1
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2024:10.1007/s12035-024-04679-3. [PMID: 39738875 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Navneet S, Wilson K, Rohrer B. Müller Glial Cells in the Macula: Their Activation and Cell-Cell Interactions in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 38416457 PMCID: PMC10910558 DOI: 10.1167/iovs.65.2.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024] Open
Abstract
Müller glia, the main glial cell of the retina, are critical for neuronal and vascular homeostasis in the retina. During age-related macular degeneration (AMD) pathogenesis, Müller glial activation, remodeling, and migrations are reported in the areas of retinal pigment epithelial (RPE) degeneration, photoreceptor loss, and choroidal neovascularization (CNV) lesions. Despite this evidence indicating glial activation localized to the regions of AMD pathogenesis, it is unclear whether these glial responses contribute to AMD pathology or occur merely as a bystander effect. In this review, we summarize how Müller glia are affected in AMD retinas and share a prospect on how Müller glial stress might directly contribute to the pathogenesis of AMD. The goal of this review is to highlight the need for future studies investigating the Müller cell's role in AMD. This may lead to a better understanding of AMD pathology, including the conversion from dry to wet AMD, which has no effective therapy currently and may shed light on drug intolerance and resistance to current treatments.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kyrie Wilson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, South Carolina, United States
| |
Collapse
|
3
|
Roubeix C, Nous C, Augustin S, Ronning KE, Mathis T, Blond F, Lagouge-Roussey P, Crespo-Garcia S, Sullivan PM, Gautier EL, Reichhart N, Sahel JA, Burns ME, Paques M, Sørensen TL, Strauss O, Guillonneau X, Delarasse C, Sennlaub F. Splenic monocytes drive pathogenic subretinal inflammation in age-related macular degeneration. J Neuroinflammation 2024; 21:22. [PMID: 38233865 PMCID: PMC10792815 DOI: 10.1186/s12974-024-03011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Age-related macular degeneration (AMD) is invariably associated with the chronic accumulation of activated mononuclear phagocytes in the subretinal space. The mononuclear phagocytes are composed of microglial cells but also of monocyte-derived cells, which promote photoreceptor degeneration and choroidal neovascularization. Infiltrating blood monocytes can originate directly from bone marrow, but also from a splenic reservoir, where bone marrow monocytes develop into angiotensin II receptor (ATR1)+ splenic monocytes. The involvement of splenic monocytes in neurodegenerative diseases such as AMD is not well understood. Using acute inflammatory and well-phenotyped AMD models, we demonstrate that angiotensin II mobilizes ATR1+ splenic monocytes, which we show are defined by a transcriptional signature using single-cell RNA sequencing and differ functionally from bone marrow monocytes. Splenic monocytes participate in the chorio-retinal infiltration and their inhibition by ATR1 antagonist and splenectomy reduces the subretinal mononuclear phagocyte accumulation and pathological choroidal neovascularization formation. In aged AMD-risk ApoE2-expressing mice, a chronic AMD model, ATR1 antagonist and splenectomy also inhibit the chronic retinal inflammation and associated cone degeneration that characterizes these mice. Our observation of elevated levels of plasma angiotensin II in AMD patients, suggests that similar events take place in clinical disease and argue for the therapeutic potential of ATR1 antagonists to inhibit splenic monocytes for the treatment of blinding AMD.
Collapse
Affiliation(s)
- Christophe Roubeix
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany
| | - Caroline Nous
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Kaitryn E Ronning
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Thibaud Mathis
- Service d'Ophtalmologie, Centre Hospitalier Universitaire de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004, Lyon, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | | | - Sergio Crespo-Garcia
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany
| | - Patrick M Sullivan
- Department of Medicine, Centers for Aging and Geriatric Research Education and Clinical Center, Durham Veteran Affairs Medical Center, Duke University, Durham, NC, 27710, USA
| | - Emmanuel L Gautier
- Sorbonne Université, INSERM, UMR_S 1166, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Nadine Reichhart
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Marie E Burns
- Center for Neuroscience, Department of Cell Biology and Human Anatomy, Department of Ophthalmology and Vision Science, University of California, Davis, CA, 95616, USA
| | - Michel Paques
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS Clinical Investigation Center 1423, Paris, France
| | - Torben Lykke Sørensen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital Roskilde, Roskilde, Denmark
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Strauss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France
| | - Cécile Delarasse
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 75012, Paris, France.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Experimental Ophthalmology, Department of Ophthalmology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Elbaz-Hayoun S, Rinsky B, Hagbi-Levi S, Grunin M, Chowers I. CCR1 mediates Müller cell activation and photoreceptor cell death in macular and retinal degeneration. eLife 2023; 12:e81208. [PMID: 37903056 PMCID: PMC10615370 DOI: 10.7554/elife.81208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Mononuclear cells are involved in the pathogenesis of retinal diseases, including age-related macular degeneration (AMD). Here, we examined the mechanisms that underlie macrophage-driven retinal cell death. Monocytes were extracted from patients with AMD and differentiated into macrophages (hMdɸs), which were characterized based on proteomics, gene expression, and ex vivo and in vivo properties. Using bioinformatics, we identified the signaling pathway involved in macrophage-driven retinal cell death, and we assessed the therapeutic potential of targeting this pathway. We found that M2a hMdɸs were associated with retinal cell death in retinal explants and following adoptive transfer in a photic injury model. Moreover, M2a hMdɸs express several CCRI (C-C chemokine receptor type 1) ligands. Importantly, CCR1 was upregulated in Müller cells in models of retinal injury and aging, and CCR1 expression was correlated with retinal damage. Lastly, inhibiting CCR1 reduced photic-induced retinal damage, photoreceptor cell apoptosis, and retinal inflammation. These data suggest that hMdɸs, CCR1, and Müller cells work together to drive retinal and macular degeneration, suggesting that CCR1 may serve as a target for treating these sight-threatening conditions.
Collapse
Affiliation(s)
- Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
5
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Prasad M, Xu J, Agranat JS, Xia W, Daley S, Ness S, Chen X, Siegel NH, Stein TD, Chung J, Subramanian ML. Upregulation of Neuroinflammatory Protein Biomarkers in Acute Rhegmatogenous Retinal Detachments. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010118. [PMID: 36676067 PMCID: PMC9862737 DOI: 10.3390/life13010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
The purpose of this study is to characterize the inflammatory cytokine profile in rhegmatogenous retinal detachments (RRDs) compared to surgical controls. Vitreous humor was collected from patients undergoing vitrectomy for RRD and noninflammatory vitreoretinal diseases. A quantitative immunoassay was used to measure the levels of 36 cytokine markers. Linear regression analysis with the duration of detachment as the predictor and log-transformed cytokine levels as the outcome was conducted for normally distributed cytokines as determined by the Shapiro-Wilk test. The analysis was adjusted for age, sex, and race. The Kruskal-Wallis test was used for cytokines not normally distributed. Twenty-seven RRD cases and thirteen control cases were studied. Between all RRDs and controls, fibroblast growth factor 2 (FGF2) (p = 0.0029), inducible protein-10(IP-10) (p = 0.0021), monocyte chemoattractant protein-1 (MCP-1) (p = 0.0040), interleukin (IL)-16 (p = 0.018), IL-8 (p = 0.0148), IL-6 (p = 0.0071), eotaxin (p = 0.0323), macrophage inflammatory protein (MIP)-1 alpha (p = 0.0149), MIP-1 beta (p = 0.0032), and the thymus and activation regulated cytokine (TARC) (p = 0.0121) were elevated in RRD cases. Between acute RRDs (n = 16) and controls, FGF2 (p = 0.0001), IP10 (p = 0.0027), MCP-1 (p = 0.0015), MIP-1β (p = 0.0004), IL-8 (p = 0.0146), and IL-6 (p = 0.0031) were elevated. Determining alterations in inflammatory cytokine profiles may aid in understanding their impact on RRD development, clinical course, and complications before and after surgical repair.
Collapse
Affiliation(s)
- Minali Prasad
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Jia Xu
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Joshua S. Agranat
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Geriatric Research Education and Clinical Center, VA Bedford Healthcare System, Bedford, MA 01730, USA
| | - Sarah Daley
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Geriatric Research Education and Clinical Center, VA Bedford Healthcare System, Bedford, MA 01730, USA
| | - Steven Ness
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Xuejing Chen
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Nicole H. Siegel
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Thor D. Stein
- Laboratory Medicine, Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Bedford Healthcare System, Bedford, MA 01730, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Manju L. Subramanian
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
- Correspondence: ; Tel.: +617-414-2020
| |
Collapse
|
7
|
Liu B, He J, Zhong L, Huang L, Gong B, Hu J, Qian H, Yang Z. Single-cell transcriptome reveals diversity of Müller cells with different metabolic-mitochondrial signatures in normal and degenerated macula. Front Neurosci 2022; 16:1079498. [PMID: 36620436 PMCID: PMC9817153 DOI: 10.3389/fnins.2022.1079498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Müller cell is the most abundant glial cell in mammalian retina, supporting the functions of photoreceptors and other retinal neurons via maintaining environmental homeostasis. In response to injury and/or neuronal degeneration, Müller cells undergo morphological and functional alternations, known as reactive gliosis documented in multiple retinal diseases, including age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and traumatic retinal detachment. But the functional consequences of Müller glia cell reactivation or even the regulatory networks of the retinal gliosis are still controversial. In this study, we reveal different subpopulations of Müller cells with distinct metabolic-mitochondrial signatures by integrating single cell transcriptomic data from Early AMD patients and healthy donors. Our results show that a portion of Müller cells exhibits low mitochondrial DNA (mtDNA) expressions, reduced protein synthesis, impaired homeostatic regulation, decreased proliferative ability but enhanced proangiogenic function. Interestingly, the major alternation of Müller cells in Early AMD retina is the change of subpopulation abundance, rather than generation of new subcluster. Transcription factor enrichment analysis further highlights the key regulators of metabolic-mitochondrial states of Müller glias in Early AMD patients especially. Our study demonstrates new characteristics of retinal gliosis associated with Early AMD and suggests the possibility to prevent degeneration by intervening mitochondrial functions of Müller cells.
Collapse
Affiliation(s)
- Bei Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiali He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Jing Hu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Jing Hu,
| | - Hao Qian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Hao Qian,
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China,Zhenglin Yang,
| |
Collapse
|
8
|
Zhao L, Hou C, Yan N. Neuroinflammation in retinitis pigmentosa: Therapies targeting the innate immune system. Front Immunol 2022; 13:1059947. [PMID: 36389729 PMCID: PMC9647059 DOI: 10.3389/fimmu.2022.1059947] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is an important cause of irreversible blindness worldwide and lacks effective treatment strategies. Although mutations are the primary cause of RP, research over the past decades has shown that neuroinflammation is an important cause of RP progression. Due to the abnormal activation of immunity, continuous sterile inflammation results in neuron loss and structural destruction. Therapies targeting inflammation have shown their potential to attenuate photoreceptor degeneration in preclinical models. Regardless of variations in genetic background, inflammatory modulation is emerging as an important role in the treatment of RP. We summarize the evidence for the role of inflammation in RP and mention therapeutic strategies where available, focusing on the modulation of innate immune signals, including TNFα signaling, TLR signaling, NLRP3 inflammasome activation, chemokine signaling and JAK/STAT signaling. In addition, we describe epigenetic regulation, the gut microbiome and herbal agents as prospective treatment strategies for RP in recent advances.
