1
|
Cuinat S, Rollier P, Grand K, Sanchez-Lara PA, Allen-Sharpley M, Levade T, Vanier MT, Lion Francois L, Chemaly N, de Lattre C, Moreau C, Paquot A, Beghyn T, de Masfrand S, Bézieau S, Mercier S, Boespflug-Tanguy O. Acid Ceramidase Deficiency: New Insights on SMA-PME Natural History, Biomarkers, and In Cell Enzyme Activity Assay. Neurol Genet 2025; 11:e200243. [PMID: 40017560 PMCID: PMC11867579 DOI: 10.1212/nxg.0000000000200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025]
Abstract
Background and Objectives Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) due to acid ceramidase deficiency is a rare disorder, allelic with Farber disease, resulting from recessive ASAH1 variants. Patients present in early childhood with muscle weakness due to anterior horn degeneration and/or progressive drug-resistant myoclonic epilepsy. Death usually results from respiratory complications or status epilepticus during adolescence. Methods We identified 9 patients with SMA-PME from 5 different families followed in neurology, rehabilitation, and genetics departments of university hospitals in France and the United States. During disease progression, motor functional scores were assessed for seven of them and C26-ceramide quantification on dried blood spots (DBSs) was performed for 4 of them. An in cell assay, measuring the degradation rate of ceramides in living skin fibroblasts, was also performed in 2 patients. Finally, a literature review was conducted. Results Twelve years after the molecular characterization of SMA-PME, here we present the detailed history of 9 patients from 5 different families with 4 new ASAH1 variants. The prospective follow-up for 4 of them allows us to evaluate the relevance of functional scales and of C26-ceramide assay on DBS, as a biomarker. In addition, an in cell assay could provide a more reliable level of the residual ceramidase activity. Based on a comprehensive literature review, we provide a detailed description of the natural history of the 44 patients with SMA-PME diagnosed to date and show a genotype-phenotype correlation for the 2 main variants and the disease onset. Discussion This study presents the detailed natural history of SMA-PME. Given the rarity of this disease and the current lack of a reliable biomarker for patient follow-up, this work may serve as a retrospective control group for future therapeutic trials.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes
| | - Paul Rollier
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, France
| | - Katheryn Grand
- Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA
| | - Pedro A Sanchez-Lara
- Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Thierry Levade
- Laboratoire de Biochimie, CHU Toulouse
- INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier Toulouse, France
| | - Marie T Vanier
- Laboratoire Gillet-Mérieux, Hospices Civils de Lyon, INSERM U820, France
| | - Laurence Lion Francois
- Service de neurologie pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, France
| | - Nicole Chemaly
- Service de Neuropédiatrie, CRMR Epilepsies rares, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | | | | | | | | | | | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes
- Inserm UMR 1087 / CNRS UMR 6291, Institut du thorax, Nantes Université, France
| | - Sandra Mercier
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes
- Inserm UMR 1087 / CNRS UMR 6291, Institut du thorax, Nantes Université, France
| | - Odile Boespflug-Tanguy
- AP-HP, Service de Neuropédiatrie, CRMR LEUKOFRANCE, Hôpital Robert Debré, Paris, France; and
- INSERM UMR 1141, NeuroDiderot, Université Paris Cité, France
| |
Collapse
|
2
|
Altaffer AL, Burrage LC, Kamdar A, Vogel TP, Pereira M. The Matter at Hand: A Case of Difficult-to-Treat Arthritis. Arthritis Care Res (Hoboken) 2025; 77:291-296. [PMID: 39711103 DOI: 10.1002/acr.25488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Affiliation(s)
- Ana L Altaffer
- Baylor College of Medicine and Texas Children's Hospital, Houston
| | | | - Ankur Kamdar
- University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital
| | - Tiphanie P Vogel
- Baylor College of Medicine and Texas Children's Hospital, Houston
| | - Maria Pereira
- Baylor College of Medicine and Texas Children's Hospital, Houston
| |
Collapse
|
3
|
Zuo R, Wang M, Wang YT, ShenTu Y, Moura AK, Zhou Y, Roudbari K, Hu JZ, Li PL, Hao J, Li X, Zhang Y. Ablation of Hepatic Asah1 Gene Disrupts Hepatic Lipid Homeostasis and Promotes Fibrotic Nonalcoholic Steatohepatitis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:542-560. [PMID: 39719015 DOI: 10.1016/j.ajpath.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 12/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of chronic liver conditions, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to fibrosis/cirrhosis. Here, the GSE163211 data set was analyzed, and Asah1 (encoding acid ceramidase) was identified as a crucial lysosomal gene that positively correlated with NAFLD stages in obese patients. To evaluate the role of Asah1 in the progression of NAFLD, Asah1fl/fl/Albcre mice (hepatocyte-specific deletion of Asah1) and Asah1 floxed (Asah1fl/fl/wild-type) mice were fed with either a normal diet or a high-fat, high-cholesterol paigen diet (PD) for 20 weeks. Hepatocyte-specific Asah1 ablation markedly aggravated PD-induced hepatic steatosis, hepatitis, and apoptosis, and resulted in marked fibrotic changes. In addition, Asah1 gene ablation exacerbated PD-induced portal venous hemodynamic abnormality. In cultured hepatocytes, Asah1 gene knockdown resulted in increased ceramide and cholesterol levels but did not affect triglyceride level. Knocking down Asah1 gene also exhibited broad impacts on lipid homeostasis pathways, including lipogenesis, fatty acid uptake, fatty acid oxidation, and lipid transport. Furthermore, Asah1 knockdown resulted in increased endoplasmic reticulum stress and lipid droplet biogenesis. Finally, Asah1 gene knockdown impaired chaperone-mediated autophagy. These results suggest that Asah1 functions as an important regulator of hepatic lipid homeostasis, and its deficiency exacerbates hepatocyte lipotoxicity and injury, and promotes the development of fibrotic nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Mi Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - YangPing ShenTu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alexandra K Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Ying Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Jenny Z Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - JiuKuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.
| |
Collapse
|
4
|
Kleynerman A, Rybova J, McKillop WM, Dlugi TA, Faber ML, Fuller M, O'Meara CC, Medin JA. Cardiac dysfunction and altered gene expression in acid ceramidase-deficient mice. Am J Physiol Heart Circ Physiol 2025; 328:H141-H156. [PMID: 39665198 DOI: 10.1152/ajpheart.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Farber disease (FD) is an ultrarare, autosomal-recessive, lysosomal storage disorder attributed to ASAH1 gene mutations. FD is characterized by acid ceramidase (ACDase) deficiency and the accumulation of ceramide in various tissues. Classical FD patients typically manifest symptoms including lipogranulomatosis, respiratory complications, and neurological deficits, often leading to mortality during infancy. Cardiac abnormalities in several FD patients have been described; however, a detailed examination of cardiac pathology in FD has not been conducted. Here we report pronounced cardiac pathophysiology in a new P361R-FD mouse model of ACDase deficiency that we generated. P361R-FD mice displayed smaller hearts, altered cardiomyocyte architecture, disrupted tissue composition, and inclusion-containing macrophages. Echocardiography suggested ventricular atrophy, valve dysfunction, decreased cardiac output, and lowered stroke volumes. Troponin I was significantly elevated in P361R-FD mice. Hearts from P361R-FD mice were found to have increased ceramide, cholesterol, and other lipids. Histopathological analysis of heart tissue from neonatal P361R-FD mice revealed lysosomal disruption as early as postnatal day 1. Finally, we report cardiac conduction, striated muscle contraction, and sphingolipid homeostasis gene expression differences during cardiac development in P361R-FD mice. In summary, we investigated the heart in a mouse model of ACDase deficiency, demonstrating that ACDase deficiency induced lysosomal dysfunction, sphingolipid and cholesterol imbalances, tissue disruption, and significant inflammation, leading to impaired cardiac function in these animals.NEW & NOTEWORTHY This is the first characterization of cardiac function and histopathology in a mouse model of acid ceramidase deficiency. We report physiologic disruption suggestive of heart failure with preserved ejection fraction, progressive histopathology, and aberrant gene expression. We found significant lysosomal disruption at both neonatal and adult ages, suggesting a crucial role of acid ceramidase, and potentially ceramides, in cardiac development and function.
Collapse
Affiliation(s)
- Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Theresa A Dlugi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mary L Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide Medical School and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Caitlin C O'Meara
- Department of Physiology, Cardiovascular Center, and Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
5
|
Derome M, Denard J, Marinello M, Levade T, Boespflug-Tanguy O, Buj-Bello A. [Therapeutic perspectives for lysosomal storage disorders caused by acid ceramidase deficiency]. Med Sci (Paris) 2024; 40 Hors série n° 1:52-55. [PMID: 39555879 DOI: 10.1051/medsci/2024162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy are two ultra-rare lysosomal storage disorders resulting from loss-of-function mutations in the ASAH1 gene encoding for acid ceramidase (ACDase). ACDase deficiency leads to the intracellular accumulation of ceramides with an inflammatory response in tissues. These two diseases manifest differently but are part of a clinical continuum with variable severity affecting the nervous system and/or peripheral tissues, including the neuromuscular system. To date, no specific or curative treatments are available for patients affected by acid ceramidase deficiency. Here, we summarize the clinical features, enzyme function, mouse models and therapeutic perspectives for these allelic diseases.
