1
|
Ding W, Sun Y, Han Y, Liu Y, Jin S. Transcriptome comparison revealed the difference in subcutaneous fat metabolism of Qinghai yak under different feeding conditions. PLoS One 2024; 19:e0311224. [PMID: 39637129 PMCID: PMC11620555 DOI: 10.1371/journal.pone.0311224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/16/2024] [Indexed: 12/07/2024] Open
Abstract
In order to explore the differences in subcutaneous fat metabolism and pathway information in yaks under different feeding conditions, this experiment used Illumina high-throughput sequencing technology to sequence the transcriptome of subcutaneous fat tissues of yaks under different feeding conditions and analyzed them bioinformatically. 9 naturally grazed yaks at 18 months of age were randomly divided into 3 groups, one group (G18_SF) was slaughtered, one group (G24_SF) continued to graze until 24 months of age was slaughtered, and one group (F24_SF) was housed until 24 months of age was slaughtered, and subcutaneous fat tissue was collected from the back of the yaks. A total of 15,261 expressed genes were identified in the nine samples, with 13,959 coexpressed genes and 533 differential expressed genes (DEGs), G18_SF vs F24_SF 133 DEGs, G18_SF vs G24_SF 469 DEGs, F24_SF vs G24_SF 5 DEGs. GO functional annotation analysis found that DEGs were mainly annotated in BP and CC, which included biological regulation, metabolic processes and cellular processes. KEGG revealed that the DEGs are mainly enriched for PPAR signaling pathway, AMPK signaling pathway and other pathways related to lipid metabolism. This study provides a scientific basis for further research on the effects of mRNA on subcutaneous fat in yaks under different feeding conditions.
Collapse
Affiliation(s)
- Weiqin Ding
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Yonggang Sun
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Yincang Han
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Yaqian Liu
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Shengwei Jin
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| |
Collapse
|
2
|
Iacono G, Abay A, Murillo JSG, Aglialoro F, Yagci N, Varga E, Bijlsma T, Sohler J, Fu K, Reisz JA, Argabright A, D'Alessandro A, Svendsen AF, von Lindern M, van den Akker E. Differentiating erythroblasts adapt to mechanical stimulation by upregulation of cholesterol biosynthesis via S1P/SREBP-induced HMGCR expression. Sci Rep 2024; 14:30157. [PMID: 39627481 PMCID: PMC11615233 DOI: 10.1038/s41598-024-81746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Understanding how mechanical stress affects erythropoiesis is crucial to produce transfusable erythrocytes in fluid-turbulent bioreactors. We investigated the effects of shear-stress on differentiating CD49d+CD235a+ primary human erythroblasts (EBL) at molecular, cellular, and functional level. Shear-stress, at differentiation onset, enhanced EBL maturation and induced upregulation of genes regulating cholesterol/lipids biosynthesis, causing changes in cell lipid composition. Of note, the osmotic resistance, and the expression of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the cholesterol biosynthesis pathway, were higher in dynamic cultures. Inhibition of the S1P-induced proteolytic cleavage, activating SREBPs, led to abrogation of HMCGR expression, and loss of EBL in dynamic cultures, similar to lovastatin administration. This data reveals a role for the S1P-SREBP-HMGCR-axis in the regulation of shear-stress induced adaptation during erythropoiesis, shedding light into mechanisms that will assist the upscaling of erythroid differentiation into bioreactors. Moreover, as shear-stress on hematopoietic cells occurs within the bone-marrow, these results introduce a novel signalling axis in the transduction pathways controlling erythropoiesis.
Collapse
Affiliation(s)
- Giulia Iacono
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands.
| | - Asena Abay
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Joan S Gallego Murillo
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
- Department of Biotechnology Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Francesca Aglialoro
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Nurcan Yagci
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Eszter Varga
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Tieme Bijlsma
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Justine Sohler
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Kerly Fu
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Amy Argabright
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Arthur F Svendsen
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis Sanquin Research Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Rybak JM, Xie J, Martin-Vicente A, Guruceaga X, Thorn HI, Nywening AV, Ge W, Souza ACO, Shetty AC, McCracken C, Bruno VM, Parker JE, Kelly SL, Snell HM, Cuomo CA, Rogers PD, Fortwendel JR. A secondary mechanism of action for triazole antifungals in Aspergillus fumigatus mediated by hmg1. Nat Commun 2024; 15:3642. [PMID: 38684680 PMCID: PMC11059170 DOI: 10.1038/s41467-024-48029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.
Collapse
Affiliation(s)
- Jeffrey M Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinhong Xie
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Harrison I Thorn
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ashley V Nywening
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ana C O Souza
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amol C Shetty
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Josie E Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Steven L Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Hannah M Snell
- Infectious Diseases and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina A Cuomo
- Infectious Diseases and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - P David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
4
|
Tashiro J, Sugiura A, Warita T, Irie N, Dwi Cahyadi D, Ishikawa T, Warita K. CYP11A1 silencing suppresses HMGCR expression via cholesterol accumulation and sensitizes CRPC cell line DU-145 to atorvastatin. J Pharmacol Sci 2023; 153:104-112. [PMID: 37770151 DOI: 10.1016/j.jphs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Statins, which are cholesterol synthesis inhibitors, are well-known therapeutics for dyslipidemia; however, some studies have anticipated their use as anticancer agents. However, epithelial cancer cells show strong resistance to statins through an increased expression of HMG-CoA reductase (HMGCR), an inhibitory target of statins. Castration-resistant prostate cancer (CRPC) cells synthesize androgens from cholesterol on their own. We performed suppression of CYP11A1, a rate-limiting enzyme in androgen synthesis from cholesterol, using siRNA or inhibitors, to examine the effect of steroidogenesis inhibition on statin sensitivity in CRPC cells. Here, we suggested that CYP11A1 silencing sensitized the statin-resistant CRPC cell line DU-145 to atorvastatin via HMGCR downregulation by an increase in intracellular free cholesterol. We further demonstrated that CYP11A1 silencing induced epithelial-mesenchymal transition, which converted DU-145 cells into a statin-sensitive phenotype. This suggests that concomitant use of CYP11A1 inhibitors could be an effective approach for overcoming statin resistance in CRPC. Moreover, we showed that ketoconazole, a CYP11A1 inhibitor, sensitized DU-145 cells to atorvastatin, although not all the molecular events observed in CYP11A1 silencing were reproducible. Although further studies are necessary to clarify the detailed mechanisms, ketoconazole may be effective as a concomitant drug that potentiates the anticancer effect of atorvastatin.
Collapse
Affiliation(s)
- Jiro Tashiro
- Department of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
| | - Tomoko Warita
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, Japan
| | - Nanami Irie
- Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| | - Danang Dwi Cahyadi
- Department of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
| | - Takuro Ishikawa
- Department of Anatomy, School of Medicine, Aichi Medical University, Aichi, Japan; Joint Department of Veterinary Medicine, Tottori University, Tottori, Japan.
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan; Joint Department of Veterinary Medicine, Tottori University, Tottori, Japan.
| |
Collapse
|
5
|
Functional and miRNA regulatory characteristics of INSIG genes highlight the key role of lipid synthesis in the liver of chicken (Gallus gallus). Poult Sci 2022; 102:102380. [PMID: 36571872 PMCID: PMC9800209 DOI: 10.1016/j.psj.2022.102380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The insulin-induced genes (INSIG1 and INSIG2) have been demonstrated to play a vital role in regulating lipid metabolism in mammals, however the function and regulation mechanism of them remains unknown in poultry. In this study, firstly the phylogenetic trees of INSIGs among various species were constructed and their subcellular locations were mapped in chicken LMH. Then the spatiotemporal expression profiles, over-expression and knockdown assays of chicken INSIGs were conducted. Furthermore, conservation of potential miRNA binding sites in INSIGs among species were analyzed, and the miRNA biological function and regulatory role were verified. The results showed that chicken INSIGs located in cellular endoplasmic reticulum, and were originated from the common ancestors of their mammalian counterparts. The INSIGs were widely expressed in all detected tissues, and their expression levels in the liver of chicken at 30 wk were significantly higher than that at 20 wk (P < 0.01). Over-expression of INSIGs led no significant increase in mRNA abundance of lipid metabolism-related genes and the contents of triacylglycerol (TG) and cholesterol (TC) in LMH cells. Knockdown of INSIG1 led to the decreased expressions of ACSL1, MTTP-L, ApoB, ApoVLDLII genes and TG, TC contents (P < 0.05). Knockdown of INSIG2 could significantly decrease the contents of TG and TC, and expressions of key genes related to the lipid metabolism (P < 0.05). Moreover, INSIG1 was directly targeted by both miR-130b-3p and miR-218-5p, and INSIG2 was directly targeted by miR-130b-3p. MiR-130b-3p mimic and miR-218-5p mimic treatment could significant decrease the mRNA and protein levels of INSIGs, mRNA levels of genes related to lipid metabolism, and the contents of TG and TC in LMH cells. The inhibition of miR-130b-3p and miR-218-5p on TG and TC contents could be restored by the overexpression of INSIGs, respectively. No significant alteration in expressions of sterol regulatory element binding protein (SREBPs) and SREBP cleavage-activating protein (SCAP) were observed when INSIGs were over-expressed. SCAP was down-regulated when INSIG1 was knocked down, while SREBP1 was down-regulated when INSIG2 was knocked down. Taken together, these results highlight the role of INSIG1 and INSIG2 in lipid metabolism and their regulatory mechanism in chicken.
