chelator-treated diabetic rats. Diabetes impaired LV pump function; ∼halved LV-copper levels; substantively decreased myocellular expression of copper chaperones, and enzymatic activity of mt-Cco and mt-Sod1. Divalent-copper chelation with triethylenetetramine improved cardiac pump function, restored levels of myocardial copper, the copper chaperones, and Sco1; and enzymatic activity of mt-Cco and mt-Sod1. Copper chelation also restored expression of the key mitochondrial biogenesis regulator, peroxisome-proliferator-activated receptor gamma co-activator-1α (Pgc-1α). This study shows for the first time that altered myocardial copper-trafficking is a key pathogenic process in diabetes-evoked HF. We also describe a novel therapeutic effect of divalent-copper-selective chelation, namely restoration of myocellular copper trafficking, which is thus revealed as a potentially tractable target for novel pharmacological intervention to improve cardiac function.
Collapse
Affiliation(s)
- Shaoping Zhang
- School of Biological Sciences, University of Auckland, Private Bag 92 019, Auckland 1010, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Arici MA, Sahin A, Cavdar Z, Ergur BU, Ural C, Akokay P, Kalkan S, Tuncok Y. Effects of resveratrol on alpha-amanitin-induced nephrotoxicity in BALB/c mice. Hum Exp Toxicol 2019; 39:328-337. [PMID: 31726883 DOI: 10.1177/0960327119888271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alpha-amanitin (α-AMA), the primary toxin of Amanita phalloides, is known to cause nephrotoxicity and hepatotoxicity. Resveratrol is an antioxidant that has shown efficacy in many nephrotoxicity models. The aim of this study was to investigate the effects of resveratrol against the early and late stages of α-AMA-induced nephrotoxicity, compared to those of silibinin, a well-known antidote for poisoning by α-AMA-containing mushrooms. Mice kidney tissues were obtained from five groups: (1) α-AMA + NS (simultaneous administration of α-AMA and normal saline), (2) α-AMA + SR (simultaneous administration of α-AMA and resveratrol), (3) α-AMA + 12R (resveratrol administration 12 h after α-AMA administration), (4) α-AMA + 24R (resveratrol administration 24 h after α-AMA administration), and (5) α-AMA + Sil (simultaneous administration of α-AMA and silibinin). Histomorphological and biochemical analyses were performed to evaluate kidney damage and oxidant-antioxidant status in the kidney. Scores of renal histomorphological damage decreased significantly in the early resveratrol treatment groups (α-AMA + SR and α-AMA + 12R), compared to those in the α-AMA + NS group (p < 0.05). Catalase levels increased significantly in the α-AMA + SR group, compared to those in the α-AMA + NS group (p < 0.001). Early resveratrol administration within 12 h after α-AMA ingestion may reverse the effects of α-AMA-induced nephrotoxicity, partly through its antioxidant action, thereby suggesting its potential as a treatment for poisoning by α-AMA-containing mushrooms.