Collapse
Affiliation(s)
- Marion Derome
- Généthon, Évry, France - Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, Évry, France
| | - Jérôme Denard
- Généthon, Évry, France - Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, Évry, France
| | - Martina Marinello
- Généthon, Évry, France - Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, Évry, France
| | - Thierry Levade
- Unité mixte de recherche Inserm 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de recherches en cancérologie de Toulouse (CRCT), Toulouse, France - Laboratoire de biochimie, Institut fédératif de biologie, CHU Purpan, Toulouse, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, Inserm, UMR 1141 NeuroDiderot, Paris, France ; AP-HP, Service de neurologie pédiatrique, Hôpital Robert Debré et Hôpital Trousseau, Paris, France
| | - Ana Buj-Bello
- Généthon, Évry, France - Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, Évry, France
| |
Collapse
|
6
|
Farooqui AA, Farooqui T. Phospholipids, Sphingolipids, and Cholesterol-Derived Lipid Mediators and Their Role in Neurological Disorders. Int J Mol Sci 2024; 25:10672. [PMID: 39409002 PMCID: PMC11476704 DOI: 10.3390/ijms251910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Neural membranes are composed of phospholipids, sphingolipids, cholesterol, and proteins. In response to cell stimulation or injury, the metabolism of lipids generates various lipid mediators, which perform many cellular functions. Thus, phospholipids release arachidonic acid or docosahexaenoic acid from the sn-2 position of the glycerol moiety by the action of phospholipases A2. Arachidonic acid is a precursor for prostaglandins, leukotrienes, thromboxane, and lipoxins. Among these mediators, prostaglandins, leukotrienes, and thromboxane produce neuroinflammation. In contrast, lipoxins produce anti-inflammatory and pro-resolving effects. Prostaglandins, leukotrienes, and thromboxane are also involved in cell proliferation, differentiation, blood clotting, and blood vessel permeability. In contrast, DHA-derived lipid mediators are called specialized pro-resolving lipid metabolites (SPMs). They include resolvins, protectins, and maresins. These mediators regulate immune function by producing anti-inflammatory, pro-resolving, and cell protective effects. Sphingolipid-derived metabolites are ceramide, ceramide1-phosphate, sphingosine, and sphingosine 1 phosphate. They regulate many cellular processes, including enzyme activities, cell migration and adhesion, inflammation, and immunity. Cholesterol is metabolized into hydroxycholesterols and 7-ketocholesterol, which not only disrupts membrane fluidity, but also promotes inflammation, oxidative stress, and apoptosis. These processes lead to cellular damage.
Collapse
Affiliation(s)
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
7
|
Rybova J, Sundararajan T, Kuchar L, Dlugi TA, Ruzicka P, McKillop WM, Medin JA. Hematopoietic stem cell transplantation leads to biochemical and functional correction in two mouse models of acid ceramidase deficiency. Mol Ther 2024; 32:3402-3421. [PMID: 39108096 PMCID: PMC11489543 DOI: 10.1016/j.ymthe.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare lysosomal storage disorders caused by deficient acid ceramidase (ACDase) activity. Although both conditions are caused by mutations in the ASAH1 gene, clinical presentations differ considerably. FD patients usually die in childhood, while SMA-PME patients can live until adulthood. There is no treatment for FD or SMA-PME. Hematopoietic stem cell transplantation (HSCT) and gene therapy strategies for the treatment of ACDase deficiency are being investigated. We have previously generated and characterized mouse models of both FD and SMA-PME that recapitulate the symptoms described in patients. Here, we show that HSCT improves lifespan, behavior, hematopoietic system anomalies, and plasma cytokine levels and significantly reduces histiocytic infiltration and ceramide accumulation throughout the tissues investigated, including the CNS, in both models of ACDase-deficient mice. HSCT was also successful in preventing lesion development and significant demyelination of the spinal cord seen in SMA-PME mice. Importantly, we note that only early and generally pre-symptomatic treatment was effective, and kidney impairment was not improved in either model.
Collapse
Affiliation(s)
- Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Teresa Sundararajan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Theresa A Dlugi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Petr Ruzicka
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
8
|
Alhomida FA, Alharthi R, Almutairi A, AlDosari DA, Barakeh M, Dilli A, Barakeh M, Shadid A, Dakhil AB, AlAkrash L. Novel cutaneous manifestations of a pediatric patient with Farber lipogranulomatosis. JAAD Case Rep 2024; 51:45-47. [PMID: 39185024 PMCID: PMC11342741 DOI: 10.1016/j.jdcr.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Affiliation(s)
- Faris A. Alhomida
- Department of Dermatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Raghad Alharthi
- Department of Dermatology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ahmed Almutairi
- Department of Dermatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Dalal A. AlDosari
- Department of Dermatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maee Barakeh
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Dilli
- Department of Dermatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maha Barakeh
- Department of Dermatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Asem Shadid
- Department of Dermatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Lamia AlAkrash
- Department of Dermatology, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Sadhukhan S, Bains A, Khera D, Aggarwal D. Multiple subcutaneous nodules with delayed developmental milestones in a child. Indian J Dermatol Venereol Leprol 2024; 0:1-3. [PMID: 39361862 DOI: 10.25259/ijdvl_1395_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/26/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Subhajit Sadhukhan
- Department of Dermatology, Venereology & Leprology, All India Institute of Medical Sciences, Basni, Jodhpur, Rajasthan, India
| | - Anupama Bains
- Department of Dermatology, Venereology & Leprology, All India Institute of Medical Sciences, Basni, Jodhpur, Rajasthan, India
| | - Daisy Khera
- Department of Paediatrics, All India Institute of Medical Sciences, Basni, Jodhpur, Rajasthan, India
| | - Divya Aggarwal
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Basni, Jodhpur, Rajasthan, India
| |
Collapse
|
10
|
Gupta P, Thakur V, Behera B. Multiple nodular swellings with gingival hyperplasia and joint contractures. Pediatr Dermatol 2024; 41:336-338. [PMID: 38014603 DOI: 10.1111/pde.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Priyansh Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vishal Thakur
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Biswanath Behera
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
11
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
12
|
Yan S, Fu F, Zhou H, Huang R, Wang Y, Liao C. Functional analysis of a novel splice site variant in the ASAH1 gene. Mol Genet Genomic Med 2024; 12:e2317. [PMID: 37962265 PMCID: PMC10767590 DOI: 10.1002/mgg3.2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Acid ceramidase (ACDase) deficiency is an ultrarare autosomal recessive lysosomal disorder caused by pathogenic N-acylsphingosine amidohydrolase (ASAH1) variants. It presents with either Farber disease (FD) or spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). OBJECTIVE The study aims to identify a novel splice site variant in a hydrops fetus that causes ASAH1-related disorder, aid genetic counseling, and accurate prenatal diagnosis. METHODS We report a case of hydrops fetalis with a novel homozygous mutation in ASAH1 inherited from non-consanguineous parents. We performed copy number variation sequencing (CNV-Seq) and whole exome sequencing (WES) on the fetus and family, respectively. Minigene splicing analyses were conducted to confirm the pathogenic variants. RESULTS WES data revealed a splice site variant of the ASAH1 (c.458-2A>T), which was predicted to affect RNA splicing. Minigene splicing analyses found that the c.458-2A>T variant abolished the canonical splicing of intron 6, thereby activating two cryptic splicing products (c.456_458ins56bp and c.458_503del). CONCLUSIONS Overall, we identified a novel splice site variant in the mutational spectrum of ASAH1 and its aberrant effect on splicing. These findings highlight the importance of ultrasonic manifestation and family history of fetal hydrops during ASAH1-related disorders and could also aid genetic counseling and accurate prenatal diagnosis. To the best of our knowledge, this is the shortest-lived account of ASAH1-related disorders in utero with severe hydrops fetalis.
Collapse
Affiliation(s)
- Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
13
|
Mahé M, Rios-Fuller TJ, Karolin A, Schneider RJ. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front Oncol 2023; 13:1230934. [PMID: 37601653 PMCID: PMC10433910 DOI: 10.3389/fonc.2023.1230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology, Grossman NYU School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Mignani L, Guerra J, Corli M, Capoferri D, Presta M. Zebra-Sphinx: Modeling Sphingolipidoses in Zebrafish. Int J Mol Sci 2023; 24:ijms24054747. [PMID: 36902174 PMCID: PMC10002607 DOI: 10.3390/ijms24054747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sphingolipidoses are inborn errors of metabolism due to the pathogenic mutation of genes that encode for lysosomal enzymes, transporters, or enzyme cofactors that participate in the sphingolipid catabolism. They represent a subgroup of lysosomal storage diseases characterized by the gradual lysosomal accumulation of the substrate(s) of the defective proteins. The clinical presentation of patients affected by sphingolipid storage disorders ranges from a mild progression for some juvenile- or adult-onset forms to severe/fatal infantile forms. Despite significant therapeutic achievements, novel strategies are required at basic, clinical, and translational levels to improve patient outcomes. On these bases, the development of in vivo models is crucial for a better understanding of the pathogenesis of sphingolipidoses and for the development of efficacious therapeutic strategies. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model several human genetic diseases owing to the high grade of genome conservation between human and zebrafish, combined with precise genome editing and the ease of manipulation. In addition, lipidomic studies have allowed the identification in zebrafish of all of the main classes of lipids present in mammals, supporting the possibility to model diseases of the lipidic metabolism in this animal species with the advantage of using mammalian lipid databases for data processing. This review highlights the use of zebrafish as an innovative model system to gain novel insights into the pathogenesis of sphingolipidoses, with possible implications for the identification of more efficacious therapeutic approaches.
