1
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
2
|
McMahon R, Toepfer S, Sattler N, Schneider M, Narciso-Abraham M, Hadl S, Hochreiter R, Kosulin K, Mader R, Zoihsl O, Wressnigg N, Dubischar K, Buerger V, Eder-Lingelbach S, Jaramillo JC. Antibody persistence and safety of a live-attenuated chikungunya virus vaccine up to 2 years after single-dose administration in adults in the USA: a single-arm, multicentre, phase 3b study. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00357-8. [PMID: 39146946 DOI: 10.1016/s1473-3099(24)00357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Chikungunya virus infection can lead to long-term debilitating symptoms. A precursor phase 3 clinical study showed high seroprotection (defined as a 50% plaque reduction of chikungunya virus-specific neutralising antibodies on a micro plaque reduction neutralisation test [μPRNT] titre of ≥150 in baseline seronegative participants) up to 6 months after a single vaccination of the chikungunya virus vaccine VLA1553 (Valneva Austria, Vienna, Austria) and a good safety profile. Here we report antibody persistence and safety up to 2 years. METHODS In this single-arm, multicentre, phase 3b study, we recruited participants from the precursor phase 3 trial from professional vaccine trial sites in the USA. Participants (aged ≥18 years) were eligible if they had completed the previous study and received VLA1553. Chikungunya virus-specific neutralising antibodies were evaluated at 28 days, 6 months, and 1 year and 2 years after vaccination. The primary outcome was the proportion of seroprotected participants (ie, μPRNT50 titre of ≥150) at 1 and 2 years, assessed in all eligible participants who had at least one post-vaccination immunogenicity sample available, overall and by age group at the time of vaccination (18-64 years and ≥65 years). Adverse events of special interest at the time of transition from the previous study to the current study (ie, at 6 months) and serious adverse events during the current study were recorded (ie, between 6 months and 2 years). All analyses were descriptive. This study is registered with ClinicalTrials.gov, NCT04838444, and immunogenicity follow-up is ongoing. FINDINGS In the precursor study, participants were screened between Sept 17, 2020, and April 10, 2021; data cutoff for this analysis was March 31, 2023. Of 2724 participants in the precursor study who received one dose of VLA1553, 363 participants were analysed in this study (310 [85%] aged 18-64 years and 53 [15%] aged ≥65 years at enrolment in the precursor study; mean age 47·7 years [SD 14·2], 207 [57%] of 363 participants were female, 156 [43%] were male, 280 [77%] were White, and 314 [87%] were not Hispanic or Latino). Strong seroprotection was observed at 1 year (98·9% [356 of 360 assessable participants; 97·2-99·7]) and 2 years (96·8% [306 of 316; 94·3-98·5]) after vaccination, and was very similar between those aged 18-64 years (at 1 year: 98·7% [303 of 307; 96·7-99·6]; at 2 years: 96·6% [256 of 265; 93·7-98·4]) and those aged 65 years and older (at 1 year: 100% [53 of 53; 93·3-100]; at 2 years: 98·0% [50 of 51; 89·6-100]) at each timepoint. No adverse events of special interest were ongoing at the time of transition. Ten serious adverse events occurred in nine (2%) participants between the 6-month and 2-year timepoints, including one death (due to drug overdose) that was determined to not be related to VLA1553. INTERPRETATION After a single VLA1553 vaccination, chikungunya virus-neutralising antibodies above the threshold considered to be protective persisted up to 2 years and there were no long-term serious adverse events related to vaccination. VLA1553 is an efficient and safe intervention that offers high seroprotection against chikungunya virus infection, a virus likely to spread globally with an urgent demand for long-lasting prophylaxis. FUNDING Valneva Austria, Coalition for Epidemic Preparedness Innovation, and EU Horizon 2020.
Collapse
|
3
|
Sridhar S, Tonto PB, Lumkong L, Netto EM, Brites C, Wang WK, Herrera BB. Development of RT-RPA-based point-of-care tests for epidemic arthritogenic alphaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594209. [PMID: 38826256 PMCID: PMC11142058 DOI: 10.1101/2024.05.14.594209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chikungunya (CHIKV), o'nyong-nyong (ONNV), and Mayaro (MAYV) viruses are transmitted by mosquitoes and known to cause a debilitating arthritogenic syndrome. These alphaviruses have emerged and re-emerged, leading to outbreaks in tropical and subtropical regions of Asia, South America, and Africa. Despite their prevalence, there persists a critical gap in the availability of sensitive and virus-specific point-of-care (POC) diagnostics. Traditional immunoglobulin-based tests such as enzyme-linked immunosorbent assay (ELISAs) often yield cross-reactive results due to the close genetic relationship between these viruses. Molecular diagnostics such as quantitative polymerase chain reaction (qPCR) offer high sensitivity but are limited by the need for specialized laboratory equipment. Recombinase polymerase amplification (RPA), an isothermal amplification method, is a promising alternative to qPCR, providing rapid results with minimal equipment requirements. Here, we report the development and validation of three virus-specific RPA-based POC tests for CHIKV, ONNV, and MAYV. These tests demonstrated both speed and sensitivity, capable of detecting 10 viral copies within 20 minutes of amplification, without exhibiting cross-reactivity. Furthermore, we evaluated the clinical potential of these tests using serum and tissue samples from CHIKV, ONNV, and MAYV-infected mice, as well as CHIKV-infected human patients. We demonstrate that the RPA amplicons derived from the patient samples can be sequenced, enabling cost-effective molecular epidemiological studies. Our findings highlight the significance of these rapid and specific POC diagnostics in improving the early detection and management of these arboviral infections.
Collapse
|
4
|
Rao S, Erku D, Mahalingam S, Taylor A. Immunogenicity, safety and duration of protection afforded by chikungunya virus vaccines undergoing human clinical trials. J Gen Virol 2024; 105. [PMID: 38421278 DOI: 10.1099/jgv.0.001965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Background. Chikungunya virus (CHIKV) causes chikungunya fever and has been responsible for major global epidemics of arthritic disease over the past two decades. Multiple CHIKV vaccine candidates are currently undergoing or have undergone human clinical trials, with one vaccine candidate receiving FDA approval. This scoping review was performed to evaluate the 'efficacy', 'safety' and 'duration of protection' provided by CHIKV vaccine candidates in human clinical trials.Methods. This scoping literature review addresses studies involving CHIKV vaccine clinical trials using available literature on the PubMed, Medline Embase, Cochrane Library and Clinicaltrial.gov databases published up to 25 August 2023. Covidence software was used to structure information and review the studies included in this article.Results. A total of 1138 studies were screened and, after removal of duplicate studies, 12 relevant studies were thoroughly reviewed to gather information. This review summarizs that all seven CHIKV vaccine candidates achieved over 90 % seroprotection against CHIKV after one or two doses. All vaccines were able to provide neutralizing antibody protection for at least 28 days.Conclusions. A variety of vaccine technologies have been used to develop CHIKV vaccine candidates. With one vaccine candidate having recently received FDA approval, it is likely that further CHIKV vaccines will be available commercially in the near future.
Collapse
Affiliation(s)
- Shambhavi Rao
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Erku
- Centre for Applied Health Economics, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
| | - Suresh Mahalingam
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adam Taylor
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
5
|
Ammatawiyanon L, Tongkumchum P, McNeil D, Lim A. Statistical modeling for identifying chikungunya high-risk areas of two large-scale outbreaks in Thailand's southernmost provinces. Sci Rep 2023; 13:18972. [PMID: 37923773 PMCID: PMC10624817 DOI: 10.1038/s41598-023-45307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Chikungunya fever (CHIKF) has re-emerged in the southernmost Thailand and presents a significant threat to public health. The problem areas can be identified using appropriate statistical models. This study aimed to determine the geographic epidemic patterns and high-risk locations. Data on CHIKF's case characteristics, including age, gender, and residence sub-district, were obtained from the Office of Disease Prevention and Control of Thailand from 2008 to 2020. A logistic model was applied to detect illness occurrences. After removing records with no cases, a log-linear regression model was used to determine the incidence rate. The results revealed that two large-scale infections occurred in the southernmost provinces of Thailand between 2008 and 2010, and again between 2018 and 2020, indicating a 10-year epidemic cycle. The CHIKF occurrence in the first and second outbreaks was 28.4% and 15.5%, respectively. In both outbreaks of occurrence CHIKF, adolescents and working-age groups were the most infected groups but the high incidence rate of CHIKF was elderly groups. The first outbreak had a high occurrence and incidence rate in 39 sub-districts, the majority of which were in Narathiwat province, whilst the second outbreak was identified in 15 sub-districts, the majority of which were in Pattani province. In conclusion, the CHIKF outbreak areas can be identified and addressed by combining logistic and log-linear models in a two-step process. The findings of this study can serve as a guide for developing a surveillance strategy or an earlier plan to manage or prevent the CHIKF outbreak.
Collapse
Affiliation(s)
- Lumpoo Ammatawiyanon
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Phattrawan Tongkumchum
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Don McNeil
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Apiradee Lim
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand.
| |
Collapse
|
6
|
Ormundo LF, Barreto CT, Tsuruta LR. Development of Therapeutic Monoclonal Antibodies for Emerging Arbovirus Infections. Viruses 2023; 15:2177. [PMID: 38005854 PMCID: PMC10675117 DOI: 10.3390/v15112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.
