1
|
Lu F, Zeng N, Xiao X, Wang X, Gong H, Lei H. Exploring the ceRNA network involving AGAP2-AS1 as a novel biomarker for preeclampsia. Sci Rep 2024; 14:27330. [PMID: 39521940 PMCID: PMC11550820 DOI: 10.1038/s41598-024-79224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Preeclampsia (PE) is an important research subject in obstetrics. Nevertheless, the underlying mechanisms of PE remain elusive. PE-related expression datasets (GSE96983, GSE96984 and GSE24129) were downloaded from the Gene Expression Omnibus (GEO) database. Firstly, the differentially expressed messenger RNAs (DE-mRNAs), DE-microRNA (DE-miRNAs) and DE-long non-coding RNA (DE-lncRNAs) between PE and control cohorts were identified, and the ceRNA network was constructed. Then candidate hub genes were obtained through five algorithms by the protein-protein intersection (PPI) network of the mRNAs. Further, five hub genes were identified by receiver operating characteristic (ROC) curve and gene expression profiles: DAXX, EFNB1, NCOR2, RBBP4 and SOCS1. The function of 5 hub genes was analyzed and the interaction between drugs and hub genes was predicted. A total of 5 small molecule drugs were predicted, namely benzbromarone, 9,10-phenanthrenequinone, chembl312032, insulin and aldesleukin. AGAP2-AS1 was mainly located in exosome and cytoplasm. Agap2-as1-related regulatory subnetworks were extracted from ceRNA networks which included 41 mRNAs, 2 miRNAs and 1 lncRNA, including the regulated relationship pairs AGAP2-AS1-hsa-miR-497-5p-SRPRB, and AGAP2-AS1-hsa-miR-195-5p-RPL36. In summary, we constructed a competitive endogenous RNA (ceRNA) network to identify five potential biomarkers (DAXX, EFNB1, NCOR2, SOCS1 and RBBP4) of PE. The in-depth analysis of the AGAP2-AS1 regulatory network will help to uncover more important molecules closely related to PE and provide a scientific Reference.
Collapse
Affiliation(s)
- Fan Lu
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Ni Zeng
- Department of Hospital infection and control, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Xiang Xiao
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Xingxing Wang
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Han Gong
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Houkang Lei
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Couture C, Caron M, St-Onge P, Brien ME, Sinnett D, Dal Soglio D, Girard S. Identification of divergent placental profiles in clinically distinct pregnancy complications revealed by the transcriptome. Placenta 2024; 154:184-192. [PMID: 39042974 DOI: 10.1016/j.placenta.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Pregnancy complications, including preeclampsia (PE), preterm birth (PTB), and intra-uterine growth restriction (IUGR) have individually been associated with inflammation but the combined comparative analysis of their placental profiles at the transcriptomic and histological levels is lacking. METHODS Bulk RNA-sequencing of human placental biopsies from uncomplicated term pregnancies (CTL) and pregnancies complicated with early-onset (EO), and late-onset (LO) PE, as well as PTB and term IUGR were used to characterize individual molecular profiles. We also applied immune-cell-specific cellular deconvolution to address local immune cell compositions and analyzed placental lesions by histology to further characterize these complications. RESULTS Transcriptome analysis revealed that clinically distinct complications differentiated themselves in unique ways compared to CTLs. Only TMEM136 was commonly modulated. Compared to CTLs, we found that PTB and IUGR were the most distinct, with LOPE being the least distinct. PTB and IUGR revealed differently enhanced inflammatory pathways, where PTB had general inflammatory responses and IUGR had immune cell activation. This inflammation was reflected in the histological profile for PTB only, whereas structural lesions were elevated in all complications. Placental lesions additionally had corresponding enhancement in inflammatory and structural biological processes. We observed that having co-complications, particularly for PTB with or without IUGR, impacted placental transcriptomes. Lastly, cellular deconvolution uncovered shared immune features among the complications. DISCUSSION Overall, we provide evidence that these pregnancy complications are not only distinct in their clinical manifestations but also in their placental profiles, which could be leveraged to understand their underlying mechanisms and could offer therapeutic targets.
Collapse
Affiliation(s)
- Camille Couture
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada; Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Maxime Caron
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Pascal St-Onge
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Marie-Eve Brien
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Daniel Sinnett
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada; Department of Pediatrics, Université de Montreal, Montreal, Quebec, Canada
| | - Dorothée Dal Soglio
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, QC, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Quebec, Canada; Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Wang Y, Li Y, Nie G. HtrA4 is well conserved only in higher primates and functionally important for EVT differentiation. Placenta 2024; 152:53-64. [PMID: 38805949 DOI: 10.1016/j.placenta.2024.05.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION The placenta differs greatly among species, and deep extra-villous trophoblast (EVT) invasion is a unique feature of placentation of higher primates including humans. We reported serine protease HtrA4 being found predominantly in human placentas with aberrant expression linked to preeclampsia. However, it remains unclear where HtrA4 is produced in the placenta, how it is expressed in other species, and whether it is essential for human placentation. METHODS We first compared HtrA4 protein sequences of over 100 species, then scrutinized the key characteristics of HtrA4 in the human, rhesus macaque and mouse, and determined cellular localization in the placenta. We next investigated functional significance of HtrA4 in EVT differentiation using human trophoblast stem cells (TSCs). RESULTS Across broader species HtrA4 is well conserved only in higher primates. In humans, only the placenta expressed HtrA4, localising to trophoblasts of villous as well as extra-villous lineages. Rhesus macaques produced HtrA4 but again only in placentas, whereas mice showed no abundant HtrA4 expression anywhere including the placenta, yet it was an active protease if produced. The functional importance of HtrA4 in human EVT was demonstrated using TSCs, which expressed low levels of HtrA4 but significantly up-regulated it during EVT differentiation, and knockdown of HtrA4 severely inhibited the differentiation process. DISCUSSION HtrA4 is expressed in placentas of humans and macaques but not mice; it is critical for human EVT differentiation. Together with previous reports showing HtrA4 is also indispensable for syncytialization, this study further revealed HtrA4 as a functionally important protease for human placentation.
Collapse
Affiliation(s)
- Yao Wang
- Implantation and Pregnancy Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Ying Li
- Implantation and Pregnancy Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Guiying Nie
- Implantation and Pregnancy Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
4
|
Chilosi M, Doglioni C, Ravaglia C, Piciucchi S, Dubini A, Stefanizzi L, Poletti V. COVID-19. Biology, pathophysiology, and immunology: a pathologist view. Pathologica 2023; 115:248-256. [PMID: 38054899 DOI: 10.32074/1591-951x-954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
Even if the SARS-CoV-2 pandemic has been declared over, several risks and clinical problems remain to be faced, including long-COVID sequelae and possible outbreaks of pathogenic variants. Intense research on COVID-19 has provided in these few years a striking amount of data covering different fields and disciplines, which can help to provide a knowledge shield against new potential infective spreads, and may also potentially be applied to other fields of medicine, including oncology and neurology. Nevertheless, areas of uncertainty still remain regarding the pathogenic mechanisms that subtend the multifaceted manifestations of the disease. To better clarify the pathogenesis of the disease, a systematic multidisciplinary evaluation of the many mechanisms involved in COVID-19 is mandatory, including clinical, physiological, radiological, immunological and pathological studies. In COVID-19 syndrome the pathological studies have been mainly performed on autopsy cases, and only a few studies are available on biopsies. Nevertheless, these studies have provided relevant information that can substantially contribute to decipher the complex scenario characterizing the different forms of COVID-19 and long-COVID-19. In this review the data provided by pathological investigations are recapitulated and discussed, in the light of different hypothesis and data provided by clinical, physiological and immunological data.
Collapse
Affiliation(s)
- Marco Chilosi
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute. Milan, Italy
| | - Claudia Ravaglia
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
| | - Sara Piciucchi
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
| | | | | | - Venerino Poletti
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Department of Pathology, Ospedale GB Morgagni, Forlì, Italy
| |
Collapse
|
5
|
Yoshizawa H, Nishizawa H, Ito M, Ohwaki A, Sakabe Y, Sekiya T, Fujii T, Kurahashi H. Increased levels of nectin-4 as a serological marker for pre-eclampsia. FUJITA MEDICAL JOURNAL 2023; 9:200-205. [PMID: 37554937 PMCID: PMC10405896 DOI: 10.20407/fmj.2022-027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/21/2022] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Nectin-4 is a cell adhesion molecule with vital functions at adherens and tight junctions. Cumulative evidence now indicates that the NECTIN4 gene is overexpressed in a variety of cancers, and that the nectin-4 protein is both a disease marker and therapeutic target in a subset of these cancers. We previously demonstrated that NECTIN4 is overexpressed in placenta during pre-eclamptic pregnancy, which is one of the most serious obstetric disorders. METHODS Nectin-4 protein levels were measured in maternal sera from pregnant women with pre-eclampsia and its related disorder, unexplained fetal growth retardation. RESULTS Maternal serum concentrations of nectin-4 were significantly elevated in pre-eclamptic women compared with those with an uncomplicated normotensive pregnancy. However, no increase was observed in pregnancies with unexplained fetal growth retardation. Serum nectin-4 levels were higher in cases with early-onset pre-eclampsia that generally showed more severe clinical symptoms, but levels were not correlated to other clinical indicators of disease severity. CONCLUSIONS Nectin-4 is a potential new diagnostic and predictive biomarker for severe pre-eclampsia.
Collapse
Affiliation(s)
- Hikari Yoshizawa
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Mayuko Ito
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Akiko Ohwaki
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshiko Sakabe
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Takao Sekiya
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
6
|
Yang J, Liu Y, Dong M. Integrated Bioinformatics Analysis to Screen Hub Gene Signatures for Fetal Growth Restriction. Genet Res (Camb) 2023; 2023:3367406. [PMID: 37033160 PMCID: PMC10079385 DOI: 10.1155/2023/3367406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Background. Fetal growth restriction (FGR) is the impairment of the biological growth potential of the fetus and often leads to adverse pregnancy outcomes. The molecular mechanisms for the development of FGR, however, are still unclear. The purpose of this study is to identify critical genes associated with FGR through an integrated bioinformatics approach and explore the potential pathogenesis of FGR. Methods. We downloaded FGR-related gene microarray data, used weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs), and protein-protein interaction (PPI) networks to screen hub genes. The GSE24129 gene set was used for validation of critical gene expression levels and diagnostic capabilities. Results. A weighted gene co-expression network was constructed, and 5000 genes were divided into 12 modules. Of these modules, the blue module showed the closest relationship with FGR. Taking the intersection of the DEGs and genes in the blue module as pivotal genes, 277 genes were identified, and 20 crucial genes were screened from the PPI network. The GSE24129 gene set verified the expression of 20 genes, and CXCL9, CXCR3, and ITGAX genes were identified as actual pivotal genes. The expression levels of CXCL9, CXCR3, and ITGAX were increased in both the training and validation sets, and ROC curve validation revealed that these three pivotal genes had a significant diagnostic ability for FGR. Single-gene GSEA results showed that all three core genes activated “hematopoietic cell lineage” and “cell adhesion molecules” and inhibited the “cGMP-PKG signaling pathway” in the development of FGR. CXCL9, CXCR3, and ITGAX may therefore be closely associated with the development of FGR and may serve as potential biomarkers for the diagnosis and treatment of FGR.
