1
|
Pfnür A, Mayer B, Dörfer L, Tumani H, Spitzer D, Huber-Lang M, Kapapa T. Regulatory T Cell- and Natural Killer Cell-Mediated Inflammation, Cerebral Vasospasm, and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage-A Systematic Review and Meta-Analysis Approach. Int J Mol Sci 2025; 26:1276. [PMID: 39941044 PMCID: PMC11818301 DOI: 10.3390/ijms26031276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) involves a significant influx of blood into the cerebrospinal fluid, representing a severe form of stroke. Despite advancements in aneurysm closure and neuro-intensive care, outcomes remain impaired due to cerebral vasospasm and delayed cerebral ischemia (DCI). Previous pharmacological therapies have not successfully reduced DCI while improving overall outcomes. As a result, significant efforts are underway to better understand the cellular and molecular mechanisms involved. This review focuses on the activation and effects of immune cells after SAH and their interactions with neurotoxic and vasoactive substances as well as inflammatory mediators. Particular attention is given to clinical studies highlighting the roles of natural killer (NK) cells and regulatory T cells (Treg) cells. Alongside microglia, astrocytes, and oligodendrocytes, NK cells and Treg cells are key contributors to the inflammatory cascade following SAH. Their involvement in modulating the neuro-inflammatory response, vasospasm, and DCI underscores their potential as therapeutic targets and prognostic markers in the post-SAH recovery process. We conducted a systematic review on T cell- and natural killer cell-mediated inflammation and their roles in cerebral vasospasm and delayed cerebral ischemia. We conducted a meta-analysis to evaluate outcomes and mortality in studies focused on NK cell- and T cell-mediated mechanisms.
Collapse
Affiliation(s)
- Andreas Pfnür
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081 Ulm, Germany
| | - Lena Dörfer
- Institute for Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/, 89081 Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Daniel Spitzer
- Department of Neurology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/, 89081 Ulm, Germany
| | - Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
2
|
Liu Z, Zhu J, Pan E, Pang L, Zhou X, Che Y. Paeonol Alleviates Subarachnoid Hemorrhage Injury in Rats Through Upregulation of SIRT1 and Inhibition of HMGB1/TLR4/MyD88/NF-κB Pathway. J Biochem Mol Toxicol 2024; 38:e70035. [PMID: 39552449 DOI: 10.1002/jbt.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Paeonol is a principle bioactive compound separated from the root bark of Cortex Moutan and has been shown to confer various biological functions, including antineuroinflammation and neuroprotection. Inflammation, blood-brain barrier (BBB), permeability, and apoptosis are three major underlying mechanisms involved in early brain injury (EBI) postsubarachnoid hemorrhage (SAH). This study aimed to detect the roles and mechanisms of paeonol in EBI following SAH. A SAH model was established by an endovascular perforation method in Sprague-Dawley rats. The localizations of HMGB1 and p65 were identified by immunofluorescence staining. Protein levels were measured by western blot analysis. The serum levels of HMGB1 and the levels of inflammatory cytokines in the brain cortex were evaluated by ELISA. Hematoxylin and eosin staining was conducted to detect neuronal degeneration. Brain water content and Evans blue extravasation were assessed to determine EBI. Neuronal apoptosis was examined by TUNEL. Paeonol deacetylated HMGB1 by upregulating SIRT1 level. SIRT1 inhibition attenuated the protective effects of paeonol against neurological dysfunctions, brain edema, and BBB disruption. SIRT1 inhibition rescued the paeonol-induced inhibition in inflammatory response. The paeonol-induced decrease in neuronal apoptosis was restored by SIRT1 inhibitor. The paeonol-mediated deactivated TLR4/MyD88/NF-κB pathway was activated by SIRT1 inhibitor. Paeonol alleviates the SAH injury in rats by upregulating SIRT1 to inactivate the HMGB1/TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Jun Zhu
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Enyu Pan
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Lujun Pang
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Xiwei Zhou
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Yanjun Che
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| |
Collapse
|
3
|
Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L. Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:1017-1034. [PMID: 37779164 PMCID: PMC11522081 DOI: 10.1007/s12975-023-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a prevalent cerebrovascular disease with significant global mortality and morbidity rates. Despite advancements in pharmacological and surgical approaches, the quality of life for SAH survivors has not shown substantial improvement. Traditionally, vasospasm has been considered a primary contributor to death and disability following SAH, but anti-vasospastic therapies have not demonstrated significant benefits for SAH patients' prognosis. Emerging studies suggest that early brain injury (EBI) may play a crucial role in influencing SAH prognosis. Sirtuins (SIRTs), a group of NAD + -dependent deacylases comprising seven mammalian family members (SIRT1 to SIRT7), have been found to be involved in neural tissue development, plasticity, and aging. They also exhibit vital functions in various central nervous system (CNS) processes, including cognition, pain perception, mood, behavior, sleep, and circadian rhythms. Extensive research has uncovered the multifaceted roles of SIRTs in CNS disorders, offering insights into potential markers for pathological processes and promising therapeutic targets (such as SIRT1 activators and SIRT2 inhibitors). In this article, we provide an overview of recent research progress on the application of SIRTs in subarachnoid hemorrhage and explore their underlying mechanisms of action.
Collapse
Affiliation(s)
- Kunqian Lei
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Rui Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Xianze Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Erxiong Zhou
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Ruiming Fan
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| | - Lei Gong
- Department of Pharmacy, Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| |
Collapse
|
4
|
Hong EP, Han SW, Kim BJ, Youn DH, Rhim JK, Jeon JP, Park JJ. Target Gene-Based Association Study of High Mobility Group Box Protein 1 in Intracranial Aneurysms in Koreans. Brain Sci 2024; 14:969. [PMID: 39451983 PMCID: PMC11505682 DOI: 10.3390/brainsci14100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Objective: We investigated the effect of high mobility group box 1 (HMGB1) on intracranial aneurysms (IAs) by analyzing single-nucleotide polymorphisms (SNPs) based on genome-wide association study (GWAS) data. HMGB1 mRNA and protein expression levels in plasma were also analyzed. Methods: This study was a comprehensive analysis of a GWAS dataset, including 250 patients with IAs and 294 controls. The HMGB1 gene region was targeted within SNP rs3742305 ± 10 kbp. Multivariate logistic regression analysis determined its association with IAs after adjusting for relevant clinical factors. HMGB1 mRNA expression was analyzed in the plasma of 24 patients selected from the GWAS dataset. The HMGB1 protein was analyzed by Western blotting. Results: A total of seven polymorphisms, including rs1360485, rs185382445, rs2039338, rs1045411, rs3742305, rs2249825, and rs189034241, were observed. Two SNPs, including rs1045411 (UTR-3) and rs3742305 (intron), showed strong linkage disequilibrium (r2 = 0.99). However, none of the seven SNPs associated with IAs had an adjusted p-value of < 0.0016 on multiple comparison analysis. HMGB1 mRNA levels (2-ΔCt) did not differ significantly between patients with IAs and the control subjects [1.07 (1.00-1.15) in patients with IAs vs. 1.05 (0.94-1.12) in controls; p = 0.67)]. Also, no significant difference in the degree of plasma HMGB1 protein expression was seen between the two groups (p = 0.82). Conclusions: The number of SNPs associated with HMGB1 and the degree of HMGB1 mRNA and protein expression were not significantly different between patients diagnosed with IAs and the controls.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24254, Republic of Korea; (E.P.H.); (S.W.H.); (B.J.K.); (D.H.Y.)
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24254, Republic of Korea; (E.P.H.); (S.W.H.); (B.J.K.); (D.H.Y.)
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24254, Republic of Korea; (E.P.H.); (S.W.H.); (B.J.K.); (D.H.Y.)
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24254, Republic of Korea; (E.P.H.); (S.W.H.); (B.J.K.); (D.H.Y.)
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju 63241, Republic of Korea;
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
| |
Collapse
|
5
|
Kawai C, Miyao M, Kotani H, Minami H, Abiru H, Tamaki K, Nishitani Y. Roles of HMGB1 on life-threatening traumatic brain injury and sequential peripheral organ damage. Sci Rep 2024; 14:21421. [PMID: 39271757 PMCID: PMC11399384 DOI: 10.1038/s41598-024-72318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic brain injury (TBI) has been found to be associated with certain peripheral organ injuries; however, a few studies have explored the chronological influences of TBI on multiple organs and the systemic effects of therapeutic interventions. Particularly, high-mobility group box 1 (HMGB1) is a potential therapeutic target for TBI; however, its effects on peripheral organs remain unclear. Therefore, this study aimed to determine whether severe TBI can lead to multiple organ injury and how HMGB1 inhibition affects peripheral organs. This study used a weight drop-induced TBI mouse model and found that severe TBI can trigger short-lived systemic inflammation, in the lungs and liver, but not in the kidneys, regardless of the severity of the injury. TBI led to an increase in circulating HMGB1 and enhanced gene expressions of its receptors in every organ. Anti-HMGB1 antibody treatment reduced neuroinflammation but increased inflammation in peripheral organs. This study also found that HMGB1 inhibition appears to have a beneficial role in early neuroinflammation but could lead to detrimental effects on peripheral organs through decreased peripheral immune suppression. This study provides novel insights into the chronological changes in multiple organs due to TBI and the unique roles of HMGB1 between the brain and other organs.
Collapse
Affiliation(s)
- Chihiro Kawai
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| | - Masashi Miyao
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan.
| | - Hirokazu Kotani
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirozo Minami
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| | - Hitoshi Abiru
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| | - Yoko Nishitani
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Huguenard A, Tan G, Johnson G, Adamek M, Coxon A, Kummer T, Osbun J, Vellimana A, Limbrick Jr D, Zipfel G, Brunner P, Leuthardt E. Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH): Protocol for a prospective, triple-blinded, randomized controlled trial. PLoS One 2024; 19:e0301154. [PMID: 39178291 PMCID: PMC11343404 DOI: 10.1371/journal.pone.0301154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Inflammation has been implicated in driving the morbidity associated with subarachnoid hemorrhage (SAH). Despite understanding the important role of inflammation in morbidity following SAH, there is no current effective way to modulate this deleterious response. There is a critical need for a novel approach to immunomodulation that can be safely, rapidly, and effectively deployed in SAH patients. Vagus nerve stimulation (VNS) provides a non-pharmacologic approach to immunomodulation, with prior studies demonstrating VNS can reduce systemic inflammatory markers, and VNS has had early success treating inflammatory conditions such as arthritis, sepsis, and inflammatory bowel diseases. The aim of the Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH) trial is to translate the use of non-invasive transcutaneous auricular VNS (taVNS) to spontaneous SAH, with our central hypothesis being that implementing taVNS in the acute period following spontaneous SAH attenuates the expected inflammatory response to hemorrhage and curtails morbidity associated with inflammatory-mediated clinical endpoints. MATERIALS AND METHODS The overall objectives for the NAHSaH trial are to 1) Define the impact that taVNS has on SAH-induced inflammatory markers in the plasma and cerebrospinal fluid (CSF), 2) Determine whether taVNS following SAH reduces radiographic vasospasm, and 3) Determine whether taVNS following SAH reduces chronic hydrocephalus. Following presentation to a single enrollment site, enrolled SAH patients are randomly assigned twice daily treatment with either taVNS or sham stimulation for the duration of their intensive care unit stay. Blood and CSF are drawn before initiation of treatment sessions, and then every three days during a patient's hospital stay. Primary endpoints include change in the inflammatory cytokine TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt. Secondary outcomes include exploratory analyses of a panel of additional cytokines, number and type of hospitalized acquired infections, duration of external ventricular drain in days, interventions required for vasospasm, continuous physiology data before, during, and after treatment sessions, hospital length of stay, intensive care unit length of stay, and modified Rankin Scale score (mRS) at admission, discharge, and each at follow-up appointment for up to two years following SAH. DISCUSSION Inflammation plays a central role in morbidity following SAH. This NAVSaH trial is innovative because it diverges from the pharmacologic status quo by harnessing a novel non-invasive neuromodulatory approach and its known anti-inflammatory effects to alter the pathophysiology of SAH. The investigation of a new, effective, and rapidly deployable intervention in SAH offers a new route to improve outcomes following SAH. TRIAL REGISTRATION Clinical Trials Registered, NCT04557618. Registered on September 21, 2020, and the first patient was enrolled on January 4, 2021.