Collapse
Affiliation(s)
- Leonardo F. Ormundo
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Carolina T. Barreto
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Lilian R. Tsuruta
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
| |
Collapse
|
7
|
de Souza WM, de Lima STS, Simões Mello LM, Candido DS, Buss L, Whittaker C, Claro IM, Chandradeva N, Granja F, de Jesus R, Lemos PS, Toledo-Teixeira DA, Barbosa PP, Firmino ACL, Amorim MR, Duarte LMF, Pessoa IB, Forato J, Vasconcelos IL, Maximo ACBM, Araújo ELL, Perdigão Mello L, Sabino EC, Proença-Módena JL, Faria NR, Weaver SC. Spatiotemporal dynamics and recurrence of chikungunya virus in Brazil: an epidemiological study. THE LANCET. MICROBE 2023; 4:e319-e329. [PMID: 37031687 PMCID: PMC10281060 DOI: 10.1016/s2666-5247(23)00033-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Accepted: 01/27/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an Aedes mosquito-borne virus that has caused large epidemics linked to acute, chronic, and severe clinical outcomes. Currently, Brazil has the highest number of chikungunya cases in the Americas. We aimed to investigate the spatiotemporal dynamics and recurrence pattern of chikungunya in Brazil since its introduction in 2013. METHODS In this epidemiological study, we used CHIKV genomic sequencing data, CHIKV vector information, and aggregate clinical data on chikungunya cases from Brazil. The genomic data comprised 241 Brazilian CHIKV genome sequences from GenBank (n=180) and the 2022 CHIKV outbreak in Ceará state (n=61). The vector data (Breteau index and House index) were obtained from the Brazilian Ministry of Health for all 184 municipalities in Ceará state and 116 municipalities in Tocantins state in 2022. Epidemiological data on laboratory-confirmed cases of chikungunya between 2013 and 2022 were obtained from the Brazilian Ministry of Health and Laboratory of Public Health of Ceará. We assessed the spatiotemporal dynamics of chikungunya in Brazil via time series, mapping, age-sex distribution, cumulative case-fatality, linear correlation, logistic regression, and phylogenetic analyses. FINDINGS Between March 3, 2013, and June 4, 2022, 253 545 laboratory-confirmed chikungunya cases were reported in 3316 (59·5%) of 5570 municipalities, mainly distributed in seven epidemic waves from 2016 to 2022. To date, Ceará in the northeast has been the most affected state, with 77 418 cases during the two largest epidemic waves in 2016 and 2017 and the third wave in 2022. From 2016 to 2022 in Ceará, the odds of being CHIKV-positive were higher in females than in males (odds ratio 0·87, 95% CI 0·85-0·89, p<0·0001), and the cumulative case-fatality ratio was 1·3 deaths per 1000 cases. Chikungunya recurrences in the states of Ceará, Tocantins (recurrence in 2022), and Pernambuco (recurrence in 2021) were limited to municipalities with few or no previously reported cases in the previous epidemic waves. The recurrence of chikungunya in Ceará in 2022 was associated with a new East-Central-South-African lineage. Population density metrics of the main CHIKV vector in Brazil, Aedes aegypti, were not correlated spatially with locations of chikungunya recurrence in Ceará and Tocantins. INTERPRETATION Spatial heterogeneity of CHIKV spread and population immunity might explain the recurrence pattern of chikungunya in Brazil. These results can be used to inform public health interventions to prevent future chikungunya epidemic waves in urban settings. FUNDING Global Virus Network, Burroughs Wellcome Fund, Wellcome Trust, US National Institutes of Health, São Paulo Research Foundation, Brazil Ministry of Education, UK Medical Research Council, Brazilian National Council for Scientific and Technological Development, and UK Royal Society. TRANSLATION For the Portuguese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - Shirlene T S de Lima
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Brazil; Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Darlan S Candido
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lewis Buss
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; The Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, UK
| | - Ingra M Claro
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Nilani Chandradeva
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Fabiana Granja
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Biodiversity Research Centre, Federal University of Roraima, Boa Vista, Brazil
| | - Ronaldo de Jesus
- Ministério da Saúde, Departamento de Articulação Estratégica de Vigilância em Saúde, Brasilia, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Poliana S Lemos
- Ministério da Saúde, Departamento de Articulação Estratégica de Vigilância em Saúde, Brasilia, Brazil
| | - Daniel A Toledo-Teixeira
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Priscilla P Barbosa
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Mariene R Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Ivan B Pessoa
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Brazil
| | - Julia Forato
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | - Emerson L L Araújo
- Ministério da Saúde, Departamento de Articulação Estratégica de Vigilância em Saúde, Brasilia, Brazil
| | | | - Ester C Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - José Luiz Proença-Módena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Hub of Global Health, University of Campinas, Campinas, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
8
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
9
|
Simon F, Caumes E, Jelinek T, Lopez-Velez R, Steffen R, Chen LH. Chikungunya: risks for travellers. J Travel Med 2023; 30:taad008. [PMID: 36648431 PMCID: PMC10075059 DOI: 10.1093/jtm/taad008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
RATIONALE FOR REVIEW Chikungunya outbreaks continue to occur, with changing epidemiology. Awareness about chikungunya is low both among the at-risk travellers and healthcare professionals, which can result in underdiagnosis and underreporting. This review aims to improve awareness among healthcare professionals regarding the risks of chikungunya for travellers. KEY FINDINGS Chikungunya virus transmission to humans occurs mainly via daytime-active mosquitoes, Aedes aegypti and Aedes albopictus. The areas where these mosquitoes live is continuously expanding, partly due to climate changes. Chikungunya is characterized by an acute onset of fever with joint pain. These symptoms generally resolve within 1-3 weeks, but at least one-third of the patients suffer from debilitating rheumatologic symptoms for months to years. Large outbreaks in changing regions of the world since the turn of the 21st century (e.g. Caribbean, La Réunion; currently Brazil, India) have resulted in growing numbers of travellers importing chikungunya, mainly to Europe and North America. Viremic travellers with chikungunya infection have seeded chikungunya clusters (France, United States of America) and outbreaks (Italy in 2007 and 2017) in non-endemic countries where Ae. albopictus mosquitoes are present. Community preventive measures are important to prevent disease transmission by mosquitoes. Individual preventive options are limited to personal protection measures against mosquito bites, particularly the daytime-active mosquitos that transmit the chikungunya virus. Candidate vaccines are on the horizon and regulatory authorities will need to assess environmental and host risk factors for persistent sequelae, such as obesity, age (over 40 years) and history of arthritis or inflammatory rheumatologic disease to determine which populations should be targeted for these chikungunya vaccines. CONCLUSIONS/RECOMMENDATIONS Travellers planning to visit destinations with active CHIKV circulation should be advised about the risk for chikungunya, prevention strategies, the disease manifestations, possible chronic rheumatologic sequelae and, if symptomatic, seek medical evaluation and report potential exposures.
Collapse
Affiliation(s)
- Fabrice Simon
- Service de Pathologie Infectieuse et Tropicale, Hôpital d’Instruction des Armées Laveran, Marseille, France
| | - Eric Caumes
- Centre de Diagnostic, Hôpital de l’Hôtel-Dieu, Paris, France
| | - Tomas Jelinek
- Berlin Centre for Travel and Tropical Medicine, Berlin, Germany
| | - Rogelio Lopez-Velez
- Ramón y Cajal Institute for Health Research (IRyCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Robert Steffen
- Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Center on Travelers’ Health, University of Zurich, Zurich, Switzerland
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Lin H Chen
- Division of Infectious Diseases and Travel Medicine, Mount Auburn Hospital, Cambridge, MA, USA
- Faculty of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Doran C, Gerstenbluth I, Duits A, Lourents N, Halabi Y, Burgerhof J, Tami A, Bailey A. The clinical manifestation and the influence of age and comorbidities on long-term chikungunya disease and health-related quality of life: a 60-month prospective cohort study in Curaçao. BMC Infect Dis 2022; 22:948. [PMID: 36526964 PMCID: PMC9756924 DOI: 10.1186/s12879-022-07922-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Persistent rheumatic symptoms and its impact on health-related quality of life (QoL), induced by the Indian Ocean Lineage (IOL) chikungunya virus (CHIKV) genotype have been widely studied. In 2014, a major CHIKV outbreak of the Asian genotype occurred in Curaçao, after which we established a longitudinal cohort in 2015, to follow the long-term CHIKV sequalae. Currently, the long-term clinical manifestations and its impact on QoL induced by the Asian CHIKV genotype, followed prospectively through time, and the association of age and comorbidities with rheumatic symptoms persistence, 60 months (M60) after disease onset is unknown. METHODS The cohort of 304 laboratory confirmed patients were followed prospectively in time at 3-16 months (M3-16), 30 months (M30), and M60 after disease onset. Demographic and clinical characteristics, and the 36-item short-form survey (SF-36) QoL status were collected through questionnaires. At M60, QoL scores were compared to general population (CHIK-) norms. RESULTS A total of 169 (56%) patients participated (74.6% female, mean age 56.1 years) at all time points, 107 (63%) were classified as recovered and 62 (37%) as affected. The affected patients reported an increase in the prevalence of arthralgia (P .001) and arthralgia in the lower extremities (P < .001), at M30 compared to M3-16. At M60, in comparison to recovered patients, affected patients reported a higher prevalence of recurrent rheumatic symptoms of moderate to severe pain, irrespective of age and comorbidities, and a higher prevalence of non-rheumatic symptoms (P < .001). Arthralgia in the upper (odds ratio (OR): 4.79; confidence interval (CI): 2.01-11.44; P < .001) and lower (OR: 8.68; CI: 3.47-21.69; P < .001) extremities, and headache (OR: 3.85; CI: 1.40-10.54; P = .009) were associated with being affected. The SF-36 QoL scores of the recovered patients were less impaired over time compared to the QoL scores of the affected patients. At M60, the QoL scores of the recovered patients were comparable to the CHIK- QoL scores. CONCLUSIONS Rheumatic and non-rheumatic symptoms, and QoL impairment may persist, 60 months following infection with the Asian CHIKV genotype, similar to the IOL genotype disease sequelae. Further research is needed to follow the clinical manifestations and QoL impact of each CHIKV genotype.
Collapse
Affiliation(s)
- Churnalisa Doran
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Izzy Gerstenbluth
- Curaçao Biomedical and Health Research Institute, Pater Eeuwensweg 36, Willemstad, Curaçao
| | - Ashley Duits
- Curaçao Biomedical and Health Research Institute, Pater Eeuwensweg 36, Willemstad, Curaçao
| | - Norediz Lourents
- Epidemiology and Research Unit, Medical and Public Health Service Curaçao, Piscaderaweg 49, Willemstad, Curaçao
| | - Yaskara Halabi
- Epidemiology and Research Unit, Medical and Public Health Service Curaçao, Piscaderaweg 49, Willemstad, Curaçao
| | - Johannes Burgerhof
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Adriana Tami
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ajay Bailey
- grid.5477.10000000120346234Department of Human Geography and Spatial Planning, University of Utrecht, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
11
|
Sultan S, Eldamarany NMI, Abdelazeem MW, Fahmy HA. Active Surveillance and Genetic Characterization of Prevalent Velogenic Newcastle Disease and Highly Pathogenic Avian Influenza H5N8 Viruses Among Migratory Wild Birds in Southern Egypt During 2015-2018. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:280-294. [PMID: 35948740 DOI: 10.1007/s12560-022-09532-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A total of 1007 samples (910 fecal droplets and 97 cloacal swabs) were collected from 14 species of migratory wild birds in most wetlands during 3 successive migration seasons from September to March (2015-2018) in Southern Egypt. The samples were propagated in embryonated chicken eggs and positive allantoic fluids by hemagglutination test were tested for Newcastle disease virus (NDV) and avian influenza virus (AIV) prevalence using RT-PCR and specific primers targeting the NDV fusion (F) and AIV matrix genes. Further subtyping of the AIV hemagglutinin (HA) and neuraminidase (NA) was conducted, and representative isolates were selected and sequenced for full F gene of NDVs and HA and NA genes of the AIV. Overall isolation rate of hemagglutinating viruses was 5.56% (56/1007), from them 5.36% (3/56) AIV, 85.71% (48/56) NDV and 8.93% (5/56) co-infection of NDV and AIV was detected. The sequences analysis of full F genes of 10 NDV isolates revealed that they have multi-basic amino acid motifs 111E/GRRQKR/F117 as velogenic strains with nucleotides and amino acids similarities of 96-100%. In addition, they phylogenetically clustered into groups and subgroups within genotype VII.1.1 and sub-genotype VIIj with a close relation to NDVs isolated from chickens in Egypt. The AIV H5N8 subtype was in clade 2.3.4.4b with a highly pathogenic nature and close relation to Egyptian domesticated H5N8 viruses rather than those from wild birds. The current data showed the contribution of migratory birds to the continuous circulation of virulent NDV and AIV H5N8 among domesticated chickens in Southern Egypt.