Collapse
Affiliation(s)
- M A Arici
- Division of Clinical Pharmacology, Department of Medical Pharmacology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - A Sahin
- Department of Emergency Medicine, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Z Cavdar
- Department of Molecular Medicine, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - B U Ergur
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - C Ural
- Department of Molecular Medicine, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - P Akokay
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - S Kalkan
- Division of Clinical Toxicology, Department of Medical Pharmacology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Y Tuncok
- Division of Clinical Toxicology, Department of Medical Pharmacology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
32
|
Ozsezen OS, Meral I. Effect of diet with carbohydrate but without daily energy restriction on serum glucose, lactate, and selected mineral and lipid levels in streptozotocin-induced experimental diabetic rats. Arch Physiol Biochem 2019; 125:351-356. [PMID: 29681164 DOI: 10.1080/13813455.2018.1465099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Objective: Type I diabetes is a disease characterised by an extreme reduction in serum insulin levels. Diet and exercise have gained considerable attention in the treatment of diabetes. Therefore, this study was carried out to investigate the effect of diet with carbohydrate but without daily energy restriction on various metabolites (glucose, triglycerides, cholesterol, lactate), some electrolytes (Ca, Mg, Na, K, P, Cl) and essential metals (Mn, Co, Cu, Se, Zn, Fe) in the blood of rats with streptozotocin-induced diabetes. Materials and methods: Thirty-three male rats were divided into four groups of standard rat diet (SR)-fed control, SR-diet fed diabetics, low carbohydrate-standard protein-high fat (LCSPHF) diet-fed diabetics, and very low carbohydrate-high protein-high fat (VLCHPHF) diet-fed diabetics. Diabetes was induced by an i.p. injection of 50 mg/kg streptozotocin. The rats were fed with the specially prepared diets for 28 days. Results: The decreased-serum Cl and the increased-serum glucose levels were only the difference between the controls and SR diet-fed diabetic rats regarding to measured parameters. Lowering carbohydrate and increasing fat ratio in diet caused an increase in serum cholesterol and triglyceride levels leading to an increased-serum Fe and Ca, and decreased-serum Na and Cu levels in diabetic rats. Conclusion: The serum mineral changes should be taken into consideration together with the changes in serum glucose, cholesterol, and triglyceride levels for the secondary complications of diabetes mellitus.
Collapse
Affiliation(s)
| | - Ismail Meral
- b Department of Physiology, School of Medicine, Bezmialem Vakif University , Istanbul , Turkey
| |
Collapse
|
33
|
Fu C, Lizhao J, Luo Z, Wang T, Grapperhaus CA, Ding X, Kang YJ. Active uptake of hydrophilic copper complex Cu(ii)-TETA in primary cultures of neonatal rat cardiomyocytes. Metallomics 2019; 11:565-575. [PMID: 30761393 DOI: 10.1039/c8mt00277k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myocardial ischemia leads to copper efflux from the heart. The ischemic tissue with a low copper content fails to take up copper from the circulation even under the conditions of serum copper elevation. Cardiac copper repletion thus requires other available forms of this element than those currently known to bind to copper transport proteins. The copper complex of triethylenetetramine (TETA) is a metabolite of TETA, which has the potential to increase cardiac copper content in vivo. In the present study, we synthesized Cu(ii)-TETA, analyzed its crystal structure, and demonstrated the role of this compound in facilitating copper accumulation in primary cultures of neonatal rat cardiomyocytes. The Cu(ii)-TETA compound formed a square pyramidal chloride salt [Cu(TETA)Cl]Cl structure, which dissociates from chloride in aqueous solution to yield the four-coordinate dication Cu(ii)-TETA. Cu(ii)-TETA was accumulated as an intact compound in cardiomyocytes. Analysis from time-dependent copper accumulation in cardiomyocytes defined a different dynamic process in copper uptake between Cu(ii)-TETA and CuCl2 exposure. An additive copper accumulation in cardiomyocytes was found when the cells were exposed to both CuCl2 and Cu(ii)-TETA. Gene silencing of copper transport 1 (CTR1) did not affect cross-membrane transportation of Cu(ii)-TETA, but inhibited copper cellular accumulation from CuCl2. Furthermore, the uptake of Cu(ii)-TETA by cardiomyocytes was ATP-dependent. It is thus concluded that the formation of Cu(ii)-TETA facilitates copper accumulation in cardiomyocytes through an active CTR1-independent transportation process.