Collapse
|
7
|
Campbell KA, Colacino JA, Puttabyatappa M, Dou JF, Elkin ER, Hammoud SS, Domino SE, Dolinoy DC, Goodrich JM, Loch-Caruso R, Padmanabhan V, Bakulski KM. Placental cell type deconvolution reveals that cell proportions drive preeclampsia gene expression differences. Commun Biol 2023; 6:264. [PMID: 36914823 PMCID: PMC10011423 DOI: 10.1038/s42003-023-04623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells). We deconvoluted eight published microarray case-control studies of preeclampsia (n = 173 controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced preeclampsia-associated differentially expressed genes (log2 fold-change cutoff = 0.1, FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these pathways. Cellular composition mediated a substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to previously observed bulk gene expression differences. This deconvolution reference lays the groundwork for cellular heterogeneity-aware investigation into placental dysfunction and adverse birth outcomes.
Collapse
Affiliation(s)
- Kyle A Campbell
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - John F Dou
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elana R Elkin
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven E Domino
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Reshetnikov EA, Stepanov VA, Serebrova VN, Bocharova AV, Trifonova EA, Ponomarenko IV, Reshetnikova YN, Efremova OA, Orlova VS, Batlutskaya IV, Sorokina IN, Churnosov MI. Genes TMEM136 and PPP1R12C Differentially Expressed in the Placenta Are Associated with Preeclampsia. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422120110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Zhou G, Winn E, Nguyen D, Kasten EP, Petroff MG, Hoffmann HM. Co-alterations of circadian clock gene transcripts in human placenta in preeclampsia. Sci Rep 2022; 12:17856. [PMID: 36284122 PMCID: PMC9596722 DOI: 10.1038/s41598-022-22507-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/17/2022] [Indexed: 01/20/2023] Open
Abstract
Pre-eclampsia (PE) is a hypertensive condition that occurs during pregnancy and complicates up to 4% of pregnancies. PE exhibits several circadian-related characteristics, and the placenta possesses a functioning molecular clock. We examined the associations of 17 core circadian gene transcripts in placenta with PE vs. non-PE (a mixture of pregnant women with term, preterm, small-for-gestational-age, or chorioamnionitis) using two independent gene expression datasets: GSE75010-157 (80 PE vs. 77 non-PE) and GSE75010-173 (77 PE and 96 non-PE). We found a robust difference in circadian gene expression between PE and non-PE across the two datasets, where CRY1 mRNA increases and NR1D2 and PER3 transcripts decrease in PE placenta. Gene set variation analysis revealed an interplay between co-alterations of circadian clock genes and PE with altered hypoxia, cell migration/invasion, autophagy, and membrane trafficking pathways. Using human placental trophoblast HTR-8 cells, we show that CRY1/2 and NR1D1/2 regulate trophoblast migration. A subgroup study including only term samples demonstrated that CLOCK, NR1D2, and PER3 transcripts were simultaneously decreased in PE placenta, a finding supported by CLOCK protein downregulation in an independent cohort of human term PE placenta samples. These findings provide novel insights into the roles of the molecular clock in the pathogenesis of PE.
Collapse
Affiliation(s)
- Guoli Zhou
- Clinical & Translational Sciences Institute, Michigan State University, 909 Wilson Rd. Suite B500, East Lansing, MI, 48824, USA.
| | - Emily Winn
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Duong Nguyen
- Department of Animal Science, Reproductive and Developmental Science Program and Neuroscience Program, College of Agriculture and Natural Resources, Michigan State University, Interdisciplinary Science and Technology Building #3010, 766 Service Road, East Lansing, MI, 48824, USA
| | - Eric P Kasten
- Clinical & Translational Sciences Institute, Michigan State University, 909 Wilson Rd. Suite B500, East Lansing, MI, 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Margaret G Petroff
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Hanne M Hoffmann
- Department of Animal Science, Reproductive and Developmental Science Program and Neuroscience Program, College of Agriculture and Natural Resources, Michigan State University, Interdisciplinary Science and Technology Building #3010, 766 Service Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Characterization of the MG828507 lncRNA Located Upstream of the FLT1 Gene as an Etiology for Pre-Eclampsia. J Clin Med 2022; 11:jcm11154603. [PMID: 35956218 PMCID: PMC9369602 DOI: 10.3390/jcm11154603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023] Open
Abstract
Background: FLT1 is one of the significantly overexpressed genes found in a pre-eclamptic placenta and is involved with the etiology of this disease. Methods: We conducted genome-wide expression profiling by RNA-seq of placentas from women with pre-eclampsia and those with normotensive pregnancy. Results: We identified a lncRNA gene, MG828507, located ~80 kb upstream of the FLT1 gene in a head-to-head orientation, which was overexpressed in the pre-eclamptic placenta. MG828507 and FLT1 are located within the same topologically associated domain in the genome. The MG828507 mRNA level correlated with that of the FLT1 in placentas from pre-eclamptic women as well as in samples from uncomplicated pregnancies. However, neither the overexpression nor knockdown of MG828507 affected the expression of FLT1. Analysis of pre-eclampsia-linking genetic variants at this locus suggested that the placental genotype of one variant was associated with the expression of MG828507. The MG828507 transcript level was not found to be associated with maternal blood pressure, but showed a relationship with birth and placental weights, suggesting that this lncRNA might be one of the pivotal placental factors in pre-eclampsia. Conclusion: Further characterization of the MG828507 gene may elucidate the etiological roles of the MG828507 and FLT1 genes in pre-eclampsia in a genomic context.
Collapse
|
11
|
Tamposis IA, Manios GA, Charitou T, Vennou KE, Kontou PI, Bagos PG. MAGE: An Open-Source Tool for Meta-Analysis of Gene Expression Studies. BIOLOGY 2022; 11:biology11060895. [PMID: 35741417 PMCID: PMC9220151 DOI: 10.3390/biology11060895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
MAGE (Meta-Analysis of Gene Expression) is a Python open-source software package designed to perform meta-analysis and functional enrichment analysis of gene expression data. We incorporate standard methods for the meta-analysis of gene expression studies, bootstrap standard errors, corrections for multiple testing, and meta-analysis of multiple outcomes. Importantly, the MAGE toolkit includes additional features for the conversion of probes to gene identifiers, and for conducting functional enrichment analysis, with annotated results, of statistically significant enriched terms in several formats. Along with the tool itself, a web-based infrastructure was also developed to support the features of this package.
Collapse
Affiliation(s)
- Ioannis A. Tamposis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
| | - Georgios A. Manios
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
| | - Theodosia Charitou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
| | - Konstantina E. Vennou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
- Correspondence:
| |
Collapse
|
12
|
Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C, Yuan J. BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update 2022; 28:890-909. [PMID: 35640966 PMCID: PMC9629482 DOI: 10.1093/humupd/dmac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The key oncogene B-cell lymphoma 6 (BCL6) drives malignant progression by promoting proliferation, overriding DNA damage checkpoints and blocking cell terminal differentiation. However, its functions in the placenta and the endometrium remain to be defined. OBJECTIVE AND RATIONALE Recent studies provide evidence that BCL6 may play various roles in the human placenta and the endometrium. Deregulated BCL6 might be related to the pathogenesis of pre-eclampsia (PE) as well as endometriosis. In this narrative review, we aimed to summarize the current knowledge regarding the pathophysiological role of BCL6 in these two reproductive organs, discuss related molecular mechanisms, and underline associated research perspectives. SEARCH METHODS We conducted a comprehensive literature search using PubMed for human, animal and cellular studies published until October 2021 in the following areas: BCL6 in the placenta, in PE and in endometriosis, in combination with its functions in proliferation, fusion, migration, invasion, differentiation, stem/progenitor cell maintenance and lineage commitment. OUTCOMES The data demonstrate that BCL6 is important in cell proliferation, survival, differentiation, migration and invasion of trophoblastic cells. BCL6 may have critical roles in stem/progenitor cell survival and differentiation in the placenta and the endometrium. BCL6 is aberrantly upregulated in pre-eclamptic placentas and endometriotic lesions through various mechanisms, including changes in gene transcription and mRNA translation as well as post-transcriptional/translational modifications. Importantly, increased endometrial BCL6 is considered to be a non-invasive diagnostic marker for endometriosis and a predictor for poor outcomes of IVF. These data highlight that BCL6 is crucial for placental development and endometrium homeostasis, and its upregulation is associated with the pathogenesis of PE, endometriosis and infertility. WIDER IMPLICATIONS The lesson learned from studies of the key oncogene BCL6 reinforces the notion that numerous signaling pathways and regulators are shared by tumors and reproductive organs. Their alteration may promote the progression of malignancies as well as the development of gestational and reproductive disorders.
Collapse
Affiliation(s)
- Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
13
|
Oravecz O, Balogh A, Romero R, Xu Y, Juhasz K, Gelencser Z, Xu Z, Bhatti G, Pique-Regi R, Peterfia B, Hupuczi P, Kovalszky I, Murthi P, Tarca AL, Papp Z, Matko J, Than NG. Proteoglycans: Systems-Level Insight into Their Expression in Healthy and Diseased Placentas. Int J Mol Sci 2022; 23:5798. [PMID: 35628608 PMCID: PMC9147780 DOI: 10.3390/ijms23105798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans' expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zhonghui Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Balint Peterfia
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | | | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia;
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
| | - Zoltan Papp
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Janos Matko
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| |
Collapse
|
14
|
Predictive RNA profiles for early and very early spontaneous preterm birth. Am J Obstet Gynecol 2022; 227:72.e1-72.e16. [PMID: 35398029 DOI: 10.1016/j.ajog.2022.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spontaneous preterm birth remains the main driver of childhood morbidity and mortality. Because of an incomplete understanding of the molecular pathways that result in spontaneous preterm birth, accurate predictive markers and target therapeutics remain elusive. OBJECTIVE This study sought to determine if a cell-free RNA profile could reveal a molecular signature in maternal blood months before the onset of spontaneous preterm birth. STUDY DESIGN Maternal samples (n=242) were obtained from a prospective cohort of individuals with a singleton pregnancy across 4 clinical sites at 12-24 weeks (nested case-control; n=46 spontaneous preterm birth <35 weeks and n=194 term controls). Plasma was processed via a next-generation sequencing pipeline for cell-free RNA using the Mirvie RNA platform. Transcripts that were differentially expressed in next-generation sequencing cases and controls were identified. Enriched pathways were identified in the Reactome database using overrepresentation analysis. RESULTS Twenty five transcripts associated with an increased risk of spontaneous preterm birth were identified. A logistic regression model was developed using these transcripts to predict spontaneous preterm birth with an area under the curve =0.80 (95% confidence interval, 0.72-0.87) (sensitivity=0.76, specificity=0.72). The gene discovery and model were validated through leave-one-out cross-validation. A unique set of 39 genes was identified from cases of very early spontaneous preterm birth (<25 weeks, n=14 cases with time to delivery of 2.5±1.8 weeks); a logistic regression classifier on the basis of these genes yielded an area under the curve=0.76 (95% confidence interval, 0.63-0.87) in leave-one-out cross validation. Pathway analysis for the transcripts associated with spontaneous preterm birth revealed enrichment of genes related to collagen or the extracellular matrix in those who ultimately had a spontaneous preterm birth at <35 weeks. Enrichment for genes in insulin-like growth factor transport and amino acid metabolism pathways were associated with spontaneous preterm birth at <25 weeks. CONCLUSION Second trimester cell-free RNA profiles in maternal blood provide a noninvasive window to future occurrence of spontaneous preterm birth. The systemic finding of changes in collagen and extracellular matrix pathways may serve to identify individuals at risk for premature cervical remodeling, with growth factor and metabolic pathways implicated more often in very early spontaneous preterm birth. The use of cell-free RNA profiles has the potential to accurately identify those at risk for spontaneous preterm birth by revealing the underlying pathophysiology, creating an opportunity for more targeted therapeutics and effective interventions.