Collapse
Affiliation(s)
- Anna Huguenard
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Gansheng Tan
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Gabrielle Johnson
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Markus Adamek
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Andrew Coxon
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Terrance Kummer
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Joshua Osbun
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ananth Vellimana
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David Limbrick Jr
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Gregory Zipfel
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Peter Brunner
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Eric Leuthardt
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
7
|
Lauzier DC, Athiraman U. Role of microglia after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:841-856. [PMID: 38415607 PMCID: PMC11318405 DOI: 10.1177/0271678x241237070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Subarachnoid hemorrhage is a devastating sequela of aneurysm rupture. Because it disproportionately affects younger patients, the population impact of hemorrhagic stroke from subarachnoid hemorrhage is substantial. Secondary brain injury is a significant contributor to morbidity after subarachnoid hemorrhage. Initial hemorrhage causes intracranial pressure elevations, disrupted cerebral perfusion pressure, global ischemia, and systemic dysfunction. These initial events are followed by two characterized timespans of secondary brain injury: the early brain injury period and the delayed cerebral ischemia period. The identification of varying microglial phenotypes across phases of secondary brain injury paired with the functions of microglia during each phase provides a basis for microglia serving a critical role in both promoting and attenuating subarachnoid hemorrhage-induced morbidity. The duality of microglial effects on outcomes following SAH is highlighted by the pleiotropic features of these cells. Here, we provide an overview of the key role of microglia in subarachnoid hemorrhage-induced secondary brain injury as both cytotoxic and restorative effectors. We first describe the ontogeny of microglial populations that respond to subarachnoid hemorrhage. We then correlate the phenotypic development of secondary brain injury after subarachnoid hemorrhage to microglial functions, synthesizing experimental data in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
8
|
Liu Z, Yang W, Chen J, Wang Q. Circulating HMGB1 in acute ischemic stroke and its association with post-stroke cognitive impairment. PeerJ 2024; 12:e17309. [PMID: 38708343 PMCID: PMC11067911 DOI: 10.7717/peerj.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Ischemic stroke frequently leads to a condition known as post-stroke cognitive impairment (PSCI). Timely recognition of individuals susceptible to developing PSCI could facilitate the implementation of personalized strategies to mitigate cognitive deterioration. High mobility group box 1 (HMGB1) is a protein released by ischemic neurons and implicated in inflammation after stroke. Circulating levels of HMGB1 could potentially serve as a prognostic indicator for the onset of cognitive impairment following ischemic stroke. Objective To investigate the predictive value of circulating HMGB1 concentrations in the acute phase of ischemic stroke for the development of cognitive dysfunction at the 3-month follow-up. Methods A total of 192 individuals experiencing their initial episode of acute cerebral infarction were prospectively recruited for this longitudinal investigation. Concentrations of circulating HMGB1 were quantified using an enzyme-linked immunosorbent assay (ELISA) technique within the first 24 hours following hospital admission. Patients underwent neurological evaluation including NIHSS scoring. Neuropsychological evaluation was conducted at the 3-month follow-up after the cerebrovascular event, employing the Montreal Cognitive Assessment (MoCA) as the primary tool for assessing cognitive performance. Multivariable logistic regression models were employed to investigate the relationship between circulating HMGB1 concentrations and cognitive dysfunction following stroke, which was operationalized as a MoCA score below 26, while controlling for potential confounders including demographic characteristics, stroke severity, vascular risk factors, and laboratory parameters. Results Of 192 patients, 84 (44%) developed PSCI. Circulating HMGB1 concentrations were significantly elevated in individuals who developed cognitive dysfunction following stroke compared to those who maintained cognitive integrity (8.4 ± 1.2 ng/mL vs 4.6 ± 0.5 ng/mL, respectively; p < 0.001). The prevalence of PSCI showed a dose-dependent increase with higher HMGB1 quartiles. After controlling for potential confounders such as demographic factors (age, gender, and education), stroke severity, vascular risk factors, and laboratory parameters in a multivariable logistic regression model, circulating HMGB1 concentrations emerged as a significant independent predictor of cognitive dysfunction following stroke (regression coefficient = 0.236, p < 0.001). Conclusion Circulating HMGB1 concentrations quantified within the first 24 hours following acute cerebral infarction are significantly and independently correlated with the likelihood of developing cognitive dysfunction at the 3-month follow-up, even after accounting for potential confounding factors. HMGB1 may be a novel biomarker to identify patients likely to develop post-stroke cognitive impairment for targeted preventive interventions.
Collapse
Affiliation(s)
- Zhenbao Liu
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weixia Yang
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianxin Chen
- Department of Critical Care Medicine, Jinan First People’s Hospital, Shandong Traditional Chinese Medicine University, Jinan, Shandong, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
9
|
Lyu Y, Tu H, Luo J, Wang C, Li A, Zhou Y, Zhao J, Wang H, Hu J. Increased serum levels of high-mobility group box 1 protein and the location characteristics in the patients of intracranial aneurysms. Brain Res 2024; 1828:148759. [PMID: 38242523 DOI: 10.1016/j.brainres.2024.148759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVE Inflammation-related factors play a crucial role in intracranial aneurysms (IA) initiation, progression, and rupture. High mobility group box 1 (HMGB-1) serves as an alarm to drive the pathogenesis of the inflammatory disease. This study aimed to evaluate the role of HMGB-1 in IA and explore the correlation with other inflammatory-related factors. METHODS A total of twenty-eight adult male Japanese white rabbits were included in with elastase-induced aneurysms, n = 18) and the control group (normal rabbits, n = 10). To assess the expression of HMGB-1, both reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) was performed on serum samples obtained from human subjects (10 patients with IA and 10 healthy donors) as well as from rabbits (aneurysm group and control group). Immunohistochemistry and immunofluorescence were employed to evaluate the expression levels of elastic fibers, HMGB-1, tumor necrosis factor-alpha (TNF-α), and triggering receptor expressed on myeloid cells-1 (TREM-1). RESULTS The expression of HMGB-1 was found to be significantly higher in the IA group compared to the control group, both at the mRNA and protein levels (P < 0.0001). Similar findings were observed in the rabbit aneurysm model group compared to the control group (P < 0.0001). HMGB-1 expression was observed to be more abundant in the inner wall of the aneurysm compared to the external wall, whereas in the control group, it was rarely scattered. Additionally, the localization patterns of TNF-α and TREM-1 exhibited similar characteristics to HMGB-1. CONCLUSION Our findings demonstrate that HMGB-1 is highly expressed in both IA patients and rabbit aneurysm models. Furthermore, the similar localization patterns of HMGB-1, TNF-α, and TREM-1 suggest their potential involvement in the inflammatory processes associated with IA. These results highlight the potential of HMGB-1 as a novel therapeutic target for IA.
Collapse
Affiliation(s)
- YanXia Lyu
- Department of Physiology, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - HanJun Tu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - ChaoJia Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - AnRong Li
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yi Zhou
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - JunShuang Zhao
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Hui Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - JunTao Hu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, China.
| |
Collapse
|
10
|
Mittal AM, Nowicki KW, Mantena R, Cao C, Rochlin EK, Dembinski R, Lang MJ, Gross BA, Friedlander RM. Advances in biomarkers for vasospasm - Towards a future blood-based diagnostic test. World Neurosurg X 2024; 22:100343. [PMID: 38487683 PMCID: PMC10937316 DOI: 10.1016/j.wnsx.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Objective Cerebral vasospasm and the resultant delayed cerebral infarction is a significant source of mortality following aneurysmal SAH. Vasospasm is currently detected using invasive or expensive imaging at regular intervals in patients following SAH, thus posing a risk of complications following the procedure and financial burden on these patients. Currently, there is no blood-based test to detect vasospasm. Methods PubMed, Web of Science, and Embase databases were systematically searched to retrieve studies related to cerebral vasospasm, aneurysm rupture, and biomarkers. The study search dated from 1997 to 2022. Data from eligible studies was extracted and then summarized. Results Out of the 632 citations screened, only 217 abstracts were selected for further review. Out of those, only 59 full text articles met eligibility and another 13 were excluded. Conclusions We summarize the current literature on the mechanism of cerebral vasospasm and delayed cerebral ischemia, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future bloodbased test to detect vasospasm. Efforts should be focused on clinical-translational approaches to create such a test to improve treatment timing and prediction of vasospasm to reduce the incidence of delayed cerebral infarction.
Collapse
Affiliation(s)
- Aditya M. Mittal
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | | | - Rohit Mantena
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Catherine Cao
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Emma K. Rochlin
- Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Robert Dembinski
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Michael J. Lang
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Bradley A. Gross
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Robert M. Friedlander
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Stavely R, Robinson AM, Fraser S, Filippone RT, Stojanovska V, Eri R, Apostolopoulos V, Sakkal S, Nurgali K. Bone marrow-derived mesenchymal stem cells mitigate chronic colitis and enteric neuropathy via anti-inflammatory and anti-oxidative mechanisms. Sci Rep 2024; 14:6649. [PMID: 38503815 PMCID: PMC10951223 DOI: 10.1038/s41598-024-57070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Current treatments for inflammatory bowel disease (IBD) are often inadequate due to limited efficacy and toxicity, leading to surgical resection in refractory cases. IBD's broad and complex pathogenesis involving the immune system, enteric nervous system, microbiome, and oxidative stress requires more effective therapeutic strategies. In this study, we investigated the therapeutic potential of bone marrow-derived mesenchymal stem cell (BM-MSC) treatments in spontaneous chronic colitis using the Winnie mouse model which closely replicates the presentation and inflammatory profile of ulcerative colitis. The 14-day BM-MSC treatment regimen reduced the severity of colitis, leading to the attenuation of diarrheal symptoms and recovery in body mass. Morphological and histological abnormalities in the colon were also alleviated. Transcriptomic analysis demonstrated that BM-MSC treatment led to alterations in gene expression profiles primarily downregulating genes related to inflammation, including pro-inflammatory cytokines, chemokines and other biomarkers of inflammation. Further evaluation of immune cell populations using immunohistochemistry revealed a reduction in leukocyte infiltration upon BM-MSC treatment. Notably, enteric neuronal gene signatures were the most impacted by BM-MSC treatment, which correlated with the restoration of neuronal density in the myenteric ganglia. Moreover, BM-MSCs exhibited neuroprotective effects against oxidative stress-induced neuronal loss through antioxidant mechanisms, including the reduction of mitochondrial-derived superoxide and attenuation of oxidative stress-induced HMGB1 translocation, potentially relying on MSC-derived SOD1. These findings suggest that BM-MSCs hold promise as a therapeutic intervention to mitigate chronic colitis by exerting anti-inflammatory effects and protecting the enteric nervous system from oxidative stress-induced damage.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ainsley M Robinson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Vanesa Stojanovska
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Rajaraman Eri
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
- Enteric Neuropathy Lab, Western Centre for Health, Research and Education, St Albans, VIC, 3021, Australia.