Collapse
Affiliation(s)
- Ling Zhao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Naihong Yan,
| |
Collapse
|
9
|
Gao S, Li N, Wang Y, Lin Z, Zhu Y, Xu J, Zhang Q, Zhu C, Zhou Y, Zhou J, Shen X. Inhibition of vascular endothelial growth factor alleviates neovascular retinopathy with regulated neurotrophic/proinflammatory cytokines through the modulation of DBI-TSPO signaling. FASEB J 2022; 36:e22367. [PMID: 35639422 DOI: 10.1096/fj.202101294rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Diazepam binding inhibitor (DBI)-translocator protein (18kDa) (TSPO) signaling in the retina was reported to possess coordinated macroglia-microglia interactions. We investigated DBI-TSPO signaling and its correlation with vascular endothelial growth factor (VEGF), neurotrophic or inflammatory cytokines in neovascular retinopathy, and under hypoxic conditions. The vitreous expression of DBI, VEGF, nerve growth factor (NGF), and interleukin-1beta (IL-1β) were examined in proliferative diabetic retinopathy (PDR) patients with or without anti-VEGF therapy and nondiabetic controls. Retinal DBI-TSPO signaling and the effect of the anti-VEGF agent were evaluated in a mouse model of oxygen-induced retinopathy (OIR). Interactions between Müller cell-derived VEGF and DBI, as well as cocultured microglial cells under hypoxic conditions, were studied, using Western blot, real-time RT-PCR, enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunofluorescent labeling. Results showed that vitreous levels of DBI, VEGF, NGF, and IL-1β were significantly higher in PDR patients compared with controls, which further changed after anti-VEGF therapy. A statistical association was found between vitreous DBI and VEGF, NGF, IL-1β, and age. The application of the anti-VEGF agent in the OIR model induced retinal expression of DBI and NGF, and attenuated inflammation and microglial cell activation. Inhibition of Müller cell-derived VEGF could increase its DBI expression under hypoxic conditions, while the DBI-TSPO signaling pathway is essential for anti-VEGF agents exerting anti-inflammatory and neuroprotective effects, as well as limiting inflammatory magnitude, promoting its neurotrophin production and anti-inflammatory (M2) polarization in microglial cells. These findings suggest the beneficial effect of anti-VEGF therapy on inflammation and neurotrophy of retinal glial cells through modulation of the DBI-TSPO signaling pathway.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongjing Lin
- Department of Ophthalmology, Renji Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanji Zhu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianmin Xu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiong Zhang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Caihong Zhu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingming Zhou
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of Ophthalmology, Ruijin Hospital, LuWan Branch, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Chen Y, Xia Q, Zeng Y, Zhang Y, Zhang M. Regulations of Retinal Inflammation: Focusing on Müller Glia. Front Cell Dev Biol 2022; 10:898652. [PMID: 35573676 PMCID: PMC9091449 DOI: 10.3389/fcell.2022.898652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Retinal inflammation underlies multiple prevalent retinal diseases. While microglia are one of the most studied cell types regarding retinal inflammation, growing evidence shows that Müller glia play critical roles in the regulation of retinal inflammation. Müller glia express various receptors for cytokines and release cytokines to regulate inflammation. Müller glia are part of the blood-retinal barrier and interact with microglia in the inflammatory responses. The unique metabolic features of Müller glia in the retina makes them vital for retinal homeostasis maintenance, regulating retinal inflammation by lipid metabolism, purine metabolism, iron metabolism, trophic factors, and antioxidants. miRNAs in Müller glia regulate inflammatory responses via different mechanisms and potentially regulate retinal regeneration. Novel therapies are explored targeting Müller glia for inflammatory retinal diseases treatment. Here we review new findings regarding the roles of Müller glia in retinal inflammation and discuss the related novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yue Zeng
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
11
|
Cela D, Brignole-Baudouin F, Labbé A, Baudouin C. Trabéculum glaucomateux : une trabéculopathie inflammatoire ? J Fr Ophtalmol 2022; 45:455-477. [DOI: 10.1016/j.jfo.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 10/19/2022]
|
12
|
Racic T, Chang A, Fernando N, Brandli A, Natoli R, Penfold P, Provis JM, Rutar M. Anti-inflammatory and neuroprotective properties of the corticosteroid fludrocortisone in retinal degeneration. Exp Eye Res 2021; 212:108765. [PMID: 34509498 DOI: 10.1016/j.exer.2021.108765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
The pathogenesis of outer retinal degenerations has been linked to the elevation of cytokines that orchestrate pro-inflammatory responses within the retinal milieu, and which are thought to play a role in diseases such as geographic atrophy (GA), an advanced form of AMD. Here we sought investigate the anti-inflammatory and mechanistic properties of fludrocortisone (FA), as well as triamcinolone acetonide (TA), on Müller cell-mediated cytokine expression in response to inflammatory challenge. In addition, we investigated the neuroprotective efficacy of FA and TA in a photo-oxidative damage (PD), a model of outer retinal degeneration. Expression of CCL2, IL-6, and IL-8 with respect to FA and TA were assessed in Müller cells in vitro, following simulation with IL-1β or TNF-α. The dependency of this effect on mineralocorticoid and glucocorticoid signaling was also interrogated for both TA and TA via co-incubation with steroid receptor antagonists. For the PD model, C57BL/6 mice were intravitreally injected with FA or TA, and changes in retinal pathology were assessed via electroretinogram (ERG) and optical coherence tomography (OCT). FA and TA were found to dramatically reduce the expression of CCL2, IL-6, and IL-8 in Müller glia in vitro after inflammatory challenge with IL-1β or TNF-α (P < 0.05). Though FA acts as both a mineralocorticoid and glucocorticoid receptor agonist, co-incubation with selective steroid antagonists revealed that the suppressive effect of FA on CCL2, IL-6, and IL-8 expression is mediated by glucocorticoid signaling (P < 0.05). In PD, intravitreal FA was found to ameliorate outer-retinal atrophy as measured by ERG and OCT (P < 0.05), while TA had no significant effect (P > 0.05). Our data indicate potent anti-inflammatory and mechanistic properties of corticosteroids, specifically FA, in suppressing inflammation and neurodegeneration degeneration associated with outer retinal atrophy. Taken together, our findings indicate that corticosteroids such as FA may have value as a potential therapeutic for outer retinal degenerations where such pro-inflammatory factors are implicated, including AMD.
Collapse
Affiliation(s)
- Tanja Racic
- John Curtin School of Medical Research, The Australian National University, ACT, Australia
| | - Andrew Chang
- Sydney Retina Clinic & Day Surgery, Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia
| | - Nilisha Fernando
- John Curtin School of Medical Research, The Australian National University, ACT, Australia
| | - Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, VIC, Australia
| | - Riccardo Natoli
- John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - Philip Penfold
- John Curtin School of Medical Research, The Australian National University, ACT, Australia
| | - Jan M Provis
- John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - Matt Rutar
- Department of Anatomy and Physiology, The University of Melbourne, VIC, Australia; Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, ACT, Australia.
| |
Collapse
|
13
|
Cela D, Brignole-Baudouin F, Labbé A, Baudouin C. The trabecular meshwork in glaucoma: An inflammatory trabeculopathy? J Fr Ophtalmol 2021; 44:e497-e517. [PMID: 34657760 DOI: 10.1016/j.jfo.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
Glaucoma is an optic neuropathy in which the primary risk factor is increased intraocular pressure (IOP), attributed to increased resistance to trabecular outflow of aqueous humor (AH). This resistance is believed to result from trabecular degeneration secondary to chronic oxidative stress and cellular senescence but may also involve inflammatory mechanisms whose roles are little known. In fact, inflammatory processes play a major role in the pathophysiology of glaucoma to varying degrees, affecting all structures of the eye, including the ocular surface, the anterior and posterior segments, and even the visual pathways of the brain. These processes are thought to result from dysfunction of a regulatory, protective para-inflammation, becoming chronic and harmful in glaucoma. While the mechanisms of the retinal inflammation which accelerates the degeneration of retinal ganglion cells (RGCs) as well as the inflammation of the ocular surface aggravated by long-term use of preserved glaucoma eye drops have been described for several years, very little is known about the pathophysiology of trabecular inflammation in glaucoma. The objective of this literature review is to provide a synthesis of knowledge on the roles and mechanisms of inflammation in both the healthy and glaucomatous trabecular meshwork, as well as its role in the pathophysiology of glaucoma. Therefore, after a review of the mechanisms of cellular senescence and oxidative stress - sources of trabecular inflammation, we will approach the study of the expression and roles of the main inflammatory mediators within the trabecular meshwork. Finally, we will discuss current knowledge on the toxicity of glaucoma eye drops and their preservatives on the ocular surface and trabecular meshwork as well as their role in trabecular inflammation.
Collapse
Affiliation(s)
- D Cela
- Service d'ophtalmologie, centre hospitalier national d'ophtalmologie des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France.
| | - F Brignole-Baudouin
- Inserm, CNRS, institut de la vision, Sorbonne université, 17, rue Moreau, 75012 Paris, France; Service de biologie médicale, centre hospitalier national d'ophtalmologie des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France
| | - A Labbé
- Service d'ophtalmologie, centre hospitalier national d'ophtalmologie des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Inserm, CNRS, institut de la vision, Sorbonne université, 17, rue Moreau, 75012 Paris, France; Service d'ophtalmologie, hôpital Ambroise-Paré, AP-HP, 9, avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France
| | - C Baudouin
- Service d'ophtalmologie, centre hospitalier national d'ophtalmologie des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Inserm, CNRS, institut de la vision, Sorbonne université, 17, rue Moreau, 75012 Paris, France; Service d'ophtalmologie, hôpital Ambroise-Paré, AP-HP, 9, avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France
| |
Collapse
|
14
|
Wang Y, Zhao X, Gao M, Wan X, Guo Y, Qu Y, Chen Y, Li T, Liu H, Jiang M, Wang F, Sun X. Myosin 1f-mediated activation of microglia contributes to the photoreceptor degeneration in a mouse model of retinal detachment. Cell Death Dis 2021; 12:926. [PMID: 34628463 PMCID: PMC8502177 DOI: 10.1038/s41419-021-03983-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022]
Abstract
Photoreceptor death and neurodegeneration is the leading cause of irreversible vision loss. The inflammatory response of microglia plays an important role in the process of neurodegeneration. In this study, we chose retinal detachment as the model of photoreceptor degeneration. We found Myosin 1f was upregulated after retinal detachment, and it was specifically expressed in microglia. Deficiency of myosin 1f protected against photoreceptor apoptosis by inhibiting microglia activation. The elimination of microglia can abolish the protective effect of myosin 1f deficiency. After stimulation by LPS, microglia with myosin 1f deficiency showed downregulation of the MAPK and AKT pathways. Our results demonstrated that myosin 1f plays a crucial role in microglia-induced neuroinflammation after retinal injury and photoreceptor degeneration by regulating two classic inflammatory pathways and thereby decreasing the expression of inflammatory cytokines. Knockout of myosin 1f reduces the intensity of the immune response and prevents cell death of photoreceptor, suggesting that myosin 1f can be inhibited to prevent a decline in visual acuity after retinal detachment.
Collapse
Affiliation(s)
- Yimin Wang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaohuan Zhao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Gao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wan
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Yinong Guo
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Yingying Qu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Tong Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
| | - Haiyun Liu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
| | - Mei Jiang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Feng Wang
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaodong Sun
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Disease, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
15
|
Hsu ML, Huang WC, Zhou YR, Hu S, Huang CH, Wu SJ. Oleuropein Protects Human Retinal Pigment Epithelium Cells from IL-1β-Induced Inflammation by Blocking MAPK/NF-κB Signaling Pathways. Inflammation 2021; 45:297-307. [PMID: 34613549 DOI: 10.1007/s10753-021-01546-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Proinflammatory mediators such as interleukin (IL)-1β cause retinal pigment epithelium (RPE) inflammation, which is related to visual deterioration, including age-related macular degeneration and diabetic retinopathy. Oleuropein is a polyphenol compound that shows potent anti-inflammatory, antioxidant, and anti-cancer activities, but its effects on IL-1β-induced inflammation have not been examined in the adult RPE cell line ARPE-19. Here, we assessed the ability of oleuropein to attenuate this inflammation in ARPE-19 cells. IL-1β induced secretion of the inflammatory cytokines IL-6, monocyte chemoattractant protein-1 (MCP)-1, and soluble intercellular adhesion molecule (sICAM)-1. As measured by enzyme-linked immunosorbent assay, oleuropein significantly inhibited levels of all three proteins and led to decreased monocyte adhesiveness to ARPE-19 cells. To clarify the underlying anti-inflammatory mechanisms, we used western blots to evaluate the effect of oleuropein on inactivation of the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. The results showed that oleuropein significantly decreased levels of the inflammatory mediator cyclooxygenase-2 and increased anti-inflammatory protein HO-1 expression. We next examined if the anti-inflammatory activity of oleuropein arises via inactivated NF-κB. We found that suppressing phosphorylation of the JNK1/2 and p38 MAPK signaling pathways inhibited IL-6, MCP-1, and sICAM-1 secretion, implicating these pathways and NF-κB suppression in the effects of oleuropein. These results indicate that oleuropein shows potential for the prevention and treatment of inflammatory diseases of the retina.