Collapse
|
15
|
Telkar N, Stewart GL, Pewarchuk ME, Cohn DE, Robinson WP, Lam WL. Small Non-Coding RNAs in the Human Placenta: Regulatory Roles and Clinical Utility. Front Genet 2022; 13:868598. [PMID: 35432451 PMCID: PMC9006164 DOI: 10.3389/fgene.2022.868598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
The placenta is a vital organ formed during pregnancy, and being the interface between the mother and fetus, it is paramount that placental functioning is strictly controlled. Gene expression in the placenta is finely tuned-with aberrant expression causing placental pathologies and inducing stress on both mother and fetus. Gene regulation is brought upon by several mechanisms, and small non-coding RNAs (sncRNAs) have recently been appreciated for their contribution in gene repression. Their dysregulation has been implicated in a range of somatic and inherited disorders, highlighting their importance in maintaining healthy organ function. Their specific roles within the placenta, however, are not well understood, and require further exploration. To this end, we summarize the mechanisms of microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and transfer RNAs (tRNAs), their known contributions to human placental health and disease, the relevance of sncRNAs as promising biomarkers throughout pregnancy, and the current challenges faced by placental sncRNA studies.
Collapse
Affiliation(s)
- Nikita Telkar
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | - David E. Cohn
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
16
|
Broekhuizen M, Hitzerd E, van den Bosch TPP, Dumas J, Verdijk RM, van Rijn BB, Danser AHJ, van Eijck CHJ, Reiss IKM, Mustafa DAM. The Placental Innate Immune System Is Altered in Early-Onset Preeclampsia, but Not in Late-Onset Preeclampsia. Front Immunol 2022; 12:780043. [PMID: 34992598 PMCID: PMC8724430 DOI: 10.3389/fimmu.2021.780043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia is a severe placenta-related pregnancy disorder that is generally divided into two subtypes named early-onset preeclampsia (onset <34 weeks of gestation), and late-onset preeclampsia (onset ≥34 weeks of gestation), with distinct pathophysiological origins. Both forms of preeclampsia have been associated with maternal systemic inflammation. However, alterations in the placental immune system have been less well characterized. Here, we studied immunological alterations in early- and late-onset preeclampsia placentas using a targeted expression profile approach. RNA was extracted from snap-frozen placenta samples (healthy n=13, early-onset preeclampsia n=13, and late-onset preeclampsia n=6). The expression of 730 immune-related genes from the Pan Cancer Immune Profiling Panel was measured, and the data were analyzed in the advanced analysis module of nSolver software (NanoString Technology). The results showed that early-onset preeclampsia placentas displayed reduced expression of complement, and toll-like receptor (TLR) associated genes, specifically TLR1 and TLR4. Mast cells and M2 macrophages were also decreased in early-onset preeclampsia compared to healthy placentas. The findings were confirmed by an immunohistochemistry approach using 20 healthy, 19 early-onset preeclampsia, and 10 late-onset preeclampsia placentas. We conclude that the placental innate immune system is altered in early-onset preeclampsia compared to uncomplicated pregnancies. The absence of these alterations in late-onset preeclampsia placentas indicates dissimilar immunological profiles. The study revealed distinct pathophysiological processes in early-onset and late-onset preeclampsia placentas and imply that a tailored treatment to each subtype is desirable.
Collapse
Affiliation(s)
- Michelle Broekhuizen
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Emilie Hitzerd
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Jasper Dumas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands.,The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bas B van Rijn
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands.,The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
Zhang C, Ding J, Li H, Wang T. Identification of key genes in pathogenesis of placental insufficiency intrauterine growth restriction. BMC Pregnancy Childbirth 2022; 22:77. [PMID: 35090410 PMCID: PMC8796578 DOI: 10.1186/s12884-022-04399-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background Intrauterine growth restriction (IUGR) is defined as a fetus that fails to achieve its genetically determined growth potential. The exact molecular mechanisms of placental insufficiency IUGR pathogenesis are a little known. Our goal was to identify key genes and gene co-expression modules related to placental insufficiency IUGR. Methods We used weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis to examine the IUGR dataset GSE114691 from NCBI Gene Expression Omnibus. Core modules and hub nodes of the protein-protein interaction network were identified. A gene network was constructed and genes were classified by WGCNA into different modules. The validation of potential key genes was carried out using additional datasets (GSE12216 and GSE24129). Results We identified in GSE114691 539 down regulated genes and 751 up regulated genes in placental tissues characteristic of placental insufficiency IUGR compared with non-IUGR, and defined 76 genes as hub nodes in the protein-protein interaction network. Genes in the key modules of the WGCNA network were most closely associated with placental insufficiency IUGR and significantly enriched in biological process such as cellular metabolic process and macromolecule metabolic process. We identified as key genes TGFB1, LEP, ENG, ITGA5, STAT5A, LYN, GATA3, FPR1, TGFB2, CEBPB, KLF4, FLT1, and PNPLA2. The RNA expression levels of ENG and LEP, as biomarkers, were validated. Conclusion A holistic gene expression profile of placental insufficiency IUGR has been generated and the key genes ENG and LEP has potential to serve as circulating diagnosis biomarkers and therapeutic targets for placental insufficiency IUGR. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04399-3.
Collapse
|
18
|
Sakabe Y, Nishizawa H, Kato A, Yoshizawa H, Noda Y, Ohwaki A, Sekiya T, Fujii T, Kurahashi H. High serum concentrations of lipopolysaccharide binding protein in pregnancies with pre-eclampsia. HYPERTENSION RESEARCH IN PREGNANCY 2021. [DOI: 10.14390/jsshp.hrp2021-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yoshiko Sakabe
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Asuka Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University
| | - Hikari Yoshizawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Yoshiteru Noda
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Akiko Ohwaki
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Takao Sekiya
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University
| |
Collapse
|
19
|
Huang Q, Hao S, You J, Yao X, Li Z, Schilling J, Thyparambil S, Liao WL, Zhou X, Mo L, Ladella S, Davies-Balch SR, Zhao H, Fan D, Whitin JC, Cohen HJ, McElhinney DB, Wong RJ, Shaw GM, Stevenson DK, Sylvester KG, Ling XB. Early-pregnancy prediction of risk for pre-eclampsia using maternal blood leptin/ceramide ratio: discovery and confirmation. BMJ Open 2021; 11:e050963. [PMID: 34824115 PMCID: PMC8627403 DOI: 10.1136/bmjopen-2021-050963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE This study aimed to develop a blood test for the prediction of pre-eclampsia (PE) early in gestation. We hypothesised that the longitudinal measurements of circulating adipokines and sphingolipids in maternal serum over the course of pregnancy could identify novel prognostic biomarkers that are predictive of impending event of PE early in gestation. STUDY DESIGN Retrospective discovery and longitudinal confirmation. SETTING Maternity units from two US hospitals. PARTICIPANTS Six previously published studies of placental tissue (78 PE and 95 non-PE) were compiled for genomic discovery, maternal sera from 15 women (7 non-PE and 8 PE) enrolled at ProMedDx were used for sphingolipidomic discovery, and maternal sera from 40 women (20 non-PE and 20 PE) enrolled at Stanford University were used for longitudinal observation. OUTCOME MEASURES Biomarker candidates from discovery were longitudinally confirmed and compared in parallel to the ratio of placental growth factor (PlGF) and soluble fms-like tyrosine kinase (sFlt-1) using the same cohort. The datasets were generated by enzyme-linked immunosorbent and liquid chromatography-tandem mass spectrometric assays. RESULTS Our discovery integrating genomic and sphingolipidomic analysis identified leptin (Lep) and ceramide (Cer) (d18:1/25:0) as novel biomarkers for early gestational assessment of PE. Our longitudinal observation revealed a marked elevation of Lep/Cer (d18:1/25:0) ratio in maternal serum at a median of 23 weeks' gestation among women with impending PE as compared with women with uncomplicated pregnancy. The Lep/Cer (d18:1/25:0) ratio significantly outperformed the established sFlt-1/PlGF ratio in predicting impending event of PE with superior sensitivity (85% vs 20%) and area under curve (0.92 vs 0.52) from 5 to 25 weeks of gestation. CONCLUSIONS Our study demonstrated the longitudinal measurement of maternal Lep/Cer (d18:1/25:0) ratio allows the non-invasive assessment of PE to identify pregnancy at high risk in early gestation, outperforming the established sFlt-1/PlGF ratio test.