Collapse
|
6
|
Tse TJ, Guo Y, Shim YY, Purdy SK, Kim JH, Cho JY, Alcorn J, Reaney MJT. Availability of bioactive flax lignan from foods and supplements. Crit Rev Food Sci Nutr 2022; 63:9843-9858. [PMID: 35532015 DOI: 10.1080/10408398.2022.2072807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hyperlipidemia, high levels of blood lipids including cholesterol and triglycerides, is a major risk factor for cardiovascular disease. Traditional treatments of hyperlipidemia often include lifestyle changes and pharmacotherapy. Recently, flaxseed has been approved as a nutrient that lowers blood lipids. Several metabolites of flaxseed lignan secoisolariciresinol diglucoside (SDG), have been identified that reduce blood lipids. SDG is present in flaxseed hull as an ester-linked copolymer with 3-hydroxy-3-methylglutaric acid (HMGA). However, purification processes involved in hydrolysis of the copolymer and enriching SDG are often expensive. The natural copolymer of SDG with HMGA (SDG polymer) is a source of bioactive compounds useful in prophylaxis of hypercholesterolemia. After consumption of the lignan copolymer, SDG and HMGA are released in the stomach and small intestines. SDG is metabolized to secoisolariciresinol, enterolactone and enterodiol, the bioactive forms of mammalian lignans. These metabolites are then distributed throughout the body where they accumulate in the liver, kidney, skin, other tissues, and organs. Successively, these metabolites reduce blood lipids including cholesterol, triglycerides, low density lipoprotein cholesterol, and lipid peroxidation products. In this review, the metabolism and efficacies of flaxseed-derived enriched SDG and SDG polymer will be discussed.
Collapse
Affiliation(s)
- Timothy J Tse
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yajia Guo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Youn Young Shim
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc., Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Sarah K Purdy
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Martin J T Reaney
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc., Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangdong, China
| |
Collapse
|
7
|
Iskandarani L, McHattie T, Robaire B, Hales BF. Effects of Bisphenols A, AF, and S on Endochondral Ossification and the Transcriptome of Murine Limb Buds. Toxicol Sci 2021; 187:234-253. [PMID: 34850234 DOI: 10.1093/toxsci/kfab145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bisphenols are a family of chemicals commonly used to produce polycarbonate plastics and epoxy resins. Exposure to bisphenol A (BPA) is associated with a variety of adverse effects; thus, many alternatives to BPA, such as BPAF and BPS, are now emerging in consumer products. We have determined the effects of three bisphenols on endochondral ossification and the transcriptome in a murine limb bud culture system. Embryonic forelimbs were cultured in the presence of vehicle, BPA, BPAF, or BPS. BPA (≥ 10 μM), BPAF (≥ 1 μM) and BPS (≥ 50 μM) reduced the differentiation of hypertrophic chondrocytes and osteoblasts. Chondrogenesis was suppressed by exposure to ≥ 50 μM BPA, ≥ 5 μM BPAF, or 100 μM BPS and osteogenesis was almost completely arrested at 100 μM BPA or 10 μM BPAF. RNA sequencing analyses revealed that the total number of differentially expressed genes increased with time and the concentration tested. BPA exposure differentially regulated 635 genes, BPAF affected 554 genes, while BPS affected 95 genes. Although the genes that were differentially expressed overlapped extensively, each bisphenol also induced chemical-specific alterations in gene expression. BPA and BPAF-treated limbs exhibited a downregulation of RhoGDI signalling genes. Exposure to BPA and BPS resulted in the upregulation of key genes involved in cholesterol biosynthesis, while exposure to BPAF induced an upregulation of genes involved in bone formation and in the p53 signalling pathway. These data suggest that BPAF may be more detrimental to endochondral ossification than BPA, while BPS is of comparable toxicity to BPA.
Collapse
Affiliation(s)
- Lama Iskandarani
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Tessa McHattie
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
8
|
Škara L, Huđek Turković A, Pezelj I, Vrtarić A, Sinčić N, Krušlin B, Ulamec M. Prostate Cancer-Focus on Cholesterol. Cancers (Basel) 2021; 13:4696. [PMID: 34572923 PMCID: PMC8469848 DOI: 10.3390/cancers13184696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PC) is the most common malignancy in men. Common characteristic involved in PC pathogenesis are disturbed lipid metabolism and abnormal cholesterol accumulation. Cholesterol can be further utilized for membrane or hormone synthesis while cholesterol biosynthesis intermediates are important for oncogene membrane anchoring, nucleotide synthesis and mitochondrial electron transport. Since cholesterol and its biosynthesis intermediates influence numerous cellular processes, in this review we have described cholesterol homeostasis in a normal cell. Additionally, we have illustrated how commonly deregulated signaling pathways in PC (PI3K/AKT/MTOR, MAPK, AR and p53) are linked with cholesterol homeostasis regulation.
Collapse
Affiliation(s)
- Lucija Škara
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ana Huđek Turković
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivan Pezelj
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Alen Vrtarić
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Nino Sinčić
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Božo Krušlin
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Monika Ulamec
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Gourain V, Armant O, Lübke L, Diotel N, Rastegar S, Strähle U. Multi-Dimensional Transcriptome Analysis Reveals Modulation of Cholesterol Metabolism as Highly Integrated Response to Brain Injury. Front Neurosci 2021; 15:671249. [PMID: 34054419 PMCID: PMC8162057 DOI: 10.3389/fnins.2021.671249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Zebrafish is an attractive model to investigate regeneration of the nervous system. Despite major progress in our understanding of the underlying processes, the transcriptomic changes are largely unknown. We carried out a computational analysis of the transcriptome of the regenerating telencephalon integrating changes in the expression of mRNAs, their splice variants and investigated the putative role of regulatory RNAs in the modulation of these transcriptional changes. Profound changes in the expression of genes and their splice variants engaged in many distinct processes were observed. Differential transcription and splicing are important processes in response to injury of the telencephalon. As exemplified by the coordinated regulation of the cholesterol synthesizing enzymes and transporters, the genome responded to injury of the telencephalon in a multi-tiered manner with distinct and interwoven changes in expression of enzymes, transporters and their regulatory molecules. This coordinated genomic response involved a decrease of the mRNA of the key transcription factor SREBF2, induction of microRNAs (miR-182, miR-155, miR-146, miR-31) targeting cholesterol genes, shifts in abundance of splice variants as well as regulation of long non-coding RNAs. Cholesterol metabolism appears to be switched from synthesis to relocation of cholesterol. Based on our in silico analyses, this switch involves complementary and synergistic inputs by different regulatory principles. Our studies suggest that adaptation of cholesterol metabolism is a key process involved in regeneration of the injured zebrafish brain.