Collapse
Affiliation(s)
- Chunyan Fu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Li P, Yin J, Zhu Y, Li S, Chen S, Sun T, Shan Z, Wang J, Shang Q, Li X, Yang W, Liu L. Association between plasma concentration of copper and gestational diabetes mellitus. Clin Nutr 2019; 38:2922-2927. [PMID: 30661907 DOI: 10.1016/j.clnu.2018.12.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Emerging findings have raised concerns about significant associations between excessive copper (Cu) and abnormal glucose metabolism. Nevertheless, related researches on the relationship of Cu concentration and gestational diabetes mellitus (GDM) are limited. The objective of this study was to determine whether plasma Cu concentration is associated with GDM. METHODS A case-control study of 248 cases of GDM and 248 age-, parity- and gestational age-matched controls was conducted in Wuhan, China between August 2012 and April 2015. Fasting blood samples of participants were collected at the time of GDM screening (≥24 weeks of gestation). Plasma Cu concentrations were detected by inductively coupled plasma mass spectrometry. The strength of the association of plasma Cu with GDM odds was evaluated by odds ratios (ORs) with 95% confidence intervals (CIs) from conditional logistic regression. Partial Spearman or Pearson correlation coefficients were calculated to estimate the interrelationship between plasma Cu and the risk factors of GDM. RESULTS Plasma Cu concentrations in the GDM group (mean ± SD: 1960.24 ± 391.98 μg/L) were higher than in the control group (mean ± SD: 1842.43 ± 387.09 μg/L) (P = 0.001). After adjustment for possible confounders, the ORs (95% CIs) of GDM across increasing quartiles of plasma Cu levels were 1.00 (referent), 1.79 (0.90-3.55), 2.72 (1.35-5.48) and 2.91 (1.48-5.75), respectively; the OR (95% CI) of GDM was 1.33 (1.06-1.67) for each standard deviation increment of plasma Cu. Moreover, Cu concentrations were positively associated with fasting plasma glucose, 1-h post-glucose load and 2-h post-glucose load (all P < 0.05). CONCLUSIONS The present study indicated a significantly increased odds of GDM in association with higher concentrations of plasma Cu. Prospective cohort studies in other populations are needed to confirm our findings.
Collapse
Affiliation(s)
- Peiyun Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yalun Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shuzhen Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Sijing Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiawei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qianqian Shang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
35
|
Eum WS, Shin MJ, Lee CH, Yeo HJ, Yeo EJ, Choi YJ, Kwon HJ, Kim DS, Kwon OS, Lee KW, Han KH, Park J, Kim DW, Choi SY. Neuroprotective effects of Tat-ATOX1 protein against MPP+-induced SH-SY5Y cell deaths and in MPTP-induced mouse model of Parkinson's disease. Biochimie 2019; 156:158-168. [DOI: 10.1016/j.biochi.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
|
36
|
Liu J, Chen C, Liu Y, Sun X, Ding X, Qiu L, Han P, James Kang Y. Trientine selectively delivers copper to the heart and suppresses pressure overload-induced cardiac hypertrophy in rats. Exp Biol Med (Maywood) 2018; 243:1141-1152. [PMID: 30472883 DOI: 10.1177/1535370218813988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dietary copper supplementation reverses pressure overload-induced cardiac hypertrophy by copper replenishment in the heart. A copper-selective chelator, trientine (triethylenetetramine [TETA]), reverses left ventricular hypertrophy associated with diabetes also by copper replenishment in the heart. The present study was undertaken to address the critical issue how TETA delivers copper to the heart. Adult male Sprague-Dawley rats were subjected to transverse aortic constriction (TAC) to induce cardiac hypertrophy. Eight weeks after the TAC surgery, cardiac hypertrophy was developed and copper content in the heart was reduced. TETA was then administrated by gavage in two different dosages (21.9 or 87.6 mg/kg day) for six weeks. The results showed that in the lower dosage, TETA replenished copper contents in the heart, along with a decrease in the copper concentration in the blood and kidney, and an increase in the urine. In the higher dosage, TETA did not replenish copper contents in the heart, but markedly increased copper concentrations in the urine and decreased those in the blood and kidney. Neither lower nor higher TETA dosage altered copper concentrations in other organs. Corresponding to myocardial copper replenishment, the lower dose TETA suppresses cardiac hypertrophy, as judged by a reduction in the left ventricle wall thickness and a decrease in the heart size, and diminished cardiac fibrosis, as reflected by a decrease in collagen I content. TETA in the higher dose not only did not suppress cardiac hypertrophy, but also caused cardiac hypertrophy in sham-operated rats. TETA-mediated myocardial copper restoration is independent of copper transporter-1 or -2 but related to an energy-dependent transportation. This study demonstrates that low-dose TETA functions as a copper chaperone, selectively delivering copper to the copper-deprived heart through an active transportation; in higher doses, TETA simply retains its chelator function, removing copper from the body by urinary excretion. Impact statement Our study reveals that TETA, traditionally regarded as a copper chelator, in lower doses delivers copper selectively to the heart through a mechanism independent of copper transporter-1 or -2. Copper supplementation by a lower dose of TETA suppresses pressure overload-induced cardiac hypertrophy. Since ischemic heart disease and hypertrophic cardiomyopathy are accompanied by myocardial copper loss, this approach of using a lower dose of TETA to supplement copper to the heart would help treat the disease condition of patients with such cardiac events.