Collapse
Affiliation(s)
| | - Shiying Hao
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Jin You
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | | | - Zhen Li
- Department of Surgery, Stanford University, Stanford, California, USA
- Binhai Industrial Technology Research Institute, Zhejiang University, Tianjin, China
- School of Electrical Engineering, Southeast University, Nanjing, China
| | | | | | | | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Lihong Mo
- Department of Obstetrics and Gynecology, University of California San Francisco, Fresno, California, USA
| | - Subhashini Ladella
- Department of Obstetrics and Gynecology, University of California San Francisco, Fresno, California, USA
| | | | - Hangyi Zhao
- Department of Mathematics, Stanford University, Stanford, California, USA
| | - David Fan
- Department of Statistics and Applied Probability, University of California Santa Barbara, Santa Barbara, California, USA
| | - John C Whitin
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Harvey J Cohen
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Doff B McElhinney
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Karl G Sylvester
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Xuefeng B Ling
- Department of Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
20
|
Overview of Human HtrA Family Proteases and Their Distinctive Physiological Roles and Unique Involvement in Diseases, Especially Cancer and Pregnancy Complications. Int J Mol Sci 2021; 22:ijms221910756. [PMID: 34639128 PMCID: PMC8509474 DOI: 10.3390/ijms221910756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
The mammalian high temperature requirement A (HtrA) proteins are a family of evolutionarily conserved serine proteases, consisting of four homologs (HtrA1-4) that are involved in many cellular processes such as growth, unfolded protein stress response and programmed cell death. In humans, while HtrA1, 2 and 3 are widely expressed in multiple tissues with variable levels, HtrA4 expression is largely restricted to the placenta with the protein released into maternal circulation during pregnancy. This limited expression sets HtrA4 apart from the rest of the family. All four HtrAs are active proteases, and their specific cellular and physiological roles depend on tissue type. The dysregulation of HtrAs has been implicated in many human diseases such as cancer, arthritis, neurogenerative ailments and reproductive disorders. This review first discusses HtrAs broadly and then focuses on the current knowledge of key molecular characteristics of individual human HtrAs, their similarities and differences and their reported physiological functions. HtrAs in other species are also briefly mentioned in the context of understanding the human HtrAs. It then reviews the distinctive involvement of each HtrA in various human diseases, especially cancer and pregnancy complications. It is noteworthy that HtrA4 expression has not yet been reported in any primary tumour samples, suggesting an unlikely involvement of this HtrA in cancer. Collectively, we accentuate that a better understanding of tissue-specific regulation and distinctive physiological and pathological roles of each HtrA will improve our knowledge of many processes that are critical for human health.
Collapse
|
21
|
Abstract
Tracing the early paths leading to developmental disorders is critical for prevention. In previous work, we detected an interaction between genomic risk scores for schizophrenia (GRSs) and early-life complications (ELCs), so that the liability of the disorder explained by genomic risk was higher in the presence of a history of ELCs, compared with its absence. This interaction was specifically driven by loci harboring genes highly expressed in placentae from normal and complicated pregnancies [G. Ursini et al., Nat. Med. 24, 792-801 (2018)]. Here, we analyze whether fractionated genomic risk scores for schizophrenia and other developmental disorders and traits, based on placental gene-expression loci (PlacGRSs), are linked with early neurodevelopmental outcomes in individuals with a history of ELCs. We found that schizophrenia's PlacGRSs are negatively associated with neonatal brain volume in singletons and offspring of multiple pregnancies and, in singletons, with cognitive development at 1 y and, less strongly, at 2 y, when cognitive scores become more sensitive to other factors. These negative associations are stronger in males, found only with GRSs fractionated by placental gene expression, and not found in PlacGRSs for other developmental disorders and traits. The relationship of PlacGRSs with brain volume persists as an anlage of placenta biology in adults with schizophrenia, again selectively in males. Higher placental genomic risk for schizophrenia, in the presence of ELCs and particularly in males, alters early brain growth and function, defining a potentially reversible neurodevelopmental path of risk that may be unique to schizophrenia.
Collapse
|
22
|
Ohwaki A, Nishizawa H, Kato A, Yoshizawa H, Miyazaki J, Noda Y, Sakabe Y, Sekiya T, Fujii T, Kurahashi H. Altered serum soluble furin and prorenin receptor levels in pregnancies with pre-eclampsia and fetal growth restriction. J Gynecol Obstet Hum Reprod 2021; 50:102198. [PMID: 34289413 DOI: 10.1016/j.jogoh.2021.102198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The proprotein convertase furin is known to be involved in the processing of pro-B-type natriuretic peptide (proBNP) and prorenin receptor (PRR), suggesting that it has a potential function in blood pressure regulation. We investigated the role of furin in the etiology of pre-eclampsia and its related disorder, unexplained fetal growth restriction (FGR) without hypertension. METHODS We evaluated serum and placental furin levels in pre-eclampsia, FGR and uncomplicated pregnancy. Additionally, we investigated the correlation between the serum furin levels and products of furin enzymatic activity or clinical parameters. RESULTS We demonstrated that the maternal circulation in cases of pre-eclampsia and FGR had lower levels of soluble furin than uncomplicated pregnancies. Both NT-proBNP and soluble PRR were elevated in pre-eclampsia, whereas only soluble PRR was at higher levels in unexplained FGR. Linear regression analysis revealed a negative correlation between the serum furin level and that of NT-proBNP or soluble PRR. While we observed that the serum furin or soluble PRR level correlated with blood pressure, a stronger correlation was observed with birth and placental weights. Further to this, the FURIN mRNA levels were significantly reduced in placental pre-eclamptic placentas as well as in FGR cases. CONCLUSION These data suggest the possibility that reduced levels of furin may be the result of a negative feedback from the activation of the renin-angiotensin pathway that leads to feto-placental dysfunction with or without maternal hypertension. This may represent an etiologic pathway of pre-eclampsia and unexplained FGR.
Collapse
Affiliation(s)
- Akiko Ohwaki
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan; Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan.
| | - Asuka Kato
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Hikari Yoshizawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan; Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Jun Miyazaki
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan; Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yoshiteru Noda
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan; Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yoshiko Sakabe
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan; Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takao Sekiya
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
23
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Serebrova VN, Trifonova EA, Stepanov VA. Natural Selection as a Driver for the Genetic Component of Preeclampsia. Mol Biol 2021. [DOI: 10.1134/s0026893321020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Xu H, Xie Y, Sun Y, Guo R, Lv D, Li X, Li F, He M, Fan Y, Deng D. Integrated analysis of multiple microarray studies to identify potential pathogenic gene modules in preeclampsia. Exp Mol Pathol 2021; 120:104631. [PMID: 33744280 DOI: 10.1016/j.yexmp.2021.104631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/15/2021] [Accepted: 03/14/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Preeclampsia is a life-threatening hypertensive disorder during pregnancy, while underlying pathogenesis and its diagnosis are incomplete. METHODS In this study, we utilized the Robust Rank Aggregation method to integrate 6 eligible preeclampsia microarray datasets from Gene Expression Omnibus database. We used linear regression to assess the associations between significant differentially expressed genes (DEGs) and blood pressure. Functional annotation, protein-protein interaction, Gene Set Enrichment Analysis (GSEA) and single sample GSEA were employed for investigating underlying pathogenesis in preeclampsia. RESULTS We filtered 52 DEGs and further screened for 5 hub genes (leptin, pappalysin 2, endoglin, fms related receptor tyrosine kinase 1, tripartite motif containing 24) that were positively correlated with both systolic blood pressure and diastolic blood pressure. Receiver operating characteristic indicated that hub genes were potential biomarkers for diagnosis and prognosis in preeclampsia. GSEA for single hub gene revealed that they were all closely related to angiogenesis and estrogen response in preeclampsia. Moreover, single sample GSEA showed that the expression levels of 5 hub genes were correlated with those of immune cells in immunologic microenvironment at maternal-fetal interface. CONCLUSIONS These findings provide new insights into underlying pathogenesis in preeclampsia; 5 hub genes were identified as biomarkers for diagnosis and prognosis in preeclampsia.
Collapse
Affiliation(s)
- Heze Xu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; The Second Clinical Medicine College, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Yin Xie
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanan Sun
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rong Guo
- Department of Software Engineering College, Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Dan Lv
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuanxuan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fanfan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengzhou He
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yao Fan
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongrui Deng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Ren Z, Gao Y, Gao Y, Liang G, Chen Q, Jiang S, Yang X, Fan C, Wang H, Wang J, Shi YW, Xiao C, Zhong M, Yang X. Distinct placental molecular processes associated with early-onset and late-onset preeclampsia. Am J Cancer Res 2021; 11:5028-5044. [PMID: 33754042 PMCID: PMC7978310 DOI: 10.7150/thno.56141] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Patients with preeclampsia display a spectrum of onset time and severity of clinical presentation, yet the underlying molecular bases for the early-onset and late-onset clinical subtypes are not known. Although several transcriptome studies have been done on placentae from PE patients, only a small number of differentially expressed genes have been identified due to very small sample sizes and no distinguishing of clinical subtypes. Methods: We carried out RNA-seq on 65 high-quality placenta samples, including 33 from 30 patients and 32 from 30 control subjects, to search for dysregulated genes and the molecular network and pathways they are involved in. Results: We identified two functionally distinct sets of dysregulated genes in the two major subtypes: 2,977 differentially expressed genes in early-onset severe preeclampsia, which are enriched with metabolism-related pathways, notably transporter functions; and 375 differentially expressed genes in late-onset severe preeclampsia, which are enriched with immune-related pathways. We also identified some key transcription factors, which may drive the widespread gene dysregulation in both early-onset and late-onset patients. Conclusion: These results suggest that early-onset and late-onset severe preeclampsia have different molecular mechanisms, whereas the late-onset mild preeclampsia may have no placenta-specific causal factors. A few regulators may be the key drivers of the dysregulated molecular pathways.
Collapse
|
27
|
Integrated analysis of multiple microarray studies to identify novel gene signatures in preeclampsia. Placenta 2021; 105:104-118. [PMID: 33571845 DOI: 10.1016/j.placenta.2021.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the major causes of maternal and fetal morbidity and mortality in pregnancy worldwide. However, the intrinsic molecular mechanisms underlying the pathogenesis of PE have not yet been fully elucidated. METHODS Robust rank aggregation (RRA), weighted correlation network analysis (WGCNA) and protein-protein interaction (PPI) methods were used to identify robust differentially expressed genes (DEGs) and hub genes in preeclampsia and subgroups based on 10 Gene Expression Omnibus (GEO) datasets. Subsequently, enrichment analysis and correlation analysis were performed to explore the potential function of the robust DEGs and hub genes. The diagnostic role of hub genes was further investigated by GSE12767. The miRNA regulators and the effect of hypoxia on hub genes were explored by using GSE84260 and GSE65271, respectively. RESULTS Robust DEGs were identified in each subgroup including preeclampsia. Totally, 24 hub genes enriched in inflammatory response, renin-angiotensin system and JAK-STAT pathway, and 24 related miRNA regulators were identified. DISCUSSION Our integrated analysis identified novel gene signatures in preeclampsia and subgroups and will contribute to the understanding of comprehensive molecular changes in preeclampsia.