| |
Collapse
|
12
|
Huguenard AL, Tan G, Johnson GW, Adamek M, Coxon AT, Kummer TT, Osbun JW, Vellimana AK, Limbrick DD, Zipfel GJ, Brunner P, Leuthardt EC. Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH): Protocol for a prospective, triple-blinded, randomized controlled trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304239. [PMID: 38562875 PMCID: PMC10984059 DOI: 10.1101/2024.03.18.24304239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Inflammation has been implicated in driving the morbidity associated with subarachnoid hemorrhage (SAH). Despite understanding the important role of inflammation in morbidity following SAH, there is no current effective way to modulate this deleterious response. There is a critical need for a novel approach to immunomodulation that can be safely, rapidly, and effectively deployed in SAH patients. Vagus nerve stimulation (VNS) provides a non-pharmacologic approach to immunomodulation, with prior studies demonstrating VNS can reduce systemic inflammatory markers, and VNS has had early success treating inflammatory conditions such as arthritis, sepsis, and inflammatory bowel diseases. The aim of the Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH) trial is to translate the use of non-invasive transcutaneous auricular VNS (taVNS) to spontaneous SAH, with our central hypothesis being that implementing taVNS in the acute period following spontaneous SAH attenuates the expected inflammatory response to hemorrhage and curtails morbidity associated with inflammatory-mediated clinical endpoints. Materials and methods The overall objectives for the NAHSaH trial are to 1) Define the impact that taVNS has on SAH-induced inflammatory markers in the plasma and cerebrospinal fluid (CSF), 2) Determine whether taVNS following SAH reduces radiographic vasospasm, and 3) Determine whether taVNS following SAH reduces chronic hydrocephalus. Following presentation to a single enrollment site, enrolled SAH patients are randomly assigned twice daily treatment with either taVNS or sham stimulation for the duration of their intensive care unit stay. Blood and CSF are drawn before initiation of treatment sessions, and then every three days during a patient's hospital stay. Primary endpoints include change in the inflammatory cytokine TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt. Secondary outcomes include exploratory analyses of a panel of additional cytokines, number and type of hospitalized acquired infections, duration of external ventricular drain in days, interventions required for vasospasm, continuous physiology data before, during, and after treatment sessions, hospital length of stay, intensive care unit length of stay, and modified Rankin Scale score (mRS) at admission, discharge, and each at follow-up appointment for up to two years following SAH. Discussion Inflammation plays a central role in morbidity following SAH. This NAVSaH trial is innovative because it diverges from the pharmacologic status quo by harnessing a novel non-invasive neuromodulatory approach and its known anti-inflammatory effects to alter the pathophysiology of SAH. The investigation of a new, effective, and rapidly deployable intervention in SAH offers a new route to improve outcomes following SAH. Trial registration Clinical Trials Registered, NCT04557618. Registered on September 21, 2020, and the first patient was enrolled on January 4, 2021.
Collapse
Affiliation(s)
- Anna L Huguenard
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gansheng Tan
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gabrielle W Johnson
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Markus Adamek
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrew T Coxon
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Terrance T Kummer
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joshua W Osbun
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ananth K Vellimana
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David D. Limbrick
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gregory J Zipfel
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Peter Brunner
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Azari Jafari A, Mirmoeeni S, Johnson WC, Shah M, Hassani MS, Nazari S, Fielder T, Seifi A. The effect of induced hypertension in aneurysmal subarachnoid hemorrhage: A narrative review. CURRENT JOURNAL OF NEUROLOGY 2023; 22:188-196. [PMID: 38011457 PMCID: PMC10626142 DOI: 10.18502/cjn.v22i3.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/12/2023] [Indexed: 11/29/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) accounts for 2-5% of all strokes, and 10%-15% of aSAH patients will not survive until hospital admission. Induced hypertension (IH) is an emerging therapeutic option being used for the treatment of vasospasm in aSAH. For patients with cerebral vasospasm (CVS) consequent to SAH, IH is implemented to increase systolic blood pressure (SBP) in order to optimize cerebral blood flow (CBF) and prevent delayed cerebral ischemia (DCI). Prophylactic use of IH has been associated with the development of vasospasm and cerebral ischemia in SAH patients. Various trials have defined several different parameters to help clinicians decide when to initiate IH in a SAH patient. However, there is insufficient evidence to recommend therapeutic IH in aSAH due to the possible serious complications like myocardial ischemia, development of posterior reversible encephalopathy syndrome (PRES), pulmonary edema, and even rupture of another unsecured aneurysm. This narrative review showed the favorable impact of IH therapy on aSAH patients; however, it is crucial to conduct further clinical and molecular experiments to shed more light on the effects of IH in aSAH.
Collapse
Affiliation(s)
- Amirhossein Azari Jafari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - William Chase Johnson
- Department of Neurosurgery, Division of Neuro Critical Care, University of Texas Health Science Center at San Antonio School of Medicine, San Antonio, Texas, USA
| | - Muffaqam Shah
- Deccan College of Medical Sciences, Owaisi Hospital and Research Centre, Hyderabad, Telangana State, India
| | - Maryam Sadat Hassani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tristan Fielder
- University of Texas Health Science Center at San Antonio School of Medicine, San Antonio, Texas, USA
| | - Ali Seifi
- Department of Neurosurgery, Division of Neuro Critical Care, University of Texas Health Science Center at San Antonio School of Medicine, San Antonio, Texas, USA
| |
Collapse
|
14
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
15
|
Zhang Z, Liu C, Zhou X, Zhang X. The Critical Role of Sirt1 in Subarachnoid Hemorrhages: Mechanism and Therapeutic Considerations. Brain Sci 2023; 13:brainsci13040674. [PMID: 37190639 DOI: 10.3390/brainsci13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The subarachnoid hemorrhage (SAH) is an important cause of death and long-term disability worldwide. As a nicotinamide adenine dinucleotide-dependent deacetylase, silent information regulator 1 (Sirt1) is a multipotent molecule involved in many pathophysiological processes. A growing number of studies have demonstrated that Sirt1 activation may exert positive effects on SAHs by regulating inflammation, oxidative stress, apoptosis, autophagy, and ferroptosis. Thus, Sirt1 agonists may serve as potential therapeutic drugs for SAHs. In this review, we summarized the current state of our knowledge on the relationship between Sirt1 and SAHs and provided an updated overview of the downstream molecules of Sirt1 in SAHs.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Cong Liu
- Department of Ophthalmology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
16
|
DeWulf B, Minsart L, Verdonk F, Kruys V, Piagnerelli M, Maze M, Saxena S. High Mobility Group Box 1 (HMGB1): Potential Target in Sepsis-Associated Encephalopathy. Cells 2023; 12:cells12071088. [PMID: 37048161 PMCID: PMC10093266 DOI: 10.3390/cells12071088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) remains a challenge for intensivists that is exacerbated by lack of an effective diagnostic tool and an unambiguous definition to properly identify SAE patients. Risk factors for SAE development include age, genetic factors as well as pre-existing neuropsychiatric conditions. Sepsis due to certain infection sites/origins might be more prone to encephalopathy development than other cases. Currently, ICU management of SAE is mainly based on non-pharmacological support. Pre-clinical studies have described the role of the alarmin high mobility group box 1 (HMGB1) in the complex pathogenesis of SAE. Although there are limited data available about the role of HMGB1 in neuroinflammation following sepsis, it has been implicated in other neurologic disorders, where its translocation from the nucleus to the extracellular space has been found to trigger neuroinflammatory reactions and disrupt the blood–brain barrier. Negating the inflammatory cascade, by targeting HMGB1, may be a strategy to complement non-pharmacologic interventions directed against encephalopathy. This review describes inflammatory cascades implicating HMGB1 and strategies for its use to mitigate sepsis-induced encephalopathy.
Collapse
Affiliation(s)
- Bram DeWulf
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
| | - Laurens Minsart
- Department of Anesthesia, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Franck Verdonk
- Department of Anesthesiology and Intensive Care, GRC 29, DMU DREAM, Hôpital Saint-Antoine and Sorbonne University, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| | - Michael Piagnerelli
- Department of Intensive Care, CHU-Charleroi, Université Libre de Bruxelles, 6042 Charleroi, Belgium
- Experimental Medicine Laboratory (ULB Unit 222), CHU-Charleroi, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sarah Saxena
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| |
Collapse
|
17
|
Chu XH, Hu HY, Godje ISG, Zhu LJ, Zhu JB, Feng YL, Wang H, Zhang YB, Huang J, Sun XG. Elevated HMGB1 and sRAGE levels in cerebrospinal fluid of aneurysmal subarachnoid hemorrhage patients. J Stroke Cerebrovasc Dis 2023; 32:107061. [PMID: 36871437 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Neuroinflammation after aneurysmal subarachnoid hemorrhage (aSAH) leads to poor outcome of patients. High mobility group box 1 (HMGB1) contributes to inflammation through binding to receptors for advanced glycation end-products (RAGE) in various diseases. We aimed to determine the production of these two factors after aSAH and their relationship with clinical features. METHODS HMGB1 and soluble RAGE (sRAGE) levels in cerebrospinal fluid (CSF) of aSAH patients and controls were measured, and their temporal courses were observed. The correlation between early concentrations (days 1-3) and clinical symptoms assessed by disease severity scores, neuroinflammation estimated by CSF IL-6 levels, as well as prognosis evidenced by delayed cerebral ischemia (DCI) and 6-month adverse outcome was investigated. Finally, combined analysis of early levels for predicting prognosis was confirmed. RESULTS CSF HMGB1 and sRAGE levels were higher in aSAH patients than in controls (P < 0.05), and the levels decreased from higher early to lower over time. Their early concentrations were positively associated with disease severity scores, IL-6 levels, DCI and 6-month poor outcome (P < 0.05). HMGB1 ≥ 6045.5 pg/ml (OR = 14.291, P = 0.046) and sRAGE ≥ 572.0 pg/ml (OR = 13.988, P = 0.043) emerged as independent predictors for DCI, while HMGB1 ≥ 5163.2 pg/ml (OR = 7.483, P = 0.043) and sRAGE ≥ 537.3 pg/ml (OR = 12.653, P = 0.042) were predictors for 6-month poor outcome. Combined analysis of them improved predictive values of adverse prognosis. CONCLUSION CSF HMGB1 and sRAGE levels of aSAH patients were increased early and then varied dynamically, which might act as potential biomarkers for poor outcome, especially when co-analyzed.