Collapse
Affiliation(s)
- Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | | | - Mohmed Wael Abdelazeem
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Hanan Ali Fahmy
- Biotechnology Department, Animal Health Research Institute, Dokki, Giza, Egypt
| |
Collapse
|
12
|
Suvanto MT, Uusitalo R, Otte Im Kampe E, Vuorinen T, Kurkela S, Vapalahti O, Dub T, Huhtamo E, Korhonen EM. Sindbis virus outbreak and evidence for geographical expansion in Finland, 2021. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35929430 PMCID: PMC9358406 DOI: 10.2807/1560-7917.es.2022.27.31.2200580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sindbis virus (SINV) caused a large outbreak in Finland in 2021 with 566 laboratory-confirmed human cases and a notable geographical expansion. Compared with the last large outbreak in 2002, incidence was higher in several hospital districts but lower in traditionally endemic locations in eastern parts of the country. A high incidence is also expected in 2022. Awareness of SINV should be raised in Finland to increase recognition of the disease and prevent transmission through the promotion of control measures.
Collapse
Affiliation(s)
- Maija T Suvanto
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Eveline Otte Im Kampe
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland.,ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Tytti Vuorinen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Satu Kurkela
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timothée Dub
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eili Huhtamo
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Essi M Korhonen
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
A Brighton Collaboration standardized template with key considerations for a benefit/risk assessment for an inactivated viral vaccine against Chikungunya virus. Vaccine 2022; 40:5263-5274. [PMID: 35715351 PMCID: PMC9197579 DOI: 10.1016/j.vaccine.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
Inactivated viral vaccines have long been used in humans for diseases of global health threat (e.g., poliomyelitis and pandemic and seasonal influenza) and the technology of inactivation has more recently been used for emerging diseases such as West Nile, Chikungunya, Ross River, SARS and especially for COVID-19. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit and risk of several vaccine platform technologies, including inactivated viral vaccines. This paper uses the BRAVATO inactivated virus vaccine template to review the features of an inactivated whole chikungunya virus (CHIKV) vaccine that has been evaluated in several preclinical studies and clinical trials. The inactivated whole CHIKV vaccine was cultured on Vero cells and inactivated by ß-propiolactone. This provides an effective, flexible system for high-yield manufacturing. The inactivated whole CHIKV vaccine has favorable thermostability profiles, compatible with vaccine supply chains. Safety data are compiled in the current inactivated whole CHIKV vaccine safety database with unblinded data from the ongoing studies: 850 participants from phase II study (parts A and B) outside of India, and 600 participants from ongoing phase II study in India, and completed phase I clinical studies for 60 subjects. Overall, the inactivated whole CHIKV vaccine has been well tolerated, with no significant safety issues identified. Evaluation of the inactivated whole CHIKV vaccine is continuing, with 1410 participants vaccinated as of 20 April 2022. Extensive evaluation of immunogenicity in humans shows strong, durable humoral immune responses.
Collapse
|
14
|
Roques P, Fritzer A, Dereuddre-Bosquet N, Wressnigg N, Hochreiter R, Bossevot L, Pascal Q, Guehenneux F, Bitzer A, Corbic Ramljak I, Le Grand R, Lundberg U, Meinke A. Effectiveness of CHIKV vaccine VLA1553 demonstrated by passive transfer of human sera. JCI Insight 2022; 7:160173. [PMID: 35700051 PMCID: PMC9431671 DOI: 10.1172/jci.insight.160173] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus responsible for numerous outbreaks. Chikungunya can cause debilitating acute and chronic disease. Thus, the development of a safe and effective CHIKV vaccine is an urgent global health priority. This study evaluated the effectiveness of the live-attenuated CHIKV vaccine VLA1553 against WT CHIKV infection by using passive transfer of sera from vaccinated volunteers to nonhuman primates (NHP) subsequently exposed to WT CHIKV and established a serological surrogate of protection. We demonstrated that human VLA1553 sera transferred to NHPs conferred complete protection from CHIKV viremia and fever after challenge with homologous WT CHIKV. In addition, serum transfer protected animals from other CHIKV-associated clinical symptoms and from CHIKV persistence in tissue. Based on this passive transfer study, a 50% micro–plaque reduction neutralization test titer of ≥ 150 was determined as a surrogate of protection, which was supported by analysis of samples from a seroepidemiological study. In conclusion, considering the unfeasibility of an efficacy trial due to the unpredictability and explosive, rapidly moving nature of chikungunya outbreaks, the definition of a surrogate of protection for VLA1553 is an important step toward vaccine licensure to reduce the medical burden caused by chikungunya.
Collapse
Affiliation(s)
- Pierre Roques
- Unité de Virologie, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | | | | | - Nina Wressnigg
- Clinical Strategy, Valneva Austria GmbH, Vienna, Austria
| | | | - Laetitia Bossevot
- DSV/IMETI, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | - Quentin Pascal
- DSV/IMETI, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | | | | | | | - Roger Le Grand
- DSV/IMETI, Commissariat à l'énergie atomique et aux énergies alternatives, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
15
|
August A, Attarwala HZ, Himansu S, Kalidindi S, Lu S, Pajon R, Han S, Lecerf JM, Tomassini JE, Hard M, Ptaszek LM, Crowe JE, Zaks T. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med 2021; 27:2224-2233. [PMID: 34887572 PMCID: PMC8674127 DOI: 10.1038/s41591-021-01573-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) infection causes acute disease characterized by fever, rash and arthralgia, which progresses to severe and chronic arthritis in up to 50% of patients. Moreover, CHIKV infection can be fatal in infants or immunocompromised individuals and has no approved therapy or prevention. This phase 1, first-in-human, randomized, placebo-controlled, proof-of-concept trial conducted from January 2019 to June 2020 evaluated the safety and pharmacology of mRNA-1944, a lipid nanoparticle-encapsulated messenger RNA encoding the heavy and light chains of a CHIKV-specific monoclonal neutralizing antibody, CHKV-24 ( NCT03829384 ). The primary outcome was to evaluate the safety and tolerability of escalating doses of mRNA-1944 administered via intravenous infusion in healthy participants aged 18-50 years. The secondary objectives included determination of the pharmacokinetics of mRNA encoding for CHKV-24 immunoglobulin heavy and light chains and ionizable amino lipid component and the pharmacodynamics of mRNA-1944 as assessed by serum concentrations of mRNA encoding for CHKV-24 immunoglobulin G (IgG), plasma concentrations of ionizable amino lipid and serum concentrations of CHKV-24 IgG. Here we report the results of a prespecified interim analysis of 38 healthy participants who received intravenous single doses of mRNA-1944 or placebo at 0.1, 0.3 and 0.6 mg kg-1, or two weekly doses at 0.3 mg kg-1. At 12, 24 and 48 h after single infusions, dose-dependent levels of CHKV-24 IgG with neutralizing activity were observed at titers predicted to be therapeutically relevant concentrations (≥1 µg ml-1) across doses that persisted for ≥16 weeks at 0.3 and 0.6 mg kg-1 (mean t1/2 approximately 69 d). A second 0.3 mg kg-1 dose 1 week after the first increased CHKV-24 IgG levels 1.8-fold. Adverse effects were mild to moderate in severity, did not worsen with a second mRNA-1944 dose and none were serious. To our knowledge, mRNA-1944 is the first mRNA-encoded monoclonal antibody showing in vivo expression and detectable ex vivo neutralizing activity in a clinical trial and may offer a treatment option for CHIKV infection. Further evaluation of the potential therapeutic use of mRNA-1944 in clinical trials for the treatment of CHIKV infection is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu Han
- Moderna, Inc., Cambridge, MA, USA
| | | | | | | | | | - James E Crowe
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tal Zaks
- Moderna, Inc., Cambridge, MA, USA
| |
Collapse
|
16
|
Luvai EAC, Kyaw AK, Sabin NS, Yu F, Hmone SW, Thant KZ, Inoue S, Morita K, Ngwe Tun MM. Evidence of Chikungunya virus seroprevalence in Myanmar among dengue-suspected patients and healthy volunteers in 2013, 2015, and 2018. PLoS Negl Trop Dis 2021; 15:e0009961. [PMID: 34851949 PMCID: PMC8635363 DOI: 10.1371/journal.pntd.0009961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/01/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Chikungunya virus (CHIKV) is a mosquito-borne virus known to cause acute febrile illness associated with debilitating polyarthritis. In 2019, several institutions in Myanmar reported a CHIKV outbreak. There are no official reports of CHIKV cases between 2011 and 2018. Therefore, this study sought to determine the seroprevalence of CHIKV infection before the 2019 outbreak. METHODS A total of 1,544 serum samples were collected from healthy volunteers and patients with febrile illnesses in Yangon, Mandalay, and the Myeik district in 2013, 2015, and 2018. Participants ranged from one month to 65 years of age. Antibody screening was performed with in-house anti-CHIKV IgG and IgM ELISA. A neutralization assay was used as a confirmatory test. RESULTS The seroprevalence of anti-CHIKV IgM and anti-CHIKV IgG was 8.9% and 28.6%, respectively, with an overall seropositivity rate of 34.5%. A focus reduction neutralization assay confirmed 32.5% seroprevalence of CHIKV in the study population. Age, health status, and region were significantly associated with neutralizing antibodies (NAbs) and CHIKV seropositivity (p < 0.05), while gender was not (p = 0.9). Seroprevalence in 2013, 2015, and 2018 was 32.1%, 28.8%, and 37.3%, respectively. Of the clinical symptoms observed in participants with fevers, arthralgia was mainly noted in CHIKV-seropositive patients. CONCLUSION The findings in this study reveal the circulation of CHIKV in Myanmar's Mandalay, Yangon, and Myeik regions before the 2019 CHIKV outbreak. As no treatment or vaccine for CHIKV exists, the virus must be monitored through systematic surveillance in Myanmar.
Collapse
Affiliation(s)
- Elizabeth Ajema Chebichi Luvai
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Sciences and Technology, School of Health and Biomedical Sciences, The Technical University of Kenya, Nairobi, Kenya
| | - Aung Kyaw Kyaw
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Nundu Sabiti Sabin
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Fuxun Yu
- Guizhou Provincial People’s Hospital, Guiyang City, Guizhou Province, China
| | - Saw Wut Hmone
- Department of Pathology, University of Medicine-1, Lanmadaw township, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
De Weggheleire A, Nkuba-Ndaye A, Mbala-Kingebeni P, Mariën J, Kindombe-Luzolo E, Ilombe G, Mangala-Sonzi D, Binene-Mbuka G, De Smet B, Vogt F, Selhorst P, Matungala-Pafubel M, Nkawa F, Vulu F, Mossoko M, Pukuta-Simbu E, Kinganda-Lusamaki E, Van Bortel W, Wat’senga-Tezzo F, Makiala-Mandanda S, Ahuka-Mundeke S. A Multidisciplinary Investigation of the First Chikungunya Virus Outbreak in Matadi in the Democratic Republic of the Congo. Viruses 2021; 13:v13101988. [PMID: 34696418 PMCID: PMC8541179 DOI: 10.3390/v13101988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Early March 2019, health authorities of Matadi in the Democratic Republic of the Congo alerted a sudden increase in acute fever/arthralgia cases, prompting an outbreak investigation. We collected surveillance data, clinical data, and laboratory specimens from clinical suspects (for CHIKV-PCR/ELISA, malaria RDT), semi-structured interviews with patients/caregivers about perceptions and health seeking behavior, and mosquito sampling (adult/larvae) for CHIKV-PCR and estimation of infestation levels. The investigations confirmed a large CHIKV outbreak that lasted February–June 2019. The total caseload remained unknown due to a lack of systematic surveillance, but one of the two health zones of Matadi notified 2686 suspects. Of the clinical suspects we investigated (n = 220), 83.2% were CHIKV-PCR or IgM positive (acute infection). One patient had an isolated IgG-positive result (while PCR/IgM negative), suggestive of past infection. In total, 15% had acute CHIKV and malaria. Most adult mosquitoes and larvae (>95%) were Aedes albopictus. High infestation levels were noted. CHIKV was detected in 6/11 adult mosquito pools, and in 2/15 of the larvae pools. This latter and the fact that 2/6 of the CHIKV-positive adult pools contained only males suggests transovarial transmission. Interviews revealed that healthcare seeking shifted quickly toward the informal sector and self-medication. Caregivers reported difficulties to differentiate CHIKV, malaria, and other infectious diseases resulting in polypharmacy and high out-of-pocket expenditure. We confirmed a first major CHIKV outbreak in Matadi, with main vector Aedes albopictus. The health sector was ill-prepared for the information, surveillance, and treatment needs for such an explosive outbreak in a CHIKV-naïve population. Better surveillance systems (national level/sentinel sites) and point-of-care diagnostics for arboviruses are needed.