Collapse
Affiliation(s)
- Ming-Lung Hsu
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Guishan Dist, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd, Taoyuan City, 33303, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Guishan Dist, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd, Taoyuan City, 33303, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Guishan Dist, Chang Gung Memorial Hospital, Linkou, 33303, Taiwan
| | - Yi-Rong Zhou
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Guishan Dist, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd, Taoyuan City, 33303, Taiwan
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Guishan Dist, Taoyuan, 33303, Taiwan
| | - Chun-Hsun Huang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Guishan Dist, Taoyuan, 33303, Taiwan.
- Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Guishan Dist, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd, Taoyuan City, 33303, Taiwan.
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33303, Taiwan.
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Guishan Dist, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd, Taoyuan City, 33303, Taiwan.
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Guishan Dist, Taoyuan, 33303, Taiwan.
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33303, Taiwan.
| |
Collapse
|
16
|
Guo M, Schwartz TD, Dunaief JL, Cui QN. Myeloid cells in retinal and brain degeneration. FEBS J 2021; 289:2337-2361. [PMID: 34478598 PMCID: PMC8891394 DOI: 10.1111/febs.16177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Retinal inflammation underlies multiple prevalent ocular and neurological diseases. Similar inflammatory processes are observed in glaucomatous optic neuropathy, age-related macular degeneration, retinitis pigmentosa, posterior uveitis, Alzheimer's disease, and Parkinson's disease. In particular, human and animal studies have demonstrated the important role microglia/macrophages play in initiating and maintaining a pro-inflammatory environment in degenerative processes impacting vision. On the other hand, microglia have also been shown to have a protective role in multiple central nervous system diseases. Identifying the mechanisms underlying cell dysfunction and death is the first step toward developing novel therapeutics for these diseases impacting the central nervous system. In addition to reviewing recent key studies defining important mediators of retinal inflammation, with an emphasis on translational studies that bridge this research from bench to bedside, we also highlight a promising therapeutic class of medications, the glucagon-like peptide-1 receptor agonists. Finally, we propose areas where additional research is necessary to identify mechanisms that can be modulated to shift the balance from a neurotoxic to a neuroprotective retinal environment.
Collapse
Affiliation(s)
- Michelle Guo
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Turner D Schwartz
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
18
|
Li H, Chen D, Sun W, Chen J, Luo C, Xu H, Ma JH, Tang S. KATP Opener Attenuates Diabetic-Induced Müller Gliosis and Inflammation by Modulating Kir6.1 in Microglia. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 33523201 PMCID: PMC7862730 DOI: 10.1167/iovs.62.2.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose This study aimed to determine the effect of pinacidil, a nonselective KATP channel opener, on diabetes-induced retinal gliosis and inflammation. Methods Primary and immortalized cell lines of retinal microglia and Müller cells were used to set up a coculture model. In the trans-well system, microglia were seeded in the upper chamber and Müller cells in the bottom chamber. Microglia were polarized into proinflammatory (M1, with lipopolysaccharide and INF-γ) with or without different pinacidil concentrations before coculturing with Müller cells. The expression of inflammatory or anti-inflammatory genes and protein in microglia, and the expression of glial fibrillary acidic protein (GFAP), Kir4.1, and AQP4 in Müller cells were examined by real-time polymerase chain reaction and Western blot. Pinacidil was injected intravitreally into streptozotocin-induced diabetic rats. Retinal gliosis and inflammation were examined by immunohistochemistry and Western blot. Results Intravitreal injection of pinacidil alleviated diabetes-induced Müller cell gliosis and microglial activation and reduced vascular endothelial growth factor expression. In vitro study demonstrated that pinacidil inhibited tumor necrosis factor and interleukin-1β expression in M1-type microglia and alleviated the M1 microglia-induced GFAP expression in the Müller cells. Furthermore, we found that pinacidil on its own, or in combination with IL-4, can upregulate arginase-1 (Arg-1) and Kir6.1 expression in microglial cells. Conclusions Our results suggest that potassium channels are critically involved in diabetes-induced gliosis and microglial activation. The KATP opener, pinacidil, can reduce microglial activation by upregulating Kir6.1 expression.
Collapse
Affiliation(s)
- Hong Li
- AIER School of Ophthalmology, Central South University, Changsha, China.,AIER Eye Institute, Changsha, China
| | | | - Wei Sun
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiansu Chen
- AIER School of Ophthalmology, Central South University, Changsha, China.,AIER Eye Institute, Changsha, China
| | - Chang Luo
- AIER School of Ophthalmology, Central South University, Changsha, China.,AIER Eye Institute, Changsha, China
| | - Heping Xu
- AIER School of Ophthalmology, Central South University, Changsha, China.,AIER Eye Institute, Changsha, China.,Centre for Experimental Medicine, School of medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Jacey Hongjie Ma
- AIER School of Ophthalmology, Central South University, Changsha, China.,AIER Eye Institute, Changsha, China
| | - Shibo Tang
- AIER School of Ophthalmology, Central South University, Changsha, China.,AIER Eye Institute, Changsha, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
19
|
Liu F, Liu X, Zhou Y, Yu Y, Wang K, Zhou Z, Gao H, So KF, Vardi N, Xu Y. Wolfberry-derived zeaxanthin dipalmitate delays retinal degeneration in a mouse model of retinitis pigmentosa through modulating STAT3, CCL2 and MAPK pathways. J Neurochem 2021; 158:1131-1150. [PMID: 34265077 DOI: 10.1111/jnc.15472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited photoreceptor degeneration diseases that causes blindness without effective treatment. The pathogenesis of retinal degeneration involves mainly oxidative stress and inflammatory responses. Zeaxanthin dipalmitate (ZD), a wolfberry-derived carotenoid, has anti-inflammatory and anti-oxidative stress effects. Here we investigated whether these properties of ZD can delay the retinal degeneration in rd10 mice, a model of RP, and explored its underlying mechanism. One shot of ZD or control vehicle was intravitreally injected into rd10 mice on postnatal day 16 (P16). Retinal function and structure of rd10 mice were assessed at P25, when rods degenerate substantially, using a visual behavior test, multi-electrode-array recordings and immunostaining. Retinal pathogenic gene expression and regulation of signaling pathways by ZD were explored using transcriptome sequencing and western blotting. Our results showed that ZD treatment improved the visual behavior of rd10 mice and delayed the degeneration of retinal photoreceptors. It also improved the light responses of photoreceptors, bipolar cells and retinal ganglion cells. The expression of genes that are involved in inflammation, apoptosis and oxidative stress were up-regulated in rd10 mice, and were reduced by ZD. ZD further reduced the activation of two key factors, signal transducer and activator of transcription 3 and chemokine (C-C motif) ligand 2, down-regulated the expression of the inflammatory factor GFAP, and inhibited extracellular signal regulated protein kinases and P38, but not the JNK pathways. In conclusion, ZD delays the degeneration of the rd10 retina both morphologically and functionally. Its anti-inflammatory function is mediated primarily through the signal transducer and activator of transcription 3, chemokine (C-C motif) ligand 2 and MAPK pathways. Thus, ZD may serve as a potential clinical candidate to treat RP.
Collapse
Affiliation(s)
- Feng Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaobin Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yamin Zhou
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yankun Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Ke Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhengqun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| |
Collapse
|
20
|
Bielmeier CB, Roth S, Schmitt SI, Boneva SK, Schlecht A, Vallon M, Tamm ER, Ergün S, Neueder A, Braunger BM. Transcriptional Profiling Identifies Upregulation of Neuroprotective Pathways in Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22126307. [PMID: 34208383 PMCID: PMC8231189 DOI: 10.3390/ijms22126307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. In this study, we deeply characterized the transcriptional profile of mice carrying the transgene rhodopsin V20G/P23H/P27L (VPP), which is a model for autosomal dominant RP. We examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescence staining, and 3D reconstruction. Using RNASeq analysis, we identified 9256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, among others, dysregulation of genes involved in TGF-β regulated extracellular matrix organization, the (ocular) immune system/response, and cellular homeostasis. Moreover, heatmaps confirmed clustering of significantly dysregulated genes coding for components of the TGF-β, G-protein activated, and VEGF signaling pathway. 3D reconstructions of immunostained/in situ hybridized sections revealed retinal neurons and Müller cells as the major cellular population expressing representative components of these signaling pathways. The predominant effect of VPP-induced photoreceptor degeneration pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-β, G-protein activated, and VEGF signaling. Thus, modulation of these processes and signaling pathways might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP.
Collapse
Affiliation(s)
- Christina B. Bielmeier
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Saskia Roth
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Sabrina I. Schmitt
- Institute of Human Anatomy and Embryology, University of Regensburg, D-93053 Regensburg, Germany; (S.I.S.); (E.R.T.)
| | - Stefaniya K. Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, D-79078 Freiburg, Germany;
| | - Anja Schlecht
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Mario Vallon
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Ernst R. Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, D-93053 Regensburg, Germany; (S.I.S.); (E.R.T.)
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Andreas Neueder
- Department of Neurology, University of Ulm, D-89069 Ulm, Germany;
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
- Correspondence: ; Tel.: +49-931-31-84387; Fax: +49-931-31-82087
| |
Collapse
|
21
|
Aggio-Bruce R, Chu-Tan JA, Wooff Y, Cioanca AV, Schumann U, Natoli R. Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration. Mol Neurobiol 2021; 58:835-854. [PMID: 33037565 PMCID: PMC7843561 DOI: 10.1007/s12035-020-02158-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 01/14/2023]
Abstract
Although extensively investigated in inflammatory conditions, the role of pro-inflammatory microRNAs (miRNAs), miR-155 and miR-146a, has not been well-studied in retinal degenerative diseases. We therefore aimed to explore the role and regulation of these miRNA in the degenerating retina, with a focus on miR-155. C57BL/6J mice were subjected to photo-oxidative damage for up to 5 days to induce focal retinal degeneration. MiR-155 expression was quantified by qRT-PCR in whole retina, serum, and small-medium extracellular vesicles (s-mEVs), and a PrimeFlow™ assay was used to identify localisation of miR-155 in retinal cells. Constitutive miR-155 knockout (KO) mice and miR-155 and miR-146a inhibitors were utilised to determine the role of these miRNA in the degenerating retina. Electroretinography was employed as a measure of retinal function, while histological quantification of TUNEL+ and IBA1+ positive cells was used to quantify photoreceptor cell death and infiltrating immune cells, respectively. Upregulation of miR-155 was detected in retinal tissue, serum and s-mEVs in response to photo-oxidative damage, localising to the nucleus of a subset of retinal ganglion cells and glial cells and in the cytoplasm of photoreceptors. Inhibition of miR-155 showed increased function from negative controls and a less pathological pattern of IBA1+ cell localisation and morphology at 5 days photo-oxidative damage. While neither dim-reared nor damaged miR-155 KO animals showed retinal histological difference from controls, following photo-oxidative damage, miR-155 KO mice showed increased a-wave relative to controls. We therefore consider miR-155 to be associated with the inflammatory response of the retina in response to photoreceptor-specific degeneration.