Collapse
Affiliation(s)
- Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chen Chen
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinjie Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaorong Sun
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liying Qiu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
37
|
Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis. ENERGIES 2018. [DOI: 10.3390/en11092319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For many years, carbon capture and storage (CCS) has been discussed as a technology that may make a significant contribution to achieving major reductions in greenhouse gas emissions. At present, however, only two large-scale power plants capture a total of 2.4 Mt CO2/a. Several reasons are identified for this mismatch between expectations and realised deployment. Applying bibliographic coupling, the research front of CCS, understood to be published peer-reviewed papers, is explored to scrutinise whether the current research is sufficient to meet these problems. The analysis reveals that research is dominated by technical research (69%). Only 31% of papers address non-technical issues, particularly exploring public perception, policy, and regulation, providing a broader view on CCS implementation on the regional or national level, or using assessment frameworks. This shows that the research is advancing and attempting to meet the outlined problems, which are mainly non-technology related. In addition to strengthening this research, the proportion of papers that adopt a holistic approach may be increased in a bid to meet the challenges involved in transforming a complex energy system. It may also be useful to include a broad variety of stakeholders in research so as to provide a more resilient development of CCS deployment strategies.
Collapse
|
38
|
Balsano C, Porcu C, Sideri S. Is copper a new target to counteract the progression of chronic diseases? Metallomics 2018; 10:1712-1722. [DOI: 10.1039/c8mt00219c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review, we highlight the importance of a Cu imbalance in the pathogenesis of several chronic inflammatory diseases.
Collapse
|
39
|
Xu J, Church SJ, Patassini S, Begley P, Waldvogel HJ, Curtis MA, Faull RLM, Unwin RD, Cooper GJS. Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia. Metallomics 2017; 9:1106-1119. [PMID: 28654115 DOI: 10.1039/c7mt00074j] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Datasets comprising simultaneous measurements of many essential metals in Alzheimer's disease (AD) brain are sparse, and available studies are not entirely in agreement. To further elucidate this matter, we employed inductively-coupled-plasma mass spectrometry to measure post-mortem levels of 8 essential metals and selenium, in 7 brain regions from 9 cases with AD (neuropathological severity Braak IV-VI), and 13 controls who had normal ante-mortem mental function and no evidence of brain disease. Of the regions studied, three undergo severe neuronal damage in AD (hippocampus, entorhinal cortex and middle-temporal gyrus); three are less-severely affected (sensory cortex, motor cortex and cingulate gyrus); and one (cerebellum) is relatively spared. Metal concentrations in the controls differed among brain regions, and AD-associated perturbations in most metals occurred in only a few: regions more severely affected by neurodegeneration generally showed alterations in more metals, and cerebellum displayed a distinctive pattern. By contrast, copper levels were substantively decreased in all AD-brain regions, to 52.8-70.2% of corresponding control values, consistent with pan-cerebral copper deficiency. This copper deficiency could be pathogenic in AD, since levels are lowered to values approximating those in Menkes' disease, an X-linked recessive disorder where brain-copper deficiency is the accepted cause of severe brain damage. Our study reinforces others reporting deficient brain copper in AD, and indicates that interventions aimed at safely and effectively elevating brain copper could provide a new experimental-therapeutic approach.