Collapse
Affiliation(s)
- Anja De Weggheleire
- Outbreak Research Team, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.M.); (B.D.S.); (F.V.); (P.S.); (W.V.B.)
- Correspondence: ; Tel.: +32-494-368-535
| | - Antoine Nkuba-Ndaye
- Department of Virology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (A.N.-N.); (P.M.-K.); (E.K.-L.); (F.N.); (E.P.-S.); (E.K.-L.); (S.M.-M.); (S.A.-M.)
- Department of Medical Biology, University of Kinshasa, B.P. 127 Kinshasa IX, Democratic Republic of the Congo; (D.M.-S.); (M.M.-P.); (F.V.)
- TransVIHMI, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier University, 34090 Montpellier, France
| | - Placide Mbala-Kingebeni
- Department of Virology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (A.N.-N.); (P.M.-K.); (E.K.-L.); (F.N.); (E.P.-S.); (E.K.-L.); (S.M.-M.); (S.A.-M.)
- Department of Medical Biology, University of Kinshasa, B.P. 127 Kinshasa IX, Democratic Republic of the Congo; (D.M.-S.); (M.M.-P.); (F.V.)
| | - Joachim Mariën
- Outbreak Research Team, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.M.); (B.D.S.); (F.V.); (P.S.); (W.V.B.)
| | - Esaie Kindombe-Luzolo
- Department of Virology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (A.N.-N.); (P.M.-K.); (E.K.-L.); (F.N.); (E.P.-S.); (E.K.-L.); (S.M.-M.); (S.A.-M.)
| | - Gillon Ilombe
- Department of Entomology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (G.I.); (G.B.-M.); (F.W.-T.)
- Global Health Institute, Antwerp University, 2000 Antwerp, Belgium
| | - Donatien Mangala-Sonzi
- Department of Medical Biology, University of Kinshasa, B.P. 127 Kinshasa IX, Democratic Republic of the Congo; (D.M.-S.); (M.M.-P.); (F.V.)
| | - Guillaume Binene-Mbuka
- Department of Entomology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (G.I.); (G.B.-M.); (F.W.-T.)
| | - Birgit De Smet
- Outbreak Research Team, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.M.); (B.D.S.); (F.V.); (P.S.); (W.V.B.)
| | - Florian Vogt
- Outbreak Research Team, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.M.); (B.D.S.); (F.V.); (P.S.); (W.V.B.)
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
- National Centre for Epidemiology and Population Health, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| | - Philippe Selhorst
- Outbreak Research Team, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.M.); (B.D.S.); (F.V.); (P.S.); (W.V.B.)
| | - Mathy Matungala-Pafubel
- Department of Medical Biology, University of Kinshasa, B.P. 127 Kinshasa IX, Democratic Republic of the Congo; (D.M.-S.); (M.M.-P.); (F.V.)
| | - Frida Nkawa
- Department of Virology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (A.N.-N.); (P.M.-K.); (E.K.-L.); (F.N.); (E.P.-S.); (E.K.-L.); (S.M.-M.); (S.A.-M.)
| | - Fabien Vulu
- Department of Medical Biology, University of Kinshasa, B.P. 127 Kinshasa IX, Democratic Republic of the Congo; (D.M.-S.); (M.M.-P.); (F.V.)
| | - Mathias Mossoko
- Direction de Lutte contre la Maladie, Ministry of Health, B.P. 3040 Kinshasa I, Democratic Republic of the Congo;
| | - Elisabeth Pukuta-Simbu
- Department of Virology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (A.N.-N.); (P.M.-K.); (E.K.-L.); (F.N.); (E.P.-S.); (E.K.-L.); (S.M.-M.); (S.A.-M.)
| | - Eddy Kinganda-Lusamaki
- Department of Virology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (A.N.-N.); (P.M.-K.); (E.K.-L.); (F.N.); (E.P.-S.); (E.K.-L.); (S.M.-M.); (S.A.-M.)
| | - Wim Van Bortel
- Outbreak Research Team, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.M.); (B.D.S.); (F.V.); (P.S.); (W.V.B.)
| | - Francis Wat’senga-Tezzo
- Department of Entomology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (G.I.); (G.B.-M.); (F.W.-T.)
| | - Sheila Makiala-Mandanda
- Department of Virology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (A.N.-N.); (P.M.-K.); (E.K.-L.); (F.N.); (E.P.-S.); (E.K.-L.); (S.M.-M.); (S.A.-M.)
| | - Steve Ahuka-Mundeke
- Department of Virology, National Institute of Biomedical Research, B.P. 1197 Kinshasa I, Democratic Republic of the Congo; (A.N.-N.); (P.M.-K.); (E.K.-L.); (F.N.); (E.P.-S.); (E.K.-L.); (S.M.-M.); (S.A.-M.)
- Department of Medical Biology, University of Kinshasa, B.P. 127 Kinshasa IX, Democratic Republic of the Congo; (D.M.-S.); (M.M.-P.); (F.V.)
| |
Collapse
|
18
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
19
|
Prophylactic strategies to control chikungunya virus infection. Virus Genes 2021; 57:133-150. [PMID: 33590406 PMCID: PMC7883954 DOI: 10.1007/s11262-020-01820-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 11/18/2022]
Abstract
Chikungunya virus (CHIKV) is a (re)emerging arbovirus and the causative agent of chikungunya fever. In recent years, CHIKV was responsible for a series of outbreaks, some of which had serious economic and public health impacts in the affected regions. So far, no CHIKV-specific antiviral therapy or vaccine has been approved. This review gives a brief summary on CHIKV epidemiology, spread, infection and diagnosis. It furthermore deals with the strategies against emerging diseases, drug development and the possibilities of testing antivirals against CHIKV in vitro and in vivo. With our review, we hope to provide the latest information on CHIKV, disease manifestation, as well as on the current state of CHIKV vaccine development and post-exposure therapy.
Collapse
|
20
|
Le BCT, Ekalaksananan T, Thaewnongiew K, Phanthanawiboon S, Aromseree S, Phanitchat T, Chuerduangphui J, Suwannatrai AT, Alexander N, Overgaard HJ, Bangs MJ, Pientong C. Interepidemic Detection of Chikungunya Virus Infection and Transmission in Northeastern Thailand. Am J Trop Med Hyg 2020; 103:1660-1669. [PMID: 32700661 DOI: 10.4269/ajtmh.20-0293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chikungunya fever is a viral mosquito-borne, acute febrile illness associated with rash, joint pain, and occasionally prolonged polyarthritis. Chikungunya outbreaks have been reported worldwide including many provinces of Thailand. Although chikungunya virus (CHIKV) occurs in Thailand, details on its epidemiology are lacking compared with dengue, a common mosquito-borne disease in the country. Therefore, study on CHIKV and its epidemiology in both humans and mosquitoes is required to better understand its importance clinically and dynamics in community settings. So a prospective examination of virus circulation in human and mosquito populations in northeastern Thailand using serological and molecular methods, including the genetic characterization of the virus, was undertaken. The study was conducted among febrile patients in eight district hospitals in northeastern Thailand from June 2016 to October 2017. Using real-time PCR on the conserved region of nonstructural protein 1 gene, CHIKV was detected in eight (4.9%) of 161 plasma samples. Only one strain yielded a sequence of sufficient size allowing for phylogenetic analysis. In addition, anti-CHIKV IgM and IgG were detected in six (3.7%) and 17 (10.6%) patient plasma samples. The single sequenced sample belonged to the East/Central/South Africa (ECSA) genotype and was phylogenetically similar to the Indian Ocean sub-lineage. Adult Aedes mosquitoes were collected indoors and within a 100-m radius from the index case house and four neighboring houses. CHIKV was detected in two of 70 (2.9%) female Aedes aegypti mosquito pools. This study clearly demonstrated the presence and local transmission of the ECSA genotype of CHIKV in the northeastern region of Thailand.
Collapse
Affiliation(s)
- Bao Chi Thi Le
- Department of Microbiology, University of Medicine and Pharmacy, Hue University, Hue, Vietnam.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Kesorn Thaewnongiew
- Department of Disease Control, Office of Disease Prevention and Control, Region 7 Khon Kaen Ministry of Public Health, Khon Kaen, Thailand
| | | | - Sirinart Aromseree
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Thipruethai Phanitchat
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Neal Alexander
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hans J Overgaard
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand.,Public Health & Malaria Control, PT Freeport Indonesia/International SOS, Kuala Kencana, Papua, Indonesia
| | - Chamsai Pientong
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
21
|
Anti-Chikungunya Virus Monoclonal Antibody That Inhibits Viral Fusion and Release. J Virol 2020; 94:JVI.00252-20. [PMID: 32699087 DOI: 10.1128/jvi.00252-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Chikungunya fever, a mosquito-borne disease manifested by fever, rash, myalgia, and arthralgia, is caused by chikungunya virus (CHIKV), which belongs to the genus Alphavirus of the family Togaviridae Anti-CHIKV IgG from convalescent patients is known to directly neutralize CHIKV, and the state of immunity lasts throughout life. Here, we examined the epitope of a neutralizing mouse monoclonal antibody against CHIKV, CHE19, which inhibits viral fusion and release. In silico docking analysis showed that the epitope of CHE19 was localized in the viral E2 envelope and consisted of two separate segments, an N-linker and a β-ribbon connector, and that its bound Fab fragment on E2 overlapped the position that the E3 glycoprotein originally occupied. We showed that CHIKV-E2 is lost during the viral internalization and that CHE19 inhibits the elimination of CHIKV-E2. These findings suggested that CHE19 stabilizes the E2-E1 heterodimer instead of E3 and inhibits the protrusion of the E1 fusion loop and subsequent membrane fusion. In addition, the antigen-bound Fab fragment configuration showed that CHE19 connects to the CHIKV spikes existing on the two individual virions, leading us to conclude that the CHE19-CHIKV complex was responsible for the large virus aggregations. In our subsequent filtration experiments, large viral aggregations by CHE19 were trapped by a 0.45-μm filter. This virion-connecting characteristic of CHE19 could explain the inhibition of viral release from infected cells by the tethering effect of the virion itself. These findings provide clues toward the development of effective prophylactic and therapeutic monoclonal antibodies against the Alphavirus infection.IMPORTANCE Recent outbreaks of chikungunya fever have increased its clinical importance. Neither a specific antiviral drug nor a commercial vaccine for CHIKV infection are available. Here, we show a detailed model of the docking between the envelope glycoprotein of CHIKV and our unique anti-CHIKV-neutralizing monoclonal antibody (CHE19), which inhibits CHIKV membrane fusion and virion release from CHIKV-infected cells. Homology modeling of the neutralizing antibody CHE19 and protein-protein docking analysis of the CHIKV envelope glycoprotein and CHE19 suggested that CHE19 inhibits the viral membrane fusion by stabilizing the E2-E1 heterodimer and inhibits virion release by facilitating the formation of virus aggregation due to the connecting virions, and these predictions were confirmed by experiments. Sequence information of CHE19 and the CHIKV envelope glycoprotein and their docking model will contribute to future development of an effective prophylactic and therapeutic agent.