Collapse
Affiliation(s)
- Xue-Hong Chu
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Hui-Yu Hu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Ivan Steve Godje Godje
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Li-Juan Zhu
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Jia-Bao Zhu
- Department of Neurosurgery, Yuncheng Central Hospital Affiliated to Shanxi Medical University, No. 3690, Hedong East Street, Yuncheng, Shanxi, 044000, PR. China
| | - Yong-Liang Feng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Hai Wang
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Yi-Bo Zhang
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Juan Huang
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Xin-Gang Sun
- Department of Neurology, the Second Hospital Affiliated to Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, Shanxi, 030000, PR. China.
| |
Collapse
|
18
|
Abstract
Stroke is a sudden and rapidly progressing ischemic or hemorrhagic cerebrovascular disease. When stroke damages the brain, the immune system becomes hyperactive, leading to systemic inflammatory response and immunomodulatory disorders, which could significantly impact brain damage, recovery, and prognosis of stroke. Emerging researches suggest that ischemic stroke-induced spleen contraction could activate a peripheral immune response, which may further aggravate brain injury. This review focuses on hemorrhagic strokes including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) and discusses the central nervous system-peripheral immune interactions after hemorrhagic stroke induction. First, inflammatory progression after ICH and SAH is investigated. As a part of this review, we summarize the various kinds of inflammatory cell infiltration to aggravate brain injury after blood-brain barrier interruption induced by hemorrhagic stroke. Then, we explore hemorrhagic stroke-induced systemic inflammatory response syndrome (SIRS) and discuss the interactions of CNS and peripheral inflammatory response. In addition, potential targets related to inflammatory response for ICH and SAH are discussed in this review, which may lead to novel therapeutic strategies for hemorrhagic stroke.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Huang Z, Liu J, Xu J, Dai L, Wang H. Downregulation of miR-26b attenuates early brain injury induced by subarachnoid hemorrhage via mediating the KLF4/STAT3/HMGB1 axis. Exp Neurol 2023; 359:114270. [PMID: 36347300 DOI: 10.1016/j.expneurol.2022.114270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Early brain injury (EBI) refers to early-onset secondary complications that occur after subarachnoid hemorrhage (SAH), and associated with high rate of disability and mortality. Recent investigations have indicated microRNA-26b (miR-26b) as a biomarker in the progression of SAH. Accordingly, the present study was designed to elucidate the role of miR-26b in influencing EBI following SAH and the downstream mechanisms. METHODS Firstly, SAH rat models and neuron injury models were developed to assess the effect of miR-26b on EBI-like symptoms and subsequent inflammation. Dual-luciferase reporter gene assay was further implemented to evaluate the binding of miR-26b to its putative target gene STAT3. Loss-of-function and rescue experiments were performed to assess the functionality of miR-26b-mediated STAT3 in both models. RESULTS miR-26b was found to target KLF4 and negative-modulate its expression, whereby aggravating EBI and inflammatory response in SAH rat models and stimulating hemoglobin-induced apoptosis in astrocytes. On the other hand, silencing of miR-26b reversed these changes in SAH rat models and hemoglobin (Hb)-induced astrocytes. miR-26b could further activate STAT3 via down-regulation of KLF4. Furthermore, KLF4 knockdown up-regulated HMGB1 to aggravate EBI following SAH. CONCLUSIONS Collectively, our findings highlighted the ameliorative effect of miR-26b inhibition on EBI in SAH and the possible mechanism associated with the KLF4/STAT3/HMGB1 axis.
Collapse
Affiliation(s)
- Zewei Huang
- Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, PR China
| | - Jialin Liu
- Department of Neurology, Shijiazhuang Huayao Hospital of North China Medical and Health Group, Shijiazhuang 050000, PR China
| | - Jiongfu Xu
- Department of Neurosurgery, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, PR China
| | - Limeng Dai
- Department of Neurosurgery, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, PR China.
| | - Hao Wang
- Department of Neurosurgery, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, PR China; Guangdong Engineering Technological Research Center for nervous anatomy and Related Clinical Applications, Shenzhen 518020, PR China.
| |
Collapse
|
20
|
Stavely R, Sahakian L, Filippone RT, Stojanovska V, Bornstein JC, Sakkal S, Nurgali K. Oxidative Stress-Induced HMGB1 Translocation in Myenteric Neurons Contributes to Neuropathy in Colitis. Biomolecules 2022; 12:biom12121831. [PMID: 36551259 PMCID: PMC9776169 DOI: 10.3390/biom12121831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released by dying cells to stimulate the immune response. During cell death, HMGB1 is translocated from the nucleus to the cytoplasm and passively released. High levels of secreted HMGB1 are observed in the faeces of inflammatory bowel disease (IBD) patients, indicating its role in IBD pathophysiology and potential as a non-invasive IBD biomarker. HMGB1 is important in regulating neuronal damage in the central nervous system; its pathological activity is intertwined with oxidative stress and inflammation. In this study, HMGB1 expression in the enteric nervous system and its relevance to intestinal neuroinflammation is explored in organotypic cultures of the myenteric plexus exposed to oxidative stimuli and in Winnie mice with spontaneous chronic colitis. Oxidative stimuli induced cytoplasmic translocation of HMGB1 in myenteric neurons in organotypic preparations. HMGB1 translocation correlated with enteric neuronal loss and oxidative stress in the myenteric ganglia of Winnie mice. Inhibition of HMGB1 by glycyrrhizic acid ameliorated HMGB1 translocation and myenteric neuronal loss in Winnie mice. These data highlight modulation of HMGB1 signalling as a therapeutic strategy to reduce the consequences of enteric neuroinflammation in colitis, warranting the exploration of therapeutics acting on the HMGB1 pathway as an adjunct treatment with current anti-inflammatory agents.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
| | - Lauren Sahakian
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Rhiannon T. Filippone
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Vanesa Stojanovska
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Health Translation Precinct, Melbourne, VIC 3168, Australia
| | - Joel C. Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
21
|
Han DW, Oh JE, Lim BJ, Han Y, Song Y. Dexmedetomidine attenuates subarachnoid hemorrhage-induced acute lung injury through regulating autophagy and TLR/NFκB signaling pathway. Korean J Anesthesiol 2022; 75:518-529. [PMID: 35912428 PMCID: PMC9726465 DOI: 10.4097/kja.22165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/20/2022] [Accepted: 07/30/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is the most serious complication of subarachnoid hemorrhage (SAH). We investigated role of autophagy and inflammatory signaling pathways in lung damage and therapeutic effects of dexmedetomidine (DEX). METHODS Fifty male Wistar rats were randomly divided into five groups: sham, SAH, SAH+ DEX5, SAH+DEX25, and SAH+DEX50. SAH was induced using endovascular perforation technique. All rats received mechanical ventilation for 60 minutes. At 2 and 24 h of SAH induction, SAH+DEX groups were treated with 5, 25, and 50 µg/kg of DEX, respectively. Histological ALI score and pulmonary edema were assessed after 48 h. Lung expression of LC3B, ATG3, p62, TLR4, TLR9, and NFκB was assessed using western blotting and quantitative PCR. Blood levels of IL-6, IL-1β, IFN-γ, and TNFα were also assessed. RESULTS SAH induced ALI and pulmonary edema, which were attenuated in SAH+DEX5 (P < 0.001 for both) and SAH+DEX25 groups (P = 0.001 and P < 0.001 for ALI and edema, respectively). Lung expressions of LC3B and ATG3 were upregulated in SAH group, which was attenuated in SAH+DEX5 and SAH+DEX25 groups. Lung expressions of TLR4, TLR9, and NFκB were increased in SAH group, which was attenuated in SAH+DEX5 group. Blood IL-6 level was increased in SAH group and attenuated in SAH+DEX5 and SAH+DEX25 groups. Blood IFN-γ level was lower in SAH group than in sham group, and it was increased in SAH+DEX25 group. CONCLUSIONS Low-dose DEX treatment after SAH may protect against ALI by disrupting pathological brain-lung crosstalk and alleviating autophagy flux and TLR-dependent inflammatory pathways.
Collapse
Affiliation(s)
- Dong Woo Han
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Eun Oh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yeonseung Han
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J, Jiang E. Progress in Research on TLR4-Mediated Inflammatory Response Mechanisms in Brain Injury after Subarachnoid Hemorrhage. Cells 2022; 11:cells11233781. [PMID: 36497041 PMCID: PMC9740134 DOI: 10.3390/cells11233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the common clinical neurological emergencies. Its incidence accounts for about 5-9% of cerebral stroke patients. Even surviving patients often suffer from severe adverse prognoses such as hemiplegia, aphasia, cognitive dysfunction and even death. Inflammatory response plays an important role during early nerve injury in SAH. Toll-like receptors (TLRs), pattern recognition receptors, are important components of the body's innate immune system, and they are usually activated by damage-associated molecular pattern molecules. Studies have shown that with TLR 4 as an essential member of the TLRs family, the inflammatory transduction pathway mediated by it plays a vital role in brain injury after SAH. After SAH occurrence, large amounts of blood enter the subarachnoid space. This can produce massive damage-associated molecular pattern molecules that bind to TLR4, which activates inflammatory response and causes early brain injury, thus resulting in serious adverse prognoses. In this paper, the process in research on TLR4-mediated inflammatory response mechanism in brain injury after SAH was reviewed to provide a new thought for clinical treatment.