Collapse
|
28
|
Serebrova VN, Trifonova EA, Stepanov VA. Pregnancy as a Factor of Adaptive Human Evolution. The Role of Natural Selection in the Origin of Preeclampsia. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Turhan U, Ertaş S. A promising novel biomarker for early-onset preeclampsia: soluble trigger receptor expressed on myeloid cells-1 (sTREM-1). J Matern Fetal Neonatal Med 2020; 35:1623-1628. [PMID: 33207989 DOI: 10.1080/14767058.2020.1846706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND We aimed to explore TREM-1 activation in pregnant women who has preeclampsia through the measurement of its soluble form sTREM. METHODS A prospective cohort study was conducted. Participants were recruited from antenatal clinic between 1 May 2019 and 31 August 2019, and they all provided written informed consent for participation. Women between 18 and 42 years of age who were diagnosed with early or late-onset preeclampsia (LOP) were offered participation if they did not have any known systemic disease (chronic hypertension, diabetes, hypothyroidism, chronic renal-liver diseases, etc.); autoimmune disorders; multiple pregnancies; presence of fetal structural and chromosomal anomalies; placenta previa; cholestasis of pregnancy; preterm delivery; evidence of chronic and active infection. The primary outcome of the study was to assess any difference between groups in terms of the diagnostic value of sTREM level. RESULTS A total of 80 patients were enrolled; proven early-onset preeclampsia (EOP) (n = 20), LOP (n = 30), and control (n = 30) groups. There was no significant difference among the groups in terms of age and BMI. Mean gestational age at diagnosis of EOP; 30 ± 1.9 and LOP; 34.7 ± 1.9 weeks gestation. The mean sTREM level was 160.130 ± 1.65 pg/ml in the EOP group, 119.337 ± 2.04 pg/ml in LOP group, and 87.764 ± 1.69 pg/ml in the control group. According to subgroup analysis, sTREM levels were significantly higher in EOP group than control group. CONCLUSIONS sTREM might be a promising biomarker for early detection of EOP. However, future studies are necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Uğur Turhan
- Samsun Training and Research Hospital, Samsun, Turkey
| | - Sinem Ertaş
- VKV American Hospital, Women's Health Center, İstanbul, Turkey
| |
Collapse
|
30
|
Ritter A, Safdar BK, Jasmer B, Kreis NN, Friemel A, Roth S, Solbach C, Louwen F, Yuan J. The Function of Oncogene B-Cell Lymphoma 6 in the Regulation of the Migration and Invasion of Trophoblastic Cells. Int J Mol Sci 2020; 21:ijms21218393. [PMID: 33182312 PMCID: PMC7664908 DOI: 10.3390/ijms21218393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Human placentation is a highly invasive process. Deficiency in the invasiveness of trophoblasts is associated with a spectrum of gestational diseases, such as preeclampsia (PE). The oncogene B-cell lymphoma 6 (BCL6) is involved in the migration and invasion of various malignant cells. Intriguingly, its expression is deregulated in preeclamptic placentas. We have reported that BCL6 is required for the proliferation, survival, fusion, and syncytialization of trophoblasts. In the present work, we show that the inhibition of BCL6, either by its gene silencing or by using specific small molecule inhibitors, impairs the migration and invasion of trophoblastic cells, by reducing cell adhesion and compromising the dynamics of the actin cytoskeleton. Moreover, the suppression of BCL6 weakens the signals of the phosphorylated focal adhesion kinase, Akt/protein kinase B, and extracellular regulated kinase 1/2, accompanied by more stationary, but less migratory, cells. Interestingly, transcriptomic analyses reveal that a small interfering RNA-induced reduction of BCL6 decreases the levels of numerous genes, such as p21 activated kinase 1, myosin light chain kinase, and gamma actin related to cell adhesion, actin dynamics, and cell migration. These data suggest BCL6 as a crucial player in the migration and invasion of trophoblasts in the early stages of placental development through the regulation of various genes associated with the migratory machinery.
Collapse
Affiliation(s)
- Andreas Ritter
- Correspondence: (A.R.); (J.Y.); Tel.: +49-69-6301-83297 (A.R.); +49-69-6301-5819 (J.Y.)
| | | | | | | | | | | | | | | | - Juping Yuan
- Correspondence: (A.R.); (J.Y.); Tel.: +49-69-6301-83297 (A.R.); +49-69-6301-5819 (J.Y.)
| |
Collapse
|
31
|
Preeclampsia-Associated lncRNA INHBA-AS1 Regulates the Proliferation, Invasion, and Migration of Placental Trophoblast Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:684-695. [PMID: 33230466 PMCID: PMC7585871 DOI: 10.1016/j.omtn.2020.09.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is believed to be caused by impaired placentation with insufficient trophoblast invasion, leading to impaired uterine spiral artery remodeling and angiogenesis. However, the underlying molecular mechanism remains unknown. We recently carried out transcriptome profiling of placental long noncoding RNAs (lncRNAs) and identified 383 differentially expressed lncRNAs in early-onset severe preeclampsia. Here, we are reporting our identification of lncRNA INHBA-AS1 as a potential causal factor of preeclampsia and its downstream pathways that may be involved in placentation. We found that INHBA-AS1 was upregulated in patients and positively correlated with clinical severity. We systematically searched for potential INHBA-AS1-binding transcription factors and their targets in databases and found that the targets were enriched with differentially expressed genes in the placentae of patients. We further demonstrated that the lncRNA INHBA-AS1 inhibited the invasion and migration of trophoblast cells through restraining the transcription factor CENPB from binding to the promoter of TNF receptor-associated factor 1 (TRAF1). Therefore, we have identified the dysregulated pathway "INHBA-AS1-CENPB-TRAF1" as a contributor to the pathogenesis of preeclampsia through prohibiting the proliferation, invasion, and migration of trophoblasts during placentation.
Collapse
|
32
|
Awamleh Z, Han VKM. Potential pathophysiological role of microRNA 193b-5p in human placentae from pregnancies complicated by preeclampsia and intrauterine growth restriction. Mol Biol Rep 2020; 47:6531-6544. [PMID: 32803505 DOI: 10.1007/s11033-020-05705-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
Preeclampsia (PE) and intrauterine growth restriction (IUGR) are pregnancy complications resulting from abnormal placental development. MicroRNAs can regulate placental development and contribute to disease, by influencing gene expression. Our previous study revealed an increase in miR-193b-5p expression in placentae from patients with early-onset pregnancy complications and identified candidate gene targets for miR-193b-5p. The purpose of this study is two-fold, first to validate candidate gene targets predicted for miR-193b-5p from microRNA-RNA expression data. Second, to overexpress miR-193b-5p in a trophoblast cell line (HTR-8/SVneo) to assess impact on trophoblast cell proliferation and migration. Integration of the miRNA and RNA sequencing expression data revealed 10 candidate gene targets for miR-193b-5p across all patient groups (PE only, IUGR only, PE + IUGR). Luciferase experiments identified two gene targets for miR-193b-5p, APLN and FGF13. Real-time PCR confirmed a median 45% decrease of FGF13 expression across 3 patient groups, and 50% decrease of APLN expression in patients with PE + IUGR. Following transfection of HTR-8/SVneo cells with miR-193b-5p mimics, APLN and FGF13 mRNA expression in HTR-8/SVneo was reduced by a median percentage of 30% and 45%, respectively. Concomitantly, HTR-8/SVneo cells demonstrate 40% reduction in cell migration. APLN and FGF13 immunoreactivity was identified strongly in the cytotrophoblast cells of the human placentae. These findings suggest that miR-193b-5p may contribute to trophoblast dysfunction observed in pregnancy complications such as PE and IUGR.
Collapse
Affiliation(s)
- Zain Awamleh
- Children's Health Research Institute, 800 Commissioners Road East, London, ON, N6C 2V5, Canada.
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| | - Victor K M Han
- Children's Health Research Institute, 800 Commissioners Road East, London, ON, N6C 2V5, Canada
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
- Department of Pediatrics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
| |
Collapse
|
33
|
Torres-Sánchez M, Wilkinson M, Gower DJ, Creevey CJ, San Mauro D. Insights into the skin of caecilian amphibians from gene expression profiles. BMC Genomics 2020; 21:515. [PMID: 32718305 PMCID: PMC7385959 DOI: 10.1186/s12864-020-06881-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Gene expression profiles can provide insights into the molecular machinery behind tissue functions and, in turn, can further our understanding of environmental responses, and developmental and evolutionary processes. During vertebrate evolution, the skin has played a crucial role, displaying a wide diversity of essential functions. To unravel the molecular basis of skin specialisations and adaptations, we compared gene expression in the skin with eight other tissues in a phylogenetically and ecologically diverse species sample of one of the most neglected vertebrate groups, the caecilian amphibians (order Gymnophiona). Results The skin of the five studied caecilian species showed a distinct gene expression profile reflecting its developmental origin and showing similarities to other epithelial tissues. We identified 59 sequences with conserved enhanced expression in the skin that might be associated with caecilian dermal specialisations. Some of the up-regulated genes shared expression patterns with human skin and potentially are involved in skin functions across vertebrates. Variation trends in gene expression were detected between mid and posterior body skin suggesting different functions between body regions. Several candidate biologically active peptides were also annotated. Conclusions Our study provides the first atlas of differentially expressed sequences in caecilian tissues and a baseline to explore the molecular basis of the skin functions in caecilian amphibians, and more broadly in vertebrates.
Collapse
Affiliation(s)
- María Torres-Sánchez
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040, Madrid, Spain. .,Present address: Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Christopher J Creevey
- Institute for Global Food Security, Queen's University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK
| | - Diego San Mauro
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
34
|
Trifonova EA, Swarovskaja MG, Serebrova VN, Kutsenko IG, Agarkova LA, Stepanov IA, Zhilyakova OV, Gabidulina TV, Ijoykina EV, Stepanov VA. Genomic and Postgenomic Technologies in Preeclampsia Genetics. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Medina-Bastidas D, Guzmán-Huerta M, Borboa-Olivares H, Ruiz-Cruz C, Parra-Hernández S, Flores-Pliego A, Salido-Guadarrama I, Camargo-Marín L, Arambula-Meraz E, Estrada-Gutierrez G. Placental Microarray Profiling Reveals Common mRNA and lncRNA Expression Patterns in Preeclampsia and Intrauterine Growth Restriction. Int J Mol Sci 2020; 21:ijms21103597. [PMID: 32443673 PMCID: PMC7279523 DOI: 10.3390/ijms21103597] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are major contributors to perinatal morbidity and mortality. These pregnancy disorders are associated with placental dysfunction and share similar pathophysiological features. The aim of this study was to compare the placental gene expression profiles including mRNA and lncRNAs from pregnant women from four study groups: PE, IUGR, PE-IUGR, and normal pregnancy (NP). Gene expression microarray analysis was performed on placental tissue obtained at delivery and results were validated using RTq-PCR. Differential gene expression analysis revealed that the largest transcript variation was observed in the IUGR samples compared to NP (n = 461; 314 mRNAs: 252 up-regulated and 62 down-regulated; 133 lncRNAs: 36 up-regulated and 98 down-regulated). We also detected a group of differentially expressed transcripts shared between the PE and IUGR samples compared to NP (n = 39), including 9 lncRNAs with a high correlation degree (p < 0.05). Functional enrichment of these shared transcripts showed that cytokine signaling pathways, protein modification, and regulation of JAK-STAT cascade are over-represented in both placental ischemic diseases. These findings contribute to the molecular characterization of placental ischemia showing common epigenetic regulation implicated in the pathophysiology of PE and IUGR.