Collapse
|
15
|
Kleynerman A, Rybova J, Faber ML, McKillop WM, Levade T, Medin JA. Acid Ceramidase Deficiency: Bridging Gaps between Clinical Presentation, Mouse Models, and Future Therapeutic Interventions. Biomolecules 2023; 13:biom13020274. [PMID: 36830643 PMCID: PMC9953133 DOI: 10.3390/biom13020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare, autosomal-recessive, acid ceramidase (ACDase) deficiency disorders caused by ASAH1 gene mutations. Currently, 73 different mutations in the ASAH1 gene have been described in humans. These mutations lead to reduced ACDase activity and ceramide (Cer) accumulation in many tissues. Presenting as divergent clinical phenotypes, the symptoms of FD vary depending on central nervous system (CNS) involvement and severity. Classic signs of FD include, but are not limited to, a hoarse voice, distended joints, and lipogranulomas found subcutaneously and in other tissues. Patients with SMA-PME lack the most prominent clinical signs seen in FD. Instead, they demonstrate muscle weakness, tremors, and myoclonic epilepsy. Several ACDase-deficient mouse models have been developed to help elucidate the complex consequences of Cer accumulation. In this review, we compare clinical reports on FD patients and experimental descriptions of ACDase-deficient mouse models. We also discuss clinical presentations, potential therapeutic strategies, and future directions for the study of FD and SMA-PME.
Collapse
Affiliation(s)
- Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L. Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William M. McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse, and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-4118
| |
Collapse
|
16
|
Lee MM, McDowell GSV, De Vivo DC, Friedman D, Berkovic SF, Spanou M, Dinopoulos A, Grand K, Sanchez‐Lara PA, Allen‐Sharpley M, Warman‐Chardon J, Solyom A, Levade T, Schuchman EH, Bennett SAL, Dyment DA, Pearson TS. The clinical spectrum of SMA-PME and in vitro normalization of its cellular ceramide profile. Ann Clin Transl Neurol 2022; 9:1941-1952. [PMID: 36325744 PMCID: PMC9735369 DOI: 10.1002/acn3.51687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The objectives of this study were to define the clinical and biochemical spectrum of spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) and to determine if aberrant cellular ceramide accumulation could be normalized by enzyme replacement. METHODS Clinical features of 6 patients with SMA-PME were assessed by retrospective chart review, and a literature review of 24 previously published cases was performed. Leukocyte enzyme activity of acid ceramidase was assessed with a fluorescence-based assay. Skin fibroblast ceramide content and was assessed by high performance liquid chromatography, electrospray ionization tandem mass spectroscopy. Enzyme replacement was assessed using recombinant human acid ceramidase (rhAC) in vitro. RESULTS The six new patients showed the hallmark features of SMA-PME, with variable initial symptom and age of onset. Five of six patients carried at least one of the recurrent SMA-PME variants observed in two specific codons of ASAH1. A review of 30 total cases revealed that patients who were homozygous for the most common c.125C > T variant presented in the first decade of life with limb-girdle weakness as the initial symptom. Sensorineural hearing loss was associated with the c.456A > C variant. Leukocyte acid ceramidase activity varied from 4.1%-13.1% of controls. Ceramide species in fibroblasts were detected and total cellular ceramide content was elevated by 2 to 9-fold compared to controls. Treatment with rhAC normalized ceramide profiles in cultured fibroblasts to control levels within 48 h. INTERPRETATION This study details the genotype-phenotype correlations observed in SMA-PME and shows the impact of rhAC to correct the abnormal cellular ceramide profile in cells.
Collapse
Affiliation(s)
- Michelle M. Lee
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Graeme S. V. McDowell
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaOntarioCanada
| | - Darryl C. De Vivo
- Departments of Neurology and PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Daniel Friedman
- Department of NeurologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneHeidelbergVictoriaAustralia
| | - Maria Spanou
- Pediatric Neurology Division, 3rd Department of PediatricsAttikon University HospitalAthensGreece
| | - Argirios Dinopoulos
- Pediatric Neurology Division, 3rd Department of PediatricsAttikon University HospitalAthensGreece
| | - Katheryn Grand
- Department of PediatricsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | - Jodi Warman‐Chardon
- Department of Medicine (Neurology)Ottawa Hospital Research InstituteOttawaOntarioCanada,Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | | | - Thierry Levade
- Laboratoire de Biochimie MétaboliqueCHU Toulouse, INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier ToulouseToulouseFrance
| | - Edward H. Schuchman
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaOntarioCanada
| | - David A. Dyment
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | - Toni S. Pearson
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA,Departments of Neurology and PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
17
|
Zhang Z, Xu J, Xu Z. Multiple Skin-Colored Subcutaneous Nodules in a Girl. JAMA Dermatol 2022; 158:1068-1069. [PMID: 35947392 DOI: 10.1001/jamadermatol.2022.3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Zhenhua Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jiaosheng Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
18
|
Tucci S. An Altered Sphingolipid Profile as a Risk Factor for Progressive Neurodegeneration in Long-Chain 3-Hydroxyacyl-CoA Deficiency (LCHADD). Int J Mol Sci 2022; 23:ijms23137144. [PMID: 35806149 PMCID: PMC9266703 DOI: 10.3390/ijms23137144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2022] Open
Abstract
Long-chain 3-hydroxyacyl-CoA deficiency (LCHADD) and mitochondrial trifunctional protein (MTPD) belong to a group of inherited metabolic diseases affecting the degradation of long-chain chain fatty acids. During metabolic decompensation the incomplete degradation of fatty acids results in life-threatening episodes, coma and death. Despite fast identification at neonatal screening, LCHADD/MTPD present with progressive neurodegenerative symptoms originally attributed to the accumulation of toxic hydroxyl acylcarnitines and energy deficiency. Recently, it has been shown that LCHADD human fibroblasts display a disease-specific alteration of complex lipids. Accumulating fatty acids, due to defective β-oxidation, contribute to a remodeling of several lipid classes including mitochondrial cardiolipins and sphingolipids. In the last years the face of LCHADD/MTPD has changed. The reported dysregulation of complex lipids other than the simple acylcarnitines represents a novel aspect of disease development. Indeed, aberrant lipid profiles have already been associated with other neurodegenerative diseases such as Parkinson’s Disease, Alzheimer’s Disease, amyotrophic lateral sclerosis and retinopathy. Today, the physiopathology that underlies the development of the progressive neuropathic symptoms in LCHADD/MTPD is not fully understood. Here, we hypothesize an alternative disease-causing mechanism that contemplates the interaction of several factors that acting in concert contribute to the heterogeneous clinical phenotype.
Collapse
Affiliation(s)
- Sara Tucci
- Pharmacy, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Centre-University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
19
|
Farber Disease Mimicking Juvenile Idiopathic Arthritis: The First Reported Case in Qatar and Review of the Literature. Case Rep Genet 2022; 2022:2555235. [PMID: 35186337 PMCID: PMC8853810 DOI: 10.1155/2022/2555235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Farber disease (FD) is an extremely rare autosomal recessive disorder caused by the deficiency of lysosomal acid ceramidase. It is characterized by a triad of progressive multiple joints’ involvement, subcutaneous nodules, and hoarseness of voice. In this report, we describe a 23-month-old boy diagnosed with Farber disease. Initially, he was misdiagnosed as juvenile idiopathic arthritis (JIA) because he presented with joint swelling. However, the associated hoarseness of voice, subcutaneous nodules, and poor response to treatment all have questioned the diagnosis of JIA and prompted the suspicion of Farber disease as an alternative diagnosis. The diagnosis was later confirmed genetically by the presence of a homozygous pathogenic variant (p.Gly213Glu; c.638G > A in exon 8) in the ASAH1 gene. The present case illustrates the diagnostic journey of a child with Farber disease as well as highlights that FD should be considered in the differential diagnosis of early onset arthritis in the presence of subcutaneous nodules and/or hoarseness of voice.
Collapse
|
20
|
Verkuil F, Bosch AM, Struijs PAA, Hemke R, van den Berg JM. Inflammatory arthritis complicating galactosialidosis: a case report. BMC Rheumatol 2021; 5:41. [PMID: 34629108 PMCID: PMC8504000 DOI: 10.1186/s41927-021-00208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Galactosialidosis (GS) is a rare inherited lysosomal storage disorder (LSD) which is characterized by a defect in the lysosomal glycoprotein catabolism. We report, for the first time, the case of a child affected by GS presenting with recurrent episodes of extensive joint inflammation in both knee joints. The aim of this case-report is to describe the clinical presentation as well as the laboratory, radiologic and microscopic features of this unique presentation of GS. Furthermore, we explore inflammatory mechanisms potentially responsible for the origination of the arthritic joint pathology observed in our patient. CASE PRESENTATION We describe the rare case of a 12-year-old boy diagnosed with GS (late infantile form) who presented with multiple episodes of inflammatory arthritis involving both knees; no other joints were suspected for joint inflammation. Laboratory results did not indicate an autoimmune disorder. Synovial fluid tested negative for any bacterial infection and ruled out a malignancy and crystal-induced arthritis. Microscopic examination of the synovial tissue revealed numerous foamy macrophages with extensive vacuolization, consistent with the previous diagnosis of GS. Treatment consisted of aspiration of excessive joint fluid and subsequent intra-articular injection of triamcinolonhexacetonide with excellent but transient result. Given the evidence of storage products within macrophages of the inflamed synovial tissue and the absence of other etiological clues, GS itself was considered as the primary cause for the relapsing inflammatory joint pathology. According to the restricted data on articular manifestations in GS, to date, GS cannot be linked directly to joint inflammation. Nevertheless, in several other LSDs, the accumulation of storage material has been associated with numerous osteoimmunological changes that might play a role in the pathophysiology of arthritic processes. CONCLUSIONS We hypothesize that the articular build-up of GS storage products triggered systemic as well as local inflammatory processes, resulting in the extensive inflammatory joint pathology as observed in our patient. Future identification of other patients with GS is required to corroborate the existence of an arthritic clinical phenotype of GS and to assess the underlying pathophysiology.