Collapse
Affiliation(s)
- Lintao Wang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangping Geng
- Henan Technician College of Medicine and Health, Kaifeng 475000, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng 475001, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Jianjun Gu
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
23
|
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13:1027756. [PMID: 36505409 PMCID: PMC9727248 DOI: 10.3389/fimmu.2022.1027756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular disorder associated with high overall mortality. Currently, the underlying mechanisms of pathological reaction after aneurysm rupture are still unclear, especially in the immune microenvironment, inflammation, and relevant signaling pathways. SAH-induced immune cell population alteration, immune inflammatory signaling pathway activation, and active substance generation are associated with pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk between immune disorders and hyperactivation of inflammatory signals aggravated the devastating consequences of brain injury and cerebral vasospasm and increased the risk of infection. In this review, we discussed the role of inflammation and immune cell responses in the occurrence and development of aneurysm SAH, as well as the most relevant immune inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase (ERK), hypoxia-inducible factor-1α (HIF-1α), STAT, SIRT, mammalian target of rapamycin (mTOR), NLRP3, TLR4/nuclear factor-κB (NF-κB), and Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in aneurysm SAH. In addition, we also summarized potential therapeutic drugs targeting the aneurysm SAH immune inflammatory responses, such as nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory responses and immune microenvironment significantly reduces the secondary brain injury, thereby improving the prognosis of patients admitted to SAH. Future studies should focus on exploring potential immune inflammatory mechanisms and developing additional therapeutic strategies for precise aneurysm SAH immune inflammatory regulation and genomic variants associated with aneurysm formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Leiya Du
- 4Department of Oncology, The Second People Hospital of Yibin, Yibin, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| |
Collapse
|
24
|
Zhang C, Kan X, Zhang B, Ni H, Shao J. The role of triggering receptor expressed on myeloid cells-1 (TREM-1) in central nervous system diseases. Mol Brain 2022; 15:84. [PMID: 36273145 PMCID: PMC9588203 DOI: 10.1186/s13041-022-00969-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 12/29/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily and is mainly expressed on the surface of myeloid cells such as monocytes, macrophages, and neutrophils. It plays an important role in the triggering and amplification of inflammatory responses, and it is involved in the development of various infectious and non-infectious diseases, autoimmune diseases, and cancers. In recent years, TREM-1 has also been found to participate in the pathological processes of several central nervous system (CNS) diseases. Targeting TREM-1 may be a promising strategy for treating these diseases. This paper aims to characterize TREM-1 in terms of its structure, signaling pathway, expression, regulation, ligands and pathophysiological role in CNS diseases.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Xugang Kan
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Baole Zhang
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Haibo Ni
- Department of Neurosurgery, The First People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Jianfeng Shao
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| |
Collapse
|
25
|
Chaudhry SR, Shafique S, Sajjad S, Hänggi D, Muhammad S. Janus Faced HMGB1 and Post-Aneurysmal Subarachnoid Hemorrhage (aSAH) Inflammation. Int J Mol Sci 2022; 23:ijms231911216. [PMID: 36232519 PMCID: PMC9569479 DOI: 10.3390/ijms231911216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH), resulting majorly from the rupture of intracranial aneurysms, is a potentially devastating disease with high morbidity and mortality. The bleeding aneurysms can be successfully secured; however, the toxic and mechanical impact of the blood extravasation into the subarachnoid space damages the brain cells leading to the release of different damage-associated molecular pattern molecules (DAMPs). DAMPs upregulate the inflammation after binding their cognate receptors on the immune cells and underlies the early and delayed brain injury after aSAH. Moreover, these molecules are also associated with different post-aSAH complications, which lead to poor clinical outcomes. Among these DAMPs, HMGB1 represents a prototypical protein DAMP that has been well characterized for its proinflammatory role after aSAH and during different post-aSAH complications. However, recent investigations have uncovered yet another face of HMGB1, which is involved in the promotion of brain tissue remodeling, neurovascular repair, and anti-inflammatory effects after SAH. These different faces rely on different redox states of HMGB1 over the course of time after SAH. Elucidation of the dynamics of these redox states of HMGB1 has high biomarker as well as therapeutic potential. This review mainly highlights these recent findings along with the conventionally described normal role of HMGB1 as a nuclear protein and as a proinflammatory molecule during disease (aSAH).
Collapse
Affiliation(s)
- Shafqat Rasul Chaudhry
- Department of Pharmacy, Obaid Noor Institute of Medical Sciences (ONIMS), Mianwali 42200, Pakistan
| | - Sumaira Shafique
- Department of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Saba Sajjad
- Department of Oral-, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Faculty of Medicine, University Hospital Düsseldorf, Heinrich-Heine University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Faculty of Medicine, University Hospital Düsseldorf, Heinrich-Heine University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Correspondence: ; Tel.: +49-15168460755
| |
Collapse
|
26
|
Zhang Z, Jiang J, He Y, Cai J, Xie J, Wu M, Xing M, Zhang Z, Chang H, Yu P, Chen S, Yang Y, Shi Z, Liu Q, Sun H, He B, Zeng J, Huang J, Chen J, Li H, Li Y, Lin WJ, Tang Y. Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury. J Neuroinflammation 2022; 19:231. [PMID: 36131309 PMCID: PMC9490947 DOI: 10.1186/s12974-022-02596-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Radiation-induced brain injury (RIBI) is the most serious complication of radiotherapy in patients with head and neck tumors, which seriously affects the quality of life. Currently, there is no effective treatment for patients with RIBI, and identifying new treatment that targets the pathological mechanisms of RIBI is urgently needed. Methods Immunofluorescence staining, western blotting, quantitative real-time polymerase chain reaction (Q-PCR), co-culture of primary neurons and microglia, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and CRISPR–Cas9-mediated gene editing techniques were employed to investigate the protective effects and underlying mechanisms of pregabalin that ameliorate microglial activation and neuronal injury in the RIBI mouse model. Results Our findings showed that pregabalin effectively repressed microglial activation, thereby reducing neuronal damage in the RIBI mouse model. Pregabalin mitigated inflammatory responses by directly inhibiting cytoplasmic translocation of high-mobility group box 1 (HMGB1), a pivotal protein released by irradiated neurons which induced subsequent activation of microglia and inflammatory cytokine expression. Knocking out neuronal HMGB1 or microglial TLR2/TLR4/RAGE by CRISPR/Cas9 technique significantly inhibited radiation-induced NF-κB activation and pro-inflammatory transition of microglia. Conclusions Our findings indicate the protective mechanism of pregabalin in mitigating microglial activation and neuronal injury in RIBI. It also provides a therapeutic strategy by targeting HMGB1-TLR2/TLR4/RAGE signaling pathway in the microglia for the treatment of RIBI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02596-7.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong He
- Radiotherapeutic Department, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Minyi Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Mengdan Xing
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhenzhen Zhang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Pei Yu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Siqi Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haohui Sun
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Baixuan He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junbo Zeng
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jialin Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiongxue Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
27
|
Natural Compounds for SIRT1-Mediated Oxidative Stress and Neuroinflammation in Stroke: A Potential Therapeutic Target in the Future. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1949718. [PMID: 36105479 PMCID: PMC9467755 DOI: 10.1155/2022/1949718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/06/2022]
Abstract
Stroke is a fatal cerebral vascular disease with a high mortality rate and substantial economic and social costs. ROS production and neuroinflammation have been implicated in both hemorrhagic and ischemic stroke and have the most critical effects on subsequent brain injury. SIRT1, a member of the sirtuin family, plays a crucial role in modulating a wide range of physiological processes, including apoptosis, DNA repair, inflammatory response, and oxidative stress. Targeting SIRT1 to reduce ROS and neuroinflammation might represent an emerging therapeutic target for stroke. Therefore, we conducted the present review to summarize the mechanisms of SIRT1-mediated oxidative stress and neuroinflammation in stroke. In addition, we provide a comprehensive introduction to the effect of compounds and natural drugs on SIRT1 signaling related to oxidative stress and neuroinflammation in stroke. We believe that our work will be helpful to further understand the critical role of the SIRT1 signaling pathway and will provide novel therapeutic potential for stroke treatment.
Collapse
|
28
|
Qiu J, Guo L, Li W, Wang L, Tong L. Ghrelin inhibits early brain injury due to subarachnoid hemorrhage via the Tim-3-mediated HMGB1/NF-κB pathway. J Chem Neuroanat 2022; 124:102138. [PMID: 35863561 DOI: 10.1016/j.jchemneu.2022.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To explore the protective effect of Ghrelin on EBI caused by SAH through the HMGB1/NF-κB pathway mediated by Tim-3. METHODS Rats were divided into four groups (n = 6): Sham group (Sham), SAH+vehicle group (SAH), SAH + 0.02 μg/kg rhGhrelin group (rhGhrelin-L), SAH + 0.04 μg/kg rhGhrelin group (rhGhrelin-H). At 48 h after SAH, the behavioral impairment in rats was examined for using neurobehavioral scores. The pathological change in the temporal basal brain tissue was observed by HE, and the expression of GHSR-1α and Tim-3 in the temporal basal brain tissue was observed by Western blot. To further validate that rhGhrelin could inhibit SAH-induced EBI by the Tim-3-mediated HMGB1/NF-κB pathway, we treated rats with the AAV-Tim-3. The contents of the inflammatory factors IL-1β, TNF-α, IL-6 was determined by ELISA, apoptosis was detected by TUNEL, the neurons were visualized by Nissl staining, the expression of GHSR-1α,Tim-3, HMGB1, RAGE, NF-κB p65 was determined by Western blot. RESULTS Compared with the SAH group, rats treated with rhGhrelin had a significantly lower neurobehavioral score, significantly decreased inflammatory factors IL-1β, TNF-α, IL-6 expression, significantly decreased apoptosis index, and significantly decreased Tim-3, HMGB1, RAGE, NF-κB p65 expression(p < 0.01). The protective effect of rhGhrelin on the SAH-induced EBI was reversed by the AAV-Tim-3. CONCLUSION Ghrelin has beneficial effects against SAH-induced EBI by inhibiting the HMGB1/NF-κB pathway, which may be regulated by Tim-3.
Collapse
Affiliation(s)
- Jiaoxue Qiu
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Lei Guo
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Wenna Li
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Lingling Wang
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Lin Tong
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province, China.
| |
Collapse
|
29
|
Wang S, Guan YG, Zhu YH, Wang MZ. Role of high mobility group box protein 1 in depression: A mechanistic and therapeutic perspective. World J Psychiatry 2022; 12:779-786. [PMID: 35978968 PMCID: PMC9258272 DOI: 10.5498/wjp.v12.i6.779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
As a common and serious psychiatric disorder, depression significantly affects psychosocial functioning and quality of life. However, the mechanism of depression is still enigmatic and perplexing, which limits its precise and effective therapeutic methods. Recent studies demonstrated that neuroinflammation activation plays an important role in the pathophysiology of depression. In this respect, high mobility group box 1 (HMGB1) may be a possible signaling inducer of neuroinflammation and can be a potential mechanistic and therapeutic target for depression. Herein, we review recent studies on the mechanistic and therapeutic targets of HMGB1 in depression and propose potential perspectives on this topic.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yu-Guang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Beijing Key Laboratory of Epilepsy, Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100093, China
| | - Yan-Hua Zhu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Min-Zhong Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
30
|
Xu C, He Z, Li J. Melatonin as a Potential Neuroprotectant: Mechanisms in Subarachnoid Hemorrhage-Induced Early Brain Injury. Front Aging Neurosci 2022; 14:899678. [PMID: 35572137 PMCID: PMC9098986 DOI: 10.3389/fnagi.2022.899678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common cerebrovascular disease with high mortality and disability rates. Despite progressive advances in drugs and surgical techniques, neurological dysfunction in surviving SAH patients have not improved significantly. Traditionally, vasospasm has been considered the main cause of death and disability following SAH, but anti-vasospasm therapy has not benefited clinical prognosis. Many studies have proposed that early brain injury (EBI) may be the primary factor influencing the prognosis of SAH. Melatonin is an indole hormone and is the main hormone secreted by the pineal gland, with low daytime secretion levels and high nighttime secretion levels. Melatonin produces a wide range of biological effects through the neuroimmune endocrine network, and participates in various physiological activities in the central nervous system, reproductive system, immune system, and digestive system. Numerous studies have reported that melatonin has extensive physiological and pharmacological effects such as anti-oxidative stress, anti-inflammation, maintaining circadian rhythm, and regulating cellular and humoral immunity. In recent years, more and more studies have been conducted to explore the molecular mechanism underlying melatonin-induced neuroprotection. The studies suggest beneficial effects in the recovery of intracerebral hemorrhage, cerebral ischemia-reperfusion injury, spinal cord injury, Alzheimer’s disease, Parkinson’s disease and meningitis through anti-inflammatory, antioxidant and anti-apoptotic mechanisms. This review summarizes the recent studies on the application and mechanism of melatonin in SAH.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Neurosurgery, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zixia He
- Department of Outpatient, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jiabin Li,
| |
Collapse
|
31
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
32
|
Non-Animal Models in Experimental Subarachnoid Hemorrhage Research: Potentials and the Dilemma of the Translation from Bench to Bedside. Transl Stroke Res 2021; 13:218-221. [PMID: 34714498 PMCID: PMC8918456 DOI: 10.1007/s12975-021-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
|
33
|
Yang H, Andersson U, Brines M. Neurons Are a Primary Driver of Inflammation via Release of HMGB1. Cells 2021; 10:cells10102791. [PMID: 34685772 PMCID: PMC8535016 DOI: 10.3390/cells10102791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Recent data show that activation of nociceptive (sensory) nerves turns on localized inflammation within the innervated area in a retrograde manner (antidromically), even in the absence of tissue injury or molecular markers of foreign invaders. This neuroinflammatory process is activated and sustained by the release of neuronal products, such as neuropeptides, with the subsequent amplification via recruitment of immunocompetent cells, including macrophages and lymphocytes. High mobility group box 1 protein (HMGB1) is a highly conserved, well characterized damage-associated molecular pattern molecule expressed by many cells, including nociceptors and is a marker of inflammatory diseases. In this review, we summarize recent evidence showing that neuronal HMGB1 is required for the development of neuroinflammation, as knock out limited to neurons or its neutralization via antibodies ameliorate injury in models of nerve injury and of arthritis. Further, the results of study show that HMGB1 is actively released during neuronal depolarization and thus plays a previously unrecognized key etiologic role in the initiation and amplification of neuroinflammation. Direct targeting of HMGB1 is a promising approach for novel anti-inflammatory therapy.
