1
|
Park EY, Minkner R. A systematic approach for scalable purification of virus-like particles. Protein Expr Purif 2025; 228:106664. [PMID: 39828016 DOI: 10.1016/j.pep.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Virus-like particles (VLPs) are increasingly recognized as promising vaccine candidates and drug-delivery platforms because they do not contain genetic materials, mimic viral structures, and possess strong antigenic properties. Various hosts, including microorganisms, yeast, and insect cells, are commonly used for VLP expression. Recently, silkworms have emerged as a significant host for producing VLPs, providing a cost-effective and straightforward approach for large-scale expression. Despite the progress in VLP expression technology, purification methods for VLPs are still in their infancy and often rely on unscalable ultracentrifugation techniques. Moreover, VLP purification represents a substantial portion of the overall production cost, highlighting the urgent need for efficient and scalable downstream processing methods to overcome the current challenges in VLP production. Considering their differing structures and properties, this review systematically summarizes the published results of scalable downstream processes for both enveloped and non-enveloped VLPs. Its aim is to provide a comprehensive overview and significantly contribute to developing future VLP production for pharmaceutical applications, thereby guiding and inspiring further research in this field.
Collapse
Affiliation(s)
- Enoch Y Park
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Robert Minkner
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Tang S, Zhao C, Zhu X. Engineering Escherichia coli-Derived Nanoparticles for Vaccine Development. Vaccines (Basel) 2024; 12:1287. [PMID: 39591189 PMCID: PMC11598912 DOI: 10.3390/vaccines12111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The development of effective vaccines necessitates a delicate balance between maximizing immunogenicity and minimizing safety concerns. Subunit vaccines, while generally considered safe, often fail to elicit robust and durable immune responses. Nanotechnology presents a promising approach to address this dilemma, enabling subunit antigens to mimic critical aspects of native pathogens, such as nanoscale dimensions, geometry, and highly repetitive antigen display. Various expression systems, including Escherichia coli (E. coli), yeast, baculovirus/insect cells, and Chinese hamster ovary (CHO) cells, have been explored for the production of nanoparticle vaccines. Among these, E. coli stands out due to its cost-effectiveness, scalability, rapid production cycle, and high yields. However, the E. coli manufacturing platform faces challenges related to its unfavorable redox environment for disulfide bond formation, lack of post-translational modifications, and difficulties in achieving proper protein folding. This review focuses on molecular and protein engineering strategies to enhance protein solubility in E. coli and facilitate the in vitro reassembly of virus-like particles (VLPs). We also discuss approaches for antigen display on nanocarrier surfaces and methods to stabilize these carriers. These bioengineering approaches, in combination with advanced nanocarrier design, hold significant potential for developing highly effective and affordable E. coli-derived nanovaccines, paving the way for improved protection against a wide range of infectious diseases.
Collapse
Affiliation(s)
- Shubing Tang
- Shanghai Reinovax Biologics Co., Ltd., Pudong New District, Shanghai 200135, China;
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201058, China
| | - Xianchao Zhu
- Shanghai Reinovax Biologics Co., Ltd., Pudong New District, Shanghai 200135, China;
| |
Collapse
|
3
|
Valentic A, Hubbuch J. Effective removal of host cell-derived nucleic acids bound to hepatitis B core antigen virus-like particles by heparin chromatography. Front Bioeng Biotechnol 2024; 12:1475918. [PMID: 39431243 PMCID: PMC11487522 DOI: 10.3389/fbioe.2024.1475918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Virus-like particles (VLPs) show considerable potential for a wide array of therapeutic applications, spanning from vaccines targeting infectious diseases to applications in cancer immunotherapy and drug delivery. In the context of hepatitis B core antigen (HBcAg) VLPs, a promising candidate for gene delivery approaches, the naturally occurring nucleic acid (NA) binding region is commonly utilized for effective binding of various types of therapeutic