Collapse
Affiliation(s)
- F Verkuil
- Emma Children's Hospital, Amsterdam University Medical Centers, location Academic Medical Center, Pediatric Immunology, Rheumatology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands. .,Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam Movement Sciences, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - A M Bosch
- Emma Children's Hospital, Amsterdam University Medical Centers, location Academic Medical Center, Pediatric Metabolic Diseases, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - P A A Struijs
- Orthopedic Surgery, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - R Hemke
- Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam Movement Sciences, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - J M van den Berg
- Emma Children's Hospital, Amsterdam University Medical Centers, location Academic Medical Center, Pediatric Immunology, Rheumatology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Ricci S, Cacialli P. Stem Cell Research Tools in Human Metabolic Disorders: An Overview. Cells 2021; 10:cells10102681. [PMID: 34685661 PMCID: PMC8534517 DOI: 10.3390/cells10102681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic disorders are very common in the population worldwide and are among the diseases with the highest health utilization and costs per person. Despite the ongoing efforts to develop new treatments, currently, for many of these disorders, there are no approved therapies, resulting in a huge economic hit and tension for society. In this review, we recapitulate the recent advancements in stem cell (gene) therapy as potential tools for the long-term treatment of both inherited (lysosomal storage diseases) and acquired (diabetes mellitus, obesity) metabolic disorders, focusing on the main promising results observed in human patients and discussing the critical hurdles preventing the definitive jump of this approach from the bench to the clinic.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland;
| | - Pietro Cacialli
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
22
|
Leyens J, Bender TTA, Mücke M, Stieber C, Kravchenko D, Dernbach C, Seidel MF. The combined prevalence of classified rare rheumatic diseases is almost double that of ankylosing spondylitis. Orphanet J Rare Dis 2021; 16:326. [PMID: 34294115 PMCID: PMC8296612 DOI: 10.1186/s13023-021-01945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rare diseases (RDs) affect less than 5/10,000 people in Europe and fewer than 200,000 individuals in the United States. In rheumatology, RDs are heterogeneous and lack systemic classification. Clinical courses involve a variety of diverse symptoms, and patients may be misdiagnosed and not receive appropriate treatment. The objective of this study was to identify and classify some of the most important RDs in rheumatology. We also attempted to determine their combined prevalence to more precisely define this area of rheumatology and increase awareness of RDs in healthcare systems. We conducted a comprehensive literature search and analyzed each disease for the specified criteria, such as clinical symptoms, treatment regimens, prognoses, and point prevalences. If no epidemiological data were available, we estimated the prevalence as 1/1,000,000. The total point prevalence for all RDs in rheumatology was estimated as the sum of the individually determined prevalences. RESULTS A total of 76 syndromes and diseases were identified, including vasculitis/vasculopathy (n = 15), arthritis/arthropathy (n = 11), autoinflammatory syndromes (n = 11), myositis (n = 9), bone disorders (n = 11), connective tissue diseases (n = 8), overgrowth syndromes (n = 3), and others (n = 8). Out of the 76 diseases, 61 (80%) are classified as chronic, with a remitting-relapsing course in 27 cases (35%) upon adequate treatment. Another 34 (45%) diseases were predominantly progressive and difficult to control. Corticosteroids are a therapeutic option in 49 (64%) syndromes. Mortality is variable and could not be determined precisely. Epidemiological studies and prevalence data were available for 33 syndromes and diseases. For an additional eight diseases, only incidence data were accessible. The summed prevalence of all RDs was 28.8/10,000. CONCLUSIONS RDs in rheumatology are frequently chronic, progressive, and present variable symptoms. Treatment options are often restricted to corticosteroids, presumably because of the scarcity of randomized controlled trials. The estimated combined prevalence is significant and almost double that of ankylosing spondylitis (18/10,000). Thus, healthcare systems should assign RDs similar importance as any other common disease in rheumatology.
Collapse
Affiliation(s)
- Judith Leyens
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Neonatology and Pediatric Care, Children's University Hospital, Bonn, Germany
| | - Tim Th A Bender
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Institute of Human Genetics, University Hospital, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
| | - Christiane Stieber
- Institute of General Practice and Family Medicine, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dmitrij Kravchenko
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Radiology, University Hospital, Bonn, Germany
| | - Christian Dernbach
- Division of Medical Psychology and Department of Psychiatry, University Hospital, Bonn, Germany
| | - Matthias F Seidel
- Department of Rheumatology, Spitalzentrum-Centre hospitalier, Biel-Bienne, Switzerland.
| |
Collapse
|
23
|
Mhatre S, Muranjan M, Karande S, Balaji H. Novel manifestations of Farber disease mimicking neuronopathic Gaucher disease. BMJ Case Rep 2021; 14:14/5/e240742. [PMID: 34045195 DOI: 10.1136/bcr-2020-240742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Diagnosis of rare disorders requires heightened clinical acumen. When such disorders present with atypical or novel features, it adds to the diagnostic challenge. A 9-month-old female infant who had received a diagnosis of neonatal hepatitis due to cytomegalovirus infection at 2 months of age presented to our institute with developmental delay, fever, vomiting, feeding difficulty, breathlessness and features of elevated intracranial pressure due to hydrocephalus. Key examination findings with cholestatic jaundice as an early manifestation led to suspicion of type 4 Farber disease. Observation of hydrocephalus, hypertension, bilateral pinguecula and Erlenmeyer flask deformity of the femur were unusual findings for Farber disease. The child had few features (pinguecula, Erlenmeyer flask deformity and hydrocephalus) overlapping with Gaucher disease. Alternatively, prosaposin deficiency (Farber disease type 7) was another differential diagnosis. Diagnosis of Farber disease was confirmed by detection of foamy macrophages on skin biopsy and two homozygous missense variants in ASAH1 gene.
Collapse
Affiliation(s)
- Shweta Mhatre
- Pediatrics, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Mamta Muranjan
- Pediatrics, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Sunil Karande
- Pediatrics, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Harish Balaji
- Dermatology, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| |
Collapse
|
24
|
Brooks BM, Yeh CD, Beers J, Liu C, Cheng YS, Gorshkov K, Zou J, Zheng W, Chen CZ. Generation of an induced pluripotent stem cell line (TRNDi030-A) from a patient with Farber disease carrying a homozygous p. Y36C (c. 107 A>G) mutation in ASAH1. Stem Cell Res 2021; 53:102387. [PMID: 34088014 PMCID: PMC8314383 DOI: 10.1016/j.scr.2021.102387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022] Open
Abstract
Farber disease is an ultra-rare lysosomal storage disease. Mutations in the N-acylsphingosine amidohydrolase (ASAH1) gene, which encodes for the enzyme acid ceramidase (ACDase), cause ceramides to accumulate in the body. A human induced pluripotent stem cell (iPSC) line TRNDi030-A was generated from fibroblasts of a male patient with a homozygous p. Y36C (c.107 A>G) variant in the second exon of the ASAH1 producing the alpha subunit of ACDase. This Farber disease iPSC line is a useful resource to study disease pathophysiology and to develop therapeutics for treatment of patients with Farber disease.
Collapse
Affiliation(s)
- Brianna M Brooks
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Charles D Yeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jeanette Beers
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu-Shan Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Broomfield AA, Padidela R, Wilkinson S. Pulmonary Manifestations of Endocrine and Metabolic Diseases in Children. Pediatr Clin North Am 2021; 68:81-102. [PMID: 33228944 DOI: 10.1016/j.pcl.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Advances in technology, methodology, and deep phenotyping are increasingly driving the understanding of the pathologic basis of disease. Improvements in patient identification and treatment are impacting survival. This is true in endocrinology and inborn errors of metabolism, where disease-modifying therapies are developing. Inherent to this evolution is the increasing awareness of the respiratory manifestations of these rare diseases. This review updates clinicians, stratifying diseases spirometerically; pulmonary hypertension and diseases with a predisposition to recurrent pulmonary infection are discussed. This division is artificial; many diseases have multiple pathologic effects on respiration. This review does not cover the impact of obesity.