Collapse
|
22
|
Chisenga CC, Bosomprah S, Musukuma K, Mubanga C, Chilyabanyama ON, Velu RM, Kim YC, Reyes-Sandoval A, Chilengi R. Sero-prevalence of arthropod-borne viral infections among Lukanga swamp residents in Zambia. PLoS One 2020; 15:e0235322. [PMID: 32609784 PMCID: PMC7329080 DOI: 10.1371/journal.pone.0235322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The re-emergence of vector borne diseases affecting millions of people in recent years has drawn attention to arboviruses globally. Here, we report on the sero-prevalence of chikungunya virus (CHIKV), dengue virus (DENV), mayaro virus (MAYV) and zika virus (ZIKV) in a swamp community in Zambia. METHODS We collected blood and saliva samples from residents of Lukanga swamps in 2016 during a mass-cholera vaccination campaign. Over 10,000 residents were vaccinated with two doses of Shanchol™ during this period. The biological samples were collected prior to vaccination (baseline) and at specified time points after vaccination. We tested a total of 214 baseline stored serum samples for IgG antibodies against NS1 of DENV and ZIKV and E2 of CHIKV and MAYV on ELISA. We defined sero-prevalence as the proportion of participants with optical density (OD) values above a defined cut-off value, determined using a finite mixture model. RESULTS Of the 214 participants, 79 (36.9%; 95% CI 30.5-43.8) were sero-positive for Chikungunya; 23 (10.8%; 95% CI 6.9-15.7) for Zika, 36 (16.8%; 95% CI 12.1-22.5) for Dengue and 42 (19.6%; 95% CI 14.5-25.6) for Mayaro. Older participants were more likely to have Zika virus whilst those involved with fishing activities were at greater risk of contracting Chikungunya virus. Among all the antigens tested, we also found that Chikungunya saliva antibody titres correlated with baseline serum titres (Spearman's correlation coefficient = 0.222; p = 0.03). CONCLUSION Arbovirus transmission is occurring in Zambia. This requires proper screening tools as well as surveillance data to accurately report on disease burden in Zambia.
Collapse
Affiliation(s)
| | - Samuel Bosomprah
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra
| | - Kalo Musukuma
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | - Cynthia Mubanga
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | | | - Rachel M. Velu
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | - Young Chan Kim
- The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Oxford, England, United Kingdom
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Oxford, England, United Kingdom
| | - Roma Chilengi
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| |
Collapse
|
23
|
Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209-3228. [PMID: 32076776 PMCID: PMC7223553 DOI: 10.1007/s00253-020-10437-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
24
|
Ninla-Aesong P, Mitarnun W, Noipha K. Long-Term Persistence of Chikungunya Virus-Associated Manifestations and Anti-Chikungunya Virus Antibody in Southern Thailand: 5 Years After an Outbreak in 2008-2009. Viral Immunol 2020; 33:86-93. [PMID: 31976828 DOI: 10.1089/vim.2019.0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chikungunya fever, a disease caused by chikungunya virus (CHIKV), reemerged and affected over 52,000 people in southern Thailand in 2008 and 2009. The CHIKV strain involved in this outbreak was the East Central South African (ECSA) strain with the E1-A226V mutation. The prevalence of CHIKV-associated chronic discomfort varied by virus lineage. This retrospective cohort study aims to describe the CHIKV-related symptoms persisting in CHIKV-affected patients, related factors, and the presence of anti-CHIKV immunoglobulin G (IgG) antibodies 5 years after the onset of disease. From 5,344 of the study population screened, a total of 89 affected patients reported persistent arthralgia 5 years after the disease onset (nonrecovery rate = 1.7%). Of the 141 affected patients enrolled, 122 cases (86.5%; 77 cases with persistent arthralgia and 45 cases of fully recovered) still had detectable levels of anti-CHIKV IgG antibodies. Long-term persistence of chronic joint symptoms is associated with the severity of the disease during the initial phase of the infection, but not gender, age, or comorbidities. The common manifestations were arthralgia (75.3%), morning joint stiffness (39.0%), muscle pain (19.5%), and occasional joint swelling (16.9%). Chronic joint symptoms could occur in either a fluctuating or a persistent manner and usually caused moderate pain. The joints affected were mainly fingers (71.4%), wrists (51.9%), and knees (50.6%). Most patients had polyarthralgia with symmetrical joint involvement. In some cases with persistent arthralgia, atypical manifestations, including severe depression with suicide attempts, severe weight loss, and severe hair loss, were found, and some patients still experienced severe joint pain.
Collapse
Affiliation(s)
| | - Winyou Mitarnun
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Kusumarn Noipha
- Faculty of Health and Sports Science, Thaksin University, Paphayom, Thailand
| |
Collapse
|
25
|
Effects of Chikungunya virus immunity on Mayaro virus disease and epidemic potential. Sci Rep 2019; 9:20399. [PMID: 31892710 PMCID: PMC6938517 DOI: 10.1038/s41598-019-56551-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022] Open
Abstract
Mayaro virus (MAYV) causes an acute febrile illness similar to that produced by chikungunya virus (CHIKV), an evolutionary relative in the Semliki Forest virus complex of alphaviruses. MAYV emergence is typically sporadic, but recent isolations and outbreaks indicate that the virus remains a public health concern. Given the close phylogenetic and antigenic relationship between CHIKV and MAYV, and widespread distribution of CHIKV, we hypothesized that prior CHIKV immunity may affect MAYV pathogenesis and/or influence its emergence potential. We pre-exposed immunocompetent C57BL/6 and immunocompromised A129 or IFNAR mice to wild-type CHIKV, two CHIKV vaccines, or a live-attenuated MAYV vaccine, and challenged with MAYV. We observed strong cross-protection against MAYV for mice pre-exposed to wild-type CHIKV, and moderately but significantly reduced cross-protection from CHIKV-vaccinated animals. Immunity to other alphavirus or flavivirus controls provided no protection against MAYV disease or viremia. Mechanistic studies suggested that neutralizing antibodies alone can mediate this protection, with T-cells having no significant effect on diminishing disease. Finally, human sera obtained from naturally acquired CHIKV infection cross-neutralized MAYV at high titers in vitro. Altogether, our data suggest that CHIKV infection can confer cross-protective effects against MAYV, and the resultant reduction in viremia may limit the emergence potential of MAYV.
Collapse
|
26
|
Anfasa F, Lim SM, Fekken S, Wever R, Osterhaus ADME, Martina BEE. Characterization of antibody response in patients with acute and chronic chikungunya virus disease. J Clin Virol 2019; 117:68-72. [PMID: 31229935 DOI: 10.1016/j.jcv.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/29/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a re-emerging arbovirus capable of causing chronic arthralgia, which can last for months to years. Although neutralizing antibodies have been shown to be important for viral clearance, is it not clear whether the quantitative and qualitative nature of antibodies play a role in progression to chronic disease. OBJECTIVES To characterize and compare the antibody responses in acute and chronic patients in a prospective observational CHIKV study in Curaçao during the 2014-2015 outbreak. STUDY DESIGN We performed virus neutralization tests and ELISA on plasma samples collected from a prospective observational chikungunya study in Curaçao to compare the complement-dependent and -independent neutralization capacity, as well as the antibody avidity index of acute and chronic patients. RESULTS We found that there was no significant difference in the virus neutralization titers between patients with acute and chronic chikungunya infection. Furthermore, we found that complement increased the neutralization capacity when large amounts of virus was used. Moreover, we found that patients with acute chikungunya disease had a significantly higher antibody avidity index compared to those with chronic disease. CONCLUSIONS This study suggests that virus neutralization titers in late convalescent sera do not play a role in chronic chikungunya. However, the median antibody avidity was lower in these patients and may therefore suggest a role for antibody avidity in the development of chronic disease.
Collapse
Affiliation(s)
- Fatih Anfasa
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Stephanie M Lim
- Artemis One Health Research Institute, Utrecht, the Netherlands
| | - Susan Fekken
- Artemis One Health Research Institute, Utrecht, the Netherlands
| | - Robert Wever
- Medical Laboratory Services, Dutch Caribbean, Curaçao
| | - Albert D M E Osterhaus
- Artemis One Health Research Institute, Utrecht, the Netherlands; Center for Infection Medicine and Zoonoses Research (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Byron E E Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Artemis One Health Research Institute, Utrecht, the Netherlands.
| |
Collapse
|
27
|
Abstract
Chikungunya virus (CHIKV) is an alphavirus that is primarily transmitted by Aedes species mosquitoes. Though reports of an illness consistent with chikungunya date back over 200 years, CHIKV only gained worldwide attention during a massive pandemic that began in East Africa in 2004. Chikungunya, the clinical illness caused by CHIKV, is characterized by a rapid onset of high fever and debilitating joint pain, though in practice, etiologic confirmation of CHIKV requires the availability and use of specific laboratory diagnostics. Similar to infections caused by other arboviruses, CHIKV infections are most commonly detected with a combination of molecular and serological methods, though cell culture and antigen detection are reported. This review provides an overview of available CHIKV diagnostics and highlights aspects of basic virology and epidemiology that pertain to viral detection. Although the number of chikungunya cases has decreased since 2014, CHIKV has become endemic in countries across the tropics and will continue to cause sporadic outbreaks in naive individuals. Consistent access to accurate diagnostics is needed to detect individual cases and initiate timely responses to new outbreaks.
Collapse
|
28
|
GloPID-R report on Chikungunya, O'nyong-nyong and Mayaro virus, part I: Biological diagnostics. Antiviral Res 2019; 166:66-81. [PMID: 30905821 DOI: 10.1016/j.antiviral.2019.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 11/20/2022]
Abstract
The GloPID-R (Global Research Collaboration for Infectious Disease Preparedness) Chikungunya (CHIKV), O'nyong-nyong (ONNV) and Mayaro virus (MAYV) Working Group is investigating the natural history, epidemiology and medical management of infection by these viruses, to identify knowledge gaps and to propose recommendations for direct future investigations and rectification measures. Here, we present the first report dedicated to diagnostic aspects of CHIKV, ONNV and MAYV. Regarding diagnosis of the disease at the acute phase, molecular assays previously described for the three viruses require further evaluation, standardized protocols and the availability of international standards representing the genetic diversity of the viruses. Detection of specific IgM would benefit from further investigations to clarify the extent of cross-reactivity among the three viruses, the sensitivity of the assays, and the possible interfering role of cryoglobulinaemia. Implementation of reference panels and external quality assessments for both molecular and serological assays is necessary. Regarding sero-epidemiological studies, there is no reported high-throughput assay that can distinguish among these different viruses in areas of potential co-circulation. New specific tools and/or improved standardized protocols are needed to enable large-scale epidemiological studies of public health relevance to be performed. Considering the high risk of future CHIKV, MAYV and ONNV outbreaks, the Working Group recommends that a major investigation should be initiated to fill the existing diagnostic gaps.