Collapse
Affiliation(s)
- Diana Medina-Bastidas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Mario Guzmán-Huerta
- Departamento de Medicina Traslacional, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.G.-H.); (L.C.-M.)
| | - Hector Borboa-Olivares
- Subdirección de Investigación en Intervenciones Comunitarias, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | - César Ruiz-Cruz
- Hospital de Ginecología y Obstetricia No. 4, Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Mexico City 01090, Mexico;
| | - Sandra Parra-Hernández
- Laboratorio de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (S.P.-H.); (A.F.-P.)
| | - Arturo Flores-Pliego
- Laboratorio de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (S.P.-H.); (A.F.-P.)
| | - Ivan Salido-Guadarrama
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Lisbeth Camargo-Marín
- Departamento de Medicina Traslacional, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.G.-H.); (L.C.-M.)
| | - Eliakym Arambula-Meraz
- Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan 80040, Mexico;
| | | |
Collapse
|
36
|
Guo Z, Yang F, Zhang J, Zhang Z, Li K, Tian Q, Hou H, Xu C, Lu Q, Ren Z, Yang X, Lv Z, Wang K, Yang X, Wu Y, Yang X. Whole-Genome Promoter Profiling of Plasma DNA Exhibits Diagnostic Value for Placenta-Origin Pregnancy Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901819. [PMID: 32274292 PMCID: PMC7141029 DOI: 10.1002/advs.201901819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/03/2020] [Indexed: 06/06/2023]
Abstract
Placenta-origin pregnancy complications, including preeclampsia (PE), gestational diabetes mellitus (GDM), fetal growth restriction (FGR), and macrosomia (MA) are common occurrences in pregnancy, resulting in significant morbidity and mortality for both mother and fetus. However, despite their frequency, there are no reliable methods for the early diagnosis of these complications. Since cfDNA is mainly derived from placental trophoblasts and maternal hematopoietic cells, it might have information for gene expression which can be used for disease prediction. Here, low coverage whole-genome sequencing on plasma DNA from 2,199 pregnancies is performed based on retrospective cohorts of 3,200 pregnant women. Read depth in the promoter regions is examined to define read-depth distribution patterns of promoters for pregnancy complications and controls. Using machine learning methods, classifiers for predicting pregnancy complications are developed. Using these classifiers, complications are successfully predicted with an accuracy of 80.3%, 78.9%, 72.1%, and 83.0% for MA, FGR, GDM, and PE, respectively. The findings suggest that promoter profiling of cfDNA may be used as a biological biomarker for predicting pregnancy complications at early gestational age.
Collapse
Affiliation(s)
- Zhiwei Guo
- Institute of Antibody EngineeringSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
| | - Fang Yang
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jun Zhang
- Department of ObstetricsThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Zhigang Zhang
- Department of PathologyCangzhou People's HospitalCangzhou061000China
| | - Kun Li
- Institute of Antibody EngineeringSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
| | - Qi Tian
- Department of ObstetricsThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Hongying Hou
- Department of ObstetricsThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Cailing Xu
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qianwen Lu
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhonglu Ren
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xiaoxue Yang
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zenglu Lv
- Department of PathologyCangzhou People's HospitalCangzhou061000China
| | - Ke Wang
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xinping Yang
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yingsong Wu
- Institute of Antibody EngineeringSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
| | - Xuexi Yang
- Institute of Antibody EngineeringSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
37
|
Ali Z, Khaliq S, Zaki S, Ahmad HU, Lone KP. Comparative gene expression analysis of Fas and related genes in preeclamptic and healthy women: A cross-sectional study. Int J Reprod Biomed 2020; 18:235-242. [PMID: 32497155 PMCID: PMC7218673 DOI: 10.18502/ijrm.v13i4.6886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/15/2019] [Accepted: 10/06/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Preeclampsia is a hypertensive disorder of pregnancy affecting about 2-10% pregnancies worldwide. mRNA expression of tumor necrosis factor alpha (TNF- α ), Fas, and FasL have been reported to be altered in placental bed in preeclamptic pregnancies. We hypothesized that the expression of these genes is also altered in peripheral blood mononuclear cells (PBMCs) in preeclampsia. OBJECTIVE To compare the expression of Fas receptor and related genes in PBMCs of preeclamptic and normotensive pregnant women. MATERIALS AND METHODS A cross-sectional comparative study comprising of 18 cases and 18 controls was designed. 5 ml of venous blood was drawn and collected considering aseptic measures. Buffy coat was separated by centrifugation and stored at -20°C. Favor Prep total RNA Isolation Kit (Favorgen, Taiwan) was used for RNA extraction. The mRNA expression of TNF- α , Fas, and FasL was measured by real-time polymerase chain reaction in PBMCs in preeclamptic and normal pregnancies. RESULTS A significant increase in mRNA expression of TNF- α , Fas, and FasL (p ≤ 0.001) was observed in PBMCs of preeclamptic pregnancies compared to the control group (p ≤ 0.001). Moreover, a significant positive correlation was found between the TNF- α mRNA expression and Fas and FasL (p ≤ 0.001). CONCLUSION The results lead to the conclusion that mRNA expression of TNF- α , Fas, and FasL in the maternal PBMCs is altered in preeclamptic pregnancies and might contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Zaima Ali
- Department of Physiology and Cell Biology, University of Health Sciences Lahore, Lahore, Pakistan.
- Department of Physiology, Lahore Medical and Dental College Lahore, Lahore, Pakistan.
| | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences Lahore, Lahore, Pakistan.
| | - Saima Zaki
- Department of Obstetrics and Gynecology, Jinnah Hospital Lahore, Lahore, Pakistan.
| | - Hafiz Usman Ahmad
- Department of Physiology and Cell Biology, University of Health Sciences Lahore, Lahore, Pakistan.
| | - Khalid Pervaiz Lone
- Department of Physiology and Cell Biology, University of Health Sciences Lahore, Lahore, Pakistan.
| |
Collapse
|
38
|
O’Callaghan JL, Clifton VL, Prentis P, Ewing A, Miller YD, Pelzer ES. Modulation of Placental Gene Expression in Small-for-Gestational-Age Infants. Genes (Basel) 2020; 11:genes11010080. [PMID: 31936801 PMCID: PMC7017208 DOI: 10.3390/genes11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Small-for-gestational-age (SGA) infants are fetuses that have not reached their genetically programmed growth potential. Low birth weight predisposes these infants to an increased risk of developing cardiovascular, metabolic and neurodevelopmental conditions in later life. However, our understanding of how this pathology occurs is currently incomplete. Previous research has focused on understanding the transcriptome, epigenome and bacterial signatures separately. However, we hypothesise that interactions between moderators of gene expression are critical to understanding fetal growth restriction. Through a review of the current literature, we identify that there is evidence of modulated expression/methylation of the placental genome and the presence of bacterial DNA in the placental tissue of SGA infants. We also identify that despite limited evidence of the interactions between the above results, there are promising suggestions of a relationship between bacterial signatures and placental function. This review aims to summarise the current literature concerning fetal growth from multiple avenues and propose a novel relationship between the placental transcriptome, methylome and bacterial signature that, if characterised, may be able to improve our current understanding of the placental response to stress and the aetiology of growth restriction.
Collapse
Affiliation(s)
- Jessica L. O’Callaghan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia
- Correspondence:
| | - Vicki L. Clifton
- Mater Medical Research Institute, University of Queensland, Brisbane 4101, Queensland, Australia; (V.L.C.); (A.E.)
| | - Peter Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
| | - Adam Ewing
- Mater Medical Research Institute, University of Queensland, Brisbane 4101, Queensland, Australia; (V.L.C.); (A.E.)
| | - Yvette D. Miller
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia;
| | - Elise S. Pelzer
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia
| |
Collapse
|
39
|
Meta-analysis of gene expression profiles in preeclampsia. Pregnancy Hypertens 2020; 19:52-60. [DOI: 10.1016/j.preghy.2019.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
|
40
|
Mateus J, Newman RB, Zhang C, Pugh SJ, Grewal J, Kim S, Grobman WA, Owen J, Sciscione AC, Wapner RJ, Skupski D, Chien E, Wing DA, Ranzini AC, Nageotte MP, Gerlanc N, Albert PS, Grantz KL. Fetal growth patterns in pregnancy-associated hypertensive disorders: NICHD Fetal Growth Studies. Am J Obstet Gynecol 2019; 221:635.e1-635.e16. [PMID: 31226296 PMCID: PMC6888945 DOI: 10.1016/j.ajog.2019.06.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/30/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fetal growth patterns in pregnancy-associated hypertensive disorders is poorly understood because prospective longitudinal data are lacking. OBJECTIVE The objective of the study was to compare longitudinal fetal growth trajectories between normotensive women and those with pregnancy-associated hypertensive disorders. STUDY DESIGN This is a study based on data from a prospective longitudinal cohort study of fetal growth performed at 12 US sites (2009-2013). Project gestational age was confirmed by ultrasound between 8 weeks 0 days and 13 weels 6 days, and up to 6 ultrasounds were performed across gestation. Hypertensive disorders were diagnosed based on 2002 American College of Obstetricians and Gynecologists guidelines and grouped hierarchically as severe preeclampsia (including eclampsia or HELLP [hemolysis, elevated liver enzymes, and low platelet count] syndrome), mild preeclampsia, severe gestational hypertension, mild gestational hypertension, or unspecified hypertension. Women without any hypertensive disorder constituted the normotensive group. Growth curves for estimated fetal weight and individual biometric parameters including biparietal diameter, head circumference, abdominal circumference, and femur and humerus length were calculated for each group using linear mixed models with cubic splines. Global and weekly pairwise comparisons were performed between women with a hypertensive disorder compared with normotensive women to analyze differences while adjusting for confounding variables. Delivery gestational age and birthweights were compared among groups. RESULTS Of 2462 women analyzed, 2296 (93.3%) were normotensive, 63 (2.6%) had mild gestational hypertension, 54 (2.2%) mild preeclampsia, 32 (1.3%) severe preeclampsia, and 17 (0.7%) unspecified hypertension. Compared with normotensive women, those with severe preeclampsia had estimated fetal weights that were reduced between 22 and 38 weeks (all weekly pairwise values of P < .008). Women with severe preeclampsia compared with those without hypertension also had significantly smaller fetal abdominal circumference between 23-31 and 33-37 weeks' gestation (weekly pairwise values of P < .04). Scattered weekly growth differences were noted on other biometric parameters between these 2 groups. The consistent differences in estimated fetal weight and abdominal circumference were not observed between women with other hypertensive disorders and those who were normotensive. Women with severe preeclampsia delivered significantly earlier (mean gestational age 35.9 ± 3.2 weeks) than the other groups (global P < .0001). Birthweights in the severe preeclampsia group were also significantly lower (mean -949.5 g [95% confidence interval, -1117.7 to -781.2 g]; P < .0001) than in the normotensive group. CONCLUSION Among women with pregnancy-associated hypertensive disorders, only those destined to develop severe preeclampsia demonstrated a significant and consistent difference in fetal growth (ie, smaller estimated fetal weight and abdominal circumference) when compared with normotensive women.