Collapse
Affiliation(s)
- Alexander A Broomfield
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart Wilkinson
- Respiratory Department Royal Manchester Children's Hospital, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
26
|
Allende ML, Zhu H, Kono M, Hoachlander-Hobby LE, Huso VL, Proia RL. Genetic defects in the sphingolipid degradation pathway and their effects on microglia in neurodegenerative disease. Cell Signal 2021; 78:109879. [PMID: 33296739 PMCID: PMC7775721 DOI: 10.1016/j.cellsig.2020.109879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Sphingolipids, which function as plasma membrane lipids and signaling molecules, are highly enriched in neuronal and myelin membranes in the nervous system. They are degraded in lysosomes by a defined sequence of enzymatic steps. In the related group of disorders, the sphingolipidoses, mutations in the genes that encode the individual degradative enzymes cause lysosomal accumulation of sphingolipids and often result in severe neurodegenerative disease. Here we review the information indicating that microglia, which actively clear sphingolipid-rich membranes in the brain during development and homeostasis, are directly affected by these mutations and promote neurodegeneration in the sphingolipidoses. We also identify parallels between the sphingolipidoses and more common forms of neurodegeneration, which both exhibit evidence of defective sphingolipid clearance in the nervous system.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongling Zhu
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mari Kono
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lila E Hoachlander-Hobby
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vienna L Huso
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard L Proia
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Su Y, Yang L, Li Z, Wang W, Xing M, Fang Y, Cheng Y, Lin GN, Cui D. The interaction of ASAH1 and NGF gene involving in neurotrophin signaling pathway contributes to schizophrenia susceptibility and psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110015. [PMID: 32569620 DOI: 10.1016/j.pnpbp.2020.110015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/23/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
The neurodevelopmental hypothesis of schizophrenia has been widely accepted. In light of our previous microarray data, two neurodevelopment-related genes were focused on inclduing the N-acylsphingosine amidohydrolase 1 gene (ASAH1) and the nerve growth factor gene (NGF). The evidence that ASAH1 and NGF are associated with schizophrenia is far from conclusive. Furthermore, their interactions in schizophrenia have not been investigated. Total 413 patients and 578 controls were included. Eleven single-nucleotide polymorphisms (SNPs) in ASAH1 and NGF were selected. A multifactor dimensionality reduction (MDR) was applied to investigate gene-gene interactions in schizophrenia, and the traditional odds ratio methods was applied to validate it. The effects of ASAH1, NGF and their interaction on the severity of the disease were analyzed by 3 × 3 covariance analysis of (ANCOVA). The biological interaction between ASAH1 and NGF was examined. KEGG was used to identify the related signaling pathways. After correction by Bonferroni, there were no differences in the genotypic, allelic, or haplotypic frequencies of 11 SNPs between patients and controls. However, the interaction of certain SNPs had effect on susceptibility to schizophrenia, including two high-risk and one low-risk genotypic combinations (OR = 1.49 [1.11-2.00]; OR = 1.45 [1.09-1.92], and OR = 0.64 [0.41-0.98]). ASAH1-rs7830490 and its interaction with NGF-rs4332358 were associated with the general psychopathological subscale score (F adjusted = 3.94, p adjusted = 0.01; F adjusted = 2.36, p adjusted = 0.03). We also found that ASAH1 and NGF interacted with CaMK2B involving in the neurotrophin signaling pathway. Our results suggest that the interaction of ASAH1 and NGF with CaMK2B involved in neurotrophin signaling pathway may contribute to schizophrenia susceptibility and psychopathology.
Collapse
Affiliation(s)
- Yousong Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weidi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Mengjuan Xing
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
28
|
Gardner AI, Haq IJ, Simpson AJ, Becker KA, Gallagher J, Saint-Criq V, Verdon B, Mavin E, Trigg A, Gray MA, Koulman A, McDonnell MJ, Fisher AJ, Kramer EL, Clancy JP, Ward C, Schuchman EH, Gulbins E, Brodlie M. Recombinant Acid Ceramidase Reduces Inflammation and Infection in Cystic Fibrosis. Am J Respir Crit Care Med 2020; 202:1133-1145. [PMID: 32569477 PMCID: PMC7560813 DOI: 10.1164/rccm.202001-0180oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: In cystic fibrosis the major cause of morbidity and mortality is lung disease characterized by inflammation and infection. The influence of sphingolipid metabolism is poorly understood with a lack of studies using human airway model systems.Objectives: To investigate sphingolipid metabolism in cystic fibrosis and the effects of treatment with recombinant human acid ceramidase on inflammation and infection.Methods: Sphingolipids were measured using mass spectrometry in fully differentiated cultures of primary human airway epithelial cells and cocultures with Pseudomonas aeruginosa. In situ activity assays, Western blotting, and quantitative PCR were used to investigate function and expression of ceramidase and sphingomyelinase. Effects of treatment with recombinant human acid ceramidase on sphingolipid profile and inflammatory mediator production were assessed in cell cultures and murine models.Measurements and Main Results: Ceramide is increased in cystic fibrosis airway epithelium owing to differential function of enzymes regulating sphingolipid metabolism. Sphingosine, a metabolite of ceramide with antimicrobial properties, is not upregulated in response to P. aeruginosa by cystic fibrosis airway epithelia. Tumor necrosis factor receptor 1 is increased in cystic fibrosis epithelia and activates NF-κB signaling, generating inflammation. Treatment with recombinant human acid ceramidase, to decrease ceramide, reduced both inflammatory mediator production and susceptibility to infection.Conclusions: Sphingolipid metabolism is altered in airway epithelial cells cultured from people with cystic fibrosis. Treatment with recombinant acid ceramidase ameliorates the two pivotal features of cystic fibrosis lung disease, inflammation and infection, and thus represents a therapeutic approach worthy of further exploration.
Collapse
Affiliation(s)
- Aaron I. Gardner
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Iram J. Haq
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
- Paediatric Respiratory Medicine, Great North Children’s Hospital, and
| | - A. John Simpson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
- Respiratory Medicine, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Katrin A. Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - John Gallagher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Vinciane Saint-Criq
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard Verdon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Mavin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Alexandra Trigg
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Michael A. Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Albert Koulman
- National Institute for Health Research Biomedical Research Centre Metabolomics and Lipidomics Facility, University of Cambridge, Cambridge, United Kingdom
| | - Melissa J. McDonnell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Andrew J. Fisher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Elizabeth L. Kramer
- Department of Pediatrics and
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John P. Clancy
- Department of Pediatrics and
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Christopher Ward
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Edward H. Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
- Paediatric Respiratory Medicine, Great North Children’s Hospital, and
| |
Collapse
|
29
|
A Great Catch for Investigating Inborn Errors of Metabolism-Insights Obtained from Zebrafish. Biomolecules 2020; 10:biom10091352. [PMID: 32971894 PMCID: PMC7564250 DOI: 10.3390/biom10091352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of metabolism cause abnormal synthesis, recycling, or breakdown of amino acids, neurotransmitters, and other various metabolites. This aberrant homeostasis commonly causes the accumulation of toxic compounds or depletion of vital metabolites, which has detrimental consequences for the patients. Efficient and rapid intervention is often key to survival. Therefore, it requires useful animal models to understand the pathomechanisms and identify promising therapeutic drug targets. Zebrafish are an effective tool to investigate developmental mechanisms and understanding the pathophysiology of disorders. In the past decades, zebrafish have proven their efficiency for studying genetic disorders owing to the high degree of conservation between human and zebrafish genes. Subsequently, several rare inherited metabolic disorders have been successfully investigated in zebrafish revealing underlying mechanisms and identifying novel therapeutic targets, including methylmalonic acidemia, Gaucher’s disease, maple urine disorder, hyperammonemia, TRAPPC11-CDGs, and others. This review summarizes the recent impact zebrafish have made in the field of inborn errors of metabolism.
Collapse
|
30
|
Bao X, Ma M, Zhang Z, Xu Y, Qiu Z. Farber disease in a patient from China. Am J Med Genet A 2020; 182:2184-2186. [PMID: 32706452 DOI: 10.1002/ajmg.a.61752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 11/08/2022]
Abstract
Farber disease (FD) is a rare lysosomal storage disorder caused by mutation of the ASAH1 gene. Classic symptoms of FD include subcutaneous nodules, joint pain and hoarseness. Most patients die during childhood. Here we report a 25-year-old female FD patient with rare osteolytic changes of bilateral hands and toes. Genetic analysis revealed novel compound heterozygous mutations in the ASAH1 gene (c.427T>G and c.358G>C). Further research is needed to elucidate the pathophysiological course.
Collapse
Affiliation(s)
- Xudong Bao
- Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Mingsheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhenjie Zhang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yiwen Xu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhengqing Qiu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Elsea SH, Solyom A, Martin K, Harmatz P, Mitchell J, Lampe C, Grant C, Selim L, Mungan NO, Guelbert N, Magnusson B, Sundberg E, Puri R, Kapoor S, Arslan N, DiRocco M, Zaki M, Ozen S, Mahmoud IG, Ehlert K, Hahn A, Gokcay G, Torcoletti M, Ferreira CR. ASAH1 pathogenic variants associated with acid ceramidase deficiency: Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy. Hum Mutat 2020; 41:1469-1487. [PMID: 32449975 DOI: 10.1002/humu.24056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 11/12/2022]
Abstract
Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy are a spectrum of rare lysosomal storage disorders characterized by acid ceramidase deficiency (ACD), resulting from pathogenic variants in N-acylsphingosine amidohydrolase 1 (ASAH1). Other than simple listings provided in literature reviews, a curated, comprehensive list of ASAH1 mutations associated with ACD clinical phenotypes has not yet been published. This publication includes mutations in ASAH1 collected through the Observational and Cross-Sectional Cohort Study of the Natural History and Phenotypic Spectrum of Farber Disease (NHS), ClinicalTrials.gov identifier NCT03233841, in combination with an up-to-date curated list of published mutations. The NHS is the first to collect retrospective and prospective data on living and deceased patients with ACD presenting as Farber disease, who had or had not undergone hematopoietic stem cell transplantation. Forty-five patients representing the known clinical spectrum of Farber disease (living patients aged 1-28 years) were enrolled. The curation of known ASAH1 pathogenic variants using a single reference transcript includes 10 previously unpublished from the NHS and 63 that were previously reported. The publication of ASAH1 variants will be greatly beneficial to patients undergoing genetic testing in the future by providing a significantly expanded reference list of disease-causing variants.