Collapse
Affiliation(s)
- Jingshu Xu
- School of Biological Sciences, Faculty of Science, and the Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. and Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stephanie J Church
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, and Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science, and the Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. and Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Paul Begley
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, and Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - Henry J Waldvogel
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, and Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - Garth J S Cooper
- School of Biological Sciences, Faculty of Science, and the Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. and Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand and Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, and Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
40
|
Bloomgarden Z. Chelation for diabetes complications: A neglected approach? J Diabetes 2017; 9:318-319. [PMID: 28074558 DOI: 10.1111/1753-0407.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
,Zou1 ,,。,,,,,2-4 。、、、56 ,。2(T2D),、、7 。1,,8 。,,(TETA),、D-9 。 ,。,TETAT2D10 ;11 ,12 。24,50T2D,EDTA,EDTA13 。,1708EDTA,18%14 ,63341%, + 15 ,16 ;17 。 ?、、,,18 。Zou1 ,。.
Collapse
|
41
|
Lowe J, Taveira-da-Silva R, Hilário-Souza E. Dissecting copper homeostasis in diabetes mellitus. IUBMB Life 2017; 69:255-262. [DOI: 10.1002/iub.1614] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/15/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Jennifer Lowe
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Rosilane Taveira-da-Silva
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Elaine Hilário-Souza
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
42
|
Lachowicz JI, Nurchi VM, Crisponi G, Jaraquemada-Pelaez MDG, Caltagirone C, Peana M, Zoroddu MA, Szewczuk Z, Cooper GJ. Complex formation equilibria of Cu2+ and Zn2+ with Irbesartan and Losartan. Eur J Pharm Sci 2017; 97:158-169. [DOI: 10.1016/j.ejps.2016.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
|
43
|
Magrì A, La Mendola D, Nicoletti VG, Pappalardo G, Rizzarelli E. New Insight in Copper-Ion Binding to Human Islet Amyloid: The Contribution of Metal-Complex Speciation To Reveal the Polypeptide Toxicity. Chemistry 2016; 22:13287-300. [PMID: 27493030 DOI: 10.1002/chem.201602816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 01/05/2023]
Abstract
Type-2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace-element serum level is significantly influenced during the development of diabetes. In particular, the dys-homeostasis of Cu(2+) ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu(2+) ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal-ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17-29 and 14-22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17-29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu(2+) ions with Ac-PEG-hIAPP(17-29)-NH2 , Ac-rIAPP(17-29)R18H-NH2 , and Ac-PEG-hIAPP(14-22)-NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu(2+) ions starting from the His18 imidazole nitrogen atom toward the N-terminus domain. The stability constants of copper(II) complexes with Ac-PEG-hIAPP(14-22)-NH2 were used to simulate the different experimental conditions under which aggregate formation and oxidative stress of hIAPP has been reported. Speciation unveils: 1) the protective role played by increased amounts of Cu(2+) ions on the hIAPP fibrillary aggregation, 2) the effect of adventitious trace amounts of Cu(2+) ions present in phosphate-buffered saline (PBS), and 3) a reducing fluorogenic probe on H2 O2 production attributed to the polypeptide alone.
Collapse
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126, Catania, Italy.
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy.