Collapse
Affiliation(s)
- Victor Gourain
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,UMR 1064 Centre de Recherche en Transplantation en Immunologie, Nantes, France
| | - Olivier Armant
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, Saint-Paul-Lez-Durance, France
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nicolas Diotel
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien CYROI, Saint-Denis, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,COS, University Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Effect of acetate, β-hydroxybutyrate and their interaction on lipogenic gene expression, triglyceride contents and lipid droplet formation in dairy cow mammary epithelial cells. In Vitro Cell Dev Biol Anim 2021; 57:66-75. [PMID: 33403623 DOI: 10.1007/s11626-020-00538-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to assess the effects of acetate and β-hydroxybutyrate alone or in combination on lipogenic genes and their associated regulatory proteins in dairy cow mammary epithelial cells (DCMEC) using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, lipid droplet staining and a triglyceride content detection kit, to determine whether SCFA are related to milk fat synthesis regulation in DCMEC. Our experiment shows that addition of different concentrations of acetate, β-hydroxybutyrate and their combinations to DCMEC increase in relative mRNA abundance of lipogenic genes and key transcription factors suggest an increase in lipogenic capacity, which is supported by an increased in cytosolic triglyceride content. Similarly, the protein expression level of acetyl-coenzyme A carboxylase (ACACA), fatty acid synthase (FASN) and sterol-coenzyme desaturase-1 (SCD1) genes and the transcription factor sterol regulatory element-binding protein-1 (SREBP1) were found to be increased by addition of acetate, β-hydroxybutyrate and their combinations. The expression pattern of fat-related genes and proteins showed similar trends in almost all treatments, suggesting that common transcription factor are regulating these genes. These results show that acetate and β-hydroxybutyrate regulate fat synthesis, further confirming that SCFAs work by targeting genes to activate the SREBP1 and insulin-induced gene 1 protein (INSIG1) signalling pathways in DCMEC.
Collapse
|
11
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|
12
|
Evolution from adherent to suspension: systems biology of HEK293 cell line development. Sci Rep 2020; 10:18996. [PMID: 33149219 PMCID: PMC7642379 DOI: 10.1038/s41598-020-76137-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/22/2020] [Indexed: 01/28/2023] Open
Abstract
The need for new safe and efficacious therapies has led to an increased focus on biologics produced in mammalian cells. The human cell line HEK293 has bio-synthetic potential for human-like production attributes and is currently used for manufacturing of several therapeutic proteins and viral vectors. Despite the increased popularity of this strain we still have limited knowledge on the genetic composition of its derivatives. Here we present a genomic, transcriptomic and metabolic gene analysis of six of the most widely used HEK293 cell lines. Changes in gene copy and expression between industrial progeny cell lines and the original HEK293 were associated with cellular component organization, cell motility and cell adhesion. Changes in gene expression between adherent and suspension derivatives highlighted switching in cholesterol biosynthesis and expression of five key genes (RARG, ID1, ZIC1, LOX and DHRS3), a pattern validated in 63 human adherent or suspension cell lines of other origin.
Collapse
|
13
|
Abstract
Over sixty percent of all mammalian protein-coding genes are estimated to be regulated by microRNAs (miRNAs), and unsurprisingly miRNA dysregulation has been linked with cancer. Aberrant miRNA expression in cancer cells has been linked with tumourigenesis and drug resistance. In the past decade, increasing number of studies have demonstrated that cholesterol accumulation fuels tumour growth and contributes to drug resistance, therefore, miRNAs controlling cholesterol metabolism and homeostasis are obvious hypothetical targets for investigating their role in cholesterol-mediated drug resistance in cancer. In this review, we have collated published evidences to consolidate this hypothesis and have scrutinized it by utilizing computational tools to explore the role of miRNAs in cholesterol-mediated drug resistance in breast cancer cells. We found that hsa-miR-128 and hsa-miR-223 regulate genes mediating lipid signalling and cholesterol metabolism, cancer drug resistance and breast cancer genes. The analysis demonstrates that targeting these miRNAs in cancer cells presents an opportunity for developing new strategies to combat anticancer drug resistance.
Collapse
|
14
|
The cellular function of SCAP in metabolic signaling. Exp Mol Med 2020; 52:724-729. [PMID: 32385422 PMCID: PMC7272406 DOI: 10.1038/s12276-020-0430-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Sterol regulatory element binding protein (SREBP) cleavage activating protein (SCAP) is a key regulator of SREBP maturation. SCAP induces translocation of SREBP from the endoplasmic reticulum to the Golgi apparatus, allowing it to regulate cellular triglyceride and cholesterol levels. Previous studies have shown that suppression of SREBP activation in SCAP conditional knockout mice reduced the accumulation of intracellular triglycerides, which eventually causes the development of metabolic diseases such as atherosclerosis, diabetes, hepatic steatosis, and insulin resistance. However, despite the significance of SCAP as a regulator of SREBP, its function has not been thoroughly discussed. In this review, we have summarized the function of SCAP and its regulatory proteins. Furthermore, we discuss recent studies regarding SCAP as a possible therapeutic target for hypertriglyceridemia and hyperlipidemia.
Collapse
|
15
|
Albuquerque A, Óvilo C, Núñez Y, Benítez R, López-Garcia A, García F, Félix MDR, Laranjo M, Charneca R, Martins JM. Comparative Transcriptomic Analysis of Subcutaneous Adipose Tissue from Local Pig Breeds. Genes (Basel) 2020; 11:E422. [PMID: 32326415 PMCID: PMC7231169 DOI: 10.3390/genes11040422] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Abstract
When compared to modern lean-type breeds, Portuguese local Alentejano (AL) and Bísaro (BI) pig breeds present a high potential for subcutaneous and intramuscular fat (IMF) deposition which contributes for better meat quality. The aim of this work was to explore the genome function to better understand the underlying physiological mechanisms associated with body fat accretion. Dorsal subcutaneous fat samples were collected at slaughter from adult animals (n = 4 for each breed) with ~150 kg body weight. Total RNA was obtained and sequenced for transcriptome analysis using DESeq2. A total of 458 differentially expressed (DE) genes (q-value < 0.05) were identified, with 263 overexpressed in AL and 195 in BI. Key genes involved in de novo fatty acid biosynthesis, elongation and desaturation were upregulated in AL such as ACLY, FASN, ME1, ELOVL6 and SCD. A functional enrichment analysis of the DE genes was performed using Ingenuity Pathway Analysis. Cholesterol synthesis is suggested to be higher in AL via SREBF2, SCAP and PPARG, while lipolytic activity may be more active in BI through GH and AMPK signalling. Increased signalling of CD40 together with the predicted activation of INSIG1 and INSIG2 in BI suggests that this breed is more sensitive to insulin whereas the AL is less sensitive like the Iberian breed.
Collapse
Affiliation(s)
- André Albuquerque
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada & Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Adrián López-Garcia
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Fabián García
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Maria do Rosário Félix
- MED & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada & Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Rui Charneca
- MED & Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - José Manuel Martins
- MED & Departamento de Zootecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
16
|
Russo L, Muir L, Geletka L, Delproposto J, Baker N, Flesher C, O'Rourke R, Lumeng CN. Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes. Mol Metab 2020; 39:100983. [PMID: 32229247 PMCID: PMC7267735 DOI: 10.1016/j.molmet.2020.100983] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Expansion of visceral adipose tissue (VAT) and metabolic inflammation are consequences of obesity and associated with type 2 diabetes (T2DM). Metabolically activated adipose tissue macrophages (ATMs) undergo qualitative and quantitative changes that influence their inflammatory responses. How these cells contribute to insulin resistance (IR) in humans is not well understood. Cholesterol 25-Hydroxylase (CH25H) converts cholesterol into 25-Hydroxycholesterol (25-HC), an oxysterol that modulates immune responses. Using human and murine models, we investigated the role of CH25H in metabolic inflammation. Methods We performed transcriptomic (RNASeq) analysis on the human whole AT biopsies and sorted ATMs from obese non-diabetic (NDM) and obese diabetic (DM) subjects to inquire if CH25H was increased in DM. We challenged mice lacking Ch25h with a high-fat diet (HFD) to characterize their metabolic and immunologic profiling. Ch25h KO mice and human adipose tissue biopsies from NDM and DM subjects were analyzed. LC-MS was conducted to measure 25-HC level in AT. In vitro analysis permitted us to investigate the effect of 25-HC on cytokine expression. Results In our RNASeq analysis of human visceral and subcutaneous biopsies, gene pathways related to inflammation were increased in obese DM vs. non-DM subjects that included CH25H. CH25H was enriched in the stromal vascular fraction of human adipose tissue and highly expressed in CD206+ human ATMs by flow cytometry analysis. We measured the levels of the oxysterols, 25-HC and 7α25diHC, in human visceral adipose tissue samples and showed a correlation between BMI and 25-HC. Using mouse models of diet-induced obesity (DIO), we found that HFD-induced Ch25h expression in eWAT and increased levels of 25-HC in AT. On HFD, Ch25h KO mice became obese but exhibited reduced plasma insulin levels, improved insulin action, and decreased ectopic lipid deposit. Improved insulin sensitivity in Ch25h KO mice was due to attenuation of CD11c+ adipose tissue macrophage infiltration in eWAT. Finally, by testing AT explants, bone marrow-derived macrophages (BMDMs) and SVF cells from Ch25h deficient mice, we observed that 25-HC is required for the expression of pro-inflammatory genes. 25-HC was also able to induce inflammatory genes in preadipocytes. Conclusions Our data suggest a critical role for CH25H/25-HC in the progression of meta-inflammation and insulin resistance in obese humans and mouse models of obesity. In response to obesogenic stimuli, CH25H/25-HC could exert a pro-inflammatory role. CH25H upregulation in visceral adipose tissue is associated with diabetes in humans. ATMs are the primary site of CH25H expression in humans and mice. DIO in mice activates Ch25h expression and 25-HC production in visceral adipose tissue. Obese Ch25h KO mice have improved insulin sensitivity due to attenuated adipose tissue inflammation. In response to inflammatory stimuli, Ch25h/25-HC potentiates myeloid activation.