Collapse
Affiliation(s)
- Julio Mateus
- Division of Maternal-Fetal Medicine, Medical University of South Carolina, Charleston, SC.
| | - Roger B Newman
- Division of Maternal-Fetal Medicine, Medical University of South Carolina, Charleston, SC
| | - Cuilin Zhang
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sarah J Pugh
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jagteshwar Grewal
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sungduk Kim
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - John Owen
- Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, AL
| | - Anthony C Sciscione
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Christiana Hospital, Newark, DE
| | | | - Daniel Skupski
- New York Presbyterian Queens, Flushing; Weill Cornell School of Medicine, New York, NY
| | - Edward Chien
- Women and Infants Hospital of Rhode Island, Providence, Rhode Island
| | - Deborah A Wing
- University of California, Irvine, and Long Beach Memorial Medical Center/Miller Children's Hospital Irvine, CA
| | - Angela C Ranzini
- Saint Peter's University Hospital, New Brunswick, NJ; MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH
| | | | - Nicole Gerlanc
- Prospective Group, Inc, contractor for the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Paul S Albert
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Katherine L Grantz
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
41
|
Irvine KM, Bligh LN, Kumar S. Association between the fetal cerebroplacental ratio and biomarkers of hypoxia and angiogenesis in the maternal circulation at term. Eur J Obstet Gynecol Reprod Biol 2019; 245:198-204. [PMID: 31889569 DOI: 10.1016/j.ejogrb.2019.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVES A low fetal cerebroplacental ratio (CPR) in late pregnancy is a marker of a fetus that has failed to reach its growth potential and is associated with a variety of perinatal and pregnancy complications. It is not known if it is also correlated with aberrations in angiogenic, hypoxia-responsive or inflammatory cytokine levels in the maternal circulation. We investigated if there were any differences in levels of biomarkers of angiogenesis, endothelial cell dysfunction, hypoxia and/or inflammation in term pregnancies with a low fetal CPR compared to controls. We hypothesized that as the CPR is a marker of suboptimal growth, this would be reflected in a shift towards upregulation of hypoxia-responsive factors even in non-small for gestational age fetuses. STUDY DESIGN We used Multiplex ELISA to measure a panel of 28 candidate biomarkers of angiogenesis and/or hypoxia in pre-labour maternal plasma from 113 women at term, stratified for CPR <10th centile vs. CPR >10th centile. Plasma levels of the biomarkers were measured using 2 multiplex Luminex assays - a commercially available human angiogenesis/growth factor panel (R&D Systems®), comprising 15 analytes and an in-house custom panel of a further 13 candidate biomarkers. RESULTS Of the 28 candidate biomarkers investigated, we found significantly elevated levels of Carbonic Anhydrase 9 and soluble Fms-like tyrosine kinase (Vascular Endothelial Growth Factor Receptor 1), and lower levels of Placental Growth Factor in plasma from women with a low fetal CPR. The soluble Fms-like tyrosine kinase-1/Placental Growth Factor ratio was also markedly elevated in this cohort. We also demonstrated significant inverse correlations between the fetal CPR and Carbonic Anydrase 9, soluble Fms-like tyrosine kinase and Hepatocyte Growth Factor. CONCLUSIONS A low fetal CPR is associated with changes in some hypoxia-responsive and angiogenesis factors in the maternal circulation in pregnancies with normally grown fetuses.
Collapse
Affiliation(s)
| | - Larissa N Bligh
- Mater Research Institute, University of Queensland, Australia
| | - Sailesh Kumar
- Mater Research Institute, University of Queensland, Australia; Faculty of Medicine, The University of Queensland, Australia.
| |
Collapse
|
42
|
Liu J, Zhang Z, Xu J, Song X, Yuan W, Miao M, Liang H, Du J. Genome-wide DNA methylation changes in placenta tissues associated with small for gestational age newborns; cohort study in the Chinese population. Epigenomics 2019; 11:1399-1412. [PMID: 31596135 DOI: 10.2217/epi-2019-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate DNA methylation changes in placenta tissues associated with small for gestational age (SGA). Materials & methods: A prospective cohort study consisting of 1292 pregnant women from China (including 39 SGA with placenta tissues) was performed, microarray and pyrosequencing were conducted. Results: Total 2012 methylation variable positions stood out from all probes (p < 0.05; Δβ > 0.2). In SGA cases, a CpG site within ANKRD20B showed lower methylation level (p = 0.032) than appropriate for gestational age in validation cohort. Five sites within FAM198A (p = 0.047, 0.050, 0.039, 0.026 and 0.043, respectively) had a reduced methylation in male newborns whose mother had preconception folic acid supplementation. Conclusion: DNA methylation changes in placenta tissues may be associated with SGA, maternal preconception folic acid supplementation status and also be fetal sex-specific.
Collapse
Affiliation(s)
- Junwei Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Jianhua Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Xiuxia Song
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Zhou C, Yan Q, Zou QY, Zhong XQ, Tyler CT, Magness RR, Bird IM, Zheng J. Sexual Dimorphisms of Preeclampsia-Dysregulated Transcriptomic Profiles and Cell Function in Fetal Endothelial Cells. Hypertension 2019; 74:154-163. [PMID: 31154903 DOI: 10.1161/hypertensionaha.118.12569] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preeclampsia impairs fetoplacental vascular function and increases risks of adult-onset cardiovascular disorders in children born to preeclamptic mothers, implicating that preeclampsia programs fetal vasculature in utero. However, the underlying mechanisms remain elusive. We hypothesize that preeclampsia alters fetal endothelial gene expression and disturbs cytokines- and growth factors-induced endothelial responses. RNA sequencing analysis was performed on unpassaged human umbilical vein endothelial cells (HUVECs) from normotensive and preeclamptic pregnancies. Functional assays for endothelial monolayer integrity, proliferation, and migration were conducted on passage 1 HUVECs from normotensive and preeclamptic pregnancies. Compared with normotensive cells, 926 and 172 genes were dysregulated in unpassaged female and male HUVECs from preeclamptic pregnancies, respectively. Many of these preeclampsia-dysregulated genes are associated with cardiovascular diseases (eg, heart failure) and endothelial function (eg, cell migration, calcium signaling, and endothelial nitric oxide synthase signaling). TNF (tumor necrosis factor)-α-, TGF (transforming growth factor)-β1-, FGF (fibroblast growth factor)-2-, and VEGFA (vascular endothelial growth factor A)-regulated gene networks were differentially disrupted in unpassaged female and male HUVECs from preeclamptic pregnancies. Moreover, preeclampsia decreased endothelial monolayer integrity in responses to TNF-α in both female and male HUVECs. Preeclampsia decreased TGF-β1-strengthened monolayer integrity in female HUVECs, whereas it enhanced FGF-2-strengthened monolayer integrity in male HUVECs. Preeclampsia promoted TNF-α-, TGF-β1-, and VEGFA-induced cell proliferation in female, but not in male HUVECs. Preeclampsia inhibited TNF-α-induced cell migration in female HUVECs, but had an opposite effect on male HUVECs. In conclusion, preeclampsia differentially dysregulates cardiovascular diseases- and endothelial function-associated genes/pathways in female and male fetal endothelial cells in association with the sexual dimorphisms of preeclampsia-dysregulated fetal endothelial function.
Collapse
Affiliation(s)
- Chi Zhou
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Qin Yan
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.).,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China (Q.Y.)
| | - Qing-Yun Zou
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Xin-Qi Zhong
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.).,Department of Pediatrics, the 3rd Affiliated Hospital of Guangzhou Medical University, Guangdong, China (X.-Q.Z.)
| | - Chanel T Tyler
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, University of South Florida, Tampa (R.R.M.)
| | - Ian M Bird
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Jing Zheng
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.).,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (J.Z.)
| |
Collapse
|
44
|
Cox B, Tsamou M, Vrijens K, Neven KY, Winckelmans E, de Kok TM, Plusquin M, Nawrot TS. A Co-expression Analysis of the Placental Transcriptome in Association With Maternal Pre-pregnancy BMI and Newborn Birth Weight. Front Genet 2019; 10:354. [PMID: 31110514 PMCID: PMC6501552 DOI: 10.3389/fgene.2019.00354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming.
Collapse
Affiliation(s)
- Bianca Cox
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Maria Tsamou
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Karen Vrijens
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Kristof Y Neven
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Ellen Winckelmans
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Michelle Plusquin
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium.,Department of Public Health, Environment and Health Unit, Leuven University (KU Leuven), Leuven, Belgium
| |
Collapse
|
45
|
Methylenetetrahydrofolate Reductase Enzyme Level and Antioxidant Activity in Women with Gestational Hypertension and Pre-eclampsia in Lagos, Nigeria. J Obstet Gynaecol India 2019; 69:317-324. [PMID: 31391737 DOI: 10.1007/s13224-019-01215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Deficiencies of enzymes in the folate cycle may lead to the generation of homocysteine, a toxic metabolic intermediate with pro-oxidant effect and ability to induce oxidant stress and lipid peroxidation as part of the pathophysiological process in gestational hypertension (GH) and pre-eclampsia (PE). Aim The aim of this study is to assess the reliability of plasma homocysteine (hcy) 5, 10 methylenetetrahydrofolate reductase (MTHFR) enzyme and oxidative stress parameters as indicators of aetio-pathogenesis and severity of gestational hypertension and pre-eclampsia. Subjects and Methods This was a comparative cross-sectional study conducted over 6 months. Two hundred pregnant women were recruited from two sites. They were divided into gestation hypertension (n = 40), pre-eclampsia (n = 60) and control groups (n = 100). Parameters evaluated for statistical analysis were MTHFR enzyme level, plasma homocysteine and malondialdehyde (MDA) levels, with glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities. Results Mean plasma hcy level and MDA were significantly higher in pre-eclampsia and gestational hypertension when compared to control group (p < 0.05). However, MTHFR enzyme level, GSH, SOD and CAT were significantly higher in normotensive females when compared to PE and GH subgroups (p < 0.05). Pre-eclampsia was significantly associated with an increased risk of lipid peroxidation (OR = 4.923; p = 0.007). Conclusion Pre-eclampsia and gestational hypertension are associated with marked homocysteine metabolic derangement and increased lipid peroxidation induced by oxidative stress and reduced MTHFR enzyme activity which may be the significant risk factors in the aetio-pathogenesis of GH and PE.