Collapse
|
29
|
Gerke C, Frantz PN, Ramsauer K, Tangy F. Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Rev Vaccines 2019; 18:393-403. [PMID: 30601074 DOI: 10.1080/14760584.2019.1562908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The large global burden of viral infections and especially the rapidly spreading vector-borne diseases and other emerging viral diseases show the need for new approaches in vaccine development. Several new vaccine technology platforms have been developed and are under evaluation. Areas covered: This article discusses the measles vector platform technology derived from the safe and highly efficacious measles virus vaccine. The pipeline of measles-vectored vaccine candidates against viral diseases is reviewed. Particular focus is given to the Chikungunya vaccine candidate as the first measles-vectored vaccine that demonstrated safety, immunogenicity, and functionality of the technology in humans even in the presence of pre-existing anti-measles immunity and thus achieved proof of concept for the technology. Expert commentary: Demonstrating no impact of pre-existing anti-measles immunity in humans on the response to the transgene was fundamental for the technology and indicates that the technology is suitable for large-scale immunization in measles pre-immune populations. The proof of concept in humans combined with a large preclinical track record of safety, immunogenicity, and efficacy for a variety of pathogens suggest the measles vector platform as promising plug-and-play vaccine platform technology for rapid development of effective preventive vaccines against viral and other infectious diseases.
Collapse
Affiliation(s)
| | - Phanramphoei N Frantz
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France.,c Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) , National Science and Technology Development Agency , Pathumthani , Thailand
| | | | - Frédéric Tangy
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France
| |
Collapse
|
30
|
Simo FBN, Bigna JJ, Well EA, Kenmoe S, Sado FBY, Weaver SC, Moundipa PF, Demanou M. Chikungunya virus infection prevalence in Africa: a contemporaneous systematic review and meta-analysis. Public Health 2019; 166:79-88. [PMID: 30468973 DOI: 10.1016/j.puhe.2018.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The (re)emergence of chikungunya virus (CHIKV) in Africa requires better knowledge on the epidemiology of CHIKV infection in the continent for efficient public health strategies. We aimed to describe the epidemiology of CHIKV infection in Africa, a neglected tropical disease (NTD). STUDY DESIGN This was a systematic review with meta-analysis of studies reporting CHIKV infection prevalence. We searched Embase, PubMed, Africa Journal Online and Global Index Medicus to identify observational studies published from January 2000 to September 2017. METHODS We used a random-effect model to pool the prevalence of CHIKV infections reported with their 95% confidence interval (CI). Heterogeneity was assessed via the Chi-squared test on Cochran's Q statistic. Review registration is in PROSPERO CRD42017080395. RESULTS A total of 39 studies (37,881 participants; 18 countries) were included. No study was reported from Southern Africa. Thirty-two (82.0%), seven (18.0%) and no studies had low, moderate and high risk of bias, respectively. Outside outbreak periods, the pooled immunoglobulin M (IgM) and immunoglobulin G (IgG) seroprevalence was 9.7% (95% CI 3.0-19.6; 16 studies) and 16.4% (95% CI 9.1-25.2; 23 studies), respectively. The IgM seroprevalence was lower in Northern Africa, and there was no difference for IgG prevalence across regions in Africa. The IgM and IgG seroprevalences were not different between acute and non-acute febrile participants. The seroprevalence was not associated with GPS coordinates (latitude, longitude and altitude). CONCLUSIONS Although considered a NTD, we find high prevalence of CHIKV infection in Africa. As such, chikungunya fever should deserve more attention from healthcare providers, researchers, policymakers and stakeholders from many sectors.
Collapse
Affiliation(s)
- F B N Simo
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon.
| | - J J Bigna
- Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Street 2005, P.O. Box 1274, Yaoundé, Cameroon; School of Public Health, Faculty of Medicine, University of Paris Sud, 63 Rue Gabriel Péri, 94270, Le Kremlin-Bicêtre, France.
| | - E A Well
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364, Yaoundé, Cameroon.
| | - S Kenmoe
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| | - F B Y Sado
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| | - S C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - P F Moundipa
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon.
| | - M Demanou
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| |
Collapse
|
31
|
Milligan GN, Schnierle BS, McAuley AJ, Beasley DWC. Defining a correlate of protection for chikungunya virus vaccines. Vaccine 2018; 37:7427-7436. [PMID: 30448337 DOI: 10.1016/j.vaccine.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Chikungunya virus infection causes a debilitating febrile illness that in many affected individuals is associated with long-term sequelae that can persist for months or years. Over the past decade a large number of candidate vaccines have been developed, several of which have now entered clinical trials. The rapid and sporadic nature of chikungunya outbreaks poses challenges for planning of large clinical efficacy trials suggesting that licensure of chikungunya vaccines may utilize non-traditional approval pathways based on identification of immunological endpoint(s) predictive of clinical benefit. This report reviews the current status of nonclinical and clinical testing and potential challenges for defining a suitable surrogate or correlate of protection.
Collapse
Affiliation(s)
- Gregg N Milligan
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Barbara S Schnierle
- WHO Collaborating Center for Standardization and Evaluation of Vaccines, Paul Ehrlich Institut, Langen, Germany; Section AIDS, New and Emerging Pathogens, Virology Division, Paul Ehrlich Institut, Langen, Germany
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David W C Beasley
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
32
|
Amin P, Silva GS, Hidalgo J, Jiménez JIS, Karnad DR, Richards GA. Chikungunya: Report from the task force on tropical diseases by the World Federation of Societies of intensive and critical care medicine. J Crit Care 2018; 46:110-114. [PMID: 29678361 DOI: 10.1016/j.jcrc.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 01/17/2023]
Abstract
Chikungunya is an arbovirus that is transmitted by the Aedes mosquito causing a febrile illness with periodic outbreaks in large parts of the world. In the last decade it has become a public health concern in a host of countries and has affected international tourists. In the vast majority of cases Chikungunya presents as an acute febrile illness, associated with rash, headache, myalgia and debilitating arthralgia or even polyarthritis. A small proportion of patients present atypically with nervous, ocular, renal, myocardial, respiratory and renal system involvement and may require ICU management. Over the years the epidemic potential of the virus has become apparent with spread related to an increase in global travel and the successful adaptation of the Aedes mosquito to the urban and sylvan environments in numerous countries. These epidemics have affected millions of people across the globe. Treatment is usually symptomatic and supportive.
Collapse
Affiliation(s)
- Pravin Amin
- Department of Critical Care Medicine, Bombay Hospital Institute of Medical Sciences, Mumbai, India.
| | - Gisele Sampaio Silva
- Departament of Neurology and Neurosurgery, Universidade Federal de São Paulo and Programa Integrado de Neurologia and Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jorge Hidalgo
- Division of Critical Care, Karl Heusner Memorial Hospital, Belize Healthcare Partners, Belize
| | | | | | - Guy A Richards
- Division of Critical Care, Charlotte Maxeke Hospital, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Broad and long-lasting immune protection against various Chikungunya genotypes demonstrated by participants in a cross-sectional study in a Cambodian rural community. Emerg Microbes Infect 2018; 7:13. [PMID: 29410416 PMCID: PMC5837154 DOI: 10.1038/s41426-017-0010-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/15/2022]
Abstract
Chikungunya virus (CHIKV) is an alphavirus circulating worldwide. Its presence in Asia has been reported since the 1950s, constituting the Asian genotype. Since 2005, strains from the Eastern, Central, and Southern African (ECSA) genotype have caused several outbreaks across Asia. Viruses from the ECSA genotype were also detected in Cambodia in late 2011 and led to an outbreak in a rural community in 2012. A former investigation from 2012 found a higher risk of infection in people younger than 40 years, suggesting a pre-existing herd immunity in the older Cambodian population due to infection with an Asian genotype. In 2016, we collected serum from equivalent numbers of individuals born before 1975 and born after 1980 that were also part of the 2012 study. We analyzed the 154 serum samples from 2016 for neutralization against the Cambodian ECSA isolate and three strains belonging to the Asian genotype. This experiment revealed that 22.5% (18/80) of the younger study participants had no CHIKV antibodies, whereas 5.4% (4/74) of the older population remained naive. Study participants infected during the ECSA outbreak had twofold neutralizing titers against the ECSA and the most ancient Asian genotype virus (Thailand 1958) compared to the other two Asian genotype viruses. The neutralization data also support the older population’s exposure to an Asian genotype virus during the 1960s. The observed cross-reactivity confirms that the investigated CHIKV strains belong to a single serotype despite the emergence of novel ECSA genotype viruses and supports the importance of the development of a Chikungunya vaccine.
Collapse
|
34
|
Srikiatkhachorn A, Alera MT, Lago CB, Tac-An IA, Villa D, Fernandez S, Thaisomboonsuk B, Klungthong C, Levy JW, Velasco JM, Roque VG, Nisalak A, Macareo LR, Yoon IK. Resolution of a Chikungunya Outbreak in a Prospective Cohort, Cebu, Philippines, 2012-2014. Emerg Infect Dis 2018; 22:1852-4. [PMID: 27649081 PMCID: PMC5038399 DOI: 10.3201/eid2210.160729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Weaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annu Rev Med 2017; 69:395-408. [PMID: 28846489 DOI: 10.1146/annurev-med-050715-105122] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Arthropod-borne viruses (arboviruses) have a long history of emerging to infect humans, but during recent decades, they have been spreading more widely and affecting larger populations. This is due to several factors, including increased air travel and uncontrolled mosquito vector populations. Emergence can involve simple spillover from enzootic (wildlife) cycles, as in the case of West Nile virus accompanying geographic expansion into the Americas; secondary amplification in domesticated animals, as seen with Japanese encephalitis, Venezuelan equine encephalitis, and Rift Valley fever viruses; and urbanization, in which humans become the amplification hosts and peridomestic mosquitoes, mainly Aedes aegypti, mediate human-to-human transmission. Dengue, yellow fever, chikungunya, and Zika viruses have undergone such urban emergence. We focus mainly on the latter two, which are recent arrivals in the Western Hemisphere. We also discuss a few other viruses with the potential to emerge through all of these mechanisms.