Collapse
Affiliation(s)
- Lucia Russo
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lindsey Muir
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lynn Geletka
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jennifer Delproposto
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nicki Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carmen Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Robert O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carey N Lumeng
- Department of Pediatrics, Division of Pulmonary Medicine, University of Michigan Medical School, Ann Arbor, MI, United States; Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
17
|
Disruption of Dhcr7 and Insig1/2 in cholesterol metabolism causes defects in bone formation and homeostasis through primary cilium formation. Bone Res 2020; 8:1. [PMID: 31934493 PMCID: PMC6946666 DOI: 10.1038/s41413-019-0078-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Human linkage studies suggest that craniofacial deformities result from either genetic mutations related to cholesterol metabolism or high-cholesterol maternal diets. However, little is known about the precise roles of intracellular cholesterol metabolism in the development of craniofacial bones, the majority of which are formed through intramembranous ossification. Here, we show that an altered cholesterol metabolic status results in abnormal osteogenesis through dysregulation of primary cilium formation during bone formation. We found that cholesterol metabolic aberrations, induced through disruption of either Dhcr7 (which encodes an enzyme involved in cholesterol synthesis) or Insig1 and Insig2 (which provide a negative feedback mechanism for cholesterol biosynthesis), result in osteoblast differentiation abnormalities. Notably, the primary cilia responsible for sensing extracellular cues were altered in number and length through dysregulated ciliary vesicle fusion in Dhcr7 and Insig1/2 mutant osteoblasts. As a consequence, WNT/β-catenin and hedgehog signaling activities were altered through dysregulated primary cilium formation. Strikingly, the normalization of defective cholesterol metabolism by simvastatin, a drug used in the treatment of cholesterol metabolic aberrations, rescued the abnormalities in both ciliogenesis and osteogenesis in vitro and in vivo. Thus, our results indicate that proper intracellular cholesterol status is crucial for primary cilium formation during skull formation and homeostasis.
Collapse
|
18
|
Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol Ther 2019; 203:107401. [PMID: 31419516 PMCID: PMC6848795 DOI: 10.1016/j.pharmthera.2019.107401] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease is a major public health burden. Although many features of nonalcoholic fatty liver disease pathogenesis are known, the specific mechanisms and susceptibilities that determine an individual's risk of developing nonalcoholic steatohepatitis versus isolated steatosis are not well delineated. The predominant and defining histologic and imaging characteristic of nonalcoholic fatty liver disease is the accumulation of lipids. Dysregulation of lipid homeostasis in hepatocytes leads to transient generation or accumulation of toxic lipids that result in endoplasmic reticulum (ER) stress with inflammation, hepatocellular damage, and apoptosis. ER stress activates the unfolded protein response (UPR) which is classically viewed as an adaptive pathway to maintain protein folding homeostasis. Recent studies have uncovered the contribution of the UPR sensors in the regulation of hepatic steatosis and in the cellular response to lipotoxic stress. Interestingly, the UPR sensors can be directly activated by toxic lipids, independently of the accumulation of misfolded proteins, termed lipotoxic and proteotoxic stress, respectively. The dual function of the UPR sensors in protein and lipid homeostasis suggests that these two types of stress are interconnected likely due to the central role of the ER in protein folding and trafficking and lipid biosynthesis and trafficking, such that perturbations in either impact the function of the ER and activate the UPR sensors in an effort to restore homeostasis. The precise molecular similarities and differences between proteotoxic and lipotoxic ER stress are beginning to be understood. Herein, we provide an overview of the mechanisms involved in the activation and cross-talk between the UPR sensors, hepatic lipid metabolism, and lipotoxic stress, and discuss the possible therapeutic potential of targeting the UPR in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Myeong Jun Song
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States of America; Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States of America.
| |
Collapse
|
19
|
Fontaine MA, Diane A, Singh VP, Mangat R, Krysa JA, Nelson R, Willing BP, Proctor SD. Low birth weight causes insulin resistance and aberrant intestinal lipid metabolism independent of microbiota abundance in Landrace–Large White pigs. FASEB J 2019; 33:9250-9262. [DOI: 10.1096/fj.201801302rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Melanie A. Fontaine
- Metabolic and Cardiovascular Disease Laboratory Group on Molecular and Cell Biology of Lipids Alberta Diabetes and Mazankowski Heart Institutes University of Alberta Edmonton Alberta Canada
| | - Abdoulaye Diane
- Metabolic and Cardiovascular Disease Laboratory Group on Molecular and Cell Biology of Lipids Alberta Diabetes and Mazankowski Heart Institutes University of Alberta Edmonton Alberta Canada
| | - Vijay P. Singh
- Metabolic and Cardiovascular Disease Laboratory Group on Molecular and Cell Biology of Lipids Alberta Diabetes and Mazankowski Heart Institutes University of Alberta Edmonton Alberta Canada
| | - Rabban Mangat
- Metabolic and Cardiovascular Disease Laboratory Group on Molecular and Cell Biology of Lipids Alberta Diabetes and Mazankowski Heart Institutes University of Alberta Edmonton Alberta Canada
| | - Jacqueline A. Krysa
- Metabolic and Cardiovascular Disease Laboratory Group on Molecular and Cell Biology of Lipids Alberta Diabetes and Mazankowski Heart Institutes University of Alberta Edmonton Alberta Canada
| | - Randy Nelson
- Metabolic and Cardiovascular Disease Laboratory Group on Molecular and Cell Biology of Lipids Alberta Diabetes and Mazankowski Heart Institutes University of Alberta Edmonton Alberta Canada
| | - Benjamin P. Willing
- Department of Agricultural Food and Nutritional Science University of Alberta Edmonton Alberta Canada
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Disease Laboratory Group on Molecular and Cell Biology of Lipids Alberta Diabetes and Mazankowski Heart Institutes University of Alberta Edmonton Alberta Canada
| |
Collapse
|
20
|
Ojha CR, Rodriguez M, Karuppan MKM, Lapierre J, Kashanchi F, El-Hage N. Toll-like receptor 3 regulates Zika virus infection and associated host inflammatory response in primary human astrocytes. PLoS One 2019; 14:e0208543. [PMID: 30735502 PMCID: PMC6368285 DOI: 10.1371/journal.pone.0208543] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
The connection between Zika virus (ZIKV) and neurodevelopmental defects is widely recognized, although the mechanisms underlying the infectivity and pathology in primary human glial cells are poorly understood. Here we show that three isolated strains of ZIKV, an African strain MR766 (Uganda) and two closely related Asian strains R103451 (Honduras) and PRVABC59 (Puerto Rico) productively infect primary human astrocytes, although Asian strains showed a higher infectivity rate and increased cell death when compared to the African strain. Inhibition of AXL receptor significantly attenuated viral entry of MR766 and PRVABC59 and to a lesser extend R103451, suggesting an important role of TAM receptors in ZIKV cell entry, irrespective of lineage. Infection by PRVABC59 elicited the highest release of inflammatory molecules, with a 8-fold increase in the release of RANTES, 10-fold increase in secretion of IP-10 secretion and a 12-fold increase in IFN-β secretion when compared to un-infected human astrocytes. Minor changes in the release of several growth factors, endoplasmic reticulum (ER)-stress response factors and the transcription factor, NF-κB were detected with the Asian strains, while significant increases in FOXO6, MAPK10 and JNK were detected with the African strain. Activation of the autophagy pathway was evident with increased expression of the autophagy related proteins Beclin1, LC3B and p62/SQSTM1 with all three strains of ZIKV. Pharmacological inhibition of the autophagy pathway and genetic inhibition of the Beclin1 showed minimal effects on ZIKV replication. The expression of toll-like receptor 3 (TLR3) was significantly increased with all three strains of ZIKV; pharmacological and genetic inhibition of TLR3 caused a decrease in viral titers and in viral-induced inflammatory response in infected astrocytes. We conclude that TLR3 plays a vital role in both ZIKV replication and viral-induced inflammatory responses, irrespective of the strains, while the autophagy protein Beclin1 influences host inflammatory responses.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| | - Myosotys Rodriguez