Collapse
Affiliation(s)
- Sarah H Elsea
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Kirt Martin
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Paul Harmatz
- Pediatric Gastroenterolgy and Nutrition, UCSF Benioff Children's Hospital Oakland, Oakland, California
| | | | | | | | - Laila Selim
- Cairo University Children's Hospital, Cairo, Egypt
| | | | | | - Bo Magnusson
- Karolinska University Hospital, Stockholm, Sweden
| | | | - Ratna Puri
- Sir Ganga Ram Hospital, New Delhi, India
| | - Seema Kapoor
- Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Nur Arslan
- Dokuz Eylul University Hospital, Izmir, Turkey
| | - Maja DiRocco
- Metabolic Diseases, Istituto Giannina Gaslini, Genoa, Italy
| | - Maha Zaki
- Clinical Genetics Department, National Research Center, Cairo, Egypt
| | - Seza Ozen
- Pediatric Rheumatology, Hacettepe University Hospital, Ankara, Turkey
| | | | | | - Andreas Hahn
- UKGM Universitätsklinikum Giessen, Giessen, Germany
| | | | | | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
32
|
Alessenko AV, Albi E. Exploring Sphingolipid Implications in Neurodegeneration. Front Neurol 2020; 11:437. [PMID: 32528400 PMCID: PMC7254877 DOI: 10.3389/fneur.2020.00437] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, it was found that relatively simple sphingolipids, such as ceramide, sphingosine, sphingosine-1-phosphate, and glucosylceramide play important roles in neuronal functions by regulating rates of neuronal growth and differentiation. Homeostasis of membrane sphingolipids in neurons and myelin is essential to prevent the loss of synaptic plasticity, cell death and neurodegeneration. In our review we summarize data about significant brain cell alterations of sphingolipids in different neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, Amyotrophic Lateral Sclerosis, Gaucher's, Farber's diseases, etc. We reported results obtained in brain tissue from both animals in which diseases were induced and humans in autopsy samples. Moreover, attention was paid on sphingolipids in biofluids, liquor and blood, from patients. In Alzheimer's disease sphingolipids are involved in the processing and aggregation of β-amyloid and in the transmission of the cytotoxic signal β-amyloid and TNFα-induced. Recently, the gangliosides metabolism in transgenic animals and the relationship between blood sphingolipids changes and cognitive impairment in Alzheimer's disease patients have been intensively studied. Numerous experiments have highlighted the involvement of ceramide and monohexosylceramide metabolism in the pathophysiology of the sporadic forms of Parkinson's disease. Moreover, gene mutations of the glucocerebrosidase enzyme were considered as responsible for Parkinson's disease via transition of the monomeric form of α-synuclein to an oligomeric, aggregated toxic form. Disturbances in the metabolism of ceramides were also associated with the appearance of Lewy's bodies. Changes in sphingolipid metabolism were found as a manifestation of Amyotrophic Lateral Sclerosis, both sporadic and family forms, and affected the rate of disease development. Currently, fingolimod (FTY720), a sphingosine-1-phosphate receptor modulator, is the only drug undergoing clinical trials of phase II safety for the treatment of Amyotrophic Lateral Sclerosis. The use of sphingolipids as new diagnostic markers and as targets for innovative therapeutic strategies in different neurodegenerative disorders has been included.
Collapse
Affiliation(s)
- Alice V. Alessenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| |
Collapse
|
33
|
Lang J, Bohn P, Bhat H, Jastrow H, Walkenfort B, Cansiz F, Fink J, Bauer M, Olszewski D, Ramos-Nascimento A, Duhan V, Friedrich SK, Becker KA, Krawczyk A, Edwards MJ, Burchert A, Huber M, Friebus-Kardash J, Göthert JR, Hardt C, Probst HC, Schumacher F, Köhrer K, Kleuser B, Babiychuk EB, Sodeik B, Seibel J, Greber UF, Lang PA, Gulbins E, Lang KS. Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease. Nat Commun 2020; 11:1338. [PMID: 32165633 PMCID: PMC7067866 DOI: 10.1038/s41467-020-15072-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1-/- mice results in replication of HSV-1 and Asah1-/- mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.
Collapse
Affiliation(s)
- Judith Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Patrick Bohn
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Hilal Bhat
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Holger Jastrow
- Institute of Anatomy, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Institut for Experimental Immunology and Imaging, Imaging Center Essen, Electron Microscopy Unit, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Bernd Walkenfort
- Institut for Experimental Immunology and Imaging, Imaging Center Essen, Electron Microscopy Unit, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Feyza Cansiz
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Julian Fink
- Institute of Organic Chemistry, Julius-Maximilians University of Würzburg, Am Hubland, Würzburg, D-97074, Germany
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Ana Ramos-Nascimento
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany
| | - Vikas Duhan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Sarah-Kim Friedrich
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Department of Infectious Diseases, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstr., Marburg, D-35043, Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hospital Hygiene, Philipps-University Marburg, Hans-Meerwein Str. 2, Marburg, D-35043, Germany
| | - Justa Friebus-Kardash
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Cornelia Hardt
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center Mainz, Langenbeckstr. 1, Mainz, D-55131, Germany
| | - Fabian Schumacher
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, Nuthetal, D-14558, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Universitätsstr. 1, Düsseldorf, D-40225, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, Nuthetal, D-14558, Germany
| | - Eduard B Babiychuk
- Institute of Anatomy, University of Bern, Baltzerstr. 4, CH-3012, Bern, Switzerland
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians University of Würzburg, Am Hubland, Würzburg, D-97074, Germany
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, D-40225, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Karl S Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.
| |
Collapse
|
34
|
Zhang T, Trauger SA, Vidoudez C, Doane KP, Pluimer BR, Peterson RT. Parallel Reaction Monitoring reveals structure-specific ceramide alterations in the zebrafish. Sci Rep 2019; 9:19939. [PMID: 31882772 PMCID: PMC6934720 DOI: 10.1038/s41598-019-56466-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Extensive characterisations of the zebrafish genome and proteome have established a foundation for the use of the zebrafish as a model organism; however, characterisation of the zebrafish lipidome has not been as comprehensive. In an effort to expand current knowledge of the zebrafish sphingolipidome, a Parallel Reaction Monitoring (PRM)-based liquid chromatography-mass spectrometry (LC-MS) method was developed to comprehensively quantify zebrafish ceramides. Comparison between zebrafish and a human cell line demonstrated remarkable overlap in ceramide composition, but also revealed a surprising lack of most sphingadiene-containing ceramides in the zebrafish. PRM analysis of zebrafish embryogenesis identified developmental stage-specific ceramide changes based on long chain base (LCB) length. A CRISPR-Cas9-generated zebrafish model of Farber disease exhibited reduced size, early mortality, and severe ceramide accumulation where the amplitude of ceramide change depended on both acyl chain and LCB lengths. Our method adds an additional level of detail to current understanding of the zebrafish lipidome, and could aid in the elucidation of structure-function associations in the context of lipid-related diseases.
Collapse
Affiliation(s)
- Tejia Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Sunia A Trauger
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Kim P Doane
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Brock R Pluimer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
35
|
Choudhary N, Wadhawan S, Singh R, Bhadoria P. Anaesthetic management of a child with Farber's lipogranulomatosis posted for exploratory laparotomy. Indian J Anaesth 2019; 63:953-955. [PMID: 31772410 PMCID: PMC6868669 DOI: 10.4103/ija.ija_418_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Accepted: 08/19/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
- Nitin Choudhary
- Department of Anaesthesiology and Critical Care, Maulana Azad Medical College, New Delhi, India
| | - Sonia Wadhawan
- Department of Anaesthesiology and Critical Care, Maulana Azad Medical College, New Delhi, India
| | - Rahil Singh
- Department of Anaesthesiology and Critical Care, Maulana Azad Medical College, New Delhi, India
| | - Poonam Bhadoria
- Department of Anaesthesiology and Critical Care, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
36
|
Respiratory complications of metabolic disease in the paediatric population: A review of presentation, diagnosis and therapeutic options. Paediatr Respir Rev 2019; 32:55-65. [PMID: 31101546 DOI: 10.1016/j.prrv.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Inborn errors of metabolism (IEMs) whilst individually rare, as a group constitute a field which is increasingly demands on pulmonologists. With the advent of new therapies such as enzyme replacement and gene therapy, early diagnosis and treatment of these conditions can impact on long term outcome, making their timely recognition and appropriate investigation increasingly important. Conversely, with improved treatment, survival of these patients is increasing, with the emergence of previously unknown respiratory phenotypes. It is thus important that pulmonologists are aware of and appropriately monitor and manage these complications. This review aims to highlight the respiratory manifestations which can occur. It isdivided into conditions resulting primarily in obstructive airway and lung disease, restrictive lung disease such as interstitial lung disease or pulmonary alveolar proteinosis and pulmonary hypertension, whilst acknowledging that some diseases have the potential to cause all three. The review focuses on general phenotypes of IEMs, their known respiratory complications and the basic metabolic investigations which should be performed where an IEM is suspected.
Collapse
|
37
|
Yu FPS, Molino S, Sikora J, Rasmussen S, Rybova J, Tate E, Geurts AM, Turner PV, Mckillop WM, Medin JA. Hepatic pathology and altered gene transcription in a murine model of acid ceramidase deficiency. J Transl Med 2019; 99:1572-1592. [PMID: 31186526 DOI: 10.1038/s41374-019-0271-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Farber disease (FD) is a rare lysosomal storage disorder (LSD) characterized by systemic ceramide accumulation caused by a deficiency in acid ceramidase (ACDase). In its classic form, FD manifests with painful lipogranulomatous nodules in extremities and joints, respiratory complications, and neurological involvement. Hepatosplenomegaly is commonly reported, and severe cases of FD cite liver failure as a cause of early death. Mice homozygous for an orthologous patient mutation in the ACDase gene (Asah1P361R/P361R) recapitulate the classical form of human FD. In this study, we demonstrate impaired liver function and elevation of various liver injury markers in Asah1P361R/P361R mice as early as 5 weeks of age. Histopathology analyses demonstrated significant formation and recruitment of foamy macrophages, invasion of neutrophils, progressive tissue fibrosis, increased cell proliferation and death, and significant storage pathology within various liver cell types. Lipidomic analyses revealed alterations to various lipid concentrations in both serum and liver tissue. A significant accumulation of ceramide and other sphingolipids in both liver and hepatocytes was noted. Sphingolipid acyl chains were also altered, with an increase in long acyl chain sphingolipids coinciding with a decrease in ultra-long acyl chains. Hepatocyte transcriptome analyses revealed significantly altered gene transcription. Molecular pathways related to inflammation were found activated, and molecular pathways involved in lipid metabolism were found deactivated. Altered gene transcription within the sphingolipid pathway itself was also observed. The data presented herein demonstrates that deficiency in ACDase results in liver pathology as well as sphingolipid and gene transcription profile changes that lead to impaired liver function.