| | - Vincenzo Giuseppe Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Pappalardo
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126, Catania, Italy
| | - Enrico Rizzarelli
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126, Catania, Italy.,Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
44
|
Xu J, Begley P, Church SJ, Patassini S, McHarg S, Kureishy N, Hollywood KA, Waldvogel HJ, Liu H, Zhang S, Lin W, Herholz K, Turner C, Synek BJ, Curtis MA, Rivers-Auty J, Lawrence CB, Kellett KAB, Hooper NM, Vardy ERLC, Wu D, Unwin RD, Faull RLM, Dowsey AW, Cooper GJS. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia. Sci Rep 2016; 6:27524. [PMID: 27276998 DOI: 10.1038/srep27524] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/19/2016] [Indexed: 12/25/2022] Open
Abstract
Impairment of brain-glucose uptake and brain-copper regulation occurs in Alzheimer's disease (AD). Here we sought to further elucidate the processes that cause neurodegeneration in AD by measuring levels of metabolites and metals in brain regions that undergo different degrees of damage. We employed mass spectrometry (MS) to measure metabolites and metals in seven post-mortem brain regions of nine AD patients and nine controls, and plasma-glucose and plasma-copper levels in an ante-mortem case-control study. Glucose, sorbitol and fructose were markedly elevated in all AD brain regions, whereas copper was correspondingly deficient throughout (all P < 0.0001). In the ante-mortem case-control study, by contrast, plasma-glucose and plasma-copper levels did not differ between patients and controls. There were pervasive defects in regulation of glucose and copper in AD brain but no evidence for corresponding systemic abnormalities in plasma. Elevation of brain glucose and deficient brain copper potentially contribute to the pathogenesis of neurodegeneration in AD.
Collapse
Affiliation(s)
- Jingshu Xu
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Paul Begley
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Stephanie J Church
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Stefano Patassini
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Selina McHarg
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Nina Kureishy
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Katherine A Hollywood
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Henry J Waldvogel
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Hong Liu
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand
| | - Shaoping Zhang
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand
| | - Wanchang Lin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Karl Herholz
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Clinton Turner
- Anatomical Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Beth J Synek
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.,Anatomical Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Jack Rivers-Auty
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Catherine B Lawrence
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Katherine A B Kellett
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Nigel M Hooper
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | | | - Donghai Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Andrew W Dowsey
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Garth J S Cooper
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, and Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| |
Collapse
|
45
|
Ahn EH, Kim DW, Shin MJ, Ryu EJ, Yong JI, Chung SY, Cha HJ, Kim SJ, Choi YJ, Kim DS, Cho SW, Lee K, Cho YS, Kwon HY, Park J, Eum WS, Choi SY. Tat-ATOX1 inhibits streptozotocin-induced cell death in pancreatic RINm5F cells and attenuates diabetes in a mouse model. Int J Mol Med 2016; 38:217-24. [PMID: 27222268 DOI: 10.3892/ijmm.2016.2599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 04/27/2016] [Indexed: 11/06/2022] Open
Abstract
Antioxidant 1 (ATOX1) functions as an antioxidant against hydrogen peroxide and superoxide, and therefore may play a significant role in many human diseases, including diabetes mellitus (DM). In the present study, we examined the protective effects of Tat-ATOX1 protein on streptozotocin (STZ)-exposed pancreatic insulinoma cells (RINm5F) and in a mouse model of STZ-induced diabetes using western blot analysis, immunofluorescence staining and MTT assay, as well as histological and biochemical analysis. Purified Tat-ATOX1 protein was efficiently transduced into RINm5F cells in a dose- and time-dependent manner. Additionally, Tat-ATOX1 protein markedly inhibited reactive oxygen species (ROS) production, DNA damage and the activation of Akt and mitogen activated protein kinases (MAPKs) in STZ-exposed RINm5F cells. In addition, Tat-ATOX1 protein transduced into mice pancreatic tissues and significantly decreased blood glucose and hemoglobin A1c (HbA1c) levels as well as the body weight changes in a model of STZ-induced diabetes. These results indicate that transduced Tat-ATOX1 protein protects pancreatic β-cells by inhibiting STZ-induced cellular toxicity in vitro and in vivo. Based on these findings, we suggest that Tat-ATOX1 protein has potential applications as a therapeutic agent for oxidative stress-induced diseases including DM.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Eun Ji Ryu
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Ji In Yong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Seok Young Chung
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Sang Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, Chungnam 31538, Republic of Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Keunwook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Yoon Shin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| |
Collapse
|
46
|