Collapse
Affiliation(s)
- Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
- Correspondence: (H.Y.); (U.A.)
| | - Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
- Correspondence: (H.Y.); (U.A.)
| | - Michael Brines
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
| |
Collapse
|
34
|
Admission serum high mobility group box 1 (HMGB1) protein predicts delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. Neurosurg Rev 2021; 45:807-817. [PMID: 34302233 DOI: 10.1007/s10143-021-01607-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
High mobility group box 1 protein (HMGB1) is a prototypical damage associated particle and acts as a key player in aseptic inflammation. HMGB1 appears critical for the crosstalk of a prothrombotic and proinflammatory state that is implicated in mediating and exacerbating ischemic brain injury. The role of HMGB1 in aneurysmal subarachnoid hemorrhage (aSAH) remains to be elucidated. A prospective, single blinded observational study was designed to investigate the role of HMGB1 in aSAH. Serial serum HMGB1 level quantification on admission day 0, 4, 8, and 12 was performed. Primary outcome measures were delayed cerebral ischemia (DCI - new infarction on CT) and poor functional outcome (90-day modified Rankin Scale 4-6). The role of HMGB1 levels for DCI, functional outcome and radiological vasospasm prediction was analyzed. Collectively, 83 aSAH patients were enrolled. Five patients died within 48 h. In 29/78 patients (37.2%), DCI was identified. In multivariable analysis, radiological vasospasm and admission HMGB1 were independent predictors for DCI. Younger age and higher white blood cell count, but not insult burden (World Federation of Neurosurgical Societies scale, modified Fisher scale, intraparenchymal or intraventricular hematoma existence) correlated with admission HMGB1 levels. Serial HMGB1 levels did not differ between patients with or without DCI, poor functional outcome or radiological vasospasm development. Admission serum HMGB1 does not reflect initial insult burden but serves as an independent biomarker predictive of DCI. Further studies are warranted to disentangle the role of HMGB1 surrounding the sequelae of aSAH.
Collapse
|
35
|
Peek V, Harden LM, Damm J, Aslani F, Leisengang S, Roth J, Gerstberger R, Meurer M, von Köckritz-Blickwede M, Schulz S, Spengler B, Rummel C. LPS Primes Brain Responsiveness to High Mobility Group Box-1 Protein. Pharmaceuticals (Basel) 2021; 14:ph14060558. [PMID: 34208101 PMCID: PMC8230749 DOI: 10.3390/ph14060558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
High mobility group box (HMGB)1 action contributes to late phases of sepsis, but the effects of increased endogenous plasma HMGB1 levels on brain cells during inflammation are unclear. Here, we aimed to further investigate the role of HMGB1 in the brain during septic-like lipopolysaccharide-induced inflammation in rats (LPS, 10 mg/kg, i.p.). HMGB-1 mRNA expression and release were measured in the periphery/brain by RT-PCR, immunohistochemistry and ELISA. In vitro experiments with disulfide-HMGB1 in primary neuro-glial cell cultures of the area postrema (AP), a circumventricular organ with a leaky blood–brain barrier and direct access to circulating mediators like HMGB1 and LPS, were performed to determine the direct influence of HMGB1 on this pivotal brain structure for immune-to-brain communication. Indeed, HMGB1 plasma levels stayed elevated after LPS injection. Immunohistochemistry of brains and AP cultures confirmed LPS-stimulated cytoplasmatic translocation of HMGB1 indicative of local HMGB1 release. Moreover, disulfide-HMGB1 stimulation induced nuclear factor (NF)-κB activation and a significant release of interleukin-6, but not tumor necrosis factor α, into AP culture supernatants. However, only a few AP cells directly responded to HMGB1 with increased intracellular calcium concentration. Interestingly, priming with LPS induced a seven-fold higher percentage of responsive cells to HMGB1. We conclude that, as a humoral and local mediator, HMGB1 enhances brain inflammatory responses, after LPS priming, linked to sustained sepsis symptoms.
Collapse
Affiliation(s)
- Verena Peek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Lois M. Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
| | - Jelena Damm
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Ferial Aslani
- Institute of Anatomy and Cell Biology of the Medical Faculty, Justus Liebig University, 35392 Giessen, Germany;
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.M.); (M.v.K.-B.)
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.M.); (M.v.K.-B.)
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.S.); (B.S.)
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.S.); (B.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
- Correspondence:
| |
Collapse
|
36
|
Involvement of Microglia in the Pathophysiology of Intracranial Aneurysms and Vascular Malformations-A Short Overview. Int J Mol Sci 2021; 22:ijms22116141. [PMID: 34200256 PMCID: PMC8201350 DOI: 10.3390/ijms22116141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysms and vascular malformations of the brain represent an important source of intracranial hemorrhage and subsequent mortality and morbidity. We are only beginning to discern the involvement of microglia, the resident immune cell of the central nervous system, in these pathologies and their outcomes. Recent evidence suggests that activated proinflammatory microglia are implicated in the expansion of brain injury following subarachnoid hemorrhage (SAH) in both the acute and chronic phases, being also a main actor in vasospasm, considerably the most severe complication of SAH. On the other hand, anti-inflammatory microglia may be involved in the resolution of cerebral injury and hemorrhage. These immune cells have also been observed in high numbers in brain arteriovenous malformations (bAVM) and cerebral cavernomas (CCM), although their roles in these lesions are currently incompletely ascertained. The following review aims to shed a light on the most significant findings related to microglia and their roles in intracranial aneurysms and vascular malformations, as well as possibly establish the course for future research.
Collapse
|
37
|
Weiland J, Beez A, Westermaier T, Kunze E, Sirén AL, Lilla N. Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2021; 22:5442. [PMID: 34064048 PMCID: PMC8196706 DOI: 10.3390/ijms22115442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.
Collapse
Affiliation(s)
- Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Alexandra Beez
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, Helios-Amper Klinikum Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Ekkehard Kunze
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
38
|
Hypoxia and oxidative stress induce sterile placental inflammation in vitro. Sci Rep 2021; 11:7281. [PMID: 33790316 PMCID: PMC8012380 DOI: 10.1038/s41598-021-86268-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Fetal growth restriction (FGR) and stillbirth are associated with placental dysfunction and inflammation and hypoxia, oxidative and nitrative stress are implicated in placental damage. Damage-associated molecular patterns (DAMPs) are elevated in pregnancies at increased risk of FGR and stillbirth and are associated with increase in pro-inflammatory placental cytokines. We hypothesised that placental insults lead to release of DAMPs, promoting placental inflammation. Placental tissue from uncomplicated pregnancies was exposed in vitro to hypoxia, oxidative or nitrative stress. Tissue production and release of DAMPs and cytokines was determined. Oxidative stress and hypoxia caused differential release of DAMPs including uric acid, HMGB1, S100A8, cell-free fetal DNA, S100A12 and HSP70. After oxidative stress pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8, TNFα, CCL2) were increased both within explants and in conditioned culture medium. Hypoxia increased tissue IL-1α/β, IL-6, IL-8 and TNFα levels, and release of IL-1α, IL-6 and IL-8, whereas CCL2 and IL-10 were reduced. IL1 receptor antagonist (IL1Ra) treatment prevented hypoxia- and oxidative stress-induced IL-6 and IL-8 release. These findings provide evidence that relevant stressors induce a sterile inflammatory profile in placental tissue which can be partially blocked by IL1Ra suggesting this agent has translational potential to prevent placental inflammation evident in FGR and stillbirth.
Collapse
|
39
|
Li Y, Liu Y, Wu P, Tian Y, Liu B, Wang J, Bihl J, Shi H. Inhibition of Ferroptosis Alleviates Early Brain Injury After Subarachnoid Hemorrhage In Vitro and In Vivo via Reduction of Lipid Peroxidation. Cell Mol Neurobiol 2021; 41:263-278. [PMID: 32314126 DOI: 10.1007/s10571-020-00850-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/11/2020] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a serious cerebrovascular disease with high mortality, and the mean age at morbidity is younger than in other types of stroke. Early brain injury (EBI) plays a key role in the poor prognoses of SAH. In EBI, multiple forms of cell death have been identified and well studied; however, the role of ferroptosis has not been elucidated. Hence, in this study, we developed an in vivo (SAH rat model) and in vitro model (SH-SY5Y oxyhemoglobin injury model) to understand the role of ferroptosis in EBI, then explored the protective mechanism of ferrostatin-1 (Fer-1). Firstly, we found that neurological scores, blood-brain barrier permeability, brain edema deteriorated after SAH in the in vivo model, cell viability was decreased after SAH in both cortex and SH-SY5Y cells. Further, iron content in cortex was increased after SAH, while transferrin receptor 1 and ferroportin (Fpn) were increased in oxyhemoglobin-treated in vitro model. Additionally, glutathione content and glutathione peroxidase 4 activity were reduced in SAH rats, and lipid peroxides were increased in the oxyhemoglobin-treated cells. Finally, administration of Fer-1 upregulated Fpn and decreased the iron content, then improved the lipid peroxidation and EBI. However, Fer-1 had no effect on the apoptosis. Our study indicated that the ferroptosis was involved in EBI of SAH, and the inhibitor Fer-1 provided neuroprotection against EBI by alleviating ferroptosis, the potential protective mechanism might be via suppressing lipid peroxidation.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Yao Liu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Yang Tian
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Binbing Liu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Ji Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
40
|
Bahadar GA, Shah ZA. Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology, and Cognitive Impairments. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:312-326. [PMID: 33622232 DOI: 10.2174/1871527320666210223145112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
There is a surge in diabetes incidence with an estimated 463 million individuals been diagnosed worldwide. Diabetes Mellitus (DM) is a major stroke-related comorbid condition that increases the susceptibility of disabling post-stroke outcomes. Although less common, intracerebral hemorrhage (ICH) is the most dramatic subtype of stroke that is associated with higher mortality, particularly in DM population. Previous studies have focused mainly on the impact of DM on ischemic stroke. Few studies have focused on impact of DM on ICH and discussed the blood-brain barrier disruption, brain edema, and hematoma formation. However, more recently, investigating the role of oxidative damage and reactive oxygen species (ROS) production in preclinical studies involving DM-ICH animal models has gained attention. But, little is known about the correlation between neuroinflammatory processes, glial cells activation, and peripheral immune cell invasion with DM-ICH injury. DM and ICH patients experience impaired abilities in multiple cognitive domains by relatively comparable mechanisms, which could get exacerbated in the setting of comorbidities. In this review, we discuss both the pathology of DM as a comorbid condition for ICH and the potential molecular therapeutic targets for the clinical management of the ICH and its recovery.