Collapse
Affiliation(s)
- Fabian P S Yu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Salvatore Molino
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Adolescent Medicine, Charles University, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic.,Institute of Pathology, Charles University, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Shauna Rasmussen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Everett Tate
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - William M Mckillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.,University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Inherited monogenic defects of ceramide metabolism: Molecular bases and diagnoses. Clin Chim Acta 2019; 495:457-466. [PMID: 31128082 DOI: 10.1016/j.cca.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Ceramides are membrane lipids implicated in the regulation of numerous biological functions. Recent evidence suggests that specific subsets of molecular species of ceramide may play distinct physiological roles. The importance of this family of molecules in vertebrates is witnessed by the deleterious consequences of genetic alterations in ceramide metabolism. This brief review summarizes the clinical presentation of human disorders due to the deficiency of enzymes involved either in the biosynthesis or the degradation of ceramides. Information on the possible underlying pathophysiological mechanisms is also provided, based on knowledge gathered from animal models of these inherited rare conditions. When appropriate, tools for chemical and molecular diagnosis of these disorders and therapeutic options are also presented.
Collapse
|
40
|
Goudie C, Alayoubi AM, Tibout P, Duval M, Maranda B, Mitchell D, Mitchell JJ. Hematopoietic stem cell transplant does not prevent neurological deterioration in infants with Farber disease: Case report and literature review. JIMD Rep 2019; 46:46-51. [PMID: 31240154 PMCID: PMC6498832 DOI: 10.1002/jmd2.12008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022] Open
Abstract
Farber disease (FD) is an inherited autosomal recessive disorder of lipid metabolism. The hallmark of the disease is systemic accumulation of ceramide due to lysosomal acid ceramidase deficiency. The involvement of the central nervous system is critical in this disorder leading to rapid deterioration and death within a few years after birth. Efforts to treat patients by hematopoietic stem cell transplant (HSCT) have resulted in favorable results in the absence of neurological manifestations. We report the outcomes of HSCT in two patients with FD who received early HSCT and had neurological deterioration posttransplant. We also present a new understanding of the limitations of HSCT in FD management based on our observations of the clinical course of the two patients after therapy.
Collapse
Affiliation(s)
- Catherine Goudie
- Division of Hematology‐Oncology, Department of PediatricsMcGill University Health CenterMontrealQuebecCanada
| | - Abdulfatah M. Alayoubi
- Division of Medical Genetics, Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah UniversityMadinahSaudi Arabia
| | - Pauline Tibout
- Department of PediatricsCHU de Québec—Université LavalQuebecQuébecCanada
| | - Michel Duval
- Division of Hematology‐Oncology, Department of PediatricsCHU Sainte‐Justine, University of MontrealMontrealQuebecCanada
| | - Bruno Maranda
- Division of Genetics, Department of PediatricsUniversité de SherbrookeSherbrookeQuebecCanada
| | - David Mitchell
- Division of Hematology‐Oncology, Department of PediatricsMcGill University Health CenterMontrealQuebecCanada
| | - John J. Mitchell
- Division of Medical Genetics, Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- Department of PediatricsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
41
|
Moghadam SH, Tavasoli AR, Modaresi M, Ziaee V. Farber disease: report of three cases with joint involvement mimicking juvenile idiopathic arthritis. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2019; 19:521-525. [PMID: 31789304 PMCID: PMC6944811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Farber disease is a rare recessive autosomal disorder presented with three main features of joint involvement, subcutaneous nodules and hoarseness. Hereby we describe three new cases of Farber disease. All three cases were first misdiagnosed as juvenile idiopathic arthritis (JIA) due to the presentation of joint swelling. Addition of hoarseness and subcutaneous nodules to the initial joint swelling questioned the diagnosis of JIA and further evaluations led to the diagnosis of Farber disease. The first case was a 4-year old girl in whom a novel genetic mutation in ASAH1 gene was found. The second patient was a 4-year old girl presented with joint swelling at 7 month of age. The third patient was a 9-month boy complicated with severe respiratory distress. All patients were treated with symptomatic and supportive care. Two cases died due to respiratory ailure and infection, but one patient follow up for 2 years after diagnosis. Farber disease should be considered as differential diagnosis in children with early onset of poly articular involvement with subcutaneous nodules and/or hoarseness.
Collapse
Affiliation(s)
| | - Ali Reza Tavasoli
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran,Myelin Disorders Clinic, Children’s Medical Center, Pediatric Center of Excellence, Tehran, Iran
| | - Mohammadreza Modaresi
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran,Pediatric Pulmonnary Disease and Sleep Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ziaee
- Children’s Medical Center, Pediatrics Center of Excellence, Tehran, Iran,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran,Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Vahid Ziaee, MD; Division of Pediatric Rheumatology, Children’s Medical Center, No. 62 Dr. Gharib St., Keshavarz Blvd, Tehran 14194, IR Iran E-mail:
| |
Collapse
|
42
|
Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:153-219. [PMID: 30635081 DOI: 10.1016/bs.apcsb.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Yu FPS, Sajdak BS, Sikora J, Salmon AE, Nagree MS, Gurka J, Kassem IS, Lipinski DM, Carroll J, Medin JA. Acid Ceramidase Deficiency in Mice Leads to Severe Ocular Pathology and Visual Impairment. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:320-338. [PMID: 30472209 DOI: 10.1016/j.ajpath.2018.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023]
Abstract
Farber disease (FD) is a debilitating lysosomal storage disorder characterized by severe inflammation and neurodegeneration. FD is caused by mutations in the ASAH1 gene, resulting in deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency exhibit a broad clinical spectrum. In classic cases, patients develop hepatosplenomegaly, nervous system involvement, and childhood mortality. Ocular manifestations include decreased vision, a grayish appearance to the retina with a cherry red spot, and nystagmus. That said, the full effect of ACDase deficiency on the visual system has not been studied in detail. We previously developed a mouse model that is orthologous for a known patient mutation in Asah1 that recapitulates human FD. Herein, we report evidence of a severe ocular pathology in Asah1P361R/P361R mice. Asah1P361R/P361R mice exhibit progressive retinal and optic nerve pathology. Through noninvasive ocular imaging and histopathological analyses of these Asah1P361R/P361R animals, we revealed progressive inflammation, the presence of retinal dysplasia, and significant storage pathology in various cell types in both the retina and optic nerves. Lipidomic analyses of retinal tissues revealed an abnormal accumulation of ceramides and other sphingolipids. Electroretinograms and behavioral tests showed decreased retinal and visual responses. Taken together, these data suggest that ACDase deficiency leads to sphingolipid imbalance, inflammation, dysmorphic retinal and optic nerve pathology, and severe visual impairment.
Collapse
Affiliation(s)
- Fabian P S Yu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin S Sajdak
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic; Institute of Pathology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alexander E Salmon
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Murtaza S Nagree
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jiří Gurka
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Iris S Kassem
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin; Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin; University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Yu FPS, Amintas S, Levade T, Medin JA. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J Rare Dis 2018; 13:121. [PMID: 30029679 PMCID: PMC6053731 DOI: 10.1186/s13023-018-0845-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Acid ceramidase (ACDase) deficiency is a spectrum of disorders that includes a rare lysosomal storage disorder called Farber disease (FD) and a rare epileptic disorder called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). Both disorders are caused by mutations in the ASAH1 gene that encodes the lysosomal hydrolase that breaks down the bioactive lipid ceramide. To date, there have been fewer than 200 reported cases of FD and SMA-PME in the literature. Typical textbook manifestations of classical FD include the formation of subcutaneous nodules, accumulation of joint contractures, and development of a hoarse voice. In reality, however, the clinical presentation is much broader. Patients may develop severe pathologies leading to death in infancy or may develop attenuated forms of the disorder wherein they are often misdiagnosed or not diagnosed until adulthood. A clinical variability also exists for SMA-PME, in which patients develop progressive muscle weakness and seizures. Currently, there is no known cure for FD or for SMA-PME. The main treatment is symptom management. In rare cases, treatment may include surgery or hematopoietic stem cell transplantation. Research using disease models has provided insights into the pathology as well as the role of ACDase in the development of these conditions. Recent studies have highlighted possible biomarkers for an effective diagnosis of ACDase deficiency. Ongoing work is being conducted to evaluate the use of recombinant human ACDase (rhACDase) for the treatment of FD. Finally, gene therapy strategies for the treatment of ACDase deficiency are actively being pursued. This review highlights the broad clinical definition and outlines key studies that have improved our understanding of inherited ACDase deficiency-related conditions.