Collapse
Affiliation(s)
- Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia
| | - Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia.
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia.
| |
Collapse
|
22
|
Innate Immunity in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:121-141. [PMID: 33848000 DOI: 10.1007/978-3-030-66014-7_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple lines of investigation have demonstrated that inflammation plays significant roles in etiology of age-related macular degeneration (AMD). Although interventional trials in AMD therapy targeting inflammatory pathways have been conducted, they have not yet been successful and a detailed understanding as to why some have failed is still elusive. One limitation is the relative dearth of information on how immune cells interact with retinal cells to generate AMD phenotypes at each disease stage. Here, we summarize current research evidence and hypotheses regarding potential pathogenic roles of innate immune cells in the eye, which include resident retinal microglia, macrophages derived from infiltrating systemic monocytes, and macrophages resident in the choroid. We relate recent findings regarding the physiology, function, and cellular interactions involving innate immune cells in the retina and choroid to AMD-related processes, including: (1) drusen formation and regression, (2) the onset and spread of degeneration in late atrophic AMD, and (3) the initiation, growth, and exudation of neovascular vessels in late "wet" AMD. Understanding how innate immune cells contribute to specific AMD phenotypes can assist in generating a comprehensive view on the inflammatory etiology of AMD and aid in identifying anti-inflammatory therapeutic strategies and selecting appropriate clinical outcomes for the planned interventions.
Collapse
|
23
|
Dabouz R, Cheng CWH, Abram P, Omri S, Cagnone G, Sawmy KV, Joyal JS, Desjarlais M, Olson D, Weil AG, Lubell W, Rivera JC, Chemtob S. An allosteric interleukin-1 receptor modulator mitigates inflammation and photoreceptor toxicity in a model of retinal degeneration. J Neuroinflammation 2020; 17:359. [PMID: 33246504 PMCID: PMC7694438 DOI: 10.1186/s12974-020-02032-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Inflammation and particularly interleukin-1β (IL-1β), a pro-inflammatory cytokine highly secreted by activated immune cells during early AMD pathological events, contribute significantly to retinal neurodegeneration. Here, we identify specific cell types that generate IL-1β and harbor the IL-1 receptor (IL-1R) and pharmacologically validate IL-1β's contribution to neuro-retinal degeneration using the IL-1R allosteric modulator composed of the amino acid sequence rytvela (as well as the orthosteric antagonist, Kineret) in a model of blue light-induced retinal degeneration. METHODS Mice were exposed to blue light for 6 h and sacrificed 3 days later. Mice were intraperitoneally injected with rytvela, Kineret, or vehicle twice daily for 3 days. The inflammatory markers F4/80, NLRP3, caspase-1, and IL-1β were assessed in the retinas. Single-cell RNA sequencing was used to determine the cell-specific expression patterns of retinal Il1b and Il1r1. Macrophage-induced photoreceptor death was assessed ex vivo using retinal explants co-cultured with LPS-activated bone marrow-derived macrophages. Photoreceptor cell death was evaluated by the TUNEL assay. Retinal function was assessed by flash electroretinography. RESULTS Blue light markedly increased the mononuclear phagocyte recruitment and levels of inflammatory markers associated with photoreceptor death. Co-localization of NLRP3, caspase-1, and IL-1β with F4/80+ mononuclear phagocytes was clearly detected in the subretinal space, suggesting that these inflammatory cells are the main source of IL-1β. Single-cell RNA sequencing confirmed the immune-specific expression of Il1b and notably perivascular macrophages in light-challenged mice, while Il1r1 expression was found primarily in astrocytes, bipolar, and vascular cells. Retinal explants co-cultured with LPS/ATP-activated bone marrow-derived macrophages displayed a high number of TUNEL-positive photoreceptors, which was abrogated by rytvela treatment. IL-1R antagonism significantly mitigated the inflammatory response triggered in vivo by blue light exposure, and rytvela was superior to Kineret in preserving photoreceptor density and retinal function. CONCLUSION These findings substantiate the importance of IL-1β in neuro-retinal degeneration and revealed specific sources of Il1b from perivascular MPs, with its receptor Ilr1 being separately expressed on surrounding neuro-vascular and astroglial cells. They also validate the efficacy of rytvela-induced IL-1R modulation in suppressing detrimental inflammatory responses and preserving photoreceptor density and function in these conditions, reinforcing the rationale for clinical translation.
Collapse
Affiliation(s)
- Rabah Dabouz
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada.,Hôpital Sainte Justine Research Centre, Montreal, QC, Canada
| | - Colin W H Cheng
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada.,Hôpital Sainte Justine Research Centre, Montreal, QC, Canada
| | - Pénélope Abram
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada
| | - Samy Omri
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada
| | - Gael Cagnone
- Hôpital Sainte Justine Research Centre, Montreal, QC, Canada
| | | | | | - Michel Desjarlais
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada
| | - David Olson
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Alexander G Weil
- Department of Neurosurgery, Hôpital Sainte Justine, Montreal, QC, Canada
| | - William Lubell
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - José Carlos Rivera
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada.,Hôpital Sainte Justine Research Centre, Montreal, QC, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Departments of Pediatrics, Ophthalmology, and Pharmacology, Hôpital Maisonneuve-Rosemont Research Center, 5415 Boul L'Assomption, Montreal, QC, H1T 2 M4, Canada. .,Hôpital Sainte Justine Research Centre, Montreal, QC, Canada.
| |
Collapse
|
24
|
Popiolek-Barczyk K, Ciechanowska A, Ciapała K, Pawlik K, Oggioni M, Mercurio D, De Simoni MG, Mika J. The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Mol Cell Probes 2020; 54:101671. [PMID: 33160071 DOI: 10.1016/j.mcp.2020.101671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in the global population. Disturbed inflammatory processes after TBI exacerbate secondary brain injury and contribute to unfavorable outcomes. Multiple inflammatory events that accompany brain trauma, such as glial activation, chemokine release, or the initiation of the complement system cascade, have been identified as potential targets for TBI treatment. However, the participation of chemokines in the complement activation remains unknown. Our studies sought to determine the changes in the expression of the molecules involved in the CCL2/CCL7/CCL12/CCR2 pathway in the injured brain and the effect of CCL2, CCL7, and CCL12 (10, 100, and 500 ng/mL) on the classic and lectin complement pathways and inflammatory factors in microglial cell cultures. Brain injury in mice was modeled by controlled cortical impact (CCI). Our findings indicate a time-dependent upregulation of CCL2, CCL7, and CCL12 at the mRNA and protein levels within the cortex, striatum, and/or thalamus beginning 24 h after the trauma. The analysis of the expression of the receptor of the tested chemokines, CCR2, revealed its substantial upregulation within the injured brain areas mainly on the mRNA level. Using primary cortical microglial cell cultures, we observed a substantial increase in the expression of CCL2, CCL7, and CCL12 after 24 h of LPS (100 ng/mL) treatment. CCL2 stimulation of microglia increased the level of IL-1β mRNA but did not influence the expression of IL-18, IL-6, and IL-10. Moreover, CCL2 significantly increased the expression of Iba1, a marker of microglia activation. CCL2 and CCL12 upregulated the expression of C1qa but did not influence the expression of C1ra and C1s1 (classical pathway); moreover, CCL2 increased ficolin A expression and reduced collectin 11 expression (lectin pathway). Additionally, we observed the downregulation of pentraxin 3, a modulator of the complement cascade, after CCL2 and CCL12 treatment. We did not detect the expression of ficolin B, Mbl1, and Mbl2 in microglial cells. Our data identify CCL2 as a modulator of the classical and lectin complement pathways suggesting that CCL2 may be a promising target for pharmacological intervention after brain injury. Moreover, our study provides evidence that CCL2 and two other CCR2 ligands may play a role in the development of changes in TBI.
Collapse
Affiliation(s)
- Katarzyna Popiolek-Barczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Marco Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Domenico Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland.
| |
Collapse
|
25
|
Khan AS, Langmann T. Indole-3-carbinol regulates microglia homeostasis and protects the retina from degeneration. J Neuroinflammation 2020; 17:327. [PMID: 33143743 PMCID: PMC7640677 DOI: 10.1186/s12974-020-01999-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Retinal degenerative diseases significantly contribute to visual impairment and blindness. Microglia reactivity is a hallmark of neurodegenerative diseases including retinal cell death and immunomodulation emerges as a therapeutic option. Indole-3-carbinol (I3C) is a natural ligand of aryl hydrocarbon receptor (AhR), with potent immunomodulatory properties. Here, we hypothesized that I3C may inhibit microglia reactivity and exert neuroprotective effects in the light-damaged murine retina mimicking important immunological aspects of retinal degeneration. METHODS BV-2 microglia were treated in vitro with I3C followed by lipopolysaccharide (LPS) stimulation to analyze pro-inflammatory and anti-oxidant responses by quantitative real-time PCR (qRT-PCR) and Western blots. Nitric oxide (NO) secretion, caspase 3/7 levels, phagocytosis rates, migration, and morphology were analyzed in control and AhR knockdown cells. I3C or vehicle was systemically applied to light-treated BALB/cJ mice as an experimental model of retinal degeneration. Pro-inflammatory and anti-oxidant responses in the retina were examined by qRT-PCR, ELISA, and Western blots. Immunohistochemical staining of retinal flat mounts and cryosections were performed. The retinal thickness and structure were evaluated by in vivo imaging using spectral domain-optical coherence tomography (SD-OCT). RESULTS The in vitro data showed that I3C potently diminished LPS-induced pro-inflammatory gene expression of I-NOS, IL-1ß, NLRP3, IL-6, and CCL2 and induced anti-oxidants gene levels of NQO1, HMOX1, and CAT1 in BV-2 cells. I3C also reduced LPS-induced NO secretion, phagocytosis, and migration as important functional microglia parameters. siRNA-mediated knockdown of AhR partially prevented the previously observed gene regulatory events. The in vivo experiments revealed that I3C treatment diminished light-damage induced I-NOS, IL-1ß, NLRP3, IL-6, and CCL2 transcripts and also reduced CCL2, I-NOS, IL-1ß, p-NFkBp65 protein levels in mice. Moreover, I3C increased anti-oxidant NQO1 and HMOX1 protein levels in light-exposed retinas. Finally, I3C therapy prevented the accumulation of amoeboid microglia in the subretinal space and protected from retinal degeneration. CONCLUSIONS The AhR ligand I3C potently counter-acts microgliosis and light-induced retinal damage, highlighting a potential treatment concept for retinal degeneration.
Collapse
Affiliation(s)
- Amir Saeed Khan
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, D-50931, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, D-50931, Cologne, Germany.
- Center for Molecular Medicine Cologne, Cologne, Germany.
| |
Collapse
|
26
|
Li W, Liu X, Tu Y, Ding D, Yi Q, Sun X, Wang Y, Wang K, Zhu M, Mao J. Dysfunctional Nurr1 promotes high glucose-induced Müller cell activation by up-regulating the NF-κB/NLRP3 inflammasome axis. Neuropeptides 2020; 82:102057. [PMID: 32461025 DOI: 10.1016/j.npep.2020.102057] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/25/2020] [Accepted: 05/17/2020] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus (DM). During DR, high glucose levels induce Müller cell gliosis, and the dysfunction of Müller cells further promotes the pathogenesis of DR. Transcription factor nuclear receptor subfamily 4 group A member 2 (Nurr1) inhibits the inflammatory response by suppressing nuclear factor-kappa B (NF-κB) and downregulating the downstream NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome. This study aimed to investigate whether Nurr1 dysfunction in Müller cells promoted the NF-κB/NLRP3 inflammasome axis during DR. In vitro, Nurr1 expression and nuclear translocation decreased in Müller cells exposed to high glucose levels; therefore, p65 was activated, and the downstream NLRP3 inflammasome was up-regulated via the interaction of p65 with its promoter. These phenomena promoted Müller cell activation and proliferation. Moreover, in vivo, gavage of the Nurr1 agonist C-DIM12 reduced retinal ganglion cell (RGC) loss in a mouse model of streptozotocin (STZ)-induced diabetes. Together, these results showed that Nurr1 played important anti-inflammatory and neuroprotective roles in Müller cells during DR, suggesting that Nurr1 may be a potential molecular target for the treatment of DR.
Collapse
Affiliation(s)
- Wendie Li
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Dongmei Ding
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, China
| | - Quanyong Yi
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Xiaolei Sun
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, China
| | - Yanyan Wang
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Kun Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China.
| | - Jinghai Mao
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China..
| |
Collapse
|
27
|
Li X, Liu Y, Sun M, Gao M, Li T, Liang J, Zhai Y, Xu M, She X, Yang S, Liu W, Luo X, Sun X. Photoreceptors Degenerate Through Pyroptosis After Experimental Retinal Detachment. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 32697303 PMCID: PMC7425730 DOI: 10.1167/iovs.61.8.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose Gasdermin D (GSDMD) is crucial in neuronal pyroptosis. GSDMD-N and GSDMD-C are two subdomains of the protein GSDMD. GSDMD-N is an executor of pyroptosis, and GSDMD-C has an inhibitory effect on pyroptotic cell death. This study evaluated the role of GSDMD in photoreceptor cell pyroptosis caused by retinal detachment (RD). Methods RD models were established in rats, and GSDMD cleavage was detected by western blotting. The morphology of photoreceptors was assessed by transmission electron microscopy. Some rats were given subretinal injections of recombinant adeno-associated virus 2/8 (rAAV2/8)–GSDMD-C before RD surgery. We documented the expression of caspase-1 and GSDMD-N in retinas by western blot. Levels of IL-1β, TNF-α, and monocyte chemoattractant protein-1 (MCP-1) were detected by quantitative RT-PCR. The membrane integrity of photoreceptors was evaluated by TOTO-3 iodide staining. Retinal function was measured by electroretinography, and the thickness of the outer nuclear layer was also recorded. We measured the activation of glial fibrillary acidic protein (GFAP), F4/80, and ionized calcium binding adaptor molecule 1 (Iba-1) by immunofluorescence. Results The cleavage of GSDMD peaked at 1 day after RD. The administration of rAAV2/8–GSDMD-C reduced the pyroptosis and subsequent apoptosis of photoreceptors and preserved the retinal function after RD. Expression of IL-1, TNF-α, and MCP-1 was decreased in the rAAV2/8–GSDMD-C group. In addition, the activation of GFAP, Iba-1, and F4/80 in retinas was alleviated by administering rAAV2/8–GSDMD-C after RD. Conclusions GSDMD participates in the pyroptosis of photoreceptor after RD. Overexpression of GSDMD-C may block GSDMD cleavage and attenuate photoreceptor degeneration.
Collapse
|
28
|
Wooff Y, Cioanca AV, Chu-Tan JA, Aggio-Bruce R, Schumann U, Natoli R. Small-Medium Extracellular Vesicles and Their miRNA Cargo in Retinal Health and Degeneration: Mediators of Homeostasis, and Vehicles for Targeted Gene Therapy. Front Cell Neurosci 2020; 14:160. [PMID: 32670023 PMCID: PMC7330137 DOI: 10.3389/fncel.2020.00160] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Photoreceptor cell death and inflammation are known to occur progressively in retinal degenerative diseases such as age-related macular degeneration (AMD). However, the molecular mechanisms underlying these biological processes are largely unknown. Extracellular vesicles (EV) are essential mediators of cell-to-cell communication with emerging roles in the modulation of immune responses. EVs, including exosomes, encapsulate and transfer microRNA (miRNA) to recipient cells and in this way can modulate the environment of recipient cells. Dysregulation of EVs however is correlated to a loss of cellular homeostasis and increased inflammation. In this work we investigated the role of isolated retinal small-medium sized EV (s-mEV) which includes exosomes in both the healthy and degenerating retina. Isolated s-mEV from normal retinas were characterized using dynamic light scattering, transmission electron microscopy and western blotting, and quantified across 5 days of photo-oxidative damage-induced degeneration using nanotracking analysis. Small RNAseq was used to characterize the miRNA cargo of retinal s-mEV isolated from healthy and damaged retinas. Finally, the effect of exosome inhibition on cell-to-cell miRNA transfer and immune modulation was conducted using systemic daily administration of exosome inhibitor GW4869 and in situ hybridization of s-mEV-abundant miRNA, miR-124-3p. Electroretinography and immunohistochemistry was performed to assess functional and morphological changes to the retina as a result of GW4869-induced exosome depletion. Results demonstrated an inverse correlation between s-mEV concentration and photoreceptor survivability, with a decrease in s-mEV numbers following degeneration. Small RNAseq revealed that s-mEVs contained uniquely enriched miRNAs in comparison to in whole retinal tissue, however, there was no differential change in the s-mEV miRNAnome following photo-oxidative damage. Exosome inhibition via the use of GW4869 was also found to exacerbate retinal degeneration, with reduced retinal function and increased levels of inflammation and cell death demonstrated following photo-oxidative damage in exosome-inhibited mice. Further, GW4869-treated mice displayed impaired translocation of photoreceptor-derived miR-124-3p to the inner retina during damage. Taken together, we propose that retinal s-mEV and their miRNA cargo play an essential role in maintaining retinal homeostasis through immune-modulation, and have the potential to be used in targeted gene therapy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
29
|
Gupta CL, Nag TC, Jha KA, Kathpalia P, Maurya M, Kumar P, Gupta S, Roy TS. Changes in the Inner Retinal Cells after Intense and Constant Light Exposure in Sprague-Dawley Rats. Photochem Photobiol 2020; 96:1061-1073. [PMID: 32112401 DOI: 10.1111/php.13244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Light insult causes photoreceptor death. Few studies reported that continuous exposure to light affects horizontal, Müller and ganglion cells. We aimed to see the effect of constant light exposure on bipolar and amacrine cells. Adult Sprague-Dawley rats were exposed to 300 or 3000 lux for 7 days in 12-h light: 12-h dark cycles (12L:12D). The latter group was then exposed to 24L:0D for 48 h to induce significant damage. The same animals were reverted to 300 lux and reared for 15 days in 12L:12D cycles. They were sacrificed on different days to find the degree of retinal recovery, if any, from light injury. Besides photoreceptor death, continuous light for 48 h resulted in downregulation of parvalbumin in amacrine cells and recoverin in cone bipolar cells (CBC). Rod bipolar cells (RBC) maintained an unaltered pattern of PKC-α expression. Upon reversal, there were increased expressions of parvalbumin in amacrine cells and recoverin in CBC, while RBC showed an increasing trend of PKC-α expression. The data show that damage in bipolar and amacrine cells after exposure to intense, continuous light can be ameliorated upon reversal to normal LD cycles to which the animals were initially acclimated to.
Collapse
Affiliation(s)
- Chandan L Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Sneha Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tara S Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
30
|
Chu-Tan JA, Fernando N, Aggio-Bruce R, Cioanca AV, Valter K, Andronikou N, deMollerat du Jeu X, Rutar M, Provis J, Natoli R. A method for gene knockdown in the retina using a lipid-based carrier. Mol Vis 2020; 26:48-63. [PMID: 32165826 PMCID: PMC7043644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/21/2020] [Indexed: 10/26/2022] Open
Abstract
Purpose The use of small non-coding nucleic acids, such as siRNA and miRNA, has allowed for a deeper understanding of gene functions, as well as for development of gene therapies for complex neurodegenerative diseases, including retinal degeneration. For effective delivery into the eye and transfection of the retina, suitable transfection methods are required. We investigated the use of a lipid-based transfection agent, Invivofectamine® 3.0 (Thermo Fisher Scientific), as a potential method for delivery of nucleic acids to the retina. Methods Rodents were injected intravitreally with formulations of Invivofectamine 3.0 containing scrambled, Gapdh, Il-1β, and C3 siRNAs, or sterile PBS (control) using a modified protocol for encapsulation of nucleic acids. TdT-mediated dUTP nick-end labeling (TUNEL) and IBA1 immunohistochemistry was used to determine histological cell death and inflammation. qPCR were used to determine the stress and inflammatory profile of the retina. Electroretinography (ERG) and optical coherence tomography (OCT) were employed as clinical indicators of retinal health. Results We showed that macrophage recruitment, retinal stress, and photoreceptor cell death in animals receiving Invivofectamine 3.0 were comparable to those in negative controls. Following delivery of Invivofectamine 3.0 alone, no statistically significant changes in expression were found in a suite of inflammatory and stress genes, and ERG and OCT analyses revealed no changes in retinal function or morphology. Injections with siRNAs for proinflammatory genes (C3 and Il-1β) and Gapdh, in combination with Invivofectamine 3.0, resulted in statistically significant targeted gene knockdown in the retina for up to 4 days following injection. Using a fluorescent Block-It siRNA, transfection was visualized throughout the neural retina with evidence of transfection observed in cells of the ganglion cell layer, inner nuclear layer, and outer nuclear layer. Conclusions This work supports the use of Invivofectamine 3.0 as a transfection agent for effective delivery of nucleic acids to the retina for gene function studies and as potential therapeutics.
Collapse
Affiliation(s)
- Joshua A. Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Australian National University Medical School, Acton, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Adrian V. Cioanca
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Australian National University Medical School, Acton, Australia
| | - Nektaria Andronikou
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- Thermo Fisher Scientific, Carlsbad, CA
| | - Xavier deMollerat du Jeu
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- Thermo Fisher Scientific, Carlsbad, CA
| | - Matt Rutar
- School of Biomedical Sciences, The University of Melbourne, Kenneth Myer Building, Melbourne, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Australian National University Medical School, Acton, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
- The Australian National University Medical School, Acton, Australia
| |
Collapse
|
31
|
Chaudhary R, Scott RAH, Wallace G, Berry M, Logan A, Blanch RJ. Inflammatory and Fibrogenic Factors in Proliferative Vitreoretinopathy Development. Transl Vis Sci Technol 2020; 9:23. [PMID: 32742753 PMCID: PMC7357815 DOI: 10.1167/tvst.9.3.23] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Proliferative vitreoretinopathy (PVR) occurs in 5%-10% of rhegmatogenous retinal detachment cases and is the principle cause for failure of retinal reattachment surgery. Although there are a number of surgical adjunctive agents available for preventing the development of PVR, all have limited efficacy. Discovering predictive molecular biomarkers to determine the probability of PVR development after retinal reattachment surgery will allow better patient stratification for more targeted drug evaluations. Methods Narrative literature review. Results We provide a summary of the inflammatory and fibrogenic factors found in ocular fluid samples during the development of retinal detachment and PVR and discuss their possible use as molecular PVR predictive biomarkers. Conclusions Studies monitoring the levels of the above factors have found that few if any have predictive biomarker value, suggesting that widening the phenotype of potential factors and a combinatorial approach are required to determine predictive biomarkers for PVR. Translational Relevance The identification of relevant biomarkers relies on an understanding of disease signaling pathways derived from basic science research. We discuss the extent to which those molecules identified as biomarkers and predictors of PVR relate to disease pathogenesis and could function as useful disease predictors. (http://www.umin.ac.jp/ctr/ number, UMIN000005604).