Collapse
|
46
|
Baptista LC, Figueira CO, Souza BB, Fertrin KY, Antolini A, Costa FF, de Melo MB, Costa ML. Different morphological and gene expression profile in placentas of the same sickle cell anemia patient in pregnancies of opposite outcomes. Exp Biol Med (Maywood) 2019; 244:395-403. [PMID: 30818999 DOI: 10.1177/1535370219834305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT Environmentally induced changes in placental morphological and molecular phenotypes may provide relevant insight towards pathophysiology of diseases. The rare opportunity to evaluate the same patient, with sickle cell anemia (SCA), in two different pregnancies, of opposite outcomes (one early onset severe preeclampsia (PE) and the other mostly non-complicated) can prove such concept. In addition, the comparison to other conditions of known placental and vascular/inflammatory involvement strengthens such findings. Our results suggest that the clinical association between SCA and PE can be supported by common pathophysiological mechanisms, but that pathways involving response to copper and triglyceride metabolism may be important drivers of the pathophysiology of PE. Future studies using in a larger number of samples should confirm these findings and explore pathways involved in the pathophysiology of PE and its relationship with SCA.
Collapse
Affiliation(s)
- Letícia C Baptista
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas - UNICAMP, Campinas, SP 13083-875, Brazil.,*Shared first and last authorship
| | - Camilla O Figueira
- 2 Department of Obstetrics and Gynecology, University of Campinas - UNICAMP, Campinas, SP 13083-880, Brazil.,*Shared first and last authorship
| | - Bruno B Souza
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas - UNICAMP, Campinas, SP 13083-875, Brazil
| | - Kleber Y Fertrin
- 3 Division of Hematology, University of Washington, Seattle, WA 98195-7230, USA
| | - Arthur Antolini
- 4 Department of Pathology, University of Campinas - UNICAMP, Campinas, SP 13083-887, Brazil
| | - Fernando F Costa
- 5 Hematology and Hemotherapy Center, University of Campinas - UNICAMP, Campinas, SP 13083-878
| | - Mônica B de Melo
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas - UNICAMP, Campinas, SP 13083-875, Brazil.,*Shared first and last authorship
| | - Maria Laura Costa
- 2 Department of Obstetrics and Gynecology, University of Campinas - UNICAMP, Campinas, SP 13083-880, Brazil.,*Shared first and last authorship
| |
Collapse
|
47
|
Szilagyi JT, Composto-Wahler GM, Joseph LB, Wang B, Rosen T, Laskin JD, Aleksunes LM. Anandamide down-regulates placental transporter expression through CB2 receptor-mediated inhibition of cAMP synthesis. Pharmacol Res 2019; 141:331-342. [PMID: 30610963 DOI: 10.1016/j.phrs.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/13/2023]
Abstract
The BCRP/ABCG2 efflux transporter is expressed on the membrane of placental syncytiotrophoblasts and protects the fetus from toxicant exposure. Syncytiotrophoblasts arise from the fusion of cytotrophoblasts, a process negatively regulated by the endocannabinoid, anandamide (AEA). It is unknown whether AEA can influence fetal concentrations of xenobiotics by modulating the expression of transporters in syncytiotrophoblasts. Here, we sought to characterize and identify the mechanism(s) responsible for AEA-mediated down-regulation of the BCRP transporter in human placental explants and BeWo trophoblasts. Treatment of human placental explants with AEA (1 μM, 24 h) reduced hCGα, syncytin-1, and BCRP mRNAs by ˜30%. Similarly, treatment of BeWo trophoblasts with AEA (0-10 μM, 3-24 h) coordinately down-regulated mRNAs for hCGß, syncytin-2, and BCRP. In turn, AEA increased the sensitivity of trophoblasts to the cytotoxicity of mitoxantrone, a known BCRP substrate, and environmental and dietary contaminants including mycoestrogens and perfluorinated chemicals. AEA-treated trophoblasts also demonstrated reduced BCRP transport of the mycoestrogen zearalenone and the diabetes drug glyburide, labeled with BODIPY. The AEA-mediated reduction of BCRP mRNA was abrogated when placental cells were co-treated with AM630, a CB2 receptor inhibitor, or 8-Br-cAMP, a cAMP analog. AEA reduced intracellular cAMP levels in trophoblasts by 75% at 1 h, and completely inhibited forskolin-induced phosphorylation of the cAMP response element binding protein (CREB). AEA also decreased p-CREB binding to the BCRP promoter. Taken together, our data indicate that AEA down-regulates placental transporter expression and activity via CB2-cAMP signaling. This novel mechanism may explain the repression of placental BCRP expression observed during diseases of pregnancy.
Collapse
Affiliation(s)
- John T Szilagyi
- Joint Graduate Program in Toxicology, Rutgers University, School of Graduate Studies, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Gabriella M Composto-Wahler
- Joint Graduate Program in Toxicology, Rutgers University, School of Graduate Studies, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Bingbing Wang
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Todd Rosen
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Department of Environmental and Occupational Health, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Environmental and Occupational Health, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
48
|
Placental transcriptional and histologic subtypes of normotensive fetal growth restriction are comparable to preeclampsia. Am J Obstet Gynecol 2019; 220:110.e1-110.e21. [PMID: 30312585 DOI: 10.1016/j.ajog.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Infants born small for gestational age because of pathologic placenta-mediated fetal growth restriction can be difficult to distinguish from those who are constitutionally small. Additionally, even among fetal growth-restricted pregnancies with evident placental disease, considerable heterogeneity in clinical outcomes and long-term consequences has been observed. Gene expression studies of fetal growth-restricted placentas also have limited consistency in their findings, which is likely due to the presence of different molecular subtypes of disease. In our previous study on preeclampsia, another heterogeneous placenta-centric disorder of pregnancy, we found that, by clustering placentas based only on their gene expression profiles, multiple subtypes of preeclampsia, including several with co-occurring suspected fetal growth restriction, could be identified. OBJECTIVE The purpose of this study was to discover placental subtypes of normotensive small-for-gestational-age pregnancies with suspected fetal growth restriction through the use of unsupervised clustering of placental gene expression data and to investigate their relationships with hypertensive suspected fetal growth-restricted placental subtypes. STUDY DESIGN A new dataset of 20 placentas from normotensive small-for-gestational-age pregnancies (birthweight <10th percentile for gestational age and sex) with suspected fetal growth restriction (ultrasound features of placental insufficiency) underwent genome-wide messenger RNA expression assessment and blinded detailed histopathologic evaluation. These samples were then combined with a subset of samples from our previously published preeclampsia cohort (n=77) to form an aggregate fetal growth-focused cohort (n=97) of placentas from normotensive small-for-gestational-age, hypertensive (preeclampsia and chronic hypertensive) small-for-gestational-age, and normotensive average-for-gestational-age pregnancies. Gene expression data were subjected to unsupervised clustering, and clinical and histopathologic features were correlated to the identified sample clusters. RESULTS Clustering of the aggregate dataset revealed 3 transcriptional subtypes of placentas from normotensive small-for-gestational-age/suspected fetal growth-restricted pregnancies, with differential enrichment of clinical and histopathologic findings. The first subtype exhibited either no placental disease or mild maternal vascular malperfusion lesions, and, co-clustered with the healthy average-for-gestational-age control subjects; the second subtype showed more severe evidence of hypoxic damage and lesions of maternal vascular malperfusion, and the third subtype demonstrated an immune/inflammatory response and histologic features of a maternal-fetal interface disturbance. Furthermore, all 3 of these normotensive small-for-gestational-age subtypes co-clustered with a group of placentas from hypertensive small-for-gestational-age pregnancies with more severe clinical outcomes, but very comparable transcriptional and histologic placental profiles. CONCLUSION Overall, this study provides evidence for at least 2 pathologic placental causes of normotensive small-for-gestational-age, likely representing true fetal growth restriction. These subtypes also show considerable similarity in gene expression and histopathology to our previously identified "canonical" and "immunologic" preeclampsia placental subtypes. Furthermore, we discovered a subtype of normotensive small-for-gestational-age (with suspected fetal growth restriction) with minimal placental disease that may represent both constitutionally small infants and mild fetal growth restriction, although these cannot be distinguished with the currently available data. Future work that focuses on the identification of etiology-driven biomarkers and therapeutic interventions for each subtype of fetal growth restriction is warranted.
Collapse
|
49
|
Gene Expression Profiling of Placenta from Normal to Pathological Pregnancies. Placenta 2018. [DOI: 10.5772/intechopen.80551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register]
|
50
|
Ito M, Nishizawa H, Tsutsumi M, Kato A, Sakabe Y, Noda Y, Ohwaki A, Miyazaki J, Kato T, Shiogama K, Sekiya T, Kurahashi H, Fujii T. Potential role for nectin-4 in the pathogenesis of pre-eclampsia: a molecular genetic study. BMC MEDICAL GENETICS 2018; 19:166. [PMID: 30217189 PMCID: PMC6137934 DOI: 10.1186/s12881-018-0681-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nectins are cell adhesion molecules that play a pivotal role in adherens junctions and tight junctions. Our previous study using whole-genome oligonucleotide microarrays revealed that nectin-4 was upregulated in pre-eclamptic placentas. We investigated the role of nectin-4 in the etiology of pre-eclampsia. METHODS We investigated the expression of nectin-4 using real-time RT-PCR, western blot and immunostaining. Additionally, we performed matrigel invasion assay and cytotoxicity assay using cells overexpressing the nectin-4. RESULTS NECTIN4 transcripts were elevated in pre-eclamptic placentas relative to uncomplicated pregnancies. Nectin-4 protein levels in pre-eclamptic placentas were higher on a semi-quantitative western blot. Nectin-4 was localized at the apical cell membrane in syncytiotrophoblast cells and not at the adherens junctions. Nectin-4 was also detected in cytotrophoblasts and a subset of cells in the decidua. Nectin-4 overexpressing trophoblast cells migrated normally in the matrix. However, Natural killer (NK) cells showed a strong cytotoxic effect against nectin-4 overexpressing trophoblast cells. No causative genetic variation was evident in the NECTIN4 gene from a pre-eclamptic placenta. CONCLUSIONS There are as yet unknown factors that induce nectin-4 overexpression in trophoblast cells that may contribute to abnormal placentation via an aberrant immune response and the onset of a pre-eclamptic pregnancy.
Collapse
Grants
- Ogyaa Donation Foundation from the Japan Association of Obstetricians and Gynecologists
- grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
- grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
- Ministry of Health, Labour and Welfare, Japan
Collapse
Affiliation(s)
- Mayuko Ito
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Haruki Nishizawa
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Makiko Tsutsumi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Asuka Kato
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Yoshiko Sakabe
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yoshiteru Noda
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Akiko Ohwaki
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Jun Miyazaki
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Kazuya Shiogama
- Division of Morphology and Cell Function, Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Takao Sekiya
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|