Langford-Smith A, Tilakaratna V, Lythgoe PR, Clark SJ, Bishop PN, Day AJ. Age and Smoking Related Changes in Metal Ion Levels in Human Lens: Implications for Cataract Formation. PLoS One 2016; 11:e0147576. [PMID: 26794210 PMCID: PMC4721641 DOI: 10.1371/journal.pone.0147576] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Age-related cataract formation is the primary cause of blindness worldwide and although treatable by surgical removal of the lens the majority of sufferers have neither the finances nor access to the medical facilities required. Therefore, a better understanding of the pathogenesis of cataract may identify new therapeutic targets to prevent or slow its progression. Cataract incidence is strongly correlated with age and cigarette smoking, factors that are often associated with accumulation of metal ions in other tissues. Therefore this study evaluated the age-related changes in 14 metal ions in 32 post mortem human lenses without known cataract from donors of 11 to 82 years of age by inductively coupled plasma mass spectrometry; smoking-related changes in 10 smokers verses 14 non-smokers were also analysed. A significant age-related increase in selenium and decrease in copper ions was observed for the first time in the lens tissue, where cadmium ion levels were also increased as has been seen previously. Aluminium and vanadium ions were found to be increased in smokers compared to non-smokers (an analysis that has only been carried out before in lenses with cataract). These changes in metal ions, i.e. that occur as a consequence of normal ageing and of smoking, could contribute to cataract formation via induction of oxidative stress pathways, modulation of extracellular matrix structure/function and cellular toxicity. Thus, this study has identified novel changes in metal ions in human lens that could potentially drive the pathology of cataract formation.
Collapse
Affiliation(s)
- Alex Langford-Smith
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Viranga Tilakaratna
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paul R Lythgoe
- School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, United Kingdom
| | - Simon J Clark
- Centre for Ophthalmology and Vision Sciences, Institute of Human Development, University of Manchester, Manchester, United Kingdom.,Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul N Bishop
- Centre for Ophthalmology and Vision Sciences, Institute of Human Development, University of Manchester, Manchester, United Kingdom.,Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
47
|
Wang L, Ren L, Tang T, Dai K, Yang K, Hao Y. A novel nano-copper-bearing stainless steel with reduced Cu(2+) release only inducing transient foreign body reaction via affecting the activity of NF-κB and Caspase 3. Int J Nanomedicine 2015; 10:6725-39. [PMID: 26604748 PMCID: PMC4631433 DOI: 10.2147/ijn.s90249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Foreign body reaction induced by biomaterials is a serious problem in clinical applications. Although 317L-Cu stainless steel (317L-Cu SS) is a new type of implant material with antibacterial ability and osteogenic property, the foreign body reaction level still needs to be assessed due to its Cu(2+) releasing property. For this purpose, two macrophage cell lines were selected to detect cellular proliferation, apoptosis, mobility, and the secretions of inflammatory cytokines with the influence of 317L-Cu SS. Our results indicated that 317L-Cu SS had no obvious effect on the proliferation and apoptosis of macrophages; however, it significantly increased cellular migration and TNF-α secretion. Then, C57 mice were used to assess foreign body reaction induced by 317L-Cu SS. We observed significantly enhanced recruitment of inflammatory cells (primarily macrophages) with increased TNF-α secretion and apoptosis level in tissues around the materials in the early stage of implantation. With tissue healing, both inflammation and apoptosis significantly decreased. Further, we discovered that NF-κB pathway and Caspase 3 played important roles in 317L-Cu SS induced inflammation and apoptosis. We concluded that 317L-Cu SS could briefly promote the inflammation and apoptosis of surrounding tissues by regulating the activity of NF-κB pathway and Caspase 3. All these discoveries demonstrated that 317L-Cu SS has a great potential for clinical application.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, People’s Republic of China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, People’s Republic of China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
48
|
Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J Vasc Res 2015; 52:172-96. [PMID: 26484858 DOI: 10.1159/000438485] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis critically sustains the progression of both physiological and pathological processes. Copper behaves as an obligatory co-factor throughout the angiogenic signalling cascades, so much so that a deficiency causes neovascularization to abate. Moreover, the progress of several angiogenic pathologies (e.g. diabetes, cardiac hypertrophy and ischaemia) can be tracked by measuring serum copper levels, which are being increasingly investigated as a useful prognostic marker. Accordingly, the therapeutic modulation of body copper has been proven effective in rescuing the pathological angiogenic dysfunctions underlying several disease states. Vascular copper transport systems profoundly influence the activation and execution of angiogenesis, acting as multi-functional regulators of apparently discrete pro-angiogenic pathways. This review concerns the complex relationship among copper-dependent angiogenic factors, copper transporters and common pathological conditions, with an unusual accent on the multi-faceted involvement of the proteins handling vascular copper. Functions regulated by the major copper transport proteins (CTR1 importer, ATP7A efflux pump and metallo-chaperones) include the modulation of endothelial migration and vascular superoxide, known to activate angiogenesis within a narrow concentration range. The potential contribution of prion protein, a controversial regulator of copper homeostasis, is discussed, even though its angiogenic involvement seems to be mainly associated with the modulation of endothelial motility and permeability.