Collapse
Affiliation(s)
- Fabian P. S. Yu
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Samuel Amintas
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
- INSERM UMR1037 CRCT, Université de Toulouse, Toulouse, France
| | - Jeffrey A. Medin
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
45
|
Yu FPS, Islam D, Sikora J, Dworski S, Gurka J, López-Vásquez L, Liu M, Kuebler WM, Levade T, Zhang H, Medin JA. Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency. Am J Physiol Lung Cell Mol Physiol 2018; 314:L406-L420. [PMID: 29167126 PMCID: PMC5900354 DOI: 10.1152/ajplung.00223.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022] Open
Abstract
Farber disease (FD) is a debilitating lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (ACDase) activity due to mutations in the gene ASAH1. Patients with ACDase deficiency may develop a spectrum of clinical phenotypes. Severe cases of FD are frequently associated with neurological involvement, failure to thrive, and respiratory complications. Mice homozygous ( Asah1P361R/P361R) for an orthologous patient mutation in Asah1 recapitulate human FD. In this study, we show significant impairment in lung function, including low compliance and increased airway resistance in a mouse model of ACDase deficiency. Impaired lung mechanics in Farber mice resulted in decreased blood oxygenation and increased red blood cell production. Inflammatory cells were recruited to both perivascular and peribronchial areas of the lung. We observed large vacuolated foamy histiocytes that were full of storage material. An increase in vascular permeability led to protein leakage, edema, and impacted surfactant homeostasis in the lungs of Asah1P361R/P361R mice. Bronchial alveolar lavage fluid (BALF) extraction and analysis revealed accumulation of a highly turbid lipoprotein-like substance that was composed in part of surfactants, phospholipids, and ceramides. The phospholipid composition of BALF from Asah1P361R/P361R mice was severely altered, with an increase in both phosphatidylethanolamine (PE) and sphingomyelin (SM). Ceramides were also found at significantly higher levels in both BALF and lung tissue from Asah1P361R/P361R mice when compared with levels from wild-type animals. We demonstrate that a deficiency in ACDase leads to sphingolipid and phospholipid imbalance, chronic lung injury caused by significant inflammation, and increased vascular permeability, leading to impaired lung function.
Collapse
Affiliation(s)
- Fabian P S Yu
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Diana Islam
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Jakub Sikora
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, Charles University, First Faculty of Medicine , Prague , Czech Republic
- Institute of Pathology, Charles University, First Faculty of Medicine and General University Hospital , Prague , Czech Republic
| | - Shaalee Dworski
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Jiří Gurka
- Department of Cardiology, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Lucía López-Vásquez
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
| | - Mingyao Liu
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto Ontario , Canada
- University Health Network , Toronto, Ontario , Canada
| | - Wolfgang M Kuebler
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto Ontario , Canada
- Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto, Ontario , Canada
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, and INSERM UMR1037 CRCT, Université de Toulouse , Toulouse , France
| | - Haibo Zhang
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto Ontario , Canada
- Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto, Ontario , Canada
- Department of Anesthesia, University of Toronto , Toronto, Ontario , Canada
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto , Toronto, Ontario , Canada
- University Health Network , Toronto, Ontario , Canada
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
46
|
Deletion of MCP-1 Impedes Pathogenesis of Acid Ceramidase Deficiency. Sci Rep 2018; 8:1808. [PMID: 29379059 PMCID: PMC5789088 DOI: 10.1038/s41598-018-20052-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
Farber Disease (FD) is an ultra-rare Lysosomal Storage Disorder caused by deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency manifest a spectrum of symptoms including formation of nodules, painful joints, and a hoarse voice. Classic FD patients will develop histiocytes in organs and die in childhood. Monocyte chemotactic protein (MCP-1; CCL2) is significantly elevated in both FD patients and a mouse model we previously generated. Here, to further study MCP-1 in FD, we created an ACDase;MCP-1 double mutant mouse. We show that deletion of MCP-1 reduced leukocytosis, delayed weight loss, and improved lifespan. Reduced inflammation and fibrosis were observed in livers from double mutant animals. Bronchial alveolar lavage fluid analyses revealed a reduction in cellular infiltrates and protein accumulation. Furthermore, reduced sphingolipid accumulation was observed in the lung and liver but not in the brain. The neurological and hematopoietic defects observed in FD mice were maintained. A compensatory cytokine response was found in the double mutants, however, that may contribute to continued signs of inflammation and injury. Taken together, targeting a reduction of MCP-1 opens the door to a better understanding of the mechanistic consequences of ceramide accumulation and may even delay the progression of FD in some organ systems.
Collapse
|
47
|
Azuma MM, Balani P, Boisvert H, Gil M, Egashira K, Yamaguchi T, Hasturk H, Duncan M, Kawai T, Movila A. Endogenous acid ceramidase protects epithelial cells from Porphyromonas gingivalis-induced inflammation in vitro. Biochem Biophys Res Commun 2018; 495:2383-2389. [PMID: 29278706 PMCID: PMC5765770 DOI: 10.1016/j.bbrc.2017.12.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023]
Abstract
Ceramidases are a group of enzymes that degrade pro-inflammatory ceramide by cleaving a fatty acid to form anti-inflammatory sphingosine lipid. Thus far, acid, neutral and alkaline ceramidase isozymes have been described. However, the expression patterns of ceramidase isoforms as well as their role in periodontal disease pathogenesis remain unknown. In this study, expression patterns of ceramidase isoforms were quantified by real-time PCR and immunohistochemistry in gingival samples of patients with periodontitis and healthy subjects, as well as in EpiGingivalTM-3D culture and OBA-9 gingival epithelial cells both of which were stimulated with or without the presence of live Porphyromonas gingivalis (ATCC 33277 strain). A significantly lower level of acid ceramidase expression was detected in gingival tissues from periodontal patients compared to those from healthy subjects. In addition, acid-ceramidase expression in EpiGingival™ 3D culture and OBA-9 cells was suppressed by stimulation with P. gingivalis in vitro. No significant fluctuation was detected for neutral or alkaline ceramidases in either gingival samples or cell cultures. Next, to elucidate the role of acid ceramidase in P. gingivalis-induced inflammation in vitro, OBA-9 cells were transduced with adenoviral vector expressing the human acid ceramidase (Ad-ASAH1) gene or control adenoviral vector (Ad-control). In response to stimulation with P. gingivalis, ASAH1-over-expressing OBA-9 cells showed significantly lower mRNA expressions of caspase-3 as well as the percentage of Annexin V-positive cells, when compared with OBA-9 cells transduced with Ad-control vector. Furthermore, in response to stimulation with P. gingivalis, ASAH1-over-expressing OBA-9 cells produced less TNF-α, IL-6, and IL1β pro-inflammatory cytokines than observed in OBA-9 cells transduced with Ad-control vector. Collectively, our data show the novel discovery of anti-inflammatory and anti-apoptotic effects of acid ceramidase in host cells exposed to periodontal bacteria, and the attenuation of the expression of host-protective acid ceramidase in periodontal lesions.
Collapse
Affiliation(s)
| | - Pooja Balani
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA
| | | | - Mindy Gil
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA
| | - Kenji Egashira
- The Forsyth Institute, Cambridge, MA, USA; Lion Corporation, Research & Development Headquarter, Odawara, Kanagawa, Japan
| | - Tsuguno Yamaguchi
- The Forsyth Institute, Cambridge, MA, USA; Lion Corporation, Research & Development Headquarter, Odawara, Kanagawa, Japan
| | - Hatice Hasturk
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA
| | | | - Toshihisa Kawai
- NOVA Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA
| | - Alexandru Movila
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA; NOVA Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA.
| |
Collapse
|
48
|
Dodge JC. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases. Front Mol Neurosci 2017; 10:356. [PMID: 29163032 PMCID: PMC5675881 DOI: 10.3389/fnmol.2017.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.
Collapse
Affiliation(s)
- James C Dodge
- Neuroscience Therapeutic Area, Sanofi, Framingham, MA, United States
| |
Collapse
|
49
|
Schuchman EH, Mitchell J, Solyom A. Morbidity and mortality associated with Farber disease and prospects for therapy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1359086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Edward H. Schuchman
- Genetic Disease Foundation-Francis Crick Professor, Department of Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - John Mitchell
- Division of Pediatric Endocrinology, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Alex Solyom
- Clinical Research & Patient Affairs, Enzyvant, Basel, Switzerland
| |
Collapse
|
50
|
Cozma C, Iurașcu MI, Eichler S, Hovakimyan M, Brandau O, Zielke S, Böttcher T, Giese AK, Lukas J, Rolfs A. C26-Ceramide as highly sensitive biomarker for the diagnosis of Farber Disease. Sci Rep 2017; 7:6149. [PMID: 28733637 PMCID: PMC5522391 DOI: 10.1038/s41598-017-06604-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
Farber disease (FD) is a rare autosomal recessive disease caused by mutations in the acid ceramidase gene (ASAH1). Low ceramidase activity results in the accumulation of fatty substances, mainly ceramides. Hallmark symptoms at clinical level are periarticular nodules, lipogranulomas, swollen and painful joints and a hoarse voice. FD phenotypes are heterogeneous varying from mild to very severe cases, with the patients not surviving past their first year of life. The diagnostic aspects of FD are poorly developed due to the rarity of the disease. In the present study, the screening for ceramides and related molecules was performed in Farber affected patients (n = 10), carriers (n = 11) and control individuals (n = 192). This study has the highest number of enrolled Farber patients and carriers reported to present. Liquid chromatography multiple reaction mass spectrometry (LC/MRM-MS) studies revealed that the ceramide C26:0 and especially its isoform 1 is a highly sensitive and specific biomarker for FD (p < 0.0001). The new biomarker can be determined directly in the dried blood spot extracts with low sample consumption. This allows for easy sample preparation, high reproducibility and use in high throughput screenings.
Collapse
Affiliation(s)
- Claudia Cozma
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany.
| | | | | | | | - Oliver Brandau
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany
| | - Susanne Zielke
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Tobias Böttcher
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Anne-Katrin Giese
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany.,Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| |
Collapse
|