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| | - Jessica Lapierre
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Nazira El-Hage
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| |
Collapse
|
21
|
Kovač U, Skubic C, Bohinc L, Rozman D, Režen T. Oxysterols and Gastrointestinal Cancers Around the Clock. Front Endocrinol (Lausanne) 2019; 10:483. [PMID: 31379749 PMCID: PMC6653998 DOI: 10.3389/fendo.2019.00483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the role of oxidized sterols in three major gastrointestinal cancers (hepatocellular carcinoma, pancreatic, and colon cancer) and how the circadian clock affects the carcinogenesis by regulating the lipid metabolism and beyond. While each field of research (cancer, oxysterols, and circadian clock) is well-studied within their specialty, little is known about the intertwining mechanisms and how these influence the disease etiology in each cancer type. Oxysterols are involved in pathology of these cancers, but final conclusions about their protective or damaging effects are elusive, since the effect depends on the type of oxysterol, concentration, and the cell type. Oxysterol concentrations, the expression of key regulators liver X receptors (LXR), farnesoid X receptor (FXR), and oxysterol-binding proteins (OSBP) family are modulated in tumors and plasma of cancer patients, exposing these proteins and selected oxysterols as new potential biomarkers and drug targets. Evidence about how cholesterol/oxysterol pathways are intertwined with circadian clock is building. Identified key contact points are different forms of retinoic acid receptor related orphan receptors (ROR) and LXRs. RORs and LXRs are both regulated by sterols/oxysterols and the circadian clock and in return also regulate the same pathways, representing a complex interplay between sterol metabolism and the clock. With this in mind, in addition to classical therapies to modulate cholesterol in gastrointestinal cancers, such as the statin therapy, the time is ripe also for therapies where time and duration of the drug application is taken as an important factor for successful therapies. The final goal is the personalized approach with chronotherapy for disease management and treatment in order to increase the positive drug effects.
Collapse
|
22
|
Menzies SA, Volkmar N, van den Boomen DJH, Timms RT, Dickson AS, Nathan JA, Lehner PJ. The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1. eLife 2018; 7:e40009. [PMID: 30543180 PMCID: PMC6292692 DOI: 10.7554/elife.40009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
Mammalian HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the cholesterol biosynthetic pathway and the therapeutic target of statins, is post-transcriptionally regulated by sterol-accelerated degradation. Under cholesterol-replete conditions, HMGCR is ubiquitinated and degraded, but the identity of the E3 ubiquitin ligase(s) responsible for mammalian HMGCR turnover remains controversial. Using systematic, unbiased CRISPR/Cas9 genome-wide screens with a sterol-sensitive endogenous HMGCR reporter, we comprehensively map the E3 ligase landscape required for sterol-accelerated HMGCR degradation. We find that RNF145 and gp78 independently co-ordinate HMGCR ubiquitination and degradation. RNF145, a sterol-responsive ER-resident E3 ligase, is unstable but accumulates following sterol depletion. Sterol addition triggers RNF145 recruitment to HMGCR via Insigs, promoting HMGCR ubiquitination and proteasome-mediated degradation. In the absence of both RNF145 and gp78, Hrd1, a third UBE2G2-dependent E3 ligase, partially regulates HMGCR activity. Our findings reveal a critical role for the sterol-responsive RNF145 in HMGCR regulation and elucidate the complexity of sterol-accelerated HMGCR degradation. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Sam A Menzies
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Norbert Volkmar
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | | | - Richard T Timms
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Anna S Dickson
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - James A Nathan
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Paul J Lehner
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| |
Collapse
|
23
|
Suárez-Rivero JM, de la Mata M, Pavón AD, Villanueva-Paz M, Povea-Cabello S, Cotán D, Álvarez-Córdoba M, Villalón-García I, Ybot-González P, Salas JJ, Muñiz O, Cordero MD, Sánchez-Alcázar JA. Intracellular cholesterol accumulation and coenzyme Q 10 deficiency in Familial Hypercholesterolemia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3697-3713. [PMID: 30292637 DOI: 10.1016/j.bbadis.2018.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway. Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing. Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment. Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Unidad de Gestión de Pediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Spain
| | - Ovidio Muñiz
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mario D Cordero
- Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú", Departamento de Fisiología, Centro de Investigación Biomédica, Universidad de Granada, 18100 Granada, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
24
|
Binot C, Sadoc JF, Chouard CH. Oncogenesis, lipids rafts and liquid crystals: A nanoscopic supplementary field for applied researches and a new hope of advances in cancer. Heliyon 2018; 4:e00687. [PMID: 30035237 PMCID: PMC6051303 DOI: 10.1016/j.heliyon.2018.e00687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Liquid crystals (LC) are an intermediate state between an ordered crystalline solid and a more disordered liquid. LCs (or mesophases) are ubiquitous in living systems, optimizing multiple biological functions that could not operate in purely solid or liquid environments as both mobility and organization are needed. One of us recently suggested that there is an information vector, shared by neurodegenerative and infectious pathologies, to be found within lipid rafts in an ordered liquid (Lo) form mediated by cholesterol. Here we extend this underlying mechanism to oncogenic processes. The specificity of our approach lies in highlighting the direct involvement of liquid crystals in early carcinogenic processes, by identifying specific metabolic pathways, with the intention of focusing research effort on this level, now that this has become technically feasible. Exploring LCs in living bodies reveals links between numerous oncogenic mechanisms. The approach is based on the geometric properties of amphiphilic (hydrophilic and lipophilic) plasma and intracellular membranes, the phospholipids of which are an example of the lamellar LC phase. These LCs underlie cell signaling and signaling pathways disorders at membrane level: consequently, they are directly concerned with deregulation underlying many cancerous processes. We demonstrate the implication of cancer cell membranes mesophases. That is in the membranes mesophases that are initiated most of metabolic pathways, leading to downstream pathogenic intracellular mechanisms. The concepts of order and of symmetry, in the mathematical sense, involved in condensed matter accompany informed adaptive supramolecular chemical processes in forming self-organizing mesogenic molecular assemblies. Multidisciplinary teamwork combining knowledge from different fields holds out the hope of therapeutic progress upstream of irreversible cancerous processes, while conserving the physiological integrity of the cells themselves.