Collapse
Affiliation(s)
- Ghaith A Bahadar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| |
Collapse
|
41
|
Han Y, Tong Z, Wang C, Li X, Liang G. Oleanolic acid exerts neuroprotective effects in subarachnoid hemorrhage rats through SIRT1-mediated HMGB1 deacetylation. Eur J Pharmacol 2021; 893:173811. [PMID: 33345851 DOI: 10.1016/j.ejphar.2020.173811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Anti-inflammatory therapy for early brain injury after subarachnoid hemorrhage is a promising treatment for improving the prognosis. HMGB1 is the initiator of early inflammation after subarachnoid hemorrhage. Oleanolic acid is a natural pentacyclic triterpenoid compound with strong anti-inflammatory activity. It can relieve early brain injury in subarachnoid hemorrhage rats, but its mechanism is not very clear. Here, we study the potential mechanism of Oleanolic acid in the treatment of subarachnoid hemorrhage. First, we demonstrated that oleanolic acid alleviated early brain injury after subarachnoid hemorrhage, including improvement of grading score, neurological score, brain edema and permeability of brain blood barrier. Then we found that oleanolic acid could inhibit the transfer of HMGB1 from nucleus to cytoplasm and reduce the level of serum HMGB1. Furthermore, we found that oleanolic acid decreased the acetylation level of HMGB1 by increasing SIRT1 expression rather than by inhibiting JAK/STAT3 pathway. SIRT1 inhibitor sirtinol eliminated all beneficial effects of oleanolic acid on subarachnoid hemorrhage, which indicated that oleanolic acid inhibited the acetylation of HMGB1 by up regulating SIRT1. In addition, oleanolic acid treatment also reduced the levels of TLR4 and apoptosis related factors and reduced neuronal apoptosis after subarachnoid hemorrhage. In summary, our findings suggest that oleanolic acid may activate SIRT1 by acting as an activator of SIRT1, thereby reducing the acetylation of HMGB1, thus playing an anti-inflammatory role to alleviate early brain injury after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Yuwei Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China; China Medical University, Shenyang, China
| | - Zhenhua Tong
- Department of Science Training, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenchen Wang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoming Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
42
|
Liu GJ, Tao T, Zhang XS, Lu Y, Wu LY, Gao YY, Wang H, Dai HB, Zhou Y, Zhuang Z, Hang CH, Li W. Resolvin D1 Attenuates Innate Immune Reactions in Experimental Subarachnoid Hemorrhage Rat Model. Mol Neurobiol 2021; 58:1963-1977. [PMID: 33411245 DOI: 10.1007/s12035-020-02237-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Excessive inflammation is a major cause contributing to early brain injury (EBI) and is associated with negative or catastrophic outcomes of subarachnoid hemorrhage (SAH). Resolvin D1 (RvD1) exerts strong anti-inflammatory and pro-resolving effects on either acute or chronic inflammation of various origin. Henceforth, we hypothesized that RvD1 potentially attenuates excessive inflammation in EBI following SAH. Therefore, we generated a filament perforation SAH model and administered 3 different doses (0.3, 0.6, and 1.2 nmol) of RvD1 after experimental SAH. Neurological scores, brain edema, and blood-brain barrier integrity were evaluated; besides, neutrophil infiltration, neuronal deaths, and microglial pro-inflammatory polarization were observed using histopathology or immunofluorescence staining, western blots, and qPCR. After confirming the effectiveness of RvD1 in SAH, we administered the FPR2-specific antagonist Trp-Arg-Trp-Trp-Trp-Trp-NH2 (WRW4) 30 min before SAH establishment to observe whether this compound could abolish the anti-inflammatory effect of RvD1. Altogether, our results showed that RvD1 exerted a strong anti-inflammatory effect and markedly reduced neutrophil infiltration and microglial pro-inflammatory activation, leading to remarkable improvements in neurological function and brain tissue restoration. After addition of WRW4, the anti-inflammatory effects of RvD1 were abolished. These results indicated that RvD1 could exert a good anti-inflammatory effect and alleviate EBI, which suggested that RvD1 might be a novel therapeutic alternative for SAH-induced injury.
Collapse
Affiliation(s)
- Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Hai-Bin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
43
|
MFG-E8 attenuates inflammation in subarachnoid hemorrhage by driving microglial M2 polarization. Exp Neurol 2020; 336:113532. [PMID: 33245889 DOI: 10.1016/j.expneurol.2020.113532] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022]
Abstract
Increasing evidence suggests that microglial polarization plays an important role in the pathological processes of neuroinflammation following subarachnoid hemorrhage (SAH). Previous studies indicated that milk fat globule-epidermal growth factor-8 (MFG-E8) has potential anti-apoptotic and anti-inflammatory effects in cerebral ischemia. However, the effects of MFG-E8 on microglial polarization have not been evaluated after SAH. Therefore, the aim of this study was to explore the role of MFG-E8 in anti-inflammation, and its effects on microglial polarization following SAH. We established the SAH model via prechiasmatic cistern blood injection in mice. Double-immunofluorescence staining, western blotting and quantitative real-time polymerase chain reaction (q-PCR) were performed to investigate the expression and cellular distribution of MFG-E8. Two different dosages (1 and 5 μg) of recombinant human MFG-E8 (rhMFG-E8) were injected intracerebroventricularly (i.c.v.) at 1 h after SAH. Brain water content, neurological scores, beam-walking score, Fluoro-Jade C (FJC), and terminal deoxynucleotidyl transferase dUTP nick endlabeling staining (TUNEL) were measured at 24 h. Suppression of MFG-E8, integrin β3 and phosphorylation of STAT3 were achieved by specific siRNAs (500 pmol/5 μl) and the STAT3 inhibitor Stattic (5 μM). The potential signaling pathways and microglial polarization were measured by immunofluorescence labeling and western blotting. SAH induction increased the levels of inflammatory mediators and the proportion of M1 cells, and caused neuronal apoptosis in mice at 24 h. Treatment with rhMFG-E8 (5 μg) remarkably decreased brain edema, improved neurological functions, reduced the levels of proinflammatory factors, and promoted the microglial to shift to M2 phenotype. However, knockdown of MFG-E8 and integrin β3 via siRNA abolished the effects of MFG-E8 on anti-inflammation and M2 phenotype polarization. The STAT3 inhibitor Stattic further clarified the role of rhMFG-E8 in microglial polarization by regulating the protein levels of the integrin β3/SOCS3/STAT3 pathway. rhMFG-E8 inhibits neuronal inflammation by transformation the microglial phenotype toward M2 and its direct protective effect on neurons after SAH, which may be mediated by modulation of the integrin β3/SOCS3/STAT3 signaling pathway, highlighting rhMFG-E8 as a potential therapeutic target for the treatment of SAH patients.
Collapse
|
44
|
Guo S, Li Y, Wei B, Liu W, Li R, Cheng W, Zhang X, He X, Li X, Duan C. Tim-3 deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats. Aging (Albany NY) 2020; 12:21161-21185. [PMID: 33168786 PMCID: PMC7695377 DOI: 10.18632/aging.103796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). T cell immunoglobulin and mucin domain-3 (Tim-3) has emerged as a critical regulator of adaptive and innate immune responses, and has been identified to play a vital role in certain inflammatory diseases; The present study explored the effect of Tim-3 on inflammatory responses and detailed mechanism in EBI following SAH. We investigated the effects of Tim-3 on SAH models established by endovascular puncture method in Sprague–Dawley rats. The present studies revealed that SAH induced a significant inflammatory response and significantly increased Tim-3 expression. Tim-3-AAV administration aggravated neurocyte apoptosis, brain edema, blood-brain barrier permeability, and neurological dysfunction; significantly inhibited Nrf2 expression; and increased HMGB1 expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin (IL)-1 beta, IL-17, and IL-18. However, Tim-3 siRNA or NK252 administration abolished the pro-inflammatory effects of Tim-3. Our results indicate a function for Tim-3 as a molecular player that links neuroinflammation and brain damage after SAH. We reveal that Tim-3 overexpression deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats.
Collapse
Affiliation(s)
- Shenquan Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanzhi Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Boyang Wei
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenping Cheng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Hummel R, Ulbrich S, Appel D, Li S, Hirnet T, Zander S, Bobkiewicz W, Gölz C, Schäfer MK. Administration of all-trans retinoic acid after experimental traumatic brain injury is brain protective. Br J Pharmacol 2020; 177:5208-5223. [PMID: 32964418 PMCID: PMC7588818 DOI: 10.1111/bph.15259] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE All-trans retinoic acid (ATRA) is a vitamin A metabolite, important in the developing and mature brain. Pre-injury ATRA administration ameliorates ischaemic brain insults in rodents. This study examined the effects of post-traumatic ATRA treatment in experimental traumatic brain injury (TBI). EXPERIMENTAL APPROACH Male adult mice were subjected to the controlled cortical impact model of TBI or sham procedure and killed at 7 or 30 days post-injury (dpi). ATRA (10 mg kg-1, i.p.) was given immediately after the injury and 1, 2 and 3 dpi. Neurological function and sensorimotor coordination were evaluated. Brains were processed for (immuno-) histological, mRNA and protein analyses (qPCR and western blot). KEY RESULTS ATRA treatment reduced brain lesion size, reactive astrogliosis and axonal injury at 7 dpi, and hippocampal granule cell layer (GCL) integrity was protected at 7 and 30 dpi, independent of cell proliferation in neurogenic niches and blood-brain barrier damage. Neurological and motor deficits over time and the brain tissue loss at 30 dpi were not affected by ATRA treatment. ATRA decreased gene expression of markers for damage-associated molecular pattern (HMGB1), apoptosis (caspase-3 and Bax), activated microglia (TSPO), and reactive astrogliosis (GFAP, SerpinA3N) at 7 dpi and a subset of markers at 30 dpi (TSPO, GFAP). CONCLUSION AND IMPLICATIONS In experimental TBI, post-traumatic ATRA administration exerted brain protective effects, including long-term protection of GCL integrity, but did not affect neurological and motor deficits. Further investigations are required to optimize treatment regimens to enhance ATRA's brain protective effects and improve outcomes.
Collapse
Affiliation(s)
- Regina Hummel
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Sebastian Ulbrich
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Dominik Appel
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Shuailong Li
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Tobias Hirnet
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Sonja Zander
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Wieslawa Bobkiewicz
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Christina Gölz
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Michael K.E. Schäfer
- Department of AnesthesiologyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
- Focus Program Translational Neurosciences (FTN)Johannes Gutenberg‐University MainzMainzGermany
- Research Center for ImmunotherapyUniversity Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| |
Collapse
|
46
|
Li Y, Wang J, Chen S, Wu P, Xu S, Wang C, Shi H, Bihl J. miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Res Ther 2020; 11:330. [PMID: 33100224 PMCID: PMC7586676 DOI: 10.1186/s13287-020-01836-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background We have previously verified the beneficial effects of exosomes from endothelial progenitor cells (EPC-EXs) in ischemic stroke. However, the effects of EPC-EXs in hemorrhagic stroke have not been investigated. Additionally, miR-137 is reported to regulate ferroptosis and to be involved in the neuroprotection against ischemic stroke. Hence, the present work explored the effects of miR-137-overexpressing EPC-EXs on apoptosis, mitochondrial dysfunction, and ferroptosis in oxyhemoglobin (oxyHb)-injured SH-SY5Y cells. Methods The lentiviral miR-137 was transfected into EPCs and then the EPC-EXs were collected. RT-PCR was used to detect the miR-137 level in EPCs, EXs, and neurons. The uptake mechanisms of EPC-EXs in SH-SY5Y cells were explored by the co-incubation of Dynasore, Pitstop 2, Ly294002, and Genistein. After the transfection of different types of EPC-EXs, flow cytometry and expression of cytochrome c and cleaved caspase-3 were used to detect the apoptosis of oxyHb-injured neurons. Neuronal mitochondrial function was assessed by reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP) depolarization, and cellular ATP content. Cell ferroptosis was measured by lipid peroxidation, iron overload, degradation of glutathione, and glutathione peroxidase 4. Additionally, recombinational PGE2 was used to detect if activation of COX2/PGE2 pathway could reverse the protection of miR-137 overexpression. Results The present work showed (1) EPC-EXs could be taken in by SH-SY5Y cells via caveolin-/clathrin-mediated pathways and macropinocytosis; (2) miR-137 was decreased in neurons after oxyHb treatment, and EXsmiR-137 could restore the miR-137 levels; (3) EXsmiR-137 worked better than EXs in reducing the number of apoptotic neurons and pro-apoptotic protein expression after oxyHb treatment; (4) EXsmiR-137 are more effective in improving the cellular MMP, ROS, and ATP level; (5) EXsmiR-137, but not EXs, protected oxyHb-treated SH-SY5Y cells against lipid peroxidation, iron overload, degradation of glutathione, and glutathione peroxidase 4; and (6) EXsmiR-137 suppressed the expression of the COX2/PGE2 pathway, and activation of the pathway could partially reverse the neuroprotective effects of EXsmiR-137. Conclusion miR-137 overexpression boosts the neuroprotective effects of EPC-EXs against apoptosis and mitochondrial dysfunction in oxyHb-treated SH-SY5Y cells. Furthermore, EXsmiR-137 rather than EXs can restore the decrease in miR-137 levels and inhibit ferroptosis, and the protection mechanism might involve the miR-137-COX2/PGE2 signaling pathway.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.,Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Shancai Xu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| | - Ji Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA. .,Department of Biomedical Science, Joan C. Edwards School of Medicine, Marshall University, Huntingto, WV, 25755, China.
| |
Collapse
|
47
|
Glycyrrhizin Blocks the Detrimental Effects of HMGB1 on Cortical Neurogenesis After Traumatic Neuronal Injury. Brain Sci 2020; 10:brainsci10100760. [PMID: 33096930 PMCID: PMC7593920 DOI: 10.3390/brainsci10100760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Despite medical advances, neurological recovery after severe traumatic brain injury (TBI) remains poor. Elevated levels of high mobility group box protein-1 (HMGB1) are associated with poor outcomes; likely via interaction with receptors for advanced-glycation-end-products (RAGE). We examined the hypothesis that HMGB1 post-TBI is anti-neurogenic and whether this is pharmacologically reversible. Post-natal rat cortical mixed neuro-glial cell cultures were subjected to needle-scratch injury and examined for HMGB1-activation/neuroinflammation. HMGB1-related genes/networks were examined using genome-wide RNA-seq studies in cortical perilesional tissue samples from adult mice. Post-natal rat cortical neural stem/progenitor cell cultures were generated to quantify effects of injury-condition medium (ICM) on neurogenesis with/without RAGE antagonist glycyrrhizin. Needle-injury upregulated TNF-α/NOS-2 mRNA-expressions at 6 h, increased proportions of activated microglia, and caused neuronal loss at 24 h. Transcriptome analysis revealed activation of HMGB1 pathway genes/canonical pathways in vivo at 24 h. A 50% increase in HMGB1 protein expression, and nuclear-to-cytoplasmic translocation of HMGB1 in neurons and microglia at 24 h post-injury was demonstrated in vitro. ICM reduced total numbers/proportions of neuronal cells, but reversed by 0.5 μM glycyrrhizin. HMGB1 is activated following in vivo post mechanical injury, and glycyrrhizin alleviates detrimental effects of ICM on cortical neurogenesis. Our findings highlight glycyrrhizin as a potential therapeutic agent post-TBI.
Collapse
|
48
|
Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol Rep 2020; 73:31-42. [PMID: 33015736 DOI: 10.1007/s43440-020-00163-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
Depression is a common psychiatric disorder, the exact pathogenesis of which is still elusive. Studies have proposed that immunity disproportion and enhancement in proinflammatory cytokines might be linked with the development of depression. HMGB1 (High-mobility group box (1) protein has obtained more interest as an essential factor in inherent immune reactions and a regulating factor in various inflammation-related diseases. HMGB1 is a ubiquitous chromatin protein and is constitutively expressed in nucleated mammalian cells. HMGB1 is released by glial cells and neurons upon inflammasome activation and act as a pro-inflammatory cytokine. HMGB1 is a late mediator of inflammation and has been indicated as a major mediator in various neuroinflammatory diseases. Microglia, which is the brain immune cell, is stimulated by HMGB1 and released inflammatory mediators and induces chronic neurodegeneration in the CNS (central nervous system). In the current review, we aimed to investigate the role of HMGB1 in the pathogenesis of depression. The studies found that HMGB1 functions as proinflammatory cytokines primarily via binding receptors like RAGE (receptor for advanced glycation end product), TLR2 and TLR4 (Toll-like receptor 2 and 4). Further, HMGB1 added to the preparing impacts of stress-pretreatment and assumed a major function in neurodegenerative conditions through moderating neuroinflammation. Studies demonstrated that neuroinflammation played a major role in the development of depression. The patients of depression generally exhibited an elevated amount of proinflammatory cytokines in the serum, microglia activation and neuronal deficit in the CNS.
Collapse
|
49
|
TREM-1 Exacerbates Neuroinflammatory Injury via NLRP3 Inflammasome-Mediated Pyroptosis in Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2020; 12:643-659. [PMID: 32862402 DOI: 10.1007/s12975-020-00840-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/04/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
Abstract
Neuroinflammation contributes to the pathogenesis of early brain injury induced by subarachnoid hemorrhage (SAH). Previous reports have demonstrated that triggering receptor expressed on myeloid cells 1 (TREM-1) regulates inflammatory response caused by ischemic stroke or myocardial infarction. However, whether TREM-1 could modulate neuroinflammation after SAH remains largely unknown. Here, using a mouse model of SAH, we found that the expression of TREM-1 was mainly located in microglia cells and increased to peak at 24 h following SAH. Then, TREM-1 antagonist or mimic was intranasally administrated to investigate its effect on SAH. TREM-1 inhibition with LP17 improved neurological deficits, mitigated brain water content, and preserved brain-blood barrier integrity 24 h after SAH, whereas recombinant TREM-1, a mimic of TREM-1, deteriorated these outcomes. In addition, LP17 administration restored long-term sensorimotor coordination and cognitive deficits. Pharmacological blockade of TREM-1 reduced TUNEL-positive and FJC-positive neurons, and CD68-stained microglia in ipsilateral cerebral cortex. Neutrophil invasion was inhibited as protein level of myeloperoxidase (MPO), and MPO-positive cells were both decreased. Moreover, we found that LP17 treatment ameliorated microglial pyroptosis by diminishing levels of N-terminal fragment of GSDMD (GSDMD-N) and IL-1β production. Mechanistically, both in vivo and in vitro, we depicted that TREM-1 can trigger microglial pyroptosis via activating NLRP3 inflammasome. In conclusion, our results revealed the critical role of TREM-1 in neuroinflammation following SAH, suggesting that TREM-1 inhibition might be a potential therapeutic approach for SAH.
Collapse
|
50
|
Liu GJ, Tao T, Wang H, Zhou Y, Gao X, Gao YY, Hang CH, Li W. Functions of resolvin D1-ALX/FPR2 receptor interaction in the hemoglobin-induced microglial inflammatory response and neuronal injury. J Neuroinflammation 2020; 17:239. [PMID: 32795323 PMCID: PMC7429751 DOI: 10.1186/s12974-020-01918-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/09/2023] Open
Abstract
Background Early brain injury (EBI) has been thought to be a key factor affecting the prognosis of subarachnoid hemorrhage (SAH). Many pathologies are involved in EBI, with inflammation and neuronal death being crucial to this process. Resolvin D1 (RvD1) has shown superior anti-inflammatory properties by interacting with lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) in various diseases. However, it remains not well described about its role in the central nervous system (CNS). Thus, the goal of the present study was to elucidate the potential functions of the RvD1-ALX/FPR2 interaction in the brain after SAH. Methods We used an in vivo model of endovascular perforation and an in vitro model of hemoglobin (Hb) exposure as SAH models in the current study. RvD1 was used at a concentration of 25 nM in our experiments. Western blotting, quantitative polymerase chain reaction (qPCR), immunofluorescence, and other chemical-based assays were performed to assess the cellular localizations and time course fluctuations in ALX/FPR2 expression, evaluate the effects of RvD1 on Hb-induced primary microglial activation and neuronal damage, and confirm the role of ALX/FPR2 in the function of RvD1. Results ALX/FPR2 was expressed on both microglia and neurons, but not astrocytes. RvD1 exerted a good inhibitory effect in the microglial pro-inflammatory response induced by Hb, possibly by regulating the IRAK1/TRAF6/NF-κB or MAPK signaling pathways. RvD1 could also potentially attenuate Hb-induced neuronal oxidative damage and apoptosis. Finally, the mRNA expression of IRAK1/TRAF6 in microglia and GPx1/bcl-xL in neurons was reversed by the ALX/FPR2-specific antagonist Trp-Arg-Trp-Trp-Trp-Trp-NH2 (WRW4), indicating that ALX/FPR2 could mediate the neuroprotective effects of RvD1. Conclusions The results of the present study indicated that the RvD1-ALX/FPR2 interaction could potentially play dual roles in the CNS, as inhibiting Hb promoted microglial pro-inflammatory polarization and ameliorating Hb induced neuronal oxidant damage and death. These results shed light on a good therapeutic target (ALX/FPR2) and a potential effective drug (RvD1) for the treatment of SAH and other inflammation-associated brain diseases.
Collapse
Affiliation(s)
- Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|