nucleic acids (NAther). During formation of the HBcAg VLPs, host cell-derived nucleic acids (NAhc) might be associated to the NA binding region, and are thus encapsulated into the VLPs. Following a VLP harvest, the NAhc need to be removed effectively before loading the VLP with NAther. Various techniques reported in literature for this NAhc removal, including enzymatic treatments, alkaline treatment, and lithium chloride precipitation, lack quantitative evidence of sufficient NAhc removal accompanied by a subsequent high VLP protein recovery. In this study, we present a novel heparin chromatography-based process for effective NAhc removal from HBcAg VLPs. Six HBcAg VLP constructs with varying lengths of the NA binding region and diverse NAhc loadings were subjected to evaluation. Process performance was thoroughly examined through NAhc removal and VLP protein recovery analyses. Hereby, reversed phase chromatography combined with UV/Vis spectroscopy, as well as silica spin column-based chromatography coupled with dye-based fluorescence assay were employed. Additionally, alternative process variants, comprising sulfate chromatography and additional nuclease treatments, were investigated. Comparative analyses were conducted with LiCl precipitation and alkaline treatment procedures to ascertain the efficacy of the newly developed chromatography-based methods. Results revealed the superior performance of the heparin chromatography procedure in achieving high NAhc removal and concurrent VLP protein recovery. Furthermore, nuanced relationships between NA binding region length and NAhc removal efficiency were elucidated. Hereby, the construct Cp157 surpassed the other constructs in the heparin process by demonstrating high NAhc removal and VLP protein recovery. Among the other process variants minimal performance variations were observed for the selected constructs Cp157 and Cp183. However, the heparin chromatography-based process consistently outperformed other methods, underscoring its superiority in NAhc removal and VLP protein recovery.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences – Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
4
|
Kim J, Jeong KJ, Kim GJ, Choi JI. Engineering of Recombinant Human Papillomavirus 16 L1 Protein for Incorporation with para-Azido- L-Phenylalanine. J Microbiol Biotechnol 2024; 34:1926-1932. [PMID: 39155395 PMCID: PMC11473617 DOI: 10.4014/jmb.2407.07033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Human papillomavirus (HPV) L1 capsid protein were produced in several host systems, but few studies have focused on enhancing the properties of the L1 protein. In this study, we aimed to produce recombinant Human papillomavirus (HPV) L1 capsid protein containing para-azido-L-phenylalanine (pAzF) in Escherichia coli. First, we expressed the maltose-binding protein (MBP)-fused HPV16 L1, and 5 residues in HPV16 L1 protein were selected by the in silico modeling for amber codon substitution. Among the variants of the five locations, we identified a candidate that exhibited significant differences in expression with and without pAzF via genetic code expansion (GCE). The expressed recombinant MBP-HPV16L1 protein was confirmed for incorporation of pAzF and the formation of VLPs was tested in vitro.
Collapse
Affiliation(s)
- Jinhyeon Kim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Ruccolo S, Emmert M, Bottecchia C, Qin Y, Barrientos R, Raymond K, Haley M. Electrocatalytic Reduction of Disulfide Bonds across Chemical Modalities. Org Lett 2024; 26:6169-6173. [PMID: 38996056 DOI: 10.1021/acs.orglett.4c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The chemical properties of disulfides are leveraged in a wide array of applications, ranging from protein-drug conjugates for cancer treatment to self-healing materials. However, disulfide reduction strategies remain severely underdeveloped despite being the key to efficiently accessing the desired targets. Specifically, no homogeneous catalyst has been reported for this reaction, and conditions that allow the use of mild and green reductants (e.g., via electrochemical reduction) are not known. Herein, we unveil a vitamin B12-catalyzed, electrochemically driven protocol for efficiently reducing disulfide bonds in various aqueous buffers over a broad pH range. This robust and simple method is suitable for disulfide reductions of substrates ranging from small molecules to large proteins. Finally, one-pot reduction and conjugation of disulfide bonds in a monoclonal antibody were demonstrated to produce antibody conjugates.
Collapse
Affiliation(s)
- Serge Ruccolo
- Process Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Marion Emmert
- Process Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Cecilia Bottecchia
- Process Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Yangzhong Qin
- Analytical Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Rodell Barrientos
- Analytical Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Kelly Raymond
- Analytical Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Monica Haley
- Analytical Research and Development, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
6
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
7
|
Barrientos RC, Singh AN, Ukaegbu O, Hemida M, Wang H, Haidar Ahmad I, Hu H, Dunn ZD, Appiah-Amponsah E, Regalado EL. Two-Dimensional SEC-SEC-UV-MALS-dRI Workflow for Streamlined Analysis and Characterization of Biopharmaceuticals. Anal Chem 2024; 96:4960-4968. [PMID: 38436624 DOI: 10.1021/acs.analchem.3c05969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The emergence of complex biological modalities in the biopharmaceutical industry entails a significant expansion of the current analytical toolbox to address the need to deploy meaningful and reliable assays at an unprecedented pace. Size exclusion chromatography (SEC) is an industry standard technique for protein separation and analysis. Some constraints of traditional SEC stem from its restricted ability to resolve complex mixtures and notoriously long run times while also requiring multiple offline separation conditions on different pore size columns to cover a wider molecular size distribution. Two-dimensional liquid chromatography (2D-LC) is becoming an important tool not only to increase peak capacity but also to tune selectivity in a single online method. Herein, an online 2D-LC framework in which both dimensions utilize SEC columns with different pore sizes is introduced with a goal to increase throughput for biomolecule separation and characterization. In addition to improving the separation of closely related species, this online 2D SEC-SEC approach also facilitated the rapid analysis of protein-based mixtures of a wide molecular size range in a single online experimental run bypassing time-consuming deployment of different offline SEC methods. By coupling the second dimension with multiangle light scattering (MALS) and differential refractive index (dRI) detectors, absolute molecular weights of the separated species were obtained without the use of calibration curves. As illustrated in this report for protein mixtures and vaccine processes, this workflow can be used in scenarios where rapid development and deployment of SEC assays are warranted, enabling bioprocess monitoring, purity assessment, and characterization.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew N Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ophelia Ukaegbu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mohamed Hemida
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Imad Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Hang Hu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zachary D Dunn
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Emmanuel Appiah-Amponsah
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
8
|
Brown C, Agarwal A, Luque A. pyCapsid: identifying dominant dynamics and quasi-rigid mechanical units in protein shells. Bioinformatics 2024; 40:btad761. [PMID: 38113434 PMCID: PMC10786678 DOI: 10.1093/bioinformatics/btad761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
SUMMARY pyCapsid is a Python package developed to facilitate the characterization of the dynamics and quasi-rigid mechanical units of protein shells and other protein complexes. The package was developed in response to the rapid increase of high-resolution structures, particularly capsids of viruses, requiring multiscale biophysical analyses. Given a protein shell, pyCapsid generates the collective vibrations of its amino-acid residues, identifies quasi-rigid mechanical regions associated with the disassembly of the structure, and maps the results back to the input proteins for interpretation. pyCapsid summarizes the main results in a report that includes publication-quality figures. AVAILABILITY AND IMPLEMENTATION pyCapsid's source code is available under MIT License on GitHub. It is compatible with Python 3.8-3.10 and has been deployed in two leading Python package-management systems, PIP and Conda. Installation instructions and tutorials are available in the online documentation and in the pyCapsid's YouTube playlist. In addition, a cloud-based implementation of pyCapsid is available as a Google Colab notebook. pyCapsid Colab does not require installation and generates the same report and outputs as the installable version. Users can post issues regarding pyCapsid in the repository's issues section.
Collapse
Affiliation(s)
- Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Department of Physics, San Diego State University, San Diego, CA 92116, United States
| | - Anuradha Agarwal
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
| | - Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92116, United States
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| |
Collapse
|
9
|
Hillebrandt N, Hubbuch J. Size-selective downstream processing of virus particles and non-enveloped virus-like particles. Front Bioeng Biotechnol 2023; 11:1192050. [PMID: 37304136 PMCID: PMC10248422 DOI: 10.3389/fbioe.2023.1192050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Non-enveloped virus-like particles (VLPs) are versatile protein nanoparticles with great potential for biopharmaceutical applications. However, conventional protein downstream processing (DSP) and platform processes are often not easily applicable due to the large size of VLPs and virus particles (VPs) in general. The application of size-selective separation techniques offers to exploit the size difference between VPs and common host-cell impurities. Moreover, size-selective separation techniques offer the potential for wide applicability across different VPs. In this work, basic principles and applications of size-selective separation techniques are reviewed to highlight their potential in DSP of VPs. Finally, specific DSP steps for non-enveloped VLPs and their subunits are reviewed as well as the potential applications and benefits of size-selective separation techniques are shown.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
10
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
11
|
Sharma N, Jerajani K, Wan Y, Kumru OS, Pullagurla SR, Ogun O, Mapari S, Brendle S, Christensen ND, Batwal S, Mahedvi M, Rao H, Dogar V, Chandrasekharan R, Shaligram U, Volkin DB, Joshi SB. Multi-dose Formulation Development for a Quadrivalent Human Papillomavirus Virus-Like Particle-Based Vaccine: Part II- Real-time and Accelerated Stability Studies. J Pharm Sci 2023; 112:458-470. [PMID: 36462710 DOI: 10.1016/j.xphs.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
This work describes Part 2 of multi-dose formulation development of a Human Papillomavirus (HPV) Virus-Like Particle (VLP) based vaccine (see Part 1 in companion paper). Storage stability studies with candidate multi-dose formulations containing individual or combinations of seven different antimicrobial preservatives (APs) were performed with quadrivalent HPV VLP (6, 11, 16, 18) antigens adsorbed to aluminum-salt adjuvant (Alhydrogel®). Real-time (up to two years, 2-8°C) and accelerated (months at 25 and 40°C) stability studies identified eight lead candidates as measured by antigen stability (competitive ELISA employing conformational serotype-specific mAbs), antimicrobial effectiveness (modified European Pharmacopeia assay), total protein content (SDS-PAGE), and AP concentration (RP-UHPLC). The AH-adsorbed HPV18 VLP component was most sensitive to AP-induced destabilization. Optimal quadrivalent antigen storage stability while maintaining antimicrobial effectiveness was observed with 2-phenoxyethanol, benzyl alcohol, chlorobutanol, and 2-phenoxyethanol + benzyl alcohol combination. Interestingly, for single-AP containing multi-dose formulations, this rank-ordering of storage stability did not correlate with previously reported biophysical measurements of AP-induced antigen destabilization. Moreover, other APs (e.g., m-cresol, phenol, parabens) described by others for inclusion in multi-dose HPV VLP formulations showed suboptimal stability. These results suggest that each HPV VLP vaccine candidate (e.g., different serotypes, expression systems, processes, adjuvants) will require customized multi-dose formulation development.
Collapse
Affiliation(s)
- Nitya Sharma
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Kaushal Jerajani
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ying Wan
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Swathi R Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Oluwadara Ogun
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Shweta Mapari
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Sarah Brendle
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | - Neil D Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | | | | | - Harish Rao
- Serum Institute of India Pvt. Ltd., Pune, India
| | - Vikas Dogar
- Serum Institute of India Pvt. Ltd., Pune, India
| | | | | | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
12
|
Jerajani K, Wan Y, Hickey JM, Kumru OS, Sharma N, Pullagurla SR, Ogun O, Mapari S, Whitaker N, Brendle S, Christensen ND, Batwal S, Mahedvi M, Rao H, Dogar V, Chandrasekharan R, Shaligram U, Joshi SB, Volkin DB. Analytical and Preformulation Characterization Studies of Human Papillomavirus Virus-Like Particles to Enable Quadrivalent Multi-Dose Vaccine Formulation Development. J Pharm Sci 2022; 111:2983-2997. [PMID: 35914546 DOI: 10.1016/j.xphs.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022]
Abstract
Introducing multi-dose formulations of Human Papillomavirus (HPV) vaccines will reduce costs and enable improved global vaccine coverage, especially in low- and middle-income countries. This work describes the development of key analytical methods later utilized for HPV vaccine multi-dose formulation development. First, down-selection of physicochemