1
|
Niu C, Zou Y, Dong M, Niu Y. Plant-derived compounds as potential neuroprotective agents in Parkinson's disease. Nutrition 2025; 130:112610. [PMID: 39546872 DOI: 10.1016/j.nut.2024.112610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES Current Parkinson's disease (PD) medications treat symptoms; none can slow down or arrest the disease progression. Disease-modifying therapies for PD remain an urgent unmet clinical need. This review was designed to summarize recent findings regarding to the efficacy of phytochemicals in the treatment of PD and their underlying mechanisms. METHODS A literature search was performed using PubMed databases from inception until January 2024. RESULTS We first review the role of oxidative stress in PD and phytochemical-based antioxidant therapy. We then summarize recent work on neuroinflammation in the pathogenesis of PD, as well as preclinical data supporting anti-inflammatory efficacy in treating or preventing the disease. We last evaluate evidence for brain mitochondrial dysfunction in PD, together with the phytochemicals that protect mitochondrial function in preclinical model of PD. Furthermore, we discussed possible reasons for failures of preclinical-to-clinical translation for neuroprotective therapeutics. CONCLUSIONS There is now extensive evidence from preclinical studies that neuroprotective phytochemicals as promising candidate drugs for PD are needed to translate from the laboratory to the clinic.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, NY 14621, USA
| | - Yu Zou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
2
|
Liu L, Wang T, Zhou H, Zheng J, Liu Q, Wang W, Liu X, Zhang X, Ge D, Shi W, Sun Y. Protective and Damaging Mechanisms of Neuromelanin-Like Nanoparticles and Iron in Parkinson's Disease. Adv Healthc Mater 2024; 13:e2402718. [PMID: 39358952 DOI: 10.1002/adhm.202402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD) pathology speculates that neuromelanin (NM) and iron ions play a significant role in physiological and pathological conditions of PD. Because the difficult accessibility of NM has limited targeted research, synthetic melanin-like nanoparticles have been used to instead. In this report, the eumelanin and pheomelanin-like polydopamine (PDA) nanoparticles are prepared that can be used to simulate natural NM with or without chelating iron ion and studied the redox effects in vitro and in vivo on neuronal cells and PD. The synthetic pheomelanin-like PDA nanoparticles have much stronger redox activity than eumelanin-like PDA nanoparticles without or with iron ion. They can protect neurons by scavenging reactive oxygen species (ROS), while cause neuronal cell death and PD due to excessive binding of iron ions. This work provides new evidence for the relationship among two structural components of NM and iron in PD as well as displays the different effects on the roles of eumelanin and pheomelanin in redox activity under physiological or pathological conditions, which provide a new effective choice for cellular and animal models of PD and offer theoretical guidance for targeted treatment and mechanism research on PD.
Collapse
Affiliation(s)
- Lizhu Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Tianying Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hao Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jinyang Zheng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qiang Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xinxin Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiuming Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Hood MN, Ayompe E, Holmes-Hampton GP, Korotcov A, Wuddie K, Aschenake Z, Ahmed AE, Creavalle M, Knollmann-Ritschel B. Preliminary Promising Findings for Manganese Chloride as a Novel Radiation Countermeasure Against Acute Radiation Syndrome. Mil Med 2024; 189:598-607. [PMID: 39160887 DOI: 10.1093/milmed/usae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 04/05/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Military members and first responders may, at moment's notice, be asked to assist in incidents that may result in radiation exposure such as Operation Tomadachi in which the U.S. Navy provided significant relief for the Fukushima Daiichi Nuclear Reactor accident in Japan after an earthquake and tsunami in 2011. We are also currently facing potential threats from nuclear power plants in the Ukraine should a power disruption to a nuclear plant interfere with cooling or other safety measures. Exposure to high doses of radiation results in acute radiation syndrome (ARS) characterized by symptoms arising from hematopoietic, gastrointestinal, and neurovascular injuries. Although there are mitigators FDA approved to treat ARS, there are currently no FDA-approved prophylactic medical interventions to help protect persons who may need to respond to radiation emergencies. There is strong evidence that manganese (Mn) has radiation protective efficacy as a promising prophylactic countermeasure. MATERIALS AND METHODS All animal procedures were approved by the Institutional Animal Care and Use Committee. Male and female B6D2F1J mice, 10 to 11 weeks old, were used for neurotoxicity studies and temporal effects of Mn. Four groups were evaluated: (1) vehicle injection, (2) dose of 4.5 mg/kg for 3 days, (3) dose of 13.5 mg/kg, and (4) sham. Irradiated mice were exposed to 9.5 Gy whole body Co60 γ-radiation. MRI was performed with a high dose of manganese chloride (MnCl2) (150 mg/kg) to assess the distribution of the MnCl2. RESULTS The mice have promising survival curves (highest survival-13.5 mg/kg dose over 3 days of MnCl2 at 80% [87% female, 73% male] P = 0.0004). The complete blood count (CBC) results demonstrated a typical hematopoietic response in all of the irradiated groups, followed by mildly accelerated recovery by day 28 in the treated groups. No difference between groups was measured by Rota Rod, DigiGait, and Y-maze. Histologic evaluation of the bone marrow sections in the group given 13.5 mg/kg dose over 3 days had the best return to cellularity at 80%. MRI showed a systemic distribution of MnCl2. DISCUSSION The preliminary data suggest that a dose of 13.5 mg/kg of MnCl2 given over 3 days prior to exposure of radiation may have a protective benefit while not exhibiting the neurobehavioral problems. A countermeasure that can prophylactically protect emergency personnel entering an area contaminated with high levels of radiation is needed, especially in light that nuclear accidents are a continued global threat. There is a need for a protective agent with easy long-term storage, easy to transport, easy to administer, and low cost. Histologic evaluation supports the promising effect of MnCl2 in protecting tissue, especially the bone marrow using the dose given over 3 days (4.5 mg/kg per day) of MnCl2. CONCLUSIONS Initial experiments show that MnCl2 is a promising safe and effective prophylactic countermeasure against ARS. MRI data support the systemic distribution of MnCl2 which is needed in order to protect multiple tissues in the body. The pathology data in bone marrow and the brain support faster recovery from radiation exposure in the treated animals and decreased organ damage.
Collapse
Affiliation(s)
- Maureen N Hood
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emmanuel Ayompe
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandru Korotcov
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kefale Wuddie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zemenu Aschenake
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Anwar E Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Marqus Creavalle
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
4
|
Gregorio I, Russo L, Torretta E, Barbacini P, Contarini G, Pacinelli G, Bizzotto D, Moriggi M, Braghetta P, Papaleo F, Gelfi C, Moro E, Cescon M. GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice. Mol Neurodegener 2024; 19:22. [PMID: 38454456 PMCID: PMC10921719 DOI: 10.1186/s13024-024-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutations in the β-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of β-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a β-glucocerebrosidase irreversible inhibitor was used to dissect the impact of β-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of β-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which β-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for β-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of β-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS Here we show that β-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific β-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Loris Russo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Department of Biomedical and Technological Sciences, University of Catania, 95125, Catania, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
5
|
Panda SR, Panja P, Soni U, Naidu VGM. Neurobehavioral Analysis to Assess Olfactory and Motor Dysfunction in Parkinson's Disease. Methods Mol Biol 2024; 2761:511-528. [PMID: 38427259 DOI: 10.1007/978-1-0716-3662-6_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative condition, primarily affecting dopaminergic neurons. It is defined by motor impairments, such as bradykinesia, stiffness, resting tremor, and postural instability. The striatum, a structure essential for motor control, is impaired in function due to the significant loss of dopaminergic neurons in the substantia nigra and the development of Lewy bodies in the surviving nigral dopaminergic neurons. Olfactory impairment is one of the earliest indications of neurodegenerative disorders like PD that appear years before motor symptoms and cognitive decline development. Olfactory dysfunction is the most common nonmotor PD sign in at least 90% of cases, frequently occurring 5-10 years before motor disturbances. Surprisingly, even though olfactory impairment is intimately linked to PD and is thought to be a potential biomarker, little is known about the brain process underlying this failure. Exposure to environmental toxins has been linked to olfactory dysfunction, leading to nigral neurodegeneration and loss of motor functions. Behavioral neuroscience plays a significant role in identifying and characterizing these olfactory and motor symptoms. In preclinical research, novel treatment approaches are being evaluated in rodent models by behavioral phenotyping to ensure their efficacy. This chapter describes neurobehavioral analysis to assess olfactory and motor dysfunction in rodent models of Parkinson's disease.
Collapse
Affiliation(s)
- Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Pallabi Panja
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Ujjawal Soni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
6
|
Villa-Cedillo SA, Matta-Yee-Chig D, Soto-Domínguez A, Rodríguez-Rocha H, García-García A, Montes-de-Oca-Saucedo CR, Loera-Arias MDJ, Valdés J, Saucedo-Cárdenas O. CDNF overexpression prevents motor-cognitive dysfunction by intrastriatal CPP-based delivery system in a Parkinson's disease animal model. Neuropeptides 2023; 102:102385. [PMID: 37837805 DOI: 10.1016/j.npep.2023.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compact (SNpc), and no effective treatment has yet been established to prevent PD. Neurotrophic factors, such as cerebral dopamine neurotrophic factor (CDNF), have shown a neuroprotective effect on dopaminergic neurons. Previously, we developed a cell-penetrating-peptide-based delivery system that includes Asn194Lys mutation in the rabies virus glycoprotein-9R peptide (mRVG9R), which demonstrated a higher delivery rate than the wild-type. In this study, using a mouse PD-like model, we evaluated the intrastriatal mRVG9R-KP-CDNF gene therapy through motor and cognitive tests and brain cell analysis. The mRVG9R-KP-CDNF complex was injected into the striatum on days 0 and 20. To induce the PD-like model, mice were intraperitoneally administered Paraquat (PQ) twice a week for 6 weeks. Our findings demonstrate that mRVG9R-KP-CDNF gene therapy effectively protects brain cells from PQ toxicity and prevents motor and cognitive dysfunction in mice. We propose that the mRVG9R-KP-CDNF complex inhibits astrogliosis and microglia activation, safeguarding dopaminergic neurons and oligodendrocytes from PQ-induced damage. This study presents an efficient CDNF delivery system, protecting neurons and glia in the nigrostriatal pathway from PQ-induced damage, which is known to lead to motor and cognitive dysfunction in neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Sheila A Villa-Cedillo
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Daniel Matta-Yee-Chig
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Adolfo Soto-Domínguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Humberto Rodríguez-Rocha
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Aracely García-García
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | | | - María de Jesús Loera-Arias
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Jesús Valdés
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Bioquímica, Mexico City, Mexico
| | - Odila Saucedo-Cárdenas
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
7
|
Samtani G, Kim S, Michaud D, Hillhouse AE, Szule JA, Konganti K, Li J. Brain region dependent molecular signatures and myelin repair following chronic demyelination. Front Cell Neurosci 2023; 17:1169786. [PMID: 37180951 PMCID: PMC10171432 DOI: 10.3389/fncel.2023.1169786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Multiple sclerosis (MS) is the most prevalent demyelinating disease of the central nervous system, characterized by myelin destruction, axonal degeneration, and progressive loss of neurological functions. Remyelination is considered an axonal protection strategy and may enable functional recovery, but the mechanisms of myelin repair, especially after chronic demyelination, remain poorly understood. Here, we used the cuprizone demyelination mouse model to investigate spatiotemporal characteristics of acute and chronic de- and remyelination and motor functional recovery following chronic demyelination. Extensive remyelination occurred after both the acute and chronic insults, but with less robust glial responses and slower myelin recovery in the chronic phase. Axonal damage was found at the ultrastructural level in the chronically demyelinated corpus callosum and in remyelinated axons in the somatosensory cortex. Unexpectedly, we observed the development of functional motor deficits after chronic remyelination. RNA sequencing of isolated brain regions revealed significantly altered transcripts across the corpus callosum, cortex and hippocampus. Pathway analysis identified selective upregulation of extracellular matrix/collagen pathways and synaptic signaling in the chronically de/remyelinating white matter. Our study demonstrates regional differences of intrinsic reparative mechanisms after a chronic demyelinating insult and suggests a potential link between long-term motor function alterations and continued axonal damage during chronic remyelination. Moreover, the transcriptome dataset of three brain regions and over an extended de/remyelination period provides a valuable platform for a better understanding of the mechanisms of myelin repair as well as the identification of potential targets for effective remyelination and neuroprotection for progressive MS.
Collapse
Affiliation(s)
- Grace Samtani
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Sunja Kim
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Danielle Michaud
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - Joseph A. Szule
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - Jianrong Li
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Jianrong Li,
| |
Collapse
|
8
|
Khan MN, Cherukuri P, Negro F, Rajput A, Fabrowski P, Bansal V, Lancelin C, Lee TI, Bian Y, Mayer WP, Akay T, Müller D, Bonn S, Farina D, Marquardt T. ERR2 and ERR3 promote the development of gamma motor neuron functional properties required for proprioceptive movement control. PLoS Biol 2022; 20:e3001923. [PMID: 36542664 PMCID: PMC9815657 DOI: 10.1371/journal.pbio.3001923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/05/2023] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
The ability of terrestrial vertebrates to effectively move on land is integrally linked to the diversification of motor neurons into types that generate muscle force (alpha motor neurons) and types that modulate muscle proprioception, a task that in mammals is chiefly mediated by gamma motor neurons. The diversification of motor neurons into alpha and gamma types and their respective contributions to movement control have been firmly established in the past 7 decades, while recent studies identified gene expression signatures linked to both motor neuron types. However, the mechanisms that promote the specification of gamma motor neurons and/or their unique properties remained unaddressed. Here, we found that upon selective loss of the orphan nuclear receptors ERR2 and ERR3 (also known as ERRβ, ERRγ or NR3B2, NR3B3, respectively) in motor neurons in mice, morphologically distinguishable gamma motor neurons are generated but do not acquire characteristic functional properties necessary for regulating muscle proprioception, thus disrupting gait and precision movements. Complementary gain-of-function experiments in chick suggest that ERR2 and ERR3 could operate via transcriptional activation of neural activity modulators to promote a gamma motor neuron biophysical signature of low firing thresholds and high firing rates. Our work identifies a mechanism specifying gamma motor neuron functional properties essential for the regulation of proprioceptive movement control.
Collapse
Affiliation(s)
- Mudassar N. Khan
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- * E-mail: (MNK); (TM)
| | - Pitchaiah Cherukuri
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
- SRM University Andhra Pradesh, Mangalagiri-Mandal, Neeru Konda, Amaravati, Andhra Pradesh, India
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Ashish Rajput
- University Medical Center Hamburg Eppendorf, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, Hamburg, Germany
- Maximon AG, Zug, Switzerland
| | - Piotr Fabrowski
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Vikas Bansal
- University Medical Center Hamburg Eppendorf, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, Hamburg, Germany
- Biomedical Data Science and Machine Learning Group, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Camille Lancelin
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Tsung-I Lee
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Yehan Bian
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - William P. Mayer
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Müller
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Stefan Bonn
- University Medical Center Hamburg Eppendorf, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, Hamburg, Germany
| | - Dario Farina
- Department of Bioengineering, Imperial College London, Royal School of Mines, London, United Kingdom
| | - Till Marquardt
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
- * E-mail: (MNK); (TM)
| |
Collapse
|
9
|
Doyle AM, Bauer D, Hendrix C, Yu Y, Nebeck SD, Fergus S, Krieg J, Wilmerding LK, Blumenfeld M, Lecy E, Spencer C, Luo Z, Sullivan D, Brackman K, Ross D, Best S, Verma A, Havel T, Wang J, Johnson L, Vitek JL, Johnson MD. Spatiotemporal scaling changes in gait in a progressive model of Parkinson's disease. Front Neurol 2022; 13:1041934. [PMID: 36582611 PMCID: PMC9792983 DOI: 10.3389/fneur.2022.1041934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Objective Gait dysfunction is one of the most difficult motor signs to treat in patients with Parkinson's disease (PD). Understanding its pathophysiology and developing more effective therapies for parkinsonian gait dysfunction will require preclinical studies that can quantitatively and objectively assess the spatial and temporal features of gait. Design We developed a novel system for measuring volitional, naturalistic gait patterns in non-human primates, and then applied the approach to characterize the progression of parkinsonian gait dysfunction across a sequence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatments that allowed for intrasubject comparisons across mild, moderate, and severe stages. Results Parkinsonian gait dysfunction was characterized across treatment levels by a slower stride speed, increased time in both the stance and swing phase of the stride cycle, and decreased cadence that progressively worsened with overall parkinsonian severity. In contrast, decreased stride length occurred most notably in the moderate to severe parkinsonian state. Conclusion The results suggest that mild parkinsonism in the primate model of PD starts with temporal gait deficits, whereas spatial gait deficits manifest after reaching a more severe parkinsonian state overall. This study provides important context for preclinical studies in non-human primates studying the neurophysiology of and treatments for parkinsonian gait.
Collapse
Affiliation(s)
- Alex M. Doyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Devyn Bauer
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Claudia Hendrix
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Shane D. Nebeck
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Sinta Fergus
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Lucius K. Wilmerding
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Madeline Blumenfeld
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Emily Lecy
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Chelsea Spencer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ziling Luo
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Disa Sullivan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Krista Brackman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Dylan Ross
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Sendréa Best
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ajay Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Tyler Havel
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Luke Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Mutation of Tyrosine Sites in the Human Alpha-Synuclein Gene Induces Neurotoxicity in Transgenic Mice with Soluble Alpha-Synuclein Oligomer Formation. Cells 2022; 11:cells11223673. [PMID: 36429099 PMCID: PMC9688722 DOI: 10.3390/cells11223673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Overexpression of α-synuclein with tyrosine mutated to phenylalanine at position 125 leads to a severe phenotype with motor impairment and neuropathology in Drosophila. Here, we hypothesized that tyrosine mutations would similarly lead to impaired motor performance with neuropathology in a rodent model. In transgenic mice (ASO), tyrosines at positions 125, 133, and 136 in human α-synuclein were mutated to phenylalanine and cloned into a Thy1.2 expression vector, which was used to create transgenic mouse lines on a mixed genetic background TgN(Thy-1-SNCA-YF)4Emfu (YF). The YF mice had a decreased lifespan and displayed a dramatic motor phenotype with paralysis of both hind- and forelegs. Post-translational modification of α-synuclein due to phosphorylation of serine 129 is often seen in inclusions in the brains of patients with α-synucleinopathies. We observed a slight but significant increase in phosphorylation of serine 129 in the cytosol in YF mice compared to age-matched human α-synuclein transgenic mice (ASO). Conversely, significantly decreased phosphorylation of serine 129 was seen in synaptosomes of YF mice that also contained higher amounts of soluble oligomers. YF mice deposited full-length α-synuclein aggregates in neurons widespread in the CNS with the main occurrence in the forebrain structures of the cerebral cortex, the basal ganglia, and limbic structures. Full-length α-synuclein labeling was also prominent in many nuclear regions of the brain stem, deep cerebellar nuclei, and cerebellar cortex. The study shows that the substitution of tyrosines to phenylalanine in α-synuclein at positions 125, 133, and 136 leads to severe toxicity in vivo. An insignificant change upon tyrosine substitution suggests that the phosphorylation of serine 129 is not the cause of the toxicity.
Collapse
|
11
|
Xu J, Ao YL, Huang C, Song X, Zhang G, Cui W, Wang Y, Zhang XQ, Zhang Z. Harmol promotes α-synuclein degradation and improves motor impairment in Parkinson's models via regulating autophagy-lysosome pathway. NPJ Parkinsons Dis 2022; 8:100. [PMID: 35933473 PMCID: PMC9357076 DOI: 10.1038/s41531-022-00361-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
The abnormal accumulation of α-synuclein (α-syn) is a crucial factor for the onset and pathogenesis of Parkinson's disease (PD), and the autophagy-lysosome pathway (ALP) contributes to α-syn turnover. AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) regulate autophagy by initiating the macroautophagy cascade and promoting lysosomal biogenesis via increased transcription factor EB (TFEB) activity. Hence, activation of AMPK-mTOR-TFEB axis-mediated autophagy might promote α-syn clearance in PD. Harmol is a β-carboline alkaloid that has been extensively studied in a variety of diseases but rarely in PD models. In this study, we aimed to evaluate the effect and underlying mechanism of harmol in PD models in vitro and in vivo. We show that harmol reduces α-syn via ALP in a dose- and time-dependent manner in cell model that overexpressed human A53T mutant α-syn. We also demonstrate that harmol promotes the translocation of TFEB into the nucleus and accompanies the restoration of autophagic flux and lysosomal biogenesis. Importantly, harmol improves motor impairment and down-regulates α-syn levels in the substantia nigra and prefrontal cortex in the α-syn transgenic mice model. Further studies revealed that harmol might activate ALP through AMPK-mTOR-TFEB to promote α-syn clearance. These in vitro and in vivo improvements demonstrate that harmol activates the AMPK-mTOR-TFEB mediated ALP pathway, resulting in reduced α-syn, and suggesting the potential benefit of harmol in the treatment of PD.
Collapse
Affiliation(s)
- Jie Xu
- Guangdong Provincial Engineering Research Center for Modernization of TCM, Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yun-Lin Ao
- Guangdong Provincial Engineering Research Center for Modernization of TCM, Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Chunhui Huang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiubao Song
- Department of Rehabilitation, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Guiliang Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Qi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| | - Zaijun Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| |
Collapse
|
12
|
Wang W, Zheng J, Zhou H, Liu Q, Jia L, Zhang X, Ge D, Shi W, Sun Y. Polydopamine-Based Nanocomposite as a Biomimetic Antioxidant with a Variety of Enzymatic Activities for Parkinson's Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32901-32913. [PMID: 35820068 DOI: 10.1021/acsami.2c06981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Overproduction of reactive oxygen species (ROS) and cumulative oxidative stress induce the degeneration of neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta (SNpc) of PD patients. Due to its redox property, melanin-like polydopamine (PDA) has been studied for its ability to remove ROS with a series of antioxidant enzyme mimetic activities including superoxide dismutase (SOD) and catalase (CAT). Glutathione peroxidase (GPx) is important for maintaining ROS metabolic homeostasis, but only a few GPx-like nanozymes have been studied for in vivo therapy. As we know, selenocysteine is essential for the antioxidant activity of GPx. Hence, we co-synthesized PDA with selenocystine (SeCys) to prepare a nanocomposite (PDASeCys) with GPx-like activity. The results showed that the PDASeCys nanocomposite has the same CAT and SOD enzymatic activities as PDA but better free radical scavenging efficiency and additional GPx enzymatic activity than PDA. In the 1-methyl-4-phenyl-pyridine ion (MPP+)-induced PD cell model, PDASeCys could increase intracellular GPx levels effectively and protect SH-SY5Y neuronal cells from oxidative stress caused by MPP+. In vivo, the PDASeCys nanocomposite effectively inhibited 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium (MPTP)-induced Parkinson-related symptoms of mice when it was injected into the substantia nigra (SN). This polydopamine-based nanocomposite containing selenocystine with a variety of enzymatic activities including GPx-like activity synthesized by a one-pot method provides convenience and safety in the neuromelanin-like nanozyme-based therapeutic strategy for oxidative stress-induced PD.
Collapse
Affiliation(s)
- Wei Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jinyang Zheng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hao Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Qiang Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Li Jia
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiuming Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Liu Y, Xing H, Ernst AF, Liu C, Maugee C, Yokoi F, Lakshmana M, Li Y. Hyperactivity of Purkinje cell and motor deficits in C9orf72 knockout mice. Mol Cell Neurosci 2022; 121:103756. [PMID: 35843530 PMCID: PMC10369482 DOI: 10.1016/j.mcn.2022.103756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022] Open
Abstract
A hexanucleotide (GGGGCC) repeat expansion in the first intron of the C9ORF72 gene is the most frequently reported genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The cerebellum has not traditionally been thought to be involved in the pathogenesis of C9ORF72-associated ALS/FTD, but recent evidence suggested a potential role. C9ORF72 is highly expressed in the cerebellum. Decreased C9ORF72 transcript and protein levels were detected in the postmortem cerebellum, suggesting a loss-of-function effect of C9ORF72 mutation. This study investigated the role of loss of C9ORF72 function using a C9orf72 knockout mouse line. C9orf72 deficiency led to motor impairment in rotarod, beam-walking, paw-print, open-field, and grip-strength tests. Purkinje cells are the sole output neurons in the cerebellum, and we next determined their involvement in the motor phenotypes. We found hyperactivity of Purkinje cells in the C9orf72 knockout mouse accompanied by a significant increase of the large-conductance calcium-activated potassium channel (BK) protein in the cerebellum. The link between BK and Purkinje cell firing was demonstrated by the acute application of the BK activator that increased the firing frequency of the Purkinje cells ex vivo. In vivo chemogenetic activation of Purkinje cells in wild-type mice led to similar motor deficits in rotarod and beam-walking tests. Our results highlight that C9ORF72 loss alters the activity of the Purkinje cell and potentially the pathogenesis of the disease. Manipulating the Purkinje cell firing or cerebellar output may contribute to C9ORF72-associated ALS/FTD treatment.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Alexis F Ernst
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Canna Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Christian Maugee
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Madepalli Lakshmana
- Department of Immunology and Nano-Medicine, The Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
14
|
Schrötter S, Yuskaitis CJ, MacArthur MR, Mitchell SJ, Hosios AM, Osipovich M, Torrence ME, Mitchell JR, Hoxhaj G, Sahin M, Manning BD. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep 2022; 39:110824. [PMID: 35584673 PMCID: PMC9175135 DOI: 10.1016/j.celrep.2022.110824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
The tuberous sclerosis complex (TSC) 1 and 2 proteins associate with TBC1D7 to form the TSC complex, which is an essential suppressor of mTOR complex 1 (mTORC1), a ubiquitous driver of cell and tissue growth. Loss-of-function mutations in TSC1 or TSC2, but not TBC1D7, give rise to TSC, a pleiotropic disorder with aberrant activation of mTORC1 in various tissues. Here, we characterize mice with genetic deletion of Tbc1d7, which are viable with normal growth and development. Consistent with partial loss of function of the TSC complex, Tbc1d7 knockout (KO) mice display variable increases in tissue mTORC1 signaling with increased muscle fiber size but with strength and motor defects. Their most pronounced phenotype is brain overgrowth due to thickening of the cerebral cortex, with enhanced neuron-intrinsic mTORC1 signaling and growth. Thus, TBC1D7 is required for full TSC complex function in tissues, and the brain is particularly sensitive to its growth-suppressing activities.
Collapse
Affiliation(s)
- Sandra Schrötter
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher J Yuskaitis
- Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael R MacArthur
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sarah J Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron M Hosios
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Maria Osipovich
- Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret E Torrence
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gerta Hoxhaj
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mustafa Sahin
- Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Sugiura A, Kitamura M, Hasegawa Y. Calcium carbonate supplementation causes motor dysfunction. Exp Anim 2022; 71:399-410. [PMID: 35584940 PMCID: PMC9388334 DOI: 10.1538/expanim.22-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We previously showed that a diet containing calcium carbonate causes impairments in spatial and recognition memory in mice. In this study, we investigated the effects of calcium carbonate
supplementation on motor function. Motor function was determined using different tests that have been used to analyze different aspects of Parkinsonism. A catalepsy test for akinesia; a
muscular strength assessment, pole test, beam-walking test, and gait analysis for motor coordination and balance assessment; and an open-field test for locomotor activity assessment were
performed. The mice were fed diets containing 0.6% or 1.0% calcium carbonate for eight weeks, after which they were evaluated for motor functions. The diets containing calcium carbonate
caused significant motor dysfunction, as revealed by the different tests, although the spontaneous locomotor activity did not change. Calcium carbonate supplementation decreased the dopamine
content in the basal ganglia, including the striatum and substantia nigra, and the number of tyrosine hydroxylase-positive neurons in the substantia nigra. In addition, administration of
L-dopa led to at least a partial recovery of motor dysfunction, suggesting that calcium carbonate supplementation causes motor dysfunction by decreasing the dopamine content in the basal
ganglia. These results suggest that mice with calcium carbonate-induced motor dysfunction may be useful as a new animal model for Parkinson’s disease and Huntington’s disease.
Collapse
Affiliation(s)
- Ami Sugiura
- College of Environmental Technology, Muroran Institute of Technology
| | - Misa Kitamura
- College of Environmental Technology, Muroran Institute of Technology
| | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology
| |
Collapse
|
16
|
Manjari S, Maity S, Poornima R, Yau SY, Vaishali K, Stellwagen D, Komal P. Restorative action of vitamin D3 on motor dysfunction through enhancement of neurotrophins and antioxidant expression in the striatum. Neuroscience 2022; 492:67-81. [DOI: 10.1016/j.neuroscience.2022.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/21/2023]
|
17
|
Petkova SP, Adhikari A, Berg EL, Fenton TA, Duis J, Silverman JL. Gait as a quantitative translational outcome measure in Angelman syndrome. Autism Res 2022; 15:821-833. [PMID: 35274462 PMCID: PMC9311146 DOI: 10.1002/aur.2697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, hypotonia, and motor coordination deficits. Motor abilities are an important outcome measure in AS as they comprise a broad repertoire of metrics including ataxia, hypotonia, delayed ambulation, crouched gait, and poor posture, and motor dysfunction affects nearly every individual with AS. Guided by collaborative work with AS clinicians studying gait, the goal of this study was to perform an in‐depth gait analysis using the automated treadmill assay, DigiGait. Our hypothesis is that gait presents a strong opportunity for a reliable, quantitative, and translational metric that can serve to evaluate novel pharmacological, dietary, and genetic therapies. In this study, we used an automated gait analysis system, in addition to standard motor behavioral assays, to evaluate components of motor, exploration, coordination, balance, and gait impairments across the lifespan in an AS mouse model. Our study demonstrated marked global motoric deficits in AS mice, corroborating previous reports. Uniquely, this is the first report of nuanced aberrations in quantitative spatial and temporal components of gait in AS mice compared to sex‐ and age‐matched wildtype littermates followed longitudinally using metrics that are analogous in AS individuals. Our findings contribute evidence toward the use of nuanced motor outcomes (i.e., gait) as valuable and translationally powerful metrics for therapeutic development for AS, as well as other genetic neurodevelopmental syndromes.
Collapse
Affiliation(s)
- Stela P Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Timothy A Fenton
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jessica Duis
- Section of Genetics & Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
18
|
Sheppard K, Gardin J, Sabnis GS, Peer A, Darrell M, Deats S, Geuther B, Lutz CM, Kumar V. Stride-level analysis of mouse open field behavior using deep-learning-based pose estimation. Cell Rep 2022; 38:110231. [PMID: 35021077 PMCID: PMC8796662 DOI: 10.1016/j.celrep.2021.110231] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Gait and posture are often perturbed in many neurological, neuromuscular, and neuropsychiatric conditions. Rodents provide a tractable model for elucidating disease mechanisms and interventions. Here, we develop a neural-network-based assay that adopts the commonly used open field apparatus for mouse gait and posture analysis. We quantitate both with high precision across 62 strains of mice. We characterize four mutants with known gait deficits and demonstrate that multiple autism spectrum disorder (ASD) models show gait and posture deficits, implying this is a general feature of ASD. Mouse gait and posture measures are highly heritable and fall into three distinct classes. We conduct a genome-wide association study to define the genetic architecture of stride-level mouse movement in the open field. We provide a method for gait and posture extraction from the open field and one of the largest laboratory mouse gait and posture data resources for the research community. Sheppard et al. present a method for gait and posture analysis in the common open field apparatus using neural-network-based pose estimation. They apply this high-throughput method to dissect the genetic architecture of mouse movement.
Collapse
Affiliation(s)
- Keith Sheppard
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Justin Gardin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Gautam S Sabnis
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Asaf Peer
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Megan Darrell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Sean Deats
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Brian Geuther
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Cathleen M Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Vivek Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
19
|
Prakash S, Carter WG. The Neuroprotective Effects of Cannabis-Derived Phytocannabinoids and Resveratrol in Parkinson's Disease: A Systematic Literature Review of Pre-Clinical Studies. Brain Sci 2021; 11:brainsci11121573. [PMID: 34942876 PMCID: PMC8699487 DOI: 10.3390/brainsci11121573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, there are no pharmacological treatments able to reverse nigral degeneration in Parkinson’s disease (PD), hence the unmet need for the provision of neuroprotective agents. Cannabis-derived phytocannabinoids (CDCs) and resveratrol (RSV) may be useful neuroprotective agents for PD due to their anti-oxidative and anti-inflammatory properties. To evaluate this, we undertook a systematic review of the scientific literature to assess the neuroprotective effects of CDCs and RSV treatments in pre-clinical in vivo animal models of PD. The literature databases MEDLINE, EMBASE, PsychINFO, PubMed, and Web of Science core collection were systematically searched to cover relevant studies. A total of 1034 publications were analyzed, of which 18 met the eligibility criteria for this review. Collectively, the majority of PD rodent studies demonstrated that treatment with CDCs or RSV produced a significant improvement in motor function and mitigated the loss of dopaminergic neurons. Biochemical analysis of rodent brain tissue suggested that neuroprotection was mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. This review highlights the neuroprotective potential of CDCs and RSV for in vivo models of PD and therefore suggests their potential translation to human clinical trials to either ameliorate PD progression and/or be implemented as a prophylactic means to reduce the risk of development of PD.
Collapse
Affiliation(s)
| | - Wayne G. Carter
- Correspondence: ; Tel.: +44-(0)-1332-724738; Fax: +44-(0)-1332-724626
| |
Collapse
|
20
|
De Nuccio F, Cianciulli A, Porro C, Kashyrina M, Ruggiero M, Calvello R, Miraglia A, Nicolardi G, Lofrumento DD, Panaro MA. Inflammatory Response Modulation by Vitamin C in an MPTP Mouse Model of Parkinson's Disease. BIOLOGY 2021; 10:biology10111155. [PMID: 34827148 PMCID: PMC8614932 DOI: 10.3390/biology10111155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Vitamin C (Vit C), also called ascorbic acid, is a nutrient present in many foods, particularly citrus fruits and green vegetables. Inadequate dietary Vit C intake causes hypovitaminosis resulting in the risk of developing clinical scurvy, potentially fatal if untreated. Vit C represents one of the safest and most essential nutrients, with antioxidant and anti-inflammatory properties that protect living organisms against oxidative stress; due to this propriety, it is studied for applications in the prevention and management of different pathologies, including neurodegenerative disease. Persistent neuroinflammation is detrimental for the brain and may lead to pathogenesis and progression of neurodegenerative diseases like Parkinson’s disease (PD) and Alzheimer’s disease. The role of Vit C in the central nervous system is still debated.This study, utilizing a PD mouse model, has demonstrated that Vit C reduces neuroinflammation by the modulation of microglial responses and astrocyte activation, reducing dopaminergic neuronal cell loss involved in PD insurgence.Furthermore, mouse gait and spontaneous locomotor activity were partially ameliorated. In summary, we have demonstrated that the use of Vit C has neuroprotective effects in the brain, alleviating the inflammatory cascade and reducing the progression of PD. Abstract Vitamin C (Vit C) is anutrient present in many foods, particularly citrus fruits, green vegetables, tomatoes, and potatoes. Vit C is studied for its applications in the prevention and management of different pathologies, including neurodegenerative diseases. Neuroinflammation is a defense mechanism activated by a stimulus or an insult that is aimed at the preservation of the brain by promoting tissue repair and removing cellular debris; however, persistent inflammatory responses are detrimental and may lead to the pathogenesis and progression of neurodegenerative diseases like Parkinson’s disease (PD) and Alzheimer’s disease. PD is one of the most common chronic progressive neurodegenerative disorders, and oxidative stress is one of the most important factors involved in its pathogenesis and progression.Due to this, research on antioxidant and anti-inflammatory compounds is an important target for counteracting neurodegenerative diseases, including PD. In the central nervous system, the presence of Vit C in the brain is higher than in other body districts, but why and how this occurs is still unknown. In this research, Vit C, with its anti-inflammatory and anti-oxidative properties, is studied to better understand its contribution to brain protection; in particular, we have investigated the neuroprotective effects of Vit C in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD and its role in the modulation of neuroinflammation. First, we observed that Vit C significantly decreased the MPTP-induced loss of tyrosine hydroxylase (TH)-positive dopaminergic neuronal cells in the substantia nigra, as well as microglial cell activation and astrogliosis. Furthermore, gait and spontaneous locomotor activity, evaluated by an automated treadmill and the Open Field test, respectively, were partially ameliorated by Vit C treatment in MPTP-intoxicated animals. In relation to neuroinflammation, results show that Vit C reduced the protein and mRNA expression of inflammatory cytokines such as IL-6, TLR4, TNF-α, iNOS, and CD40, while anti-inflammatory proteins such as IL-10, CD163, TGF-β, and IL-4 increased. Interestingly, we show for the first time that Vit C reduces neuroinflammation by modulating microglial polarization and astrocyte activation. Moreover, Vit C was able to reduce NLRP3 activation, which is linked to the pathogenesis of many inflammatory diseases, including neuroinflammatory disorders. In conclusion, our study provides evidence that Vit C may represent a new promising dietary supplement for the prevention and alleviation of the inflammatory cascade of PD, thus contributing to neuroprotection.
Collapse
Affiliation(s)
- Francesco De Nuccio
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (A.C.); (M.R.); (R.C.); (M.A.P.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy;
| | - Marianna Kashyrina
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
| | - Melania Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (A.C.); (M.R.); (R.C.); (M.A.P.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (A.C.); (M.R.); (R.C.); (M.A.P.)
| | - Alessandro Miraglia
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
| | - Giuseppe Nicolardi
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (M.K.); (A.M.); (G.N.)
- Correspondence:
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (A.C.); (M.R.); (R.C.); (M.A.P.)
| |
Collapse
|
21
|
Reddy NC, Majidi SP, Kong L, Nemera M, Ferguson CJ, Moore M, Goncalves TM, Liu HK, Fitzpatrick JAJ, Zhao G, Yamada T, Bonni A, Gabel HW. CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum. Nat Commun 2021; 12:5702. [PMID: 34588434 PMCID: PMC8481233 DOI: 10.1038/s41467-021-25846-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
Regulation of chromatin plays fundamental roles in the development of the brain. Haploinsufficiency of the chromatin remodeling enzyme CHD7 causes CHARGE syndrome, a genetic disorder that affects the development of the cerebellum. However, how CHD7 controls chromatin states in the cerebellum remains incompletely understood. Using conditional knockout of CHD7 in granule cell precursors in the mouse cerebellum, we find that CHD7 robustly promotes chromatin accessibility, active histone modifications, and RNA polymerase recruitment at enhancers. In vivo profiling of genome architecture reveals that CHD7 concordantly regulates epigenomic modifications associated with enhancer activation and gene expression of topologically-interacting genes. Genome and gene ontology studies show that CHD7-regulated enhancers are associated with genes that control brain tissue morphogenesis. Accordingly, conditional knockout of CHD7 triggers a striking phenotype of cerebellar polymicrogyria, which we have also found in a case of CHARGE syndrome. Finally, we uncover a CHD7-dependent switch in the preferred orientation of granule cell precursor division in the developing cerebellum, providing a potential cellular basis for the cerebellar polymicrogyria phenotype upon loss of CHD7. Collectively, our findings define epigenomic regulation by CHD7 in granule cell precursors and identify abnormal cerebellar patterning upon CHD7 depletion, with potential implications for our understanding of CHARGE syndrome. CHARGE syndrome that affects cerebellar development can be caused by haploinsufficiency of the chromatin remodeling enzyme CHD7; however the precise role of CHD7 remains unknown. Here the authors show CHD7 promotes chromatin accessibility and enhancer activity in granule cell precursors and regulates morphogenesis of the cerebellar cortex, where loss of CHD7 triggers cerebellar polymicrogyria.
Collapse
Affiliation(s)
- Naveen C Reddy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shahriyar P Majidi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.,MD-PhD Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lingchun Kong
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mati Nemera
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Cole J Ferguson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tassia M Goncalves
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, DKFZ-ZMBH Alliance, German Cancer Research Center Im Neunheimer Feld 280, 69120, Heidelberg, Germany
| | - James A J Fitzpatrick
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Neurobiology, Northwestern University, Evanston, IL, 60201, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
22
|
Abdi M, Pasbakhsh P, Shabani M, Nekoonam S, Sadeghi A, Fathi F, Abouzaripour M, Mohamed W, Zibara K, Kashani IR, Zendedel A. Metformin Therapy Attenuates Pro-inflammatory Microglia by Inhibiting NF-κB in Cuprizone Demyelinating Mouse Model of Multiple Sclerosis. Neurotox Res 2021; 39:1732-1746. [PMID: 34570348 DOI: 10.1007/s12640-021-00417-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a chronic disorder characterized by reactive gliosis, inflammation, and demyelination. Microglia plays a crucial role in the pathogenesis of MS and has the dynamic plasticity to polarize between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Metformin, a glucose-lowering drug, attenuates inflammatory responses by activating adenosine monophosphate protein kinase (AMPK) which suppresses nuclear factor kappa B (NF-κB). In this study, we indirectly investigated whether metformin therapy would regulate microglia activity in the cuprizone (CPZ)-induced demyelination mouse model of MS via measuring the markers associated with pro- and anti-inflammatory microglia. Evaluation of myelin by luxol fast blue staining revealed that metformin treatment (CPZ + Met) diminished demyelination, in comparison to CPZ mice. In addition, metformin therapy significantly alleviated reactive microgliosis and astrogliosis in the corpus callosum, as measured by Iba-1 and GFAP staining. Moreover, metformin treatment significantly downregulated the expression of pro-inflammatory associated genes (iNOS, H2-Aa, and TNF-α) in the corpus callosum, whereas expression of anti-inflammatory markers (Arg1, Mrc1, and IL10) was not promoted, compared to CPZ mice. Furthermore, protein levels of iNOS (pro-inflammatory marker) were significantly decreased in the metformin group, while those of Trem2 (anti-inflammatory marker) were increased. In addition, metformin significantly increased AMPK activation in CPZ mice. Finally, metformin administration significantly reduced the activation level of NF-κB in CPZ mice. In summary, our data revealed that metformin attenuated pro-inflammatory microglia markers through suppressing NF-κB activity. The positive effects of metformin on microglia and remyelination suggest that it could be used as a promising candidate to lessen the incidence of inflammatory neurodegenerative diseases such as MS.
Collapse
Affiliation(s)
- Mahdad Abdi
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Shabani
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Nekoonam
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Wael Mohamed
- Basic Medical Science Department, International Islamic University Malaysia, Pahang, Malaysia.,Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El Kom, Egypt
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Iraj Ragerdi Kashani
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
23
|
Chang Y, Lin S, Li Y, Liu S, Ma T, Wei W. Umbilical cord blood CD34 + cells administration improved neurobehavioral status and alleviated brain injury in a mouse model of cerebral palsy. Childs Nerv Syst 2021; 37:2197-2205. [PMID: 33559728 PMCID: PMC8263416 DOI: 10.1007/s00381-021-05068-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Cerebral palsy (CP) is the most common neuromuscular disease in children, and currently, there is no cure. Several studies have reported the benefits of umbilical cord blood (UCB) cell treatment for CP. However, these studies either examined the effects of UCB cell fraction with a short experimental period or used neonatal rat models for a long-term study which displayed an insufficient immunological reaction and clearance of human stem cells. Here, we developed a CP model by hypoxia-ischemic injury (HI) using immunodeficient mice and examined the effects of human UCB CD34+ hematopoietic stem cells (HSCs) on CP therapy over a period of 8 weeks. METHODS Sixty postnatal day-9 (P9) mouse pups were randomly divided into 4 groups (n = 15/group) as follows: (1) sham operation (control group), (2) HI-induced CP model, (3) CP model with CD34+ HSC transplantation, and (4) CP model with CD34- cell transplantation. Eight weeks after insult, the sensorimotor performance was analyzed by rotarod treadmill, gait dynamic, and open field assays. The pathological changes in brain tissue of mice were determined by HE staining, Nissl staining, and MBP immunohistochemistry of the hippocampus in the mice. RESULTS HI brain injury in mice pups resulted in significant behavioral deficits and loss of neurons. Both CD34+ HSCs and CD34- cells improved the neurobehavioral statuses and alleviated the pathological brain injury. In comparison with CD34- cells, the CD34+ HSC compartments were more effective. CONCLUSION These findings indicate that CD34+ HSC transplantation was neuroprotective in neonatal mice and could be an effective therapy for CP.
Collapse
Affiliation(s)
- Yanqun Chang
- Department of Medical Rehabilitation, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shouheng Lin
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongsheng Li
- Guangdong Cord Blood Bank, Guangzhou, China. .,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou, China.
| | - Song Liu
- Guangzhou Reborn Health Management Consultation Co., Ltd., Guangzhou, China
| | - Tianbao Ma
- Guangdong Cord Blood Bank, Guangzhou, China ,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou, China ,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou, China
| |
Collapse
|
24
|
Kapitansky O, Karmon G, Sragovich S, Hadar A, Shahoha M, Jaljuli I, Bikovski L, Giladi E, Palovics R, Iram T, Gozes I. Single Cell ADNP Predictive of Human Muscle Disorders: Mouse Knockdown Results in Muscle Wasting. Cells 2020; 9:E2320. [PMID: 33086621 PMCID: PMC7603382 DOI: 10.3390/cells9102320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) mutations are linked with cognitive dysfunctions characterizing the autistic-like ADNP syndrome patients, who also suffer from delayed motor maturation. We thus hypothesized that ADNP is deregulated in versatile myopathies and that local ADNP muscle deficiency results in myopathy, treatable by the ADNP fragment NAP. Here, single-cell transcriptomics identified ADNP as a major constituent of the developing human muscle. ADNP transcript concentrations further predicted multiple human muscle diseases, with concentrations negatively correlated with the ADNP target interacting protein, microtubule end protein 1 (EB1). Reverting back to modeling at the single-cell level of the male mouse transcriptome, Adnp mRNA concentrations age-dependently correlated with motor disease as well as with sexual maturation gene transcripts, while Adnp expressing limb muscle cells significantly decreased with aging. Mouse Adnp heterozygous deficiency exhibited muscle microtubule reduction and myosin light chain (Myl2) deregulation coupled with motor dysfunction. CRISPR knockdown of adult gastrocnemius muscle Adnp in a Cas9 mouse resulted in treadmill (male) and gait (female) dysfunctions that were specifically ameliorated by treatment with the ADNP snippet, microtubule interacting, Myl2-regulating, NAP (CP201). Taken together, our studies provide new hope for personalized diagnosis/therapeutics in versatile myopathies.
Collapse
Affiliation(s)
- Oxana Kapitansky
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Gidon Karmon
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Shlomo Sragovich
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Adva Hadar
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Meishar Shahoha
- Intradepartmental Viral Infection Unit, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Iman Jaljuli
- Department of Statistics and Operations Research, School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Lior Bikovski
- The Myers Neuro-Behavioral Core Facility, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Eliezer Giladi
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Robert Palovics
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 95343, USA; (R.P.); (T.I.)
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 95343, USA
| | - Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 95343, USA; (R.P.); (T.I.)
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 95343, USA
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| |
Collapse
|
25
|
Majidi SP, Reddy NC, Moore MJ, Chen H, Yamada T, Andzelm MM, Cherry TJ, Hu LS, Greenberg ME, Bonni A. Chromatin Environment and Cellular Context Specify Compensatory Activity of Paralogous MEF2 Transcription Factors. Cell Rep 2020; 29:2001-2015.e5. [PMID: 31722213 PMCID: PMC6874310 DOI: 10.1016/j.celrep.2019.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Compensation among paralogous transcription factors (TFs) confers genetic robustness of cellular processes, but how TFs dynamically respond to paralog depletion on a genome-wide scale in vivo remains incompletely understood. Using single and double conditional knockout of myocyte enhancer factor 2 (MEF2) family TFs in granule neurons of the mouse cerebellum, we find that MEF2A and MEF2D play functionally redundant roles in cerebellar-dependent motor learning. Although both TFs are highly expressed in granule neurons, transcriptomic analyses show MEF2D is the predominant genomic regulator of gene expression in vivo. Strikingly, genome-wide occupancy analyses reveal upon depletion of MEF2D, MEF2A occupancy robustly increases at a subset of sites normally bound to MEF2D. Importantly, sites experiencing compensatory MEF2A occupancy are concentrated within open chromatin and undergo functional compensation for genomic activation and gene expression. Finally, motor activity induces a switch from non-compensatory to compensatory MEF2-dependent gene regulation. These studies uncover genome-wide functional interdependency between paralogous TFs in the brain. Majidi et al. study how transcription factors respond to paralog depletion by conditionally depleting MEF2A and MEF2D in mouse cerebellum. Depletion of MEF2D induces functionally compensatory genomic occupancy by MEF2A. Compensation occurs within accessible chromatin in a context-dependent manner. This study explores the interdependency between paralogous transcription factors.
Collapse
Affiliation(s)
- Shahriyar P Majidi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; MD-PhD Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Naveen C Reddy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Chen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Milena M Andzelm
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 9(th) Ave., Seattle, WA 98101, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda S Hu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Akula SK, McCullough KB, Weichselbaum C, Dougherty JD, Maloney SE. The trajectory of gait development in mice. Brain Behav 2020; 10:e01636. [PMID: 32333523 PMCID: PMC7303394 DOI: 10.1002/brb3.1636] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Gait irregularities are prevalent in neurodevelopmental disorders (NDDs). However, there is a paucity of information on gait phenotypes in NDD experimental models. This is in part due to the lack of understanding of the normal developmental trajectory of gait maturation in the mouse. MATERIALS AND METHODS Using the DigiGait system, we have developed a quantitative, standardized, and reproducible assay of developmental gait metrics in commonly used mouse strains that can be added to the battery of mouse model phenotyping. With this assay, we characterized the trajectory of gait in the developing C57BL/6J and FVB/AntJ mouse lines. RESULTS In both lines, a mature stride consisted of 40% swing and 60% stance in the forelimbs, which mirrors the mature human stride. In C57BL/6J mice, developmental trajectories were observed for stance width, paw overlap distance, braking and propulsion time, rate of stance loading, peak paw area, and metrics of intraindividual variability. In FVB/AntJ mice, developmental trajectories were observed for percent shared stance, paw overlap distance, rate of stance loading, and peak paw area, although in different directions than C57 mice. By accounting for the impact of body length on stride measurements, we demonstrate the importance of considering body length when interpreting gait metrics. CONCLUSION Overall, our results show that aspects of mouse gait development parallel a timeline of normal human gait development, such as the percent of stride that is stance phase and swing phase. This study may be used as a standard reference for developmental gait phenotyping of murine models, such as models of neurodevelopmental disease.
Collapse
Affiliation(s)
- Shyam K Akula
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.,Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, MA, USA
| | - Katherine B McCullough
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Claire Weichselbaum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Shenk J, Lohkamp KJ, Wiesmann M, Kiliaan AJ. Automated Analysis of Stroke Mouse Trajectory Data With Traja. Front Neurosci 2020; 14:518. [PMID: 32523509 PMCID: PMC7262161 DOI: 10.3389/fnins.2020.00518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Quantitative characterization of mouse activity, locomotion and walking patterns requires the monitoring of position and activity over long periods of time. Manual behavioral phenotyping, however, is time and skill-intensive, vulnerable to researcher bias and often stressful for the animals. We present examples for using a platform-independent open source trajectory analysis software, Traja, for semi-automated analysis of high throughput mouse home-cage data for neurobehavioral research. Our software quantifies numerous parameters of movement including traveled distance, velocity, turnings, and laterality which are demonstrated for application to neurobehavioral analysis. In this study, the open source software for trajectory analysis Traja is applied to movement and walking pattern observations of transient stroke induced female C57BL/6 mice (30 min middle cerebral artery occlusion) on an acute multinutrient diet intervention (Fortasyn). After stroke induction mice were single housed in Digital Ventilated Cages [DVC, GM500, Tecniplast S.p.A., Buguggiate (VA), Italy] and activity was recorded 24/7, every 250 ms using a DVC board. Significant changes in activity, velocity, and distance walked are computed with Traja. Traja identified increased walked distance and velocity in Control and Fortasyn animals over time. No diet effect was found in preference of turning direction (laterality) and distance traveled. As open source software for trajectory analysis, Traja supports independent development and validation of numerical methods and provides a useful tool for computational analysis of 24/7 mouse locomotion in home-cage environment for application in behavioral research or movement disorders.
Collapse
Affiliation(s)
- Justin Shenk
- Department of Anatomy, Radboud University Medical Center, Preclinical Imaging Centre PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Klara J Lohkamp
- Department of Anatomy, Radboud University Medical Center, Preclinical Imaging Centre PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Maximilian Wiesmann
- Department of Anatomy, Radboud University Medical Center, Preclinical Imaging Centre PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud University Medical Center, Preclinical Imaging Centre PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| |
Collapse
|
28
|
Gait Deficits and Loss of Striatal Tyrosine Hydroxlase/Trk-B are Restored Following 7,8-Dihydroxyflavone Treatment in a Progressive MPTP Mouse Model of Parkinson’s Disease. Neuroscience 2020; 433:53-71. [DOI: 10.1016/j.neuroscience.2020.02.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
|
29
|
Zhong J, Dong W, Qin Y, Xie J, Xiao J, Xu J, Wang H. Roflupram exerts neuroprotection via activation of CREB/PGC-1α signalling in experimental models of Parkinson's disease. Br J Pharmacol 2020; 177:2333-2350. [PMID: 31972868 DOI: 10.1111/bph.14983] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Roflupram improves cognition and limits neuroinflammation in the brain. However, the beneficial effects of roflupram on Parkinson's disease (PD) remain unknown. Therefore, we aimed to elucidate the pharmacological effects and mechanisms of action of ROF in experimental models of PD. EXPERIMENTAL APPROACH We used an in vitro PD model of SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium iodide (MPP+ ). Cell viability and apoptosis were analysed via the MTT assay and flow cytometry. Mitochondrial morphology, mitochondrial respiratory capacity, and ROS were measured by a mitochondrial tracker, Seahorse Analyzer, and a MitoSOX-Red dye. For in vivo PD model, behavioural tests, Nissl staining, and immunohistochemistry were used to evaluate protection by roflupram. The levels of TH, cAMP response element-binding protein (CREB), and PPARγ coactivator-1α (PGC-1α) were analysed by western blotting. KEY RESULTS Roflupram decreased MPP+ -induced apoptosis in SH-SY5Y cells and human dopaminergic neurons. Roflupram also increased mitochondrial respiratory capacity, decreased ROS production, and restored mitochondrial morphology. Roflupram reversed the MPP+ -induced reductions of phosphorylated CREB, PGC-1α and TH. These protective effects were blocked by the PKA inhibitor H-89 or by PGC-1α siRNA. In mice treated with MPTP, roflupram significantly improved motor functions. Roflupram prevented both dopaminergic neuronal loss and the reduction of phosphorylated CREB and PGC-1α in the substantia nigra and striatum. CONCLUSION AND IMPLICATIONS Roflupram protected dopaminergic neurons from apoptosis via the CREB/PGC-1α pathway in PD models. Hence, roflupram has potential as a protective drug in the treatment of PD.
Collapse
Affiliation(s)
- Jiahong Zhong
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenli Dong
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yunyun Qin
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinfeng Xie
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiao Xiao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Central Laboratory, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Southern Medical University, Guangzhou, China
| | - Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Kwok A, Rosas S, Bateman TA, Livingston E, Smith TL, Moore J, Zawieja DC, Hampton T, Mao XW, Delp MD, Willey JS. Altered rodent gait characteristics after ~35 days in orbit aboard the International Space Station. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:9-17. [PMID: 31987483 DOI: 10.1016/j.lssr.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The long-term adaptations to microgravity and other spaceflight challenges within the confines of a spacecraft, and readaptations to weight-bearing upon reaching a destination, are unclear. While post-flight gait change in astronauts have been well documented and reflect multi-system deficits, no data from rodents have been collected. Thus, the purpose of this study was to evaluate gait changes in response to spaceflight. A prospective collection of gait data was collected on 3 groups of mice: those who spent~35 days in orbit (FLIGHT) aboard the International Space Station (ISS); a ground-based control with the same habitat conditions as ISS (Ground Control; GC); and a vivarium control with typical rodent housing conditions (VIV). Pre-flight and post-flight gait measurements were conducted utilizing an optimized and portable gait analysis system (DigiGait, Mouse Specifics, Inc). The total data acquisition time for gait patterns of FLIGHT and control mice was 1.5-5 min/mouse, allowing all 20 mice per group to be assessed in less than an hour. Patterns of longitudinal gait changes were observed in the hind limbs and the forelimbs of the FLIGHT mice after ~35 days in orbit; few differences were observed in gait characteristics within the GC and VIV controls from the initial to the final gait assessment, and between groups. For FLIGHT mice, 12 out of 18 of the evaluated gait characteristics in the hind limbs were significantly changed, including: stride width variability; stride length and variance; stride, swing, and stance duration; paw angle and area at peak stance; and step angle, among others. Gait characteristics that decreased included stride frequency, and others. Moreover, numerous forelimb gait characteristics in the FLIGHT mice were changed at post-flight measures relative to pre-flight. This rapid DigiGait gait measurement tool and customized spaceflight protocol is useful for providing preliminary insight into how spaceflight could affect multiple systems in rodents in which deficits are reflected by altered gait characteristics.
Collapse
Affiliation(s)
- Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Samuel Rosas
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric Livingston
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Joseph Moore
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David C Zawieja
- Department of Medical Physiology, Texas A&M University, College Station, TX, United States
| | - Tom Hampton
- Mouse Specifics, Framingham, MA, United States
| | - Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, United States
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
31
|
High Speed Ventral Plane Videography as a Convenient Tool to Quantify Motor Deficits during Pre-Clinical Experimental Autoimmune Encephalomyelitis. Cells 2019; 8:cells8111439. [PMID: 31739589 PMCID: PMC6912314 DOI: 10.3390/cells8111439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used multiple sclerosis animal model. EAE mice typically develop motor deficits in a caudal-to-rostral pattern when inflammatory lesions have already developed. However, to monitor more subtle behavioral deficits during lesion development (i.e., pre-clinical phase), more sophisticated methods are needed. Here, we investigated whether high speed ventral plane videography can be applied to monitor early motor deficits during ‘pre-clinical’ EAE. For this purpose, EAE was induced in C57BL/6 mice and gait abnormalities were quantified using the DigiGait™ apparatus. Gait deficits were related to histopathological changes. 10 out of 10 control (100%), and 14 out of 18 (77.8%) pre-clinical EAE mice could be evaluated using DigiGait™. EAE severity was not influenced by DigiGait™-related mice handlings. Most gait parameters recorded from day 6 post-immunization until the end of the experiment were found to be stable in control mice. During the pre-clinical phase, when conventional EAE scorings failed to detect any functional impairment, EAE mice showed an increased Swing Time, increased %Swing Stride, decreased %Stance Stride, decreased Stance/Swing, and an increased Absolute Paw Angle. In summary, DigiGait™ is more sensitive than conventional scoring approaches to study motor deficits during the EAE pre-clinical phase.
Collapse
|
32
|
Gillespie D, Yap MH, Hewitt BM, Driscoll H, Simanaviciute U, Hodson-Tole EF, Grant RA. Description and validation of the LocoWhisk system: Quantifying rodent exploratory, sensory and motor behaviours. J Neurosci Methods 2019; 328:108440. [PMID: 31560929 DOI: 10.1016/j.jneumeth.2019.108440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Previous studies have demonstrated that analysing whisker movements and locomotion allows us to quantify the behavioural consequences of sensory, motor and cognitive deficits in rodents. Independent whisker and feet trackers exist but there is no fully-automated, open-source software and hardware solution, that measures both whisker movements and gait. NEW METHOD We present the LocoWhisk arena and new accompanying software (ARTv2) that allows the automatic detection and measurement of both whisker and gait information from high-speed video footage. RESULTS We demonstrate the new whisker and foot detector algorithms on high-speed video footage of freely moving small mammals, and show that whisker movement and gait measurements collected in the LocoWhisk arena are similar to previously reported values in the literature. COMPARISON WITH EXISTING METHOD(S) We demonstrate that the whisker and foot detector algorithms, are comparable in accuracy, and in some cases significantly better, than readily available software and manual trackers. CONCLUSION The LocoWhisk system enables the collection of quantitative data from whisker movements and locomotion in freely behaving rodents. The software automatically records both whisker and gait information and provides added statistical tools to analyse the data. We hope the LocoWhisk system and software will serve as a solid foundation from which to support future research in whisker and gait analysis.
Collapse
Affiliation(s)
- David Gillespie
- School of Engineering, Manchester Metropolitan University, Manchester, UK
| | - Moi Hoon Yap
- School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, UK
| | - Brett M Hewitt
- School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, UK; School of Science and Environment, Manchester Metropolitan University, Manchester, UK; CSols Ltd, Runcorn, Cheshire, WA7 4QX, UK
| | - Heather Driscoll
- School of Engineering, Manchester Metropolitan University, Manchester, UK; Advanced Manufacturing Research Center, University of Sheffield, Sheffield, UK
| | - Ugne Simanaviciute
- School of Science and Environment, Manchester Metropolitan University, Manchester, UK; School of Biological Sciences, University of Manchester, Manchester, UK
| | - Emma F Hodson-Tole
- Musculoskeletal Science and Sports Medicine Research Centre, Dpt. Lifesciences, Manchester Metropolitan University, Manchester, UK
| | - Robyn A Grant
- School of Science and Environment, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
33
|
Liu Y, Zong X, Huang J, Guan Y, Li Y, Du T, Liu K, Kang X, Dou C, Sun X, Wu R, Wen L, Zhang Y. Ginsenoside Rb1 regulates prefrontal cortical GABAergic transmission in MPTP-treated mice. Aging (Albany NY) 2019; 11:5008-5034. [PMID: 31314744 PMCID: PMC6682523 DOI: 10.18632/aging.102095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/10/2019] [Indexed: 04/12/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, featured by motor deficits and non-motor symptoms such as cognitive impairment, and malfunction of gamma-aminobutyric acid (GABA) mediated inhibitory transmission plays an important role in PD pathogenesis. The ginsenoside Rb1 molecule, a major constituent of the extract from the Ginseng root, has been demonstrated to ameliorate motor deficits and prevent dopaminergic neuron death in PD. However, whether Rb1 can regulate GABAergic transmission in PD-associated deficits and its underlying mechanisms are still unclear. In this study, we explored the effects of Rb1 on the GABAergic synaptic transmission in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We demonstrated that Rb1 can bind with GABAARα1 and increase its expression in the SH-SY5Y cells and in the prefrontal cortex (PFC) of MPTP model in vitro and in vivo. Furthermore, Rb1 can promote prefrontal cortical GABA level and GABAergic transmission in MPTP-treated mice. We also revealed that Rb1 may suppress presynaptic GABABR1 to enhance GABA release and GABAA receptor-mediated inhibitory transmission. In addition, Rb1 attenuated MPTP-induced dysfunctional gait dynamic and cognitive impairment, and this neuroprotective mechanism possibly involved regulating prefrontal cortical GABAergic transmission. Thus, Rb1 may serve as a potential drug candidate for the treatment of PD.
Collapse
Affiliation(s)
- Yan Liu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaodan Zong
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Jie Huang
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yanfei Guan
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuanquan Li
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ting Du
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Keyin Liu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xinpan Kang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chunyan Dou
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiangdong Sun
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
- Provincial Key Laboratory of Medical Molecular Imaging, Shantou 515041, China
| | - Lei Wen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
34
|
Luo Z, Ahlers-Dannen KE, Spicer MM, Yang J, Alberico S, Stevens HE, Narayanan NS, Fisher RA. Age-dependent nigral dopaminergic neurodegeneration and α-synuclein accumulation in RGS6-deficient mice. JCI Insight 2019; 5:126769. [PMID: 31120439 DOI: 10.1172/jci.insight.126769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson's is primarily a non-familial, age-related disorder caused by α-synuclein accumulation and the progressive loss of dopamine neurons in the substantia nigra pars compacta (SNc). G protein-coupled receptor (GPCR)-cAMP signaling has been linked to a reduction in human Parkinson's incidence and α-synuclein expression. Neuronal cAMP levels are controlled by GPCRs coupled to Gs or Gi/o, which increase or decrease cAMP, respectively. Regulator of G protein signaling 6 (RGS6) powerfully inhibits Gi/o signaling. Therefore, we hypothesized that RGS6 suppresses D2 autoreceptor- Gi/o signaling in SNc dopamine neurons promoting neuronal survival and reducing α-synuclein expression. Here we provide novel evidence that RGS6 critically suppresses late-age-onset SNc dopamine neuron loss and α-synuclein accumulation. RGS6 is restrictively expressed in human SNc dopamine neurons and, despite their loss in Parkinson's, all surviving neurons express RGS6. RGS6-/- mice exhibit hyperactive D2 autoreceptors with reduced cAMP signaling in SNc dopamine neurons. Importantly, RGS6-/- mice recapitulate key sporadic Parkinson's hallmarks, including: SNc dopamine neuron loss, reduced nigrostriatal dopamine, motor deficits, and α-synuclein accumulation. To our knowledge, Rgs6 is the only gene whose loss phenocopies these features of human Parkinson's. Therefore, RGS6 is a key regulator of D2R-Gi/o signaling in SNc dopamine neurons, protecting against Parkinson's neurodegeneration and α-synuclein accumulation.
Collapse
Affiliation(s)
- Zili Luo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katelin E Ahlers-Dannen
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mackenzie M Spicer
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program of Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jianqi Yang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
35
|
Yamamoto PK, Souza TA, Antiorio ATFB, Zanatto DA, Garcia‐Gomes MDSA, Alexandre‐Ribeiro SR, Oliveira NDS, Menck CFM, Bernardi MM, Massironi SMG, Mori CMC. Genetic and behavioral characterization of a
Kmt2d
mouse mutant, a new model for Kabuki Syndrome. GENES BRAIN AND BEHAVIOR 2019; 18:e12568. [DOI: 10.1111/gbb.12568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Pedro K. Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Tiago A. Souza
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Ana T. F. B. Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Dennis A. Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | | | | | - Nicassia de Souza Oliveira
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Maria M. Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University São Paulo Brazil
| | - Silvia M. G. Massironi
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
- Department of Immunology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Claudia M. C. Mori
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| |
Collapse
|
36
|
Valdez SI, González-Sandoval J, Dueñas-Jiménez S, Franco Rodríguez NE, Torres-Ramos S, Mendizabal-Ruiz G. Modeling hind-limb kinematics using a bio-inspired algorithm with a local search. Biomed Eng Online 2018; 17:134. [PMID: 30458788 PMCID: PMC6245690 DOI: 10.1186/s12938-018-0565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Laboratory rats play a critical role in research because they provide a biological model that can be used for evaluating the affectation of diseases and injuries, and for the evaluation of the effectiveness of new drugs and treatments. The analysis of locomotion in laboratory rats facilitates the understanding of motor defects in many diseases, as well as the damage and recovery after peripheral and central nervous system injuries. However, locomotion analysis of rats remains a great challenge due to the necessity of labor intensive manual annotations of video data required to obtain quantitative measurements of the kinematics of the rodent extremities. In this work, we present a method that is based on the use of a bio-inspired algorithm that fits a kinematic model of the hind limbs of rats to binary images corresponding to the segmented marker of images corresponding to the rat's gait. The bio-inspired algorithm combines a genetic algorithm for a group of the optimization variables with a local search for a second group of the optimization variables. RESULTS Our results indicate the feasibility of employing the proposed approach for the automatic annotation and analysis of the locomotion patterns of the posterior extremities of laboratory rats. CONCLUSIONS The adjustment of the hind limb kinematic model to markers of the video frames corresponding to rat's gait sequences could then be used to analyze the motion patterns during the steps, which, in turn, can be useful for performing quantitative evaluations of the effect of lesions and treatments on rats models.
Collapse
Affiliation(s)
- S Ivvan Valdez
- División de Ingenierías, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5+1.8, 36885, Salamanca, Guanajuato, México
| | - Josué González-Sandoval
- Departamento de Ciencias Computacionales, Universidad de Guadalajara, Av.Revolución 1500, Guadalajara, Jalisco, México
| | - Sergio Dueñas-Jiménez
- Departamento de Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México
| | - Nancy Elizabeth Franco Rodríguez
- Departamento de Farmacobiología, Universidad de Guadalajara, Blvd. Marcelino García Barragan, 1421, Guadalajara, Jalisco, México
| | - Sulema Torres-Ramos
- Departamento de Ciencias Computacionales, Universidad de Guadalajara, Av.Revolución 1500, Guadalajara, Jalisco, México
| | - Gerardo Mendizabal-Ruiz
- Departamento de Ciencias Computacionales, Universidad de Guadalajara, Av.Revolución 1500, Guadalajara, Jalisco, México.
| |
Collapse
|
37
|
Rostosky CM, Milosevic I. Gait Analysis of Age-dependent Motor Impairments in Mice with Neurodegeneration. J Vis Exp 2018:57752. [PMID: 29985360 PMCID: PMC6101764 DOI: 10.3791/57752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motor behavior tests are commonly used to determine the functional relevance of a rodent model and to test newly developed treatments in these animals. Specifically, gait analysis allows recapturing disease relevant phenotypes that are observed in human patients, especially in neurodegenerative diseases that affect motor abilities such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and others. In early studies along this line, the measurement of gait parameters was laborious and depended on factors that were hard to control (e.g., running speed, continuous running). The development of ventral plane imaging (VPI) systems made it feasible to perform gait analysis at a large scale, making this method a useful tool for the assessment of motor behavior in rodents. Here, we present an in-depth protocol of how to use kinematic gait analysis to examine the age-dependent progression of motor deficits in mouse models of neurodegeneration; mouse lines with decreased levels of endophilin, in which neurodegenerative damage progressively increases with age, are used as an example.
Collapse
Affiliation(s)
| | - Ira Milosevic
- European Neuroscience Institute (ENI); University Medical Center Göttigen (UMG);
| |
Collapse
|
38
|
Alpaugh M, Galleguillos D, Forero J, Morales LC, Lackey SW, Kar P, Di Pardo A, Holt A, Kerr BJ, Todd KG, Baker GB, Fouad K, Sipione S. Disease-modifying effects of ganglioside GM1 in Huntington's disease models. EMBO Mol Med 2018; 9:1537-1557. [PMID: 28993428 PMCID: PMC5666311 DOI: 10.15252/emmm.201707763] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and psychiatric problems. Previous studies indicated that levels of brain gangliosides are lower than normal in HD models and that administration of exogenous ganglioside GM1 corrects motor dysfunction in the YAC128 mouse model of HD In this study, we provide evidence that intraventricular administration of GM1 has profound disease-modifying effects across HD mouse models with different genetic background. GM1 administration results in decreased levels of mutant huntingtin, the protein that causes HD, and in a wide array of beneficial effects that include changes in levels of DARPP32, ferritin, Iba1 and GFAP, modulation of dopamine and serotonin metabolism, and restoration of normal levels of glutamate, GABA, L-Ser and D-Ser. Treatment with GM1 slows down neurodegeneration, white matter atrophy and body weight loss in R6/2 mice. Motor functions are significantly improved in R6/2 mice and restored to normal in Q140 mice, including gait abnormalities that are often resistant to treatments. Psychiatric-like and cognitive dysfunctions are also ameliorated by GM1 administration in Q140 and YAC128 mice. The widespread benefits of GM1 administration, at molecular, cellular and behavioural levels, indicate that this ganglioside has strong therapeutic and disease-modifying potential in HD.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Danny Galleguillos
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Juan Forero
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | - Preeti Kar
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Alba Di Pardo
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Andrew Holt
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kathryn G Todd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Simonetta Sipione
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Joseph S, Schulz JB, Stegmüller J. Mechanistic contributions of FBXO7 to Parkinson disease. J Neurochem 2017; 144:118-127. [DOI: 10.1111/jnc.14253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Sabitha Joseph
- Department of Neurology; RWTH University Hospital; Aachen Germany
| | - Jörg Bernhard Schulz
- Department of Neurology; RWTH University Hospital; Aachen Germany
- Jülich Aachen Research Alliance (JARA) - JARA-Institute Molecular Neuroscience and Neuroimaging; FZ Jülich and RWTH University; Aachen Germany
| | | |
Collapse
|
40
|
Of rodents and men: understanding the emergence of motor and cognitive symptoms in Huntington disease. Behav Pharmacol 2017; 27:403-14. [PMID: 26886208 DOI: 10.1097/fbp.0000000000000217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Arguably, one of the most important milestones in Huntington disease research since the discovery of the gene responsible has been the generation of different genetic animal models. Although clinical reports have shown evidence of progressive cognitive impairments in gene carriers before motor symptoms are diagnosed, such symptoms have been much less obvious in animal models. In this review, we summarize the three main classes of animal models for Huntington disease and describe some relevant translational assays for behavioural deficits evaluation. Finally, we argue that a good knowledge of the emergence of motor and cognitive symptoms in mice and rat models is indispensable for the selection of endpoint measures in early preclinical drug screening studies.
Collapse
|
41
|
Brinkmeyer-Langford CL, Rech R, Amstalden K, Kochan KJ, Hillhouse AE, Young C, Welsh CJ, Threadgill DW. Host genetic background influences diverse neurological responses to viral infection in mice. Sci Rep 2017; 7:12194. [PMID: 28939838 PMCID: PMC5610195 DOI: 10.1038/s41598-017-12477-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infection by Theiler's murine encephalomyelitis virus (TMEV) is a model for neurological outcomes caused by virus infection because it leads to diverse neurological conditions in mice, depending on the strain infected. To extend knowledge on the heterogeneous neurological outcomes caused by TMEV and identify new models of human neurological diseases associated with antecedent infections, we analyzed the phenotypic consequences of TMEV infection in the Collaborative Cross (CC) mouse population. We evaluated 5 different CC strains for outcomes of long-term infection (3 months) and acute vs. early chronic infection (7 vs. 28 days post-infection), using neurological and behavioral phenotyping tests and histology. We correlated phenotypic observations with haplotypes of genomic regions previously linked to TMEV susceptibility to test the hypothesis that genomic diversity within CC mice results in variable disease phenotypes in response to TMEV. None of the 5 strains analyzed had a response identical to that of any other CC strain or inbred strain for which prior data are available, indicating that strains of the CC can produce novel models of neurological disease. Thus, CC strains can be a powerful resource for studying how viral infection can cause different neurological outcomes depending on host genetic background.
Collapse
Affiliation(s)
| | - Raquel Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Katia Amstalden
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Kelli J Kochan
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Andrew E Hillhouse
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Colin Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
| | - C Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
42
|
Exercise in an animal model of Parkinson's disease: Motor recovery but not restoration of the nigrostriatal pathway. Neuroscience 2017; 359:224-247. [PMID: 28754312 DOI: 10.1016/j.neuroscience.2017.07.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022]
Abstract
Many clinical studies have reported on the benefits of exercise therapy in patients with Parkinson's disease (PD). Exercise cannot stop the progression of PD or facilitate the recovery of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) (Bega et al., 2014). To tease apart this paradox, we utilized a progressive MPTP (1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine) mouse model in which we initiated 4weeks of treadmill exercise after the completion of toxin administration (i.e., restoration). We found in our MPTP/exercise (MPTP+EX) group several measures of gait function that recovered compared to the MPTP only group. Although there was a small recovery of tyrosine hydroxylase (TH) positive DA neurons in the SNpc and terminals in the striatum, this increase was not statistically significant. These small changes in TH could not explain the improvement of motor function. The MPTP group had a significant 170% increase in the glycosylated/non-glycosylated dopamine transporter (DAT) and a 200% increase in microglial marker, IBA-1, in the striatum. The MPTP+EX group showed a nearly full recovery of these markers back to the vehicle levels. There was an increase in GLT-1 levels in the striatum due to exercise, with no change in striatal BDNF protein expression. Our data suggest that motor recovery was not prompted by any significant restoration of DA neurons or terminals, but rather the recovery of DAT and dampening the inflammatory response. Although exercise does not promote recovery of nigrostriatal DA, it should be used in conjunction with pharmaceutical methods for controlling PD symptoms.
Collapse
|
43
|
Broom L, Ellison BA, Worley A, Wagenaar L, Sörberg E, Ashton C, Bennett DA, Buchman AS, Saper CB, Shih LC, Hausdorff JM, VanderHorst VG. A translational approach to capture gait signatures of neurological disorders in mice and humans. Sci Rep 2017; 7:3225. [PMID: 28607434 PMCID: PMC5468293 DOI: 10.1038/s41598-017-03336-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
A method for capturing gait signatures in neurological conditions that allows comparison of human gait with animal models would be of great value in translational research. However, the velocity dependence of gait parameters and differences between quadruped and biped gait have made this comparison challenging. Here we present an approach that accounts for changes in velocity during walking and allows for translation across species. In mice, we represented spatial and temporal gait parameters as a function of velocity and established regression models that reproducibly capture the signatures of these relationships during walking. In experimental parkinsonism models, regression curves representing these relationships shifted from baseline, implicating changes in gait signatures, but with marked differences between models. Gait parameters in healthy human subjects followed similar strict velocity dependent relationships which were altered in Parkinson’s patients in ways that resemble some but not all mouse models. This novel approach is suitable to quantify qualitative walking abnormalities related to CNS circuit dysfunction across species, identify appropriate animal models, and it provides important translational opportunities.
Collapse
Affiliation(s)
- Lauren Broom
- Department of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Brian A Ellison
- Department of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Audrey Worley
- Department of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lara Wagenaar
- Department of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Elina Sörberg
- Department of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Christine Ashton
- Department of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Il 60612, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Il 60612, USA
| | - Clifford B Saper
- Department of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ludy C Shih
- Department of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jeffrey M Hausdorff
- Center for the Study of Movement Cognition and Mobility, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.,Sagol School of Neuroscience and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Veronique G VanderHorst
- Department of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
44
|
Akkhawattanangkul Y, Maiti P, Xue Y, Aryal D, Wetsel WC, Hamilton D, Fowler SC, McDonald MP. Targeted deletion of GD3 synthase protects against MPTP-induced neurodegeneration. GENES BRAIN AND BEHAVIOR 2017; 16:522-536. [PMID: 28239983 DOI: 10.1111/gbb.12377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/07/2023]
Abstract
Parkinson's disease is a debilitating neurodegenerative condition for which there is no cure. Converging evidence implicates gangliosides in the pathogenesis of several neurodegenerative diseases, suggesting a potential new class of therapeutic targets. We have shown that interventions that simultaneously increase the neuroprotective GM1 ganglioside and decrease the pro-apoptotic GD3 ganglioside - such as inhibition of GD3 synthase (GD3S) or administration of sialidase - are neuroprotective in vitro and in a number of preclinical models. In this study, we investigated the effects of GD3S deletion on parkinsonism induced by 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP was administered to GD3S-/- mice or controls using a subchronic regimen consisting of three series of low-dose injections (11 mg/kg/day × 5 days each, 3 weeks apart), and motor function was assessed after each. The typical battery of tests used to assess parkinsonism failed to detect deficits in MPTP-treated mice. More sensitive measures - such as the force-plate actimeter and treadmill gait parameters - detected subtle effects of MPTP, some of which were absent in mice lacking GD3S. In wild-type mice, MPTP destroyed 53% of the tyrosine-hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc) and reduced striatal dopamine 60.7%. In contrast, lesion size was only 22.5% in GD3S-/- mice and striatal dopamine was reduced by 37.2%. Stereological counts of Nissl-positive SNc neurons that did not express TH suggest that neuroprotection was complete but TH expression was suppressed in some cells. These results show that inhibition of GD3S has neuroprotective properties in the MPTP model and may warrant further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Y Akkhawattanangkul
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P Maiti
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Y Xue
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D Aryal
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - W C Wetsel
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - D Hamilton
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S C Fowler
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - M P McDonald
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
45
|
Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. Nat Biotechnol 2017; 35:444-452. [PMID: 28398344 DOI: 10.1038/nbt.3835] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/22/2017] [Indexed: 12/22/2022]
Abstract
Cell replacement therapies for neurodegenerative disease have focused on transplantation of the cell types affected by the pathological process. Here we describe an alternative strategy for Parkinson's disease in which dopamine neurons are generated by direct conversion of astrocytes. Using three transcription factors, NEUROD1, ASCL1 and LMX1A, and the microRNA miR218, collectively designated NeAL218, we reprogram human astrocytes in vitro, and mouse astrocytes in vivo, into induced dopamine neurons (iDANs). Reprogramming efficiency in vitro is improved by small molecules that promote chromatin remodeling and activate the TGFβ, Shh and Wnt signaling pathways. The reprogramming efficiency of human astrocytes reaches up to 16%, resulting in iDANs with appropriate midbrain markers and excitability. In a mouse model of Parkinson's disease, NeAL218 alone reprograms adult striatal astrocytes into iDANs that are excitable and correct some aspects of motor behavior in vivo, including gait impairments. With further optimization, this approach may enable clinical therapies for Parkinson's disease by delivery of genes rather than cells.
Collapse
|
46
|
Neuroprotective Effects and Mechanisms of Action of Multifunctional Agents Targeting Free Radicals, Monoamine Oxidase B and Cholinesterase in Parkinson's Disease Model. J Mol Neurosci 2017; 61:498-510. [PMID: 28144826 DOI: 10.1007/s12031-017-0891-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder with multifactorial pathologies, including progressive loss of dopaminergic (DA) neurons, oxidative stress, mitochondrial dysfunction, and increased monoamine oxidase (MAO) enzyme activity. There are currently only a few agents approved to ameliorate the symptoms of PD; however, no agent is able to reverse the progression of the disease. Due to the multifactorial pathologies, it is necessary to develop multifunctional agents that can affect more than one target involved in the disease pathology. We have designed and synthesized a series of new multifunctional anti-Parkinson's compounds which can protect cerebral granular neurons from 1-methyl-4-phenylpyridinium (MPP+) insult, scavenge free radicals, and inhibit monoamine oxidase (MAO)/cholinesterase (ChE) activities. Among them, MT-20R exhibited the most potent MAO-B inhibition both in vitro and in vivo. We further investigated the neuroprotective effects of MT-20R using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. In vivo, MT-20R alleviated MPTP-induced motor deficits, raised the striatal contents of dopamine and its metabolites, and restored the expression of tyrosine hydroxylase (TH) and the number of TH-positive DA neurons in the substantia nigra. Additionally, MT-20R enhanced the expression of Bcl-2, decreased the expression of Bax and Caspase 3, and activated the AKT/Nrf2/HO-1 signaling pathway. These findings suggest that MT-20R may be a novel therapeutic candidate for treatment of PD.
Collapse
|
47
|
Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, Schwedhelm-Domeyer N, Joseph S, Mitkovski M, Goebbels S, Nave KA, Schulz JB, Marquardt T, Lingor P, Stegmüller J. Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J 2016; 35:2008-25. [PMID: 27497298 DOI: 10.15252/embj.201593585] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/07/2016] [Indexed: 11/09/2022] Open
Abstract
Mutations in the FBXO7 (PARK15) gene have been implicated in a juvenile form of parkinsonism termed parkinsonian pyramidal syndrome (PPS), characterized by Parkinsonian symptoms and pyramidal tract signs. FBXO7 (F-box protein only 7) is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin ligase complex, but its relevance and function in neurons remain to be elucidated. Here, we report that the E3 ligase FBXO7-SCF binds to and ubiquitinates the proteasomal subunit PSMA2. In addition, we show that FBXO7 is a proteasome-associated protein involved in proteasome assembly. In FBXO7 knockout mice, we find reduced proteasome activity and early-onset motor deficits together with premature death. In addition, we demonstrate that NEX (neuronal helix-loop-helix protein-1)-Cre-induced deletion of the FBXO7 gene in forebrain neurons or the loss of FBXO7 in tyrosine hydroxylase (TH)-positive neurons results in motor defects, reminiscent of the phenotype in PARK15 patients. Taken together, our study establishes a vital role for FBXO7 in neurons, which is required for proper motor control and accentuates the importance of FBXO7 in proteasome function.
Collapse
Affiliation(s)
- Siv Vingill
- Cellular and Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany Neuroscience, International Max Planck Research School, Göttingen, Germany
| | - David Brockelt
- Cellular and Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany Neuroscience, International Max Planck Research School, Göttingen, Germany
| | | | - Lars Tatenhorst
- Neurology, University Medical Center, Göttingen, Germany Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CMPB), Göttingen, Germany
| | - Guergana Dontcheva
- Cellular and Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany Neuroscience, International Max Planck Research School, Göttingen, Germany Department of Neurology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Center for Clinical Research (IZKF) Aachen, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Nicola Schwedhelm-Domeyer
- Cellular and Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sabitha Joseph
- Cellular and Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany Neuroscience, International Max Planck Research School, Göttingen, Germany Department of Neurology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CMPB), Göttingen, Germany Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Till Marquardt
- European Neuroscience Institute (ENI), Göttingen, Germany Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CMPB), Göttingen, Germany Section Neurobiological Research, Department of Neurology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Paul Lingor
- Neurology, University Medical Center, Göttingen, Germany Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CMPB), Göttingen, Germany
| | - Judith Stegmüller
- Cellular and Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CMPB), Göttingen, Germany Department of Neurology, University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
48
|
Bolton Hall AN, Joseph B, Brelsfoard JM, Saatman KE. Repeated Closed Head Injury in Mice Results in Sustained Motor and Memory Deficits and Chronic Cellular Changes. PLoS One 2016; 11:e0159442. [PMID: 27427961 PMCID: PMC4948770 DOI: 10.1371/journal.pone.0159442] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
Millions of mild traumatic brain injuries (TBIs) occur every year in the United States, with many people subject to multiple head injuries that can lead to chronic behavioral dysfunction. We previously reported that mild TBI induced using closed head injuries (CHI) repeated at 24h intervals produced more acute neuron death and glial reactivity than a single CHI, and increasing the length of time between injuries to 48h reduced the cumulative acute effects of repeated CHI. To determine whether repeated CHI is associated with behavioral dysfunction or persistent cellular damage, mice receiving either five CHI at 24h intervals, five CHI at 48h intervals, or five sham injuries at 24h intervals were evaluated across a 10 week period after injury. Animals with repeated CHI exhibited motor coordination and memory deficits, but not gait abnormalities when compared to sham animals. At 10wks post-injury, no notable neuron loss or glial reactivity was observed in the cortex, hippocampus, or corpus callosum. Argyrophilic axons were found in the pyramidal tract of some injured animals, but neither silver stain accumulation nor inflammatory responses in the injury groups were statistically different from the sham group in this region. However, argyrophilic axons, microgliosis and astrogliosis were significantly increased within the optic tract of injured animals. Repeated mild CHI also resulted in microgliosis and a loss of neurofilament protein 200 in the optic nerve. Lengthening the inter-injury interval from 24h to 48h did not effectively reduce these behavioral or cellular responses. These results suggest that repeated mild CHI results in persistent behavioral dysfunction and chronic pathological changes within the visual system, neither of which was significantly attenuated by lengthening the inter-injury interval from 24h to 48h.
Collapse
Affiliation(s)
- Amanda N. Bolton Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Binoy Joseph
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jennifer M. Brelsfoard
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| |
Collapse
|
49
|
Hung YH, Walterfang M, Churilov L, Bray L, Jacobson LH, Barnham KJ, Jones NC, O'Brien TJ, Velakoulis D, Bush AI. Neurological Dysfunction in Early Maturity of a Model for Niemann-Pick C1 Carrier Status. Neurotherapeutics 2016; 13:614-22. [PMID: 26942423 PMCID: PMC4965399 DOI: 10.1007/s13311-016-0427-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Autosomal recessive inheritance of NPC1 with loss-of-function mutations underlies Niemann-Pick disease, type C1 (NP-C1), a lysosomal storage disorder with progressive neurodegeneration. It is uncertain from limited biochemical studies and patient case reports whether NPC1 haploinsufficiency can cause a partial NP-C1 phenotype in carriers. In the present study, we examined this possibility in heterozygotes of a natural loss-of-function mutant Npc1 mouse model. We found partial motor dysfunction and increased anxiety-like behavior in Npc1 (+/-) mice by 9 weeks of age. Relative to Npc1 (+/+) mice, Npc1 (+/-) mice failed to show neurodevelopmental improvements in motor coordination and balance on an accelerating Rotarod. In the open-field test, Npc1 (+/-) mice showed an intermediate phenotype in spontaneous locomotor activity compared with Npc1 (+/+) and Npc1 (-/-) mice, as well as decreased center tendency. Together with increased stride length under anxiogenic conditions on the DigiGait treadmill, these findings are consistent with heightened anxiety. Our findings indicate that pathogenic NPC1 allele carriers, who represent about 0.66 % of humans, could be vulnerable to motor and anxiety disorders.
Collapse
Affiliation(s)
- Ya Hui Hung
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mark Walterfang
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Neuropsychiatry Unit, Royal Melbourne Hospital and Melbourne Neuropsychiatry Centre, Melbourne, Victoria, 3050, Australia
| | - Leonid Churilov
- Statistics and Informatics Platform, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Mathematics and Geospatial Sciences, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Lisa Bray
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Laura H Jacobson
- Neurotherapeutics Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kevin J Barnham
- Neurotherapeutics Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital and Melbourne Neuropsychiatry Centre, Melbourne, Victoria, 3050, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
50
|
Fellner L, Kuzdas-Wood D, Levin J, Ryazanov S, Leonov A, Griesinger C, Giese A, Wenning GK, Stefanova N. Anle138b Partly Ameliorates Motor Deficits Despite Failure of Neuroprotection in a Model of Advanced Multiple System Atrophy. Front Neurosci 2016; 10:99. [PMID: 27013960 PMCID: PMC4785146 DOI: 10.3389/fnins.2016.00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 01/20/2023] Open
Abstract
The neurodegenerative disorder multiple system atrophy (MSA) is characterized by autonomic failure, cerebellar ataxia and parkinsonism in any combination associated with predominantly oligodendroglial α-synuclein (α-syn) aggregates (glial cytoplasmic inclusions = GCIs). To date, there is no effective disease modifying therapy. Previous experiments have shown that the aggregation inhibitor anle138b reduces neurodegeneration, as well as behavioral deficits in both transgenic and toxin mouse models of Parkinson's disease (PD). Here we analyzed whether anle138b improves motor skills and reduces neuronal loss, as well as oligodendroglial α-syn aggregation in the PLP-α-syn transgenic mouse challenged with the mitochondrial toxin 3-nitropropionic acid (3-NP) to model full-blown MSA. Following 1 month of treatment with anle138b, MSA mice showed signs of motor improvement affecting stride length, but not pole, grip strength, and beam test performance. Loss of dopaminergic nigral neurons and Purkinje cells was not attenuated and GCI density remained unchanged. These data suggest that the pathology in transgenic PLP-α-syn mice receiving 3-NP might be too advanced to detect significant effects of anle138b treatment on neuronal loss and intracytoplasmic α-syn inclusion bodies. However, the partial motor amelioration may indicate potential efficacy of anle138b treatment that may be mediated by its actions on α-syn oligomers or may reflect improvement of neuronal dysfunction in neural at risk populations. Further studies are required to address the efficacy of anle138b in transgenic α-syn models of early-stage MSA and in the absence of additional toxin application.
Collapse
Affiliation(s)
- Lisa Fellner
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck Innsbruck, Austria
| | - Daniela Kuzdas-Wood
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck Innsbruck, Austria
| | - Johannes Levin
- Neurologische Klinik, Klinikum der Ludwig-Maximilians-Universität München Munich, Germany
| | - Sergey Ryazanov
- NMR based structural Biology, Max Planck Institute for Biophysical ChemistryGöttingen, Germany; DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Andrei Leonov
- NMR based structural Biology, Max Planck Institute for Biophysical ChemistryGöttingen, Germany; DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Christian Griesinger
- NMR based structural Biology, Max Planck Institute for Biophysical ChemistryGöttingen, Germany; DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGöttingen, Germany
| | - Armin Giese
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-Universität München Munich, Germany
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck Innsbruck, Austria
| |
Collapse
|