Collapse
Affiliation(s)
- Scott C Weaver
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555, USA; , .,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Caroline Charlier
- Institut Pasteur, Biology of Infection Unit, INSERM Unité 1117, 75006 Paris, France; , .,Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France.,Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.,Institut Imagine, 75015 Paris, France
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555, USA; , .,Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, INSERM Unité 1117, 75006 Paris, France; , .,Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France.,Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.,Institut Imagine, 75015 Paris, France
| |
Collapse
|
36
|
Yang S, Fink D, Hulse A, Pratt RD. Regulatory considerations in development of vaccines to prevent disease caused by Chikungunya virus. Vaccine 2017; 35:4851-4858. [PMID: 28760614 DOI: 10.1016/j.vaccine.2017.07.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. Chikungunya disease (CHIK) in humans is characterized by sudden onset of high fever, cutaneous rash, myalgia and debilitating polyarthralgia. Until recently the virus was considered endemic to only Africa and Asia, but since 2004 CHIK has spread to previously non-endemic regions, including Europe and the Americas, thereby emerging as a global health threat. Although a variety of CHIKV vaccine candidates have been tested in animals, and a few have advanced to human clinical trials, no licensed vaccine is currently available for prevention of disease. In this article, we review recent efforts in CHIKV vaccine development and discuss regulatory considerations for CHIKV vaccine licensure under U.S. FDA regulations. Several licensure pathways are available, and the most appropriate licensure pathway for a CHIK vaccine will depend on the type of evidence that can be generated to demonstrate the vaccine's effectiveness. If "traditional approval" following demonstration of direct benefit in adequate and well-controlled clinical disease endpoint studies is not possible, the Accelerated Approval and Animal Rule pathways are potential alternatives. In terms of vaccine safety, the potential for vaccine associated arthralgia and antibody-dependent enhancement of infectivity and disease severity are important issues that should be addressed in both pre-clinical and clinical studies. CHIK vaccine developers are encouraged to communicate with the FDA during all stages of vaccine development.
Collapse
Affiliation(s)
- Sixun Yang
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States.
| | - Doran Fink
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Andrea Hulse
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - R Douglas Pratt
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
37
|
Gabriel Kuniyoshi ML, Pio dos Santos FL. Mathematical modelling of vector-borne diseases and insecticide resistance evolution. J Venom Anim Toxins Incl Trop Dis 2017; 23:34. [PMID: 28694821 PMCID: PMC5501426 DOI: 10.1186/s40409-017-0123-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Vector-borne diseases are important public health issues and, consequently, in silico models that simulate them can be useful. The susceptible-infected-recovered (SIR) model simulates the population dynamics of an epidemic and can be easily adapted to vector-borne diseases, whereas the Hardy-Weinberg model simulates allele frequencies and can be used to study insecticide resistance evolution. The aim of the present study is to develop a coupled system that unifies both models, therefore enabling the analysis of the effects of vector population genetics on the population dynamics of an epidemic. METHODS Our model consists of an ordinary differential equation system. We considered the populations of susceptible, infected and recovered humans, as well as susceptible and infected vectors. Concerning these vectors, we considered a pair of alleles, with complete dominance interaction that determined the rate of mortality induced by insecticides. Thus, we were able to separate the vectors according to the genotype. We performed three numerical simulations of the model. In simulation one, both alleles conferred the same mortality rate values, therefore there was no resistant strain. In simulations two and three, the recessive and dominant alleles, respectively, conferred a lower mortality. RESULTS Our numerical results show that the genetic composition of the vector population affects the dynamics of human diseases. We found that the absolute number of vectors and the proportion of infected vectors are smaller when there is no resistant strain, whilst the ratio of infected people is larger in the presence of insecticide-resistant vectors. The dynamics observed for infected humans in all simulations has a very similar shape to real epidemiological data. CONCLUSION The population genetics of vectors can affect epidemiological dynamics, and the presence of insecticide-resistant strains can increase the number of infected people. Based on the present results, the model is a basis for development of other models and for investigating population dynamics.
Collapse
Affiliation(s)
- Maria Laura Gabriel Kuniyoshi
- Department of Biostatistics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP - Universidade Estadual Paulista), Street Prof. Dr. Irina Delanova Gemtchujnicov, no number, Rubião Júnior, zip code 18618-693, PO box 510, Botucatu, SP Brazil
| | - Fernando Luiz Pio dos Santos
- Department of Biostatistics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP - Universidade Estadual Paulista), Street Prof. Dr. Irina Delanova Gemtchujnicov, no number, Rubião Júnior, zip code 18618-693, PO box 510, Botucatu, SP Brazil
| |
Collapse
|
38
|
Abstract
Chikungunya fever, an acute and often chronic arthralgic disease caused by the mosquito-borne chikungunya virus (CHIKV), has reemerged since 2004 to cause millions of cases. Because CHIKV exhibits limited antigenic diversity and is not known to be capable of reinfection, a vaccine could serve to both prevent disease and diminish human amplification during epidemic circulation. Here, we review the many promising vaccine platforms and candidates developed for CHIKV since the 1970s, including several in late preclinical or clinical development. We discuss the advantages and limitations of each, as well as the commercial and regulatory challenges to bringing a vaccine to market.
Collapse
Affiliation(s)
- Jesse H Erasmus
- Institute for Human Infections and Immunity.,Institute for Translational Science.,Sealy Center for Vaccine Development.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Shannan L Rossi
- Institute for Human Infections and Immunity.,Institute for Translational Science.,Sealy Center for Vaccine Development.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Scott C Weaver
- Institute for Human Infections and Immunity.,Institute for Translational Science.,Sealy Center for Vaccine Development.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| |
Collapse
|
39
|
Nsoesie EO, Kraemer MU, Golding N, Pigott DM, Brady OJ, Moyes CL, Johansson MA, Gething PW, Velayudhan R, Khan K, Hay SI, Brownstein JS. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. ACTA ACUST UNITED AC 2017; 21. [PMID: 27239817 DOI: 10.2807/1560-7917.es.2016.21.20.30234] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/20/2016] [Indexed: 01/19/2023]
Abstract
Chikungunya fever is an acute febrile illness caused by the chikungunya virus (CHIKV), which is transmitted to humans by Aedes mosquitoes. Although chikungunya fever is rarely fatal, patients can experience debilitating symptoms that last from months to years. Here we comprehensively assess the global distribution of chikungunya and produce high-resolution maps, using an established modelling framework that combines a comprehensive occurrence database with bespoke environmental correlates, including up-to-date Aedes distribution maps. This enables estimation of the current total population-at-risk of CHIKV transmission and identification of areas where the virus may spread to in the future. We identified 94 countries with good evidence for current CHIKV presence and a set of countries in the New and Old World with potential for future CHIKV establishment, demonstrated by high environmental suitability for transmission and in some cases previous sporadic reports. Aedes aegypti presence was identified as one of the major contributing factors to CHIKV transmission but significant geographical heterogeneity exists. We estimated 1.3 billion people are living in areas at-risk of CHIKV transmission. These maps provide a baseline for identifying areas where prevention and control efforts should be prioritised and can be used to guide estimation of the global burden of CHIKV.
Collapse
Affiliation(s)
- E O Nsoesie
- Children's Hospital Informatics Program, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States.,Institute of Health Metrics and Evaluation, University of Washington, Seattle, United States
| | - M U Kraemer
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, United Kingdom
| | - N Golding
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, United Kingdom.,Department of BioScience, University of Melbourne, Australia
| | - D M Pigott
- Institute of Health Metrics and Evaluation, University of Washington, Seattle, United States.,Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, United Kingdom
| | - O J Brady
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, United Kingdom
| | - C L Moyes
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, United Kingdom
| | - M A Johansson
- Centers for Disease Control and Prevention, San Juan, Puerto Rico.,Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, United States
| | - P W Gething
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, United Kingdom
| | | | - K Khan
- Li Ka Shing Knowledge Institute, Division of Infectious Diseases, St Michael's Hospital, Toronto, Canada
| | - S I Hay
- Institute of Health Metrics and Evaluation, University of Washington, Seattle, United States.,Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, United Kingdom
| | - J S Brownstein
- Children's Hospital Informatics Program, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| |
Collapse
|
40
|
The neutralizing role of IgM during early Chikungunya virus infection. PLoS One 2017; 12:e0171989. [PMID: 28182795 PMCID: PMC5300252 DOI: 10.1371/journal.pone.0171989] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
The antibody isotype IgM appears earlier than IgG, within days of onset of symptoms, and is important during the early stages of the adaptive immune response. Little is known about the functional role of IgM during infection with chikungunya virus (CHIKV), a recently reemerging arbovirus that has caused large global outbreaks. In this study, we studied antibody responses in 102 serum samples collected during CHIKV outbreaks in Malaysia. We described the neutralizing role of IgM at different times post-infection and examined the independent contributions of IgM and IgG towards the neutralizing capacity of human immune sera during the early phase of infection, including the differences in targets of neutralizing epitopes. Neutralizing IgM starts to appear as early as day 4 of symptoms, and their appearance from day 6 is associated with a reduction in viremia. IgM acts in a complementary manner with the early IgG, but plays the main neutralizing role up to a point between days 4 and 10 which varies between individuals. After this point, total neutralizing capacity is attributable almost entirely to the robust neutralizing IgG response. IgM preferentially binds and targets epitopes on the CHIKV surface E1-E2 glycoproteins, rather than individual E1 or E2. These findings provide insight into the early antibody responses to CHIKV, and have implications for design of diagnostic serological assays.
Collapse
|
41
|
Dellagi K, Salez N, Maquart M, Larrieu S, Yssouf A, Silaï R, Leparc-Goffart I, Tortosa P, de Lamballerie X. Serological Evidence of Contrasted Exposure to Arboviral Infections between Islands of the Union of Comoros (Indian Ocean). PLoS Negl Trop Dis 2016; 10:e0004840. [PMID: 27977670 PMCID: PMC5157944 DOI: 10.1371/journal.pntd.0004840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/20/2016] [Indexed: 01/19/2023] Open
Abstract
A cross sectional serological survey of arboviral infections in humans was conducted on the three islands of the Union of Comoros, Indian Ocean, in order to test a previously suggested contrasted exposure of the three neighboring islands to arthropod-borne epidemics. Four hundred human sera were collected on Ngazidja (Grande Comore), Mwali (Mohéli) and Ndzouani (Anjouan), and were tested by ELISA for IgM and/or IgG antibodies to Dengue (DENV), Chikungunya (CHIKV), Rift Valley fever (RVFV), West Nile (WNV), Tick borne encephalitis (TBEV) and Yellow fever (YFV) viruses and for neutralizing antibodies to DENV serotypes 1-4. Very few sera were positive for IgM antibodies to the tested viruses indicating that the sero-survey was performed during an inter epidemic phase for the investigated arbovirus infections, except for RVF which showed evidence of recent infections on all three islands. IgG reactivity with at least one arbovirus was observed in almost 85% of tested sera, with seropositivity rates increasing with age, indicative of an intense and long lasting exposure of the Comorian population to arboviral risk. Interestingly, the positivity rates for IgG antibodies to DENV and CHIKV were significantly higher on Ngazidja, confirming the previously suggested prominent exposure of this island to these arboviruses, while serological traces of WNV infection were detected most frequently on Mwali suggesting some transmission specificities associated with this island only. The study provides the first evidence for circulation of RVFV in human populations from the Union of Comoros and further suggests that the virus is currently circulating on the three islands in an inconspicuous manner. This study supports contrasted exposure of the islands of the Comoros archipelago to arboviral infections. The observation is discussed in terms of ecological factors that may affect the abundance and distribution of vector populations on the three islands as well as concurring anthropogenic factors that may impact arbovirus transmission in this diverse island ecosystem.