Collapse
Affiliation(s)
- Rishika Chaudhary
- Academic Unit of Ophthalmology, Birmingham and Midland Eye Centre, Birmingham, UK.,Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Graham Wallace
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Academic Unit of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| |
Collapse
|
32
|
Wooff Y, Fernando N, Wong JHC, Dietrich C, Aggio-Bruce R, Chu-Tan JA, Robertson AAB, Doyle SL, Man SM, Natoli R. Caspase-1-dependent inflammasomes mediate photoreceptor cell death in photo-oxidative damage-induced retinal degeneration. Sci Rep 2020; 10:2263. [PMID: 32041990 PMCID: PMC7010818 DOI: 10.1038/s41598-020-58849-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
Activation of the inflammasome is involved in the progression of retinal degenerative diseases, in particular, in the pathogenesis of Age-Related Macular Degeneration (AMD), with NLRP3 activation the focus of many investigations. In this study, we used genetic and pharmacological approaches to explore the role of the inflammasome in a mouse model of retinal degeneration. We identify that Casp1/11-/- mice have better-preserved retinal function, reduced inflammation and increased photoreceptor survivability. While Nlrp3-/- mice display some level of preservation of retinal function compared to controls, pharmacological inhibition of NLRP3 did not protect against photoreceptor cell death. Further, Aim2-/-, Nlrc4-/-, Asc-/-, and Casp11-/- mice show no substantial retinal protection. We propose that CASP-1-associated photoreceptor cell death occurs largely independently of NLRP3 and other established inflammasome sensor proteins, or that inhibition of a single sensor is not sufficient to repress the inflammatory cascade. Therapeutic targeting of CASP-1 may offer a more promising avenue to delay the progression of retinal degenerations.
Collapse
Affiliation(s)
- Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Josephine H C Wong
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Catherine Dietrich
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Avril A B Robertson
- School of Chemistry and Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- The National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Si Ming Man
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
- The ANU Medical School, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
33
|
Fletcher EL. Contribution of microglia and monocytes to the development and progression of age related macular degeneration. Ophthalmic Physiol Opt 2020; 40:128-139. [PMID: 32017190 DOI: 10.1111/opo.12671] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Age related macular degeneration (AMD) is the leading cause of irreversible vision loss in industrialised nations. Based on genetics, as well as proteome analysis of drusen, the role the innate immune system in the development and/or progression of the disease is well established. Mononuclear phagocytes, such as microglia and monocytes, play critical roles in innate immunity. Here, the role of retinal microglia in mediating normal retinal function, and how these cells change with age is discussed, so as to understand their role in the development and progression of AMD. RECENT FINDINGS It is now known that microglia dynamically survey the neural environment, responding rapidly to even the most subtle neural injury. The dynamic and phagocytic roles of microglia can change with age contributing to alteration in the response of these cells to damage with age. Accumulation of innate immune cells in the subretinal space is a hallmark feature of the development of AMD, reflecting either an increase in migration of monocytes into the retina, or a failure of immune cell elimination from the retina. Furthermore, changes in phagocytic ability of immune cells could contribute to the accumulation of drusen deposits in the posterior eye. SUMMARY An overview of how retinal microglia maintain retinal homeostasis under normal conditions is provided, and then how they contribute to each stage of AMD. In addition, circulating monocytes are altered in those with AMD, contributing to the overall inflammatory state. Understanding the role of cells of the innate immune system in AMD may uncover novel therapeutic targets with which to reduce either the development or progression of disease.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Lavalette S, Conart JB, Touhami S, Roubeix C, Houssier M, Augustin S, Raoul W, Combadière C, Febbraio M, Ong H, Chemtob S, Sahel JA, Delarasse C, Guillonneau X, Sennlaub F. CD36 Deficiency Inhibits Retinal Inflammation and Retinal Degeneration in Cx3cr1 Knockout Mice. Front Immunol 2020; 10:3032. [PMID: 31969887 PMCID: PMC6960398 DOI: 10.3389/fimmu.2019.03032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background: CD36, a member of the class B scavenger receptor family, participates in Toll-like receptor signaling on mononuclear phagocytes (MP) and can promote sterile pathogenic inflammation. We here analyzed the effect of CD36 deficiency on retinal inflammation and photoreceptor degeneration, the hallmarks of age-related macular degeneration (AMD), that characterize Cx3cr1−/−mice. Methods: We analyzed subretinal MP accumulation, and cone- and rod-degeneration in light-challenged and aged, CD36 competent or deficient, hyper-inflammatory Cx3cr1−/− mice, using histology and immune-stained retinal flatmounts. Monocytes (Mo) were subretinally adoptively transferred to evaluate their elimination rate from the subretinal space and Interleukin 6 (IL-6) secretion from cultured Mo-derived cells (MdCs) of the different mouse strains were analyzed. Results: CD36 deficient Cx3cr1−/− mice were protected against age- and light-induced subretinal inflammation and associated cone and rod degeneration. CD36 deficiency in Cx3cr1−/− MPs inhibited their prolonged survival in the immune-suppressive subretinal space and reduced the exaggerated IL-6 secretion observed in Cx3cr1−/− MPs that we previously showed leads to increased subretinal MP survival. Conclusion:Cd36 deficiency significantly protected hyperinflammatory Cx3cr1−/− mice against subretinal MP accumulation and associated photoreceptor degeneration. The observed CD36-dependent induction of pro-inflammatory IL-6 might be at least partially responsible for the prolonged MP survival in the immune-suppressive environment and its pathological consequences on photoreceptor homeostasis.
Collapse
Affiliation(s)
- Sophie Lavalette
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Sara Touhami
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Marianne Houssier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - William Raoul
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Université de Tours, Inserm, N2C UMR 1069, Faculté de Médecine, Tours, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, Université de Montréal, Montreal, QC, Canada
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Cécile Delarasse
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Florian Sennlaub
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| |
Collapse
|
35
|
Charles-Messance H, Blot G, Couturier A, Vignaud L, Touhami S, Beguier F, Siqueiros L, Forster V, Barmo N, Augustin S, Picaud S, Sahel JA, Rendon A, Grosche A, Tadayoni R, Sennlaub F, Guillonneau X. IL-1β induces rod degeneration through the disruption of retinal glutamate homeostasis. J Neuroinflammation 2020; 17:1. [PMID: 31900165 PMCID: PMC6942287 DOI: 10.1186/s12974-019-1655-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Age-related macular degeneration is characterized by the accumulation of subretinal macrophages and the degeneration of cones, but mainly of rods. We have previously shown that Mononuclear Phagocytes-derived IL-1β induces rod photoreceptor cell death during experimental subretinal inflammation and in retinal explants exposed to IL-1β but the mechanism is unknown. METHODS Retinal explants were culture in the presence of human monocytes or IL-1β and photoreceptor cell survival was analyzed by TUNEL labeling. Glutamate concentration and transcription levels of gene involved in the homeostasis of glutamate were analyzed in cell fractions of explant cultured or not in the presence of IL-1β. Glutamate receptor antagonists were evaluated for their ability to reduce photoreceptor cell death in the presence of IL1-β or monocytes. RESULTS We here show that IL-1β does not induce death in isolated photoreceptors, suggesting an indirect effect. We demonstrate that IL-1β leads to glutamate-induced rod photoreceptor cell death as it increases the extracellular glutamate concentrations in the retina through the inhibition of its conversion to glutamine in Müller cells, increased release from Müller cells, and diminished reuptake. The inhibition of non-NMDA receptors completely and efficiently prevented rod apoptosis in retinal explants cultured in the presence of IL-1β or, more importantly, in vivo, in a model of subretinal inflammation. CONCLUSIONS Our study emphasizes the importance of inflammation in the deregulation of glutamate homeostasis and provides a comprehensive mechanism of action for IL-1β-induced rod degeneration.
Collapse
Affiliation(s)
- Hugo Charles-Messance
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Guillaume Blot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Aude Couturier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.,Department of Ophthalmology, Hôpital Lariboisière, Paris, France
| | - Lucile Vignaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Sara Touhami
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.,Department of Ophthalmology, Hôpital Lariboisière, Paris, France
| | - Fanny Beguier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Lourdes Siqueiros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Valérie Forster
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Nour Barmo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Alvaro Rendon
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Grosshaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| | - Ramin Tadayoni
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.,Department of Ophthalmology, Hôpital Lariboisière, Paris, France
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
36
|
Wu BM, Liu JD, Li YH, Li J. Margatoxin mitigates CCl4‑induced hepatic fibrosis in mice via macrophage polarization, cytokine secretion and STAT signaling. Int J Mol Med 2019; 45:103-114. [PMID: 31746414 PMCID: PMC6889929 DOI: 10.3892/ijmm.2019.4395] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
A number of macrophage phenotypes have been previously identified as crucial regulators in the progression of hepatic fibrosis (HF). Cytokines from macrophages or Kupffer cells (KCs) have also been identified to be important regulators in HF. Blocking Kv1.3 in models of HF, regulating macrophage polarization and cytokine secretion have not yet been assessed as potential treatments options for this condition. In the current study, a model of carbon tetrachloride (CCl4)-induced HF was established and examined the effects of margatoxin (MgTX; an inhibitor of Kv1.3) on HF. Hematoxylin and eosin, Masson's trichrome and immunohistochemistry staining were performed to determine whether MgTX can alleviate liver fibrosis. To elucidate the mechanisms through which MgTX attenuates liver injury, reverse transcription-quantitative PCR and western blot analysis were used to detect polarized macrophage markers in RAW264.7 cells and cytokines were examined using ELISA. Furthermore, macrophage polarization signal transducer and activator of transcription (STAT) signaling, which is associated with macrophage polarization, was identified in RAW264.7 cells. The results revealed that MgTX protected the mice from CCl4-induced liver fibrosis. Furthermore, MgTX decreased the expression of M1 phenotype biomarkers, and increased the expression of M2 phenotype biomarkers in CCl4-induced HF. Additionally, the production of pro-inflammatory cytokines was decreased and interleukin-10 production was increased in the serum of mice with HF injected with MgTX. Furthermore, MgTX was found to regulate the expression of M1 markers by suppressing p-STAT1 activity and increasing the expression of M2 markers by promoting p-STAT6 activity. On the whole, the findings of this study demonstrate that MgTX is able to alleviate CCl4-induced HF in mice, possibly via macrophage polarization, cytokine secretion and STAT signaling.
Collapse
Affiliation(s)
- Bao-Ming Wu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Anhui 230032, P.R. China
| | - Jun-Da Liu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Anhui 230032, P.R. China
| | - Yuan-Hai Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Anhui 230032, P.R. China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Anhui 230032, P.R. China
| |
Collapse
|
37
|
Okamoto T, Kawashima H, Osada H, Toda E, Homma K, Nagai N, Imai Y, Tsubota K, Ozawa Y. Dietary Spirulina Supplementation Protects Visual Function From Photostress by Suppressing Retinal Neurodegeneration in Mice. Transl Vis Sci Technol 2019; 8:20. [PMID: 31788349 PMCID: PMC6871545 DOI: 10.1167/tvst.8.6.20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE We investigated whether daily consumption of Spirulina, an antioxidant generating cyanobacterial nutritional supplement, would suppress photostress-induced retinal damage and prevent vision loss in mice. METHODS Six-week-old male BALB/cAJcl mice were allowed constant access to either a standard or Spirulina-supplemented diet (20% Spirulina) that included the antioxidants, β-carotene and zeaxanthin, and proteins for 4 weeks. Following dark adaptation, mice were exposed to 3000-lux white light for 1 hour and returned to their cages. Visual function was analyzed by electroretinogram, and retinal histology by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated, deoxyuridine triphosphate nick-end labeling (TUNEL) assay, and immunohistochemistry. Retinal expression of proteins, reactive oxygen species (ROS), and mRNAs were measured using immunoblot analysis, enzyme-linked immunosorbent assay (ELISA), 2',7'-dichlorofluorescein-diacetate, or ROS Brite 700 Dyes, and real-time reverse-transcription polymerase chain reaction, respectively. RESULTS Light-induced visual function impairment was suppressed by constant Spirulina intake. Thinning of the photoreceptor layer and outer segments, photoreceptor cell death, decreased rhodopsin protein, and induction of glial fibrillary acidic protein were ameliorated in the Spirulina-intake group. Increased retinal ROS levels after light exposure were reduced by Spirulina supplementation. Light-induced superoxide dismutase 2 and heme oxygenase-1 mRNAs in the retina, and Nrf2 activation in the photoreceptor cells, were preserved with Spirulina supplementation, despite reduced ROS levels, suggesting two pathways for suppressing ROS, scavenging and induction of endogenous antioxidative enzymes. Light-induced MCP-1 retinal mRNA and proteins were also suppressed by Spirulina. CONCLUSIONS Spirulina ingestion protected retinal photoreceptors from photostress in the retina. TRANSLATIONAL RELEVANCE Spirulina has potential as a nutrient supplement to prevent vision loss related to oxidative damage in the future.
Collapse
Affiliation(s)
- Tomohiro Okamoto
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in Retinal Degeneration. Front Immunol 2019; 10:1975. [PMID: 31481963 PMCID: PMC6710350 DOI: 10.3389/fimmu.2019.01975] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
The retina is a complex tissue with multiple cell layers that are highly ordered. Its sophisticated structure makes it especially sensitive to external or internal perturbations that exceed the homeostatic range. This necessitates the continuous surveillance of the retina for the detection of noxious stimuli. This task is mainly performed by microglia cells, the resident tissue macrophages which confer neuroprotection against transient pathophysiological insults. However, under sustained pathological stimuli, microglial inflammatory responses become dysregulated, often worsening disease pathology. In this review, we provide an overview of recent studies that depict microglial responses in diverse retinal pathologies that have degeneration and chronic immune reactions as key pathophysiological components. We also discuss innovative immunomodulatory therapy strategies that dampen the detrimental immunological responses to improve disease outcome.
Collapse
Affiliation(s)
- Khalid Rashid
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isha Akhtar-Schaefer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
39
|
Promiscuous Chemokine Antagonist (BKT130) Suppresses Laser-Induced Choroidal Neovascularization by Inhibition of Monocyte Recruitment. J Immunol Res 2019; 2019:8535273. [PMID: 31467935 PMCID: PMC6701410 DOI: 10.1155/2019/8535273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/05/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background Age-related macular degeneration (AMD), the most common cause of blindness in the developed world, usually affects individuals older than 60 years of age. The majority of visual loss in this disease is attributable to the development of choroidal neovascularization (CNV). Mononuclear phagocytes, including monocytes and their tissue descendants, macrophages, have long been implicated in the pathogenesis of neovascular AMD (nvAMD). Current therapies for nvAMD are based on targeting vascular endothelial growth factor (VEGF). This study is aimed at assessing if perturbation of chemokine signaling and mononuclear cell recruitment may serve as novel complementary therapeutic targets for nvAMD. Methods A promiscuous chemokine antagonist (BKT130), aflibercept treatment, or combined BKT130+aflibercept treatment was tested in an in vivo laser-induced model of choroidal neovascularization (LI-CNV) and in an ex vivo choroidal sprouting assay (CSA). Quantification of CD11b+ cell in the CNV area was performed, and mRNA levels of genes implicated in CNV growth were measured in the retina and RPE-choroid. Results BKT130 reduced the CNV area and recruitment of CD11b+ cells by 30-35%. No effect of BKT130 on macrophages' proangiogenic phenotype was demonstrated ex vivo, but a lower VEGFA and CCR2 expression was found in the RPE-choroid and a lower expression of TNFα and NOS1 was found in both RPE-choroid and retinal tissues in the LI-CNV model under treatment with BKT130. Conclusions Targeting monocyte recruitment via perturbation of chemokine signaling can reduce the size of experimental CNV and should be evaluated as a potential novel therapeutic modality for nvAMD.
Collapse
|
40
|
Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N. IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases. Front Immunol 2019; 10:1618. [PMID: 31379825 PMCID: PMC6646526 DOI: 10.3389/fimmu.2019.01618] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
Inflammation underpins and contributes to the pathogenesis of many retinal degenerative diseases. The recruitment and activation of both resident microglia and recruited macrophages, as well as the production of cytokines, are key contributing factors for progressive cell death in these diseases. In particular, the interleukin 1 (IL-1) family consisting of both pro- and anti-inflammatory cytokines has been shown to be pivotal in the mediation of innate immunity and contribute directly to a number of retinal degenerations, including Age-Related Macular Degeneration (AMD), diabetic retinopathy, retinitis pigmentosa, glaucoma, and retinopathy of prematurity (ROP). In this review, we will discuss the role of IL-1 family members and inflammasome signaling in retinal degenerative diseases, piecing together their contribution to retinal disease pathology, and identifying areas of research expansion required to further elucidate their function in the retina.
Collapse
Affiliation(s)
- Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Si Ming Man
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
41
|
Akhtar-Schäfer I, Wang L, Krohne TU, Xu H, Langmann T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med 2019; 10:emmm.201708259. [PMID: 30224384 PMCID: PMC6180304 DOI: 10.15252/emmm.201708259] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review highlights the role of three key immune pathways in the pathophysiology of major retinal degenerative diseases including diabetic retinopathy, age‐related macular degeneration, and rare retinal dystrophies. We first discuss the mechanisms how loss of retinal homeostasis evokes an unbalanced retinal immune reaction involving responses of local microglia and recruited macrophages, activity of the alternative complement system, and inflammasome assembly in the retinal pigment epithelium. Presenting these key mechanisms as complementary targets, we specifically emphasize the concept of immunomodulation as potential treatment strategy to prevent or delay vision loss. Promising molecules are ligands for phagocyte receptors, specific inhibitors of complement activation products, and inflammasome inhibitors. We comprehensively summarize the scientific evidence for this strategy from preclinical animal models, human ocular tissue analyses, and clinical trials evolving in the last few years.
Collapse
Affiliation(s)
- Isha Akhtar-Schäfer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Luping Wang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Tim U Krohne
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Heping Xu
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany .,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Retinal miRNA Functions in Health and Disease. Genes (Basel) 2019; 10:genes10050377. [PMID: 31108959 PMCID: PMC6562649 DOI: 10.3390/genes10050377] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/12/2023] Open
Abstract
The health and function of our visual system relies on accurate gene expression. While many genetic mutations are associated with visual impairment and blindness, we are just beginning to understand the complex interplay between gene regulation and retinal pathologies. MicroRNAs (miRNAs), a class of non-coding RNAs, are important regulators of gene expression that exert their function through post-transcriptional silencing of complementary mRNA targets. According to recent transcriptomic analyses, certain miRNA species are expressed in all retinal cell types, while others are cell type-specific. As miRNAs play important roles in homeostasis, cellular function, and survival of differentiated retinal cell types, their dysregulation is associated with retinal degenerative diseases. Thus, advancing our understanding of the genetic networks modulated by miRNAs is central to harnessing their potential as therapeutic agents to overcome visual impairment. In this review, we summarize the role of distinct miRNAs in specific retinal cell types, the current knowledge on their implication in inherited retinal disorders, and their potential as therapeutic agents.
Collapse
|
43
|
Fernando N, Wooff Y, Aggio-Bruce R, Chu-Tan JA, Jiao H, Dietrich C, Rutar M, Rooke M, Menon D, Eells JT, Valter K, Board PG, Provis J, Natoli R. Photoreceptor Survival Is Regulated by GSTO1-1 in the Degenerating Retina. Invest Ophthalmol Vis Sci 2019; 59:4362-4374. [PMID: 30193308 DOI: 10.1167/iovs.18-24627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological disorders; however, its role in retinal degenerations is unknown. The aim of this study was to investigate the role of GSTO1-1 in modulating oxidative stress and consequent inflammation in the normal and degenerating retina. Methods The role of GSTO1-1 in retinal degenerations was explored by using Gsto1-/- mice in a model of retinal degeneration. The expression and localization of GSTO1-1 were investigated with immunohistochemistry and Western blot. Changes in the expression of inflammatory (Ccl2, Il-1β, and C3) and oxidative stress (Nox1, Sod2, Gpx3, Hmox1, Nrf2, and Nqo1) genes were investigated via quantitative real-time polymerase chain reaction. Retinal function in Gsto1-/- mice was investigated by using electroretinography. Results GSTO1-1 was localized to the inner segment of cone photoreceptors in the retina. Gsto1-/- photo-oxidative damage (PD) mice had decreased photoreceptor cell death as well as decreased expression of inflammatory (Ccl2, Il-1β, and C3) markers and oxidative stress marker Nqo1. Further, retinal function in the Gsto1-/- PD mice was increased as compared to wild-type PD mice. Conclusions These results indicate that GSTO1-1 is required for inflammatory-mediated photoreceptor death in retinal degenerations. Targeting GSTO1-1 may be a useful strategy to reduce oxidative stress and inflammation and ameliorate photoreceptor loss, slowing the progression of retinal degenerations.
Collapse
Affiliation(s)
- Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Catherine Dietrich
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melissa Rooke
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Deepthi Menon
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Janis T Eells
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Philip G Board
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
44
|
Lin CH, Wu MR, Huang WJ, Chow DSL, Hsiao G, Cheng YW. Low-Luminance Blue Light-Enhanced Phototoxicity in A2E-Laden RPE Cell Cultures and Rats. Int J Mol Sci 2019; 20:ijms20071799. [PMID: 30979028 PMCID: PMC6480556 DOI: 10.3390/ijms20071799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
N-retinylidene-N-retinylethanolamine (A2E) and other bisretinoids are components of lipofuscin and accumulate in retinal pigment epithelial (RPE) cells—these adducts are recognized in the pathogenesis of retinal degeneration. Further, blue light-emitting diode (LED) light (BLL)-induced retinal toxicity plays an important role in retinal degeneration. Here, we demonstrate that low-luminance BLL enhances phototoxicity in A2E-laden RPE cells and rats. RPE cells were subjected to synthetic A2E, and the effects of BLL on activation of apoptotic biomarkers were examined by measuring the levels of cleaved caspase-3. BLL modulates the protein expression of zonula-occludens 1 (ZO-1) and paracellular permeability in A2E-laden RPE cells. Early inflammatory and angiogenic genes were also screened after short-term BLL exposure. In this study, we developed a rat model for A2E treatment with or without BLL exposure for 21 days. BLL exposure caused fundus damage, decreased total retinal thickness, and caused neuron transduction injury in the retina, which were consistent with the in vitro data. We suggest that the synergistic effects of BLL and A2E accumulation in the retina increase the risk of retinal degeneration. These outcomes help elucidate the associations between BLL/A2E and angiogenic/apoptotic mechanisms, as well as furthering therapeutic strategies.
Collapse
Affiliation(s)
- Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Man-Ru Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Diana Shu-Lian Chow
- Institute of Drug Education and Research, College of Pharmacy, University of Houston, Texas 77004, USA.
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
45
|
Léveillard T, Philp NJ, Sennlaub F. Is Retinal Metabolic Dysfunction at the Center of the Pathogenesis of Age-related Macular Degeneration? Int J Mol Sci 2019; 20:ijms20030762. [PMID: 30754662 PMCID: PMC6387069 DOI: 10.3390/ijms20030762] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023] Open
Abstract
The retinal pigment epithelium (RPE) forms the outer blood⁻retina barrier and facilitates the transepithelial transport of glucose into the outer retina via GLUT1. Glucose is metabolized in photoreceptors via the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS) but also by aerobic glycolysis to generate glycerol for the synthesis of phospholipids for the renewal of their outer segments. Aerobic glycolysis in the photoreceptors also leads to a high rate of production of lactate which is transported out of the subretinal space to the choroidal circulation by the RPE. Lactate taken up by the RPE is converted to pyruvate and metabolized via OXPHOS. Excess lactate in the RPE is transported across the basolateral membrane to the choroid. The uptake of glucose by cone photoreceptor cells is enhanced by rod-derived cone viability factor (RdCVF) secreted by rods and by insulin signaling. Together, the three cells act as symbiotes: the RPE supplies the glucose from the choroidal circulation to the photoreceptors, the rods help the cones, and both produce lactate to feed the RPE. In age-related macular degeneration this delicate ménage à trois is disturbed by the chronic infiltration of inflammatory macrophages. These immune cells also rely on aerobic glycolysis and compete for glucose and produce lactate. We here review the glucose metabolism in the homeostasis of the outer retina and in macrophages and hypothesize what happens when the metabolism of photoreceptors and the RPE is disturbed by chronic inflammation.
Collapse
Affiliation(s)
- Thierry Léveillard
- . Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Nancy J Philp
- . Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Florian Sennlaub
- . Department of Therapeutics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
46
|
Karlen SJ, Miller EB, Wang X, Levine ES, Zawadzki RJ, Burns ME. Monocyte infiltration rather than microglia proliferation dominates the early immune response to rapid photoreceptor degeneration. J Neuroinflammation 2018; 15:344. [PMID: 30553275 PMCID: PMC7659426 DOI: 10.1186/s12974-018-1365-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 01/07/2023] Open
Abstract
Background Activation of resident microglia accompanies every known form of neurodegeneration, but the involvement of peripheral monocytes that extravasate and rapidly transform into microglia-like macrophages within the central nervous system during degeneration is far less clear. Methods Using a combination of in vivo ocular imaging, flow cytometry, and immunohistochemistry, we investigated the response of infiltrating cells in a light-inducible mouse model of photoreceptor degeneration. Results Within 24 h, resident microglia became activated and began migrating to the site of degeneration. Retinal expression of CCL2 increased just prior to a transient period of CCR2+ cell extravasation from the retinal vasculature. Proliferation of microglia and monocytes occurred concurrently; however, there was no indication of proliferation in either population until 72–96 h after neurodegeneration began. Eliminating CCL2-CCR2 signaling blocked monocyte recruitment, but did not alter the extent of retinal degeneration. Conclusions These results demonstrate that the immune response to photoreceptor degeneration includes both resident microglia and monocytes, even at very early times. Surprisingly, preventing monocyte infiltration did not block neurodegeneration, suggesting that in this model, degeneration is limited by cell clearance from other phagocytes or by the timing of intrinsic cell death programs. These results show monocyte involvement is not limited to disease states that overwhelm or deplete the resident microglial population and that interventions focused on modulating the peripheral immune system are not universally beneficial for staving off degeneration. Electronic supplementary material The online version of this article (10.1186/s12974-018-1365-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Eric B Miller
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA
| | - Xinlei Wang
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.,Department of Ophthalmology & Vision Science, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Emily S Levine
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Robert J Zawadzki
- Department of Ophthalmology & Vision Science, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Marie E Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA. .,Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA. .,Department of Ophthalmology & Vision Science, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
47
|
Lactobacillus paracasei KW3110 Prevents Blue Light-Induced Inflammation and Degeneration in the Retina. Nutrients 2018; 10:nu10121991. [PMID: 30558320 PMCID: PMC6316514 DOI: 10.3390/nu10121991] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration and retinitis pigmentosa are leading causes of blindness and share a pathological feature, which is photoreceptor degeneration. To date, the lack of a potential treatment to prevent such diseases has raised great concern. Photoreceptor degeneration can be accelerated by excessive light exposure via an inflammatory response; therefore, anti-inflammatory agents would be candidates to prevent the progress of photoreceptor degeneration. We previously reported that a lactic acid bacterium, Lactobacillus paracasei KW3110 (L. paracasei KW3110), activated macrophages suppressing inflammation in mice and humans. Recently, we also showed that intake of L. paracasei KW3110 could mitigate visual display terminal (VDT) load-induced ocular disorders in humans. However, the biological mechanism of L. paracasei KW3110 to retain visual function remains unclear. In this study, we found that L. paracasei KW3110 activated M2 macrophages inducing anti-inflammatory cytokine interleukin-10 (IL-10) production in vitro using bone marrow-derived M2 macrophages. We also show that IL-10 gene expression was significantly increased in the intestinal immune tissues 6 h after oral administration of L. paracasei KW3110 in vivo. Furthermore, we demonstrated that intake of L. paracasei KW3110 suppressed inflammation and photoreceptor degeneration in a murine model of light-induced retinopathy. These results suggest that L. paracasei KW3110 may have a preventive effect against degrative retinal diseases.
Collapse
|
48
|
Jiao H, Rutar M, Fernando N, Yednock T, Sankaranarayanan S, Aggio-Bruce R, Provis J, Natoli R. Subretinal macrophages produce classical complement activator C1q leading to the progression of focal retinal degeneration. Mol Neurodegener 2018; 13:45. [PMID: 30126455 PMCID: PMC6102844 DOI: 10.1186/s13024-018-0278-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of the alternative complement pathway and its mediation by retinal microglia and macrophages, is well-established in the pathogenesis of Age-Related Macular Degeneration (AMD). However, the contribution of the classical complement pathway towards the progression of retinal degenerations is not fully understood, including the role of complement component 1q (C1q) as a critical activator molecule of the classical pathway. Here, we investigated the contribution of C1q to progressive photoreceptor loss and neuroinflammation in retinal degenerations. METHODS Wild-type (WT), C1qa knockout (C1qa-/-) and mice treated with a C1q inhibitor (ANX-M1; Annexon Biosciences), were exposed to photo-oxidative damage (PD) and were observed for progressive lesion development. Retinal function was assessed by electroretinography, followed by histological analyses to assess photoreceptor degeneration. Retinal inflammation was investigated through complement activation, macrophage recruitment and inflammasome expression using western blotting, qPCR and immunofluorescence. C1q was localised in human AMD donor retinas using immunohistochemistry. RESULTS PD mice had increased levels of C1qa which correlated with increasing photoreceptor cell death and macrophage recruitment. C1qa-/- mice did not show any differences in photoreceptor loss or inflammation at 7 days compared to WT, however at 14 days after the onset of damage, C1qa-/- retinas displayed less photoreceptor cell death, reduced microglia/macrophage recruitment to the photoreceptor lesion, and higher visual function. C1qa-/- mice displayed reduced inflammasome and IL-1β expression in microglia and macrophages in the degenerating retina. Retinal neutralisation of C1q, using an intravitreally-delivered anti-C1q antibody, reduced the progression of retinal degeneration following PD, while systemic delivery had no effect. Finally, retinal C1q was found to be expressed by subretinal microglia/macrophages located in the outer retina of early AMD donor eyes, and in mouse PD retinas. CONCLUSIONS Our data implicate subretinal macrophages, C1q and the classical pathway in progressive retinal degeneration. We demonstrate a role of local C1q produced by microglia/macrophages as an instigator of inflammasome activation and inflammation. Crucially, we have shown that retinal C1q neutralisation during disease progression may slow retinal atrophy, providing a novel strategy for the treatment of complement-mediated retinal degenerations including AMD.
Collapse
Affiliation(s)
- Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | | | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.,ANU Medical School, The Australian National University, ACT, Canberra, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia. .,ANU Medical School, The Australian National University, ACT, Canberra, Australia.
| |
Collapse
|
49
|
Morita Y, Jounai K, Miyake M, Inaba M, Kanauchi O. Effect of Heat-Killed Lactobacillus paracasei KW3110 Ingestion on Ocular Disorders Caused by Visual Display Terminal (VDT) Loads: A Randomized, Double-Blind, Placebo-Controlled Parallel-Group Study. Nutrients 2018; 10:nu10081058. [PMID: 30096952 PMCID: PMC6116181 DOI: 10.3390/nu10081058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Visual display terminals (VDTs) emitting blue light can cause ocular disorders including eye fatigue. Some dietary constituents have been reported to be effective in improving ocular disorders while few clinical studies have been performed. We evaluated the effects of heat-killed Lactobacillus paracasei KW 3110 on improving ocular disorders and symptoms of eye fatigue among healthy human subjects with VDT loads. METHODS In vitro, the effect of L. paracasei KW3110 on blue light-induced human retinal pigment epithelial (ARPE-19) cell damage. For clinical studies, 62 healthy Japanese volunteers of 35 to 45 years of age who had experienced eye fatigue were randomized into two groups and given a placebo or L. paracasei KW3110-containing supplements for eight weeks. The primary endpoint was changes in VDT load-induced eye fatigue as determined by critical flicker frequency four and eight weeks after the start of supplementation. RESULTS In vitro, blue light-induced human retinal cell death was suppressed with the culture supernatants of cells treated with L. paracasei KW3110. In clinical study, the VDT load-induced reduction of critical flicker frequency tended to be milder in the L. paracasei KW3110 group when compared with the placebo group during the fourth week. Subgroup analysis classified by the degree of eye fatigue showed that the VDT load-induced reduction of critical flicker frequency was significantly better in the high-level eye fatigue subjects from the L. paracasei KW3110 group when compared with the placebo group during the fourth week (p = 0.020). CONCLUSIONS L. paracasei KW3110 suppressed blue light-induced retinal pigment epithelial cell death. In the clinical study, ingestion of L. paracasei KW3110 had a potential to improve eye fatigue induced by VDT loads especially high levels of eye fatigue. However, further studies should be required to show more dependable clinical efficacy of L. paracasei KW3110.
Collapse
Affiliation(s)
- Yuji Morita
- Research Laboratories for Health Science & Food Technologies, Kirin Company, Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Kenta Jounai
- Technical Development Center, Koiwai Dairy Products Co. Ltd., Sayama, Saitama 350-1321, Japan.
| | - Mika Miyake
- Research Laboratories for Health Science & Food Technologies, Kirin Company, Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | | | - Osamu Kanauchi
- Research Laboratories for Health Science & Food Technologies, Kirin Company, Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| |
Collapse
|
50
|
Chu-Tan JA, Rutar M, Saxena K, Aggio-Bruce R, Essex RW, Valter K, Jiao H, Fernando N, Wooff Y, Madigan MC, Provis J, Natoli R. MicroRNA-124 Dysregulation is Associated With Retinal Inflammation and Photoreceptor Death in the Degenerating Retina. Invest Ophthalmol Vis Sci 2018; 59:4094-4105. [PMID: 30098196 PMCID: PMC11647551 DOI: 10.1167/iovs.18-24623] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose We sought to determine the role and retinal cellular location of microRNA-124 (miR-124) in a neuroinflammatory model of retinal degeneration. Further, we explored the anti-inflammatory relationship of miR-124 with a predicted messenger RNA (mRNA) binding partner, chemokine (C-C motif) ligand 2 (Ccl2), which is crucially involved in inflammatory cell recruitment in the damaged retina. Methods Human AMD donor eyes and photo-oxidative damaged (PD) mice were labeled for miR-124 expression using in situ hybridization. PDGFRa-cre RFP mice were used for Müller cell isolation from whole retinas. MIO-M1 immortalized cells and rat primary Müller cells were used for in vitro analysis of miR-124 expression and its relationship with Ccl2. Therapeutic efficacy was tested with intravitreal administration of miR-124 mimic in mice, with electroretinography used to determine retinal function. IBA1 immunohistochemistry and photoreceptor row counts were used for assessment of inflammation and cell death. Results MiR-124 expression was correlated with progressive retinal damage, inflammation, and cell death in human AMD and PD mice. In addition, miR-124 expression was inversely correlated to Ccl2 expression in mice following PD. MiR-124 was localized to both neuronal-like photoreceptors and glial (Müller) cells in the retina, with a redistribution from neurons to glia occurring as a consequence of PD. Finally, intravitreal administration of miR-124 mimics decreased retinal inflammation and photoreceptor cell death, and improved retinal function. Conclusions This study has provided an understanding of the mechanism behind miR-124 in the degenerating retina and demonstrates the usefulness of miR-124 mimics for the modulation of retinal degenerations.
Collapse
Affiliation(s)
- Joshua A. Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Kartik Saxena
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Rohan W. Essex
- Academic Unit of Ophthalmology, The Australian National University, Canberra, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Australian National University Medical School, Acton, Australia
| | - Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Michele C. Madigan
- Save Sight Institute, Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, Australia
- School of Optometry and Vision Science, The University of New South Wales, Kensington, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Australian National University Medical School, Acton, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Australian National University Medical School, Acton, Australia
| |
Collapse
|