Collapse
Affiliation(s)
- Emanuela Urso
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
49
|
Zatulovskaia YA, Ilyechova EY, Puchkova LV. The Features of Copper Metabolism in the Rat Liver during Development. PLoS One 2015; 10:e0140797. [PMID: 26474410 PMCID: PMC4608700 DOI: 10.1371/journal.pone.0140797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Strong interest in copper homeostasis is due to the fact that copper is simultaneously a catalytic co-factor of the vital enzymes, a participant in signaling, and a toxic agent provoking oxidative stress. In mammals, during development copper metabolism is conformed to two types. In embryonic type copper metabolism (ETCM), newborns accumulate copper to high level in the liver because its excretion via bile is blocked; and serum copper concentration is low because ceruloplasmin (the main copper-containing protein of plasma) gene expression is repressed. In the late weaning, the ETCM switches to the adult type copper metabolism (ATCM), which is manifested by the unlocking of copper excretion and the induction of ceruloplasmin gene activity. The considerable progress has been made in the understanding of the molecular basis of copper metabolic turnover in the ATCM, but many aspects of the copper homeostasis in the ETCM remain unclear. The aim of this study was to investigate the copper metabolism during transition from the ETCM (up to 12-days-old) to the ATCM in the rats. It was shown that in the liver, copper was accumulated in the nuclei during the first 5 days of life, and then it was re-located to the mitochondria. In parallel with the mitochondria, copper bulk bound with cytosolic metallothionein was increased. All compartments of the liver cells rapidly lost most of their copper on the 13th day of life. In newborns, serum copper concentration was low, and its major fraction was associated with holo-Cp, however, a small portion of copper was bound to extracellular metallothionein and a substance that was slowly eluted during gel-filtration. In adults, serum copper concentration increased by about a factor of 3, while metallothionein-bound copper level decreased by a factor of 2. During development, the expression level of Cp, Sod1, Cox4i1, Atp7b, Ctr1, Ctr2, Cox17, and Ccs genes was significantly increased, and metallothionein was decreased. Atp7a gene’s activity was fully repressed. The copper routes in newborns are discussed.
Collapse
Affiliation(s)
- Yulia A Zatulovskaia
- Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ekaterina Y Ilyechova
- Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg, Russia; Laboratory of trace element metabolism, ITMO University, St. Petersburg, Russia
| | - Ludmila V Puchkova
- Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg, Russia; Laboratory of trace element metabolism, ITMO University, St. Petersburg, Russia
| |
Collapse
|
50
|
Cheung CCH, Soon CY, Chuang CL, Phillips ARJ, Zhang S, Cooper GJS. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease. Biochem Pharmacol 2015. [PMID: 26208785 DOI: 10.1016/j.bcp.2015.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease.
Collapse
Affiliation(s)
- Carlos Chun Ho Cheung
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Choong Yee Soon
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Chia-Lin Chuang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Shaoping Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK; The Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK; The Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|