Collapse
Affiliation(s)
- Koussay Dellagi
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien, (CRVOI) Plateforme de Recherche CYROI, Sainte Clotilde, Reunion Island, France
- Unité Mixte de Recherche «Processus Infectieux en Milieu Insulaire Tropical» (UMR PIMIT), INSERM 1187 CNRS 9192 IRD 249 Université de La Réunion, Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France
- * E-mail:
| | - Nicolas Salez
- Aix Marseille Université, IRD, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", Marseille, France
| | - Marianne Maquart
- French National Reference Centre for Arbovirus, IRBA, Marseille, France
| | - Sophie Larrieu
- Cellule Interrégionale d'Épidémiologie Océan Indien (Cire OI), Institut de Veille Sanitaire, Saint Denis, La Réunion, France
| | - Amina Yssouf
- Programme National de Lutte contre le Paludisme, Moroni, Union of the Comoros
| | - Rahamatou Silaï
- Programme National de Lutte contre le Paludisme, Moroni, Union of the Comoros
| | | | - Pablo Tortosa
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien, (CRVOI) Plateforme de Recherche CYROI, Sainte Clotilde, Reunion Island, France
- Unité Mixte de Recherche «Processus Infectieux en Milieu Insulaire Tropical» (UMR PIMIT), INSERM 1187 CNRS 9192 IRD 249 Université de La Réunion, Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", Marseille, France
| |
Collapse
|
42
|
Chen R, Puri V, Fedorova N, Lin D, Hari KL, Jain R, Rodas JD, Das SR, Shabman RS, Weaver SC. Comprehensive Genome Scale Phylogenetic Study Provides New Insights on the Global Expansion of Chikungunya Virus. J Virol 2016; 90:10600-10611. [PMID: 27654297 PMCID: PMC5110187 DOI: 10.1128/jvi.01166-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
Since the India and Indian Ocean outbreaks of 2005 and 2006, the global distribution of chikungunya virus (CHIKV) and the locations of epidemics have dramatically shifted. First, the Indian Ocean lineage (IOL) caused sustained epidemics in India and has radiated to many other countries. Second, the Asian lineage has caused frequent outbreaks in the Pacific islands and in 2013 was introduced into the Caribbean, followed by rapid spread to nearly all of the neotropics. Further, CHIKV epidemics, as well as exported cases, have been reported in central Africa after a long period of perceived silence. To understand these changes and to anticipate the future of the virus, the exact distribution, genetic diversity, transmission routes, and future epidemic potential of CHIKV require further assessment. To do so, we conducted the most comprehensive phylogenetic analysis to date, examined CHIKV evolution and transmission, and explored distinct genetic factors associated with the emergence of the East/Central/South African (ECSA) lineage, the IOL, and the Asian lineage. Our results reveal contrasting evolutionary patterns among the lineages, with growing genetic diversities observed in each, and suggest that CHIKV will continue to be a major public health threat with the potential for further emergence and spread. IMPORTANCE Chikungunya fever is a reemerging infectious disease that is transmitted by Aedes mosquitoes and causes severe health and economic burdens in affected populations. Since the unprecedented Indian Ocean and Indian subcontinent outbreaks of 2005 and 2006, CHIKV has further expanded its geographic range, including to the Americas in 2013. Its evolution and transmission during and following these epidemics, as well as the recent evolution and spread of other lineages, require optimal assessment. Using newly obtained genome sequences, we provide a comprehensive update of the global distribution of CHIKV genetic diversity and analyze factors associated with recent outbreaks. These results provide a solid foundation for future evolutionary studies of CHIKV that can elucidate emergence mechanisms and also may help to predict future epidemics.
Collapse
Affiliation(s)
- Rubing Chen
- Institute of Human Infections and Immunology and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vinita Puri
- J. Craig Venter Institute, Rockville, Maryland, USA
| | | | | | | | | | | | - Suman R Das
- J. Craig Venter Institute, Rockville, Maryland, USA
| | | | - Scott C Weaver
- Institute of Human Infections and Immunology and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
43
|
Sam IC, Kümmerer BM, Chan YF, Roques P, Drosten C, AbuBakar S. Updates on chikungunya epidemiology, clinical disease, and diagnostics. Vector Borne Zoonotic Dis 2016; 15:223-30. [PMID: 25897809 DOI: 10.1089/vbz.2014.1680] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) is an Aedes-borne alphavirus, historically found in Africa and Asia, where it caused sporadic outbreaks. In 2004, CHIKV reemerged in East Africa and spread globally to cause epidemics, including, for the first time, autochthonous transmission in Europe, the Middle East, and Oceania. The epidemic strains were of the East/Central/South African genotype. Strains of the Asian genotype of CHIKV continued to cause outbreaks in Asia and spread to Oceania and, in 2013, to the Americas. Acute disease, mainly comprising fever, rash, and arthralgia, was previously regarded as self-limiting; however, there is growing evidence of severe but rare manifestations, such as neurological disease. Furthermore, CHIKV appears to cause a significant burden of long-term morbidity due to persistent arthralgia. Diagnostic assays have advanced greatly in recent years, although there remains a need for simple, accurate, and affordable tests for the developing countries where CHIKV is most prevalent. This review focuses on recent important work on the epidemiology, clinical disease and diagnostics of CHIKV.
Collapse
Affiliation(s)
- I-Ching Sam
- 1 Department of Medical Microbiology, Faculty of Medicine, University Malaya , Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
44
|
Immunological evidence of Zika virus transmission in Thailand. ASIAN PAC J TROP MED 2016; 9:141-4. [PMID: 26919943 DOI: 10.1016/j.apjtm.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/25/2015] [Accepted: 08/25/2015] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To identify immunological evidence of Zika virus transmission in Thailand. METHODS To undertake a preliminary serosurvey of possible exposure to Zika virus, 21 serum samples from cohort of acute undifferentiated fever patients were examined for immunoreactivity to Zika, Dengue, Japanese encephalitis and Chikungunya envelope antigens by Western blot analysis. RESULTS Twenty of the 21 serum samples showed immunoreactivity to at least one of the antigens, with seven samples showing immunoreactivity to all antigens. Of particular note, two serum samples showed immunoreactivity only to Zika envelope antigen, with no immunoreactivity to other envelope antigens. CONCLUSIONS This study presents the first evidence of Zika virus transmission in Thailand, although as yet the relationship between transmission and possible cases of Zika fever in Thailand requires further investigation.
Collapse
|
45
|
Salje H, Cauchemez S, Alera MT, Rodriguez-Barraquer I, Thaisomboonsuk B, Srikiatkhachorn A, Lago CB, Villa D, Klungthong C, Tac-An IA, Fernandez S, Velasco JM, Roque VG, Nisalak A, Macareo LR, Levy JW, Cummings D, Yoon IK. Reconstruction of 60 Years of Chikungunya Epidemiology in the Philippines Demonstrates Episodic and Focal Transmission. J Infect Dis 2015; 213:604-10. [PMID: 26410592 PMCID: PMC4721913 DOI: 10.1093/infdis/jiv470] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/16/2015] [Indexed: 11/15/2022] Open
Abstract
Proper understanding of the long-term epidemiology of chikungunya has been hampered by poor surveillance. Outbreak years are unpredictable and cases often misdiagnosed. Here we analyzed age-specific data from 2 serological studies (from 1973 and 2012) in Cebu, Philippines, to reconstruct both the annual probability of infection and population-level immunity over a 60-year period (1952–2012). We also explored whether seroconversions during 2012–2013 were spatially clustered. Our models identified 4 discrete outbreaks separated by an average delay of 17 years. On average, 23% (95% confidence interval [CI], 16%–37%) of the susceptible population was infected per outbreak, with >50% of the entire population remaining susceptible at any point. Participants who seroconverted during 2012–2013 were clustered at distances of <230 m, suggesting focal transmission. Large-scale outbreaks of chikungunya did not result in sustained multiyear transmission. Nevertheless, we estimate that >350 000 infections were missed by surveillance systems. Serological studies could supplement surveillance to provide important insights on pathogen circulation.
Collapse
Affiliation(s)
- Henrik Salje
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland Mathematical Modeling Unit, Institut Pasteur, Paris, France
| | | | | | | | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Anon Srikiatkhachorn
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Catherine B Lago
- Virology Research Unit, Armed Forces Research Institute of Medical Sciences
| | | | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - John Mark Velasco
- Virology Research Unit, Armed Forces Research Institute of Medical Sciences
| | - Vito G Roque
- Department of Health, National Epidemiology Center, Manila, Philippines
| | - Ananda Nisalak
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Louis R Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jens W Levy
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Derek Cummings
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland Department of Biology, University of Florida, Gainesville
| | - In-Kyu Yoon
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
46
|
Couderc T, Lecuit M. Chikungunya virus pathogenesis: From bedside to bench. Antiviral Res 2015; 121:120-31. [PMID: 26159730 DOI: 10.1016/j.antiviral.2015.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/04/2015] [Indexed: 11/28/2022]
Abstract
Chikungunya virus (CHIKV) is an arbovirus transmitted to humans by mosquito bite. A decade ago, the virus caused a major outbreak in the islands of the Indian Ocean, then reached India and Southeast Asia. More recently, CHIKV has emerged in the Americas, first reaching the Caribbean and now extending to Central, South and North America. It is therefore considered a major public health and economic threat. CHIKV causes febrile illness typically associated with debilitating joint pains. In rare cases, it may also cause central nervous system disease, notably in neonates. Joint symptoms may persist for months to years, and lead to arthritis. This review focuses on the spectrum of signs and symptoms associated with CHIKV infection in humans. It also illustrates how the analysis of clinical and biological data from human cohorts and the development of animal and cellular models of infection has helped to identify the tissue and cell tropisms of the virus and to decipher host responses in benign, severe or persistent disease. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World".
Collapse
Affiliation(s)
- Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France.
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, Paris, France; Global Virus Network.
| |
Collapse
|
47
|
Petitdemange C, Wauquier N, Vieillard V. Control of immunopathology during chikungunya virus infection. J Allergy Clin Immunol 2015; 135:846-855. [PMID: 25843597 DOI: 10.1016/j.jaci.2015.01.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 10/23/2022]
Abstract
After several decades of epidemiologic silence, chikungunya virus (CHIKV) has recently re-emerged, causing explosive outbreaks and reaching the 5 continents. Transmitted through the bite of Aedes species mosquitoes, CHIKV is responsible for an acute febrile illness accompanied by several characteristic symptoms, including cutaneous rash, myalgia, and arthralgia, with the latter sometimes persisting for months or years. Although CHIKV has previously been known as a relatively benign disease, more recent epidemic events have brought waves of increased morbidity and fatality, leading it to become a serious public health problem. The host's immune response plays a crucial role in controlling the infection, but it might also contribute to the promotion of viral spread and immunopathology. This review focuses on the immune responses to CHIKV in human subjects with an emphasis on early antiviral immune responses. We assess recent developments in the understanding of their possible Janus-faced effects in the control of viral infection and pathogenesis. Although preventive vaccination and specific therapies are yet to be developed, exploring this interesting model of virus-host interactions might have a strong effect on the design of novel therapeutic options to minimize immunopathology without impairing beneficial host defenses.
Collapse
Affiliation(s)
| | - Nadia Wauquier
- Sorbonne Universités, UPMC, University of Paris 06, CR7, CIMI-Paris, Paris, France; Metabiota, San Francisco, Calif
| | - Vincent Vieillard
- Sorbonne Universités, UPMC, University of Paris 06, CR7, CIMI-Paris, Paris, France; INSERM, U1135, CIMI-Paris, Paris, France; CNRS, ERL 8255, CIMI-Paris, Paris, France.
| |
Collapse
|