Collapse
|
25
|
Menon B, Guo X, Garcia N, Gulappa T, Menon KMJ. miR-122 Regulates LHR Expression in Rat Granulosa Cells by Targeting Insig1 mRNA. Endocrinology 2018; 159:2075-2082. [PMID: 29579170 PMCID: PMC5905391 DOI: 10.1210/en.2017-03270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
Luteinizing hormone/chorionic gonadotropin receptor (LHR) expression in the ovary is regulated by a messenger RNA (mRNA) binding protein, which specifically binds to the coding region of LHR mRNA. We have shown that miR-122, a short noncoding RNA, mediates LHR mRNA levels by modulating the expression of LHR mRNA-binding protein (LRBP) through the regulation of sterol regulatory element binding protein (SREBP) activation. The present results show that miR-122 regulates LRBP levels by increasing the processing of SREBP through the degradation of Insig1, the anchoring protein of SREBP. We present evidence showing that mRNA and protein levels of Insig1 undergo a time-dependent increase following the treatment of rat granulosa cells with follicle-stimulating hormone (FSH), which leads to a decrease in LRBP levels. Furthermore, overexpression of miR-122 using an adenoviral vector (AdmiR-122) abolished FSH-induced increases in Insig1 mRNA and protein. We further confirmed the role of Insig1 by showing that inhibition of Insig1 using a specific small interfering RNA prior to FSH treatment resulted in the abrogation of LHR upregulation. Silencing of Insig1 also reversed FSH-mediated decreases in SREBP and LRBP activation. These results show that decreased levels of miR-122 increase Insig1 and suppress SREBP processing in response to FSH stimulation of rat granulosa cells.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence: K. M. J. Menon, PhD, 6428 Medical Science Building I, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail: ; or Bindu Menon, PhD, 6436 Medical Sciences Building 1, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail:
| | - Xingzi Guo
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Natalia Garcia
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thippeswamy Gulappa
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - K M J Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence: K. M. J. Menon, PhD, 6428 Medical Science Building I, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail: ; or Bindu Menon, PhD, 6436 Medical Sciences Building 1, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
26
|
Menzies RI, Zhao X, Mullins LJ, Mullins JJ, Cairns C, Wrobel N, Dunbar DR, Bailey MA, Kenyon CJ. Transcription controls growth, cell kinetics and cholesterol supply to sustain ACTH responses. Endocr Connect 2017; 6:446-457. [PMID: 28720595 PMCID: PMC5574282 DOI: 10.1530/ec-17-0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 01/29/2023]
Abstract
Chronic ACTH exposure is associated with adrenal hypertrophy and steroidogenesis. The underlying molecular processes in mice have been analysed by microarray, histological and immunohistochemical techniques. Synacthen infused for 2 weeks markedly increased adrenal mass and plasma corticosterone levels. Microarray analysis found greater than 2-fold changes in expression of 928 genes (P < 0.001; 397 up, 531 down). These clustered in pathways involved in signalling, sterol/lipid metabolism, cell proliferation/hypertrophy and apoptosis. Signalling genes included some implicated in adrenal adenomas but also upregulated genes associated with cyclic AMP and downregulated genes associated with aldosterone synthesis. Sterol metabolism genes were those promoting cholesterol supply (Scarb1, Sqle, Apoa1) and disposal (Cyp27a1, Cyp7b1). Oil red O staining showed lipid depletion consistent with reduced expression of genes involved in lipid synthesis. Genes involved in steroidogenesis (Star, Cyp11a1, Cyp11b1) were modestly affected (P < 0.05; <1.3-fold). Increased Ki67, Ccna2, Ccnb2 and Tk1 expression complemented immunohistochemical evidence of a 3-fold change in cell proliferation. Growth arrest genes, Cdkn1a and Cdkn1c, which are known to be active in hypertrophied cells, were increased >4-fold and cross-sectional area of fasciculata cells was 2-fold greater. In contrast, genes associated with apoptosis (eg Casp12, Clu,) were downregulated and apoptotic cells (Tunel staining) were fewer (P < 0.001) and more widely distributed throughout the cortex. In summary, long-term steroidogenesis with ACTH excess is sustained by genes controlling cholesterol supply and adrenal mass. ACTH effects on adrenal morphology and genes controlling cell hypertrophy, proliferation and apoptosis suggest the involvement of different cell types and separate molecular pathways.
Collapse
Affiliation(s)
- Robert I Menzies
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Xin Zhao
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Linda J Mullins
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - John J Mullins
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Carolynn Cairns
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Nicola Wrobel
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Donald R Dunbar
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Matthew A Bailey
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Christopher J Kenyon
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
27
|
Marinozzi M, Castro Navas FF, Maggioni D, Carosati E, Bocci G, Carloncelli M, Giorgi G, Cruciani G, Fontana R, Russo V. Side-Chain Modified Ergosterol and Stigmasterol Derivatives as Liver X Receptor Agonists. J Med Chem 2017; 60:6548-6562. [PMID: 28741954 DOI: 10.1021/acs.jmedchem.7b00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of stigmasterol and ergosterol derivatives, characterized by the presence of oxygenated functions at C-22 and/or C-23 positions, were designed as potential liver X receptor (LXR) agonists. The absolute configuration of the newly created chiral centers was definitively assigned for all the corresponding compounds. Among the 16 synthesized compounds, 21, 27, and 28 were found to be selective LXRα agonists, whereas 20, 22, and 25 showed good selectivity for the LXRβ isoform. In particular, 25 showed the same degree of potency as 22R-HC (3) at LXRβ, while it was virtually inactive at LXRα (EC50 = 14.51 μM). Interestingly, 13, 19, 20, and 25 showed to be LXR target gene-selective modulators, by strongly inducing the expression of ABCA1, while poorly or not activating the lipogenic genes SREBP1 and SCD1 or FASN, respectively.
Collapse
Affiliation(s)
- Maura Marinozzi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia , Via del Liceo, 1-06123 Perugia, Italy
| | | | - Daniela Maggioni
- Istituto Scientifico Ospedale San Raffaele (IRCCS) , Via Olgettina, 58-20132 Milano, Italy
| | - Emanuele Carosati
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia , Via Elce di Sotto, 8-06123 Perugia, Italy
| | - Giovanni Bocci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia , Via Elce di Sotto, 8-06123 Perugia, Italy
| | - Maria Carloncelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia , Via del Liceo, 1-06123 Perugia, Italy
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , Via A. Moro, 53100 Siena, Italy
| | - Gabriele Cruciani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia , Via Elce di Sotto, 8-06123 Perugia, Italy
| | - Raffaella Fontana
- Istituto Scientifico Ospedale San Raffaele (IRCCS) , Via Olgettina, 58-20132 Milano, Italy
| | - Vincenzo Russo
- Istituto Scientifico Ospedale San Raffaele (IRCCS) , Via Olgettina, 58-20132 Milano, Italy
| |
Collapse
|
28
|
Barbosa S, Carreira S, O'Hare P. GSK-3-mediated phosphorylation couples ER-Golgi transport and nuclear stabilization of the CREB-H transcription factor to mediate apolipoprotein secretion. Mol Biol Cell 2017; 28:1565-1579. [PMID: 28381424 PMCID: PMC5449154 DOI: 10.1091/mbc.e17-01-0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
CREB-H plays a key role in regulating secretion in metabolic pathways, particularly triglyceride homeostasis. Phosphorylation at a conserved serine motif, the P-motif, provides an integrated control mechanism of CREB-H function, coupling intercompartmental transport in the cytoplasm with stabilization of the active form in the nucleus. CREB-H, an ER-anchored transcription factor, plays a key role in regulating secretion in metabolic pathways, particularly triglyceride homeostasis. It controls the production both of secretory pathway components and cargoes, including apolipoproteins ApoA-IV and ApoC-II, contributing to VLDL/HDL distribution and lipolysis. The key mechanism controlling CREB-H activity involves its ER retention and forward transport to the Golgi, where it is cleaved by Golgi-resident proteases, releasing the N-terminal product, which traffics to the nucleus to effect transcriptional responses. Here we show that a serine-rich motif termed the P-motif, located in the N-terminus between serines 73 and 90, controls release of the precursor transmembrane form from the ER and its forward transport to the Golgi. This motif is subject to GSK-3 phosphorylation, promoting ER retention, while mutation of target serines and drug inhibition of GSK-3 activity coordinately induce both forward transport of the precursor and cleavage, resulting in nuclear import. We previously showed that for the nuclear product, the P-motif is subject to multiple phosphorylations, which regulate stability by targeting the protein to the SCFFbw1a E3 ubiquitin ligase. Thus phosphorylation at the P-motif provides integrated control of CREB-H function, coupling intercompartmental transport in the cytoplasm with stabilization of the active form in the nucleus.
Collapse
Affiliation(s)
- Sónia Barbosa
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Suzanne Carreira
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Peter O'Hare
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| |
Collapse
|
29
|
Brandsma J, Postle AD. Analysis of the regulation of surfactant phosphatidylcholine metabolism using stable isotopes. Ann Anat 2017; 211:176-183. [PMID: 28351529 DOI: 10.1016/j.aanat.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/22/2023]
Abstract
The pathways and mechanisms that regulate pulmonary surfactant synthesis, processing, secretion and catabolism have been extensively characterised using classical biochemical and analytical approaches. These have constructed a model, largely in experimental animals, for surfactant phospholipid metabolism in the alveolar epithelial cell whereby phospholipid synthesised on the endoplasmic reticulum is selectively transported to lamellar body storage vesicles, where it is subsequently processed before secretion into the alveolus. Surfactant phospholipid is a complex mixture of individual molecular species defined by the combination of esterified fatty acid groups and a comprehensive description of surfactant phospholipid metabolism requires consideration of the interactions between such molecular species. However, until recently, lipid analytical techniques have not kept pace with the considerable advances in understanding of the enzymology and molecular biology of surfactant metabolism. Refinements in electrospray ionisation mass spectrometry (ESI-MS) can now provide very sensitive platforms for the rapid characterisation of surfactant phospholipid composition in molecular detail. The combination of ESI-MS and administration of phospholipid substrates labelled with stable isotopes extends this analytical approach to the quantification of synthesis and turnover of individual molecular species of surfactant phospholipid. As this methodology does not involve radioactivity, it is ideally suited to application in clinical studies. This review will provide an overview of the metabolic processes that regulate the molecular specificity of surfactant phosphatidylcholine together with examples of how the application of stable isotope technologies in vivo has, for the first time, begun to explore regulation of the molecular specificity of surfactant synthesis in human subjects.
Collapse
Affiliation(s)
- Joost Brandsma
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
| | - Anthony D Postle
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom.
| |
Collapse
|
30
|
Pegolo S, Cecchinato A, Mach N, Babbucci M, Pauletto M, Bargelloni L, Schiavon S, Bittante G. Transcriptomic Changes in Liver of Young Bulls Caused by Diets Low in Mineral and Protein Contents and Supplemented with n-3 Fatty Acids and Conjugated Linoleic Acid. PLoS One 2016; 11:e0167747. [PMID: 27930681 PMCID: PMC5145186 DOI: 10.1371/journal.pone.0167747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/19/2016] [Indexed: 02/04/2023] Open
Abstract
The aim of the present study was to identify transcriptional modifications and regulatory networks accounting for physiological and metabolic responses to specific nutrients in the liver of young Belgian Blue × Holstein bulls using RNA-sequencing. A larger trial has been carried out in which animals were fed with different diets: 1] a conventional diet; 2] a low-protein/low-mineral diet (low-impact diet) and 3] a diet enriched in n-3 fatty acids (FAs), conjugated linoleic acid (CLA) and vitamin E (nutraceutical diet). The initial hypothesis was that the administration of low-impact and nutraceutical diets might influence the transcriptional profiles in bovine liver and the resultant nutrient fluxes, which are essential for optimal liver function and nutrient interconversion. Results showed that the nutraceutical diet significantly reduced subcutaneous fat covering in vivo and liver pH. Dietary treatments did not affect overall liver fat content, but significantly modified the liver profile of 33 FA traits (out of the total 89 identified by gas-chromatography). In bulls fed nutraceutical diet, the percentage of n-3 and CLA FAs increased around 2.5-fold compared with the other diets, whereas the ratio of n6/n3 decreased 2.5-fold. Liver transcriptomic analyses revealed a total of 198 differentially expressed genes (DEGs) when comparing low-impact, nutraceutical and conventional diets, with the nutraceutical diet showing the greatest effects on liver transcriptome. Functional analyses using ClueGo and Ingenuity Pathway Analysis evidenced that DEGs in bovine liver were variously involved in energy reserve metabolic process, glutathione metabolism, and carbohydrate and lipid metabolism. Modifications in feeding strategies affected key transcription factors regulating the expression of several genes involved in fatty acid metabolism, e.g. insulin-induced gene 1, insulin receptor substrate 2, and RAR-related orphan receptor C. This study provides noteworthy insights into the molecular changes occurring as a result of nutrient variation in diets (aimed at reducing the environmental impact and improving human health) and broadens our understanding of the relationship between nutrients variation and phenotypic effects.
Collapse
Affiliation(s)
- Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
- * E-mail:
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Núria Mach
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
31
|
Gölz L, Buerfent BC, Hofmann A, Rühl H, Fricker N, Stamminger W, Oldenburg J, Deschner J, Hoerauf A, Nöthen MM, Schumacher J, Hübner MP, Jäger A. Genome-wide transcriptome induced by nickel in human monocytes. Acta Biomater 2016; 43:369-382. [PMID: 27477848 DOI: 10.1016/j.actbio.2016.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Nickel-containing alloys are frequently used in the biomedical field, although, owing to corrosive processes metal ion leaching is inevitable. Due to nickel ion (Ni(2+)) leaching several adverse effects are described in the literature. However, only a few studies evaluated the genetic profile of Ni(2+) in human cells which is of great importance since nickel-induced effects differ between humans and mice as a result of species-specific receptor variability. Thus, we investigated gene expression induced by Ni(2+)in human monocytes using a transcriptome-wide approach determining new target genes implicated in nickel-induced pathologies. Monocytes were isolated from healthy volunteers of Central European origin using stringent inclusion criteria. Cells were challenged with different Ni(2+) concentrations. Array-based gene expression analysis was performed comprising more than 47,000 transcripts followed by pathway analyses. Transcriptional data were validated by protein and cell surface markers. Ni(2+) significantly influenced the expression of 1385 transcripts in a dose-dependent manner. Apart from known targets (CCL20↑, PTGS2↑, MTs↑, SLCs↑), we identified new candidates implicated in Ni(2+)-elicited processes (various microRNAs↑, INSIG1↑, NAMPT↑, MS4A6A↓, DHRS9↓). Several of these transcripts correspond to immunity, inflammation and were shown to be involved in cellular reactions related to hypersensitivity, cancer, colitis, and encephalitis. Moreover, 459 canonical pathways/signaling, 500 pathologies and 2687 upstream regulators were detected. Protein results validated our findings. To our knowledge, the present systematic transcriptome-wide expression study is the first which explored Ni(2+)-elicited cell responses in human primary monocytes identifying new target genes, pathways and upstream regulators of relevance to diagnostic and therapeutic strategies. STATEMENT OF SIGNIFICANCE Nickel is widely applied in the biomedical field, although several adverse effects are documented in the literature due to nickel ion (Ni(2+)) leaching. In humans, allergic reactions like contact dermatitis are the most common adverse effect to Ni(2+), whereas serious concerns relate to possible systemic and carcinogenic activities. Using a systematic genome-wide transcriptional approach in human primary monocytes unveil new target genes, pathways and upstream regulators implicated in nickel-elicited immune response which are of significance to diagnostic and therapeutic strategies. This approach provides new information of how host-derived immune response contributes to the interaction with antigens and supports the interplay between metal ions and systemic diseases.
Collapse
|
32
|
Watson E, Yilmaz LS, Walhout AJM. Understanding Metabolic Regulation at a Systems Level: Metabolite Sensing, Mathematical Predictions, and Model Organisms. Annu Rev Genet 2016; 49:553-75. [PMID: 26631516 DOI: 10.1146/annurev-genet-112414-055257] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolic networks are extensively regulated to facilitate tissue-specific metabolic programs and robustly maintain homeostasis in response to dietary changes. Homeostatic metabolic regulation is achieved through metabolite sensing coupled to feedback regulation of metabolic enzyme activity or expression. With a wealth of transcriptomic, proteomic, and metabolomic data available for different cell types across various conditions, we are challenged with understanding global metabolic network regulation and the resulting metabolic outputs. Stoichiometric metabolic network modeling integrated with "omics" data has addressed this challenge by generating nonintuitive, testable hypotheses about metabolic flux rewiring. Model organism studies have also yielded novel insight into metabolic networks. This review covers three topics: the feedback loops inherent in metabolic regulatory networks, metabolic network modeling, and interspecies studies utilizing Caenorhabditis elegans and various bacterial diets that have revealed novel metabolic paradigms.
Collapse
Affiliation(s)
- Emma Watson
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605; , ,
| | - L Safak Yilmaz
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605; , ,
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605; , ,
| |
Collapse
|
33
|
Wang H, Shi H, Luo J, Yi Y, Yao D, Zhang X, Ma G, Loor JJ. MiR-145 Regulates Lipogenesis in Goat Mammary Cells Via Targeting INSIG1 and Epigenetic Regulation of Lipid-Related Genes. J Cell Physiol 2016; 232:1030-1040. [PMID: 27448180 DOI: 10.1002/jcp.25499] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/21/2016] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression at the post-transcriptional level to cause translational repression or degradation of targets. The profiles of miRNAs across stages of lactation in small ruminant species such as dairy goats is unknown. A small RNA library was constructed using tissue samples from mammary gland of Saanen dairy goats harvested at mid-lactation followed by sequencing via Solexa technology. A total of 796 conserved miRNAs, 263 new miRNAs, and 821 pre-miRNAs were uncovered. After comparative analyses of our sequence data with published mammary gland transcriptome data across different stages of lactation, a total of 37 miRNAs (including miR-145) had significant differences in expression over the lactation cycle. Further studies revealed that miR-145 regulates metabolism of fatty acids in goat mammary gland epithelial cells (GMEC). Compared with nonlactating mammary tissue, lactating mammary gland had a marked increase in expression of miR-145. Overexpression of miR-145 increased transcription of genes associated with milk fat synthesis resulting in greater fat droplet formation, triacylglycerol accumulation, and proportion of unsaturated fatty acids. In contrast, silencing of miR-145 impaired fatty acid synthesis. Inhibition of miR-145 increased methylation levels of fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), peroxisome proliferator-activated receptor gamma (PPARG), and sterol regulatory element binding transcription factor 1 (SREBF1). Luciferase reporter assays confirmed that insulin induced gene 1 (INSIG1) is a direct target of miR-145. These findings underscore the need for further studies to evaluate the potential for targeting miR-145 for improving beneficial milk components in ruminant milk. J. Cell. Physiol. 232: 1030-1040, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yongqing Yi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Dawei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xueying Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Gongzhen Ma
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| |
Collapse
|
34
|
Shi Q, Hoffman B, Liu Q. PI3K-Akt signaling pathway upregulates hepatitis C virus RNA translation through the activation of SREBPs. Virology 2016; 490:99-108. [PMID: 26855332 DOI: 10.1016/j.virol.2016.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) activates PI3K-Akt signaling to enhance entry and replication. Here, we found that this pathway also increased HCV translation. Knocking down the three Akt isoforms significantly decreased, whereas ectopic expression increased HCV translation. HCV translation upregulation by Akt required their kinase activities because Akt kinase-dead mutants downregulated HCV translation; and was dependent on PI3K activity since it was sensitive to PI3K inhibitor wortmannin. The viral 3'UTR was not involved in translation upregulation by Akt. HCV NS5A increased Akt phosphorylation/activity and HCV translation in the absence of the viral 3'UTR. Sterol regulatory element-binding proteins (SREBPs) were the downstream effectors of the PI3K-Akt pathway in regulating HCV translation because Akt1 and Akt2 activated both SREBP-1 and SREBP-2, whereas Akt3 upregulated SREBP-1. Knocking down SREBPs significantly decreased, while ectopic expression of SREBPs increased HCV translation. Taken together, we showed that the PI3K-Akt signaling pathway positively regulates HCV translation through SREBPs.
Collapse
Affiliation(s)
| | - Brett Hoffman
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
35
|
Saher G, Stumpf SK. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1083-94. [PMID: 25724171 DOI: 10.1016/j.bbalip.2015.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Gesine Saher
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Sina Kristin Stumpf
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
36
|
Sancar G, Brunner M. Circadian clocks and energy metabolism. Cell Mol Life Sci 2014; 71:2667-80. [PMID: 24515123 PMCID: PMC11113245 DOI: 10.1007/s00018-014-1574-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Abstract
Circadian clocks orchestrate behavioral and physiological processes in a time-of-day dependent manner. The network of clock-controlled genes is intimately interconnected with metabolic regulatory circuits. Circadian clocks rhythmically regulate the expression and activity of key metabolic players, which in turn feed back on the circadian machinery on the transcriptional and post-transcriptional level. Mutations of clock genes are often associated with metabolic defects, especially in lipid and glucose metabolism. Accumulating data suggest that the reciprocal coordination of circadian and metabolic pathways is crucial for cellular homeostasis and the health of the organism.
Collapse
Affiliation(s)
- Gencer Sancar
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany,
| | | |
Collapse
|
37
|
Lopez S, Bermudez B, Montserrat-de la Paz S, Jaramillo S, Varela LM, Ortega-Gomez A, Abia R, Muriana FJG. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1638-56. [PMID: 24440426 DOI: 10.1016/j.bbamem.2014.01.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/26/2022]
Abstract
The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | | | - Sara Jaramillo
- Laboratory of Phytochemicals and Food Quality, Instituto de la Grasa, CSIC, 41014 Seville, Spain
| | - Lourdes M Varela
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Almudena Ortega-Gomez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain.
| |
Collapse
|
38
|
Isolation, sequence characterization, and tissue transcription profiles of two novel buffalo genes: INSIG1 and INSIG2. Trop Anim Health Prod 2013; 46:33-41. [DOI: 10.1007/s11250-013-0443-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
39
|
Effects of short- and long-chain fatty acids on the expression of stearoyl-CoA desaturase and other lipogenic genes in bovine mammary epithelial cells. Animal 2013; 7:1508-16. [PMID: 23597233 DOI: 10.1017/s175173111300061x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stearoyl-CoA desaturase (SCD) in the bovine mammary gland introduces a cis-double bond at the Δ9 position in a wide range of fatty acids (FA). Several long-chain polyunsaturated fatty acids (PUFA) inhibit expression of SCD, but information on the effect of short-chain fatty acids on mammary SCD expression is scarce. We used a bovine mammary cell line (MAC-T) to assess the effect of acetic acid (Ac) and β-hydroxybutyric acid (BHBA) in comparison with the effect of various long-chain fatty acids on the mRNA expression of the lipogenic enzymes SCD, acetyl-CoA carboxylase (ACACA), fatty acid synthase (FASN) and their associated gene regulatory proteins sterol regulatory element binding transcription factor 1 (SREBF1), insulin-induced gene 1 protein (INSIG1) and peroxisome proliferator-activated receptor alpha (PPARA)and peroxisome proliferator-activated receptor delta (PPARD) by quantitative real-time PCR. MAC-T cells were treated for 12 h without FA additions (CON) or with either 5 mM Ac, 5 mM BHBA, a combination of 5 mM Ac + 5 mM BHBA, 100 μM C16:0, 100 μM C18:0, 100 μM C18:1 cis-9, 100 μM C18:1 trans-11, 100 μM C18:2 cis-9,12 or 100 μM C18:3 cis-9,12,15. Compared with control, mRNA expression of SCD1 was increased by Ac (+61%) and reduced by C18:1 cis-9 (-61%), C18:2 cis-9,12 (-84%) and C18:3 cis-9,12,15 (-88%). In contrast to native bovine mammary gland tissue, MAC-T cells did not express SCD5. Expression of ACACA was increased by Ac (+44%) and reduced by C18:2 cis-9,12 (-48%) and C18:3 cis-9,12,15 (-49%). Compared with control, FASN expression was not significantly affected by the treatments. The mRNA level of SREBF1 was not affected by Ac or BHBA, but was reduced by C18:1 cis-9 (-44%), C18:1 trans-11 (-42%), C18:2 cis-9,12 (-62%) and C18:3 cis-9,12,15 (-68%) compared with control. Expression of INSIG1 was downregulated by C18:0 (-37%), C18:1 cis-9 (-63%), C18:1 trans-11 (-53%), C18:2 cis-9,12 (-81%) and C18:3 cis-9,12,15 (-91%). Both PPARA and PPARD expression were not significantly affected by the treatments. Our results show that Ac upregulated mRNA expression of SCD1 and ACACA in MAC-T cells. The opposite effect of the PUFA C18:2 cis-9,12 and C18:3 cis-9,12,15 on the these genes and the failure of Ac to mimic the PUFA-inhibited SREBF1 and INSIG1 mRNA expression, suggest that Ac can stimulate mammary lipogenesis via a transcriptional regulatory mechanism different from PUFA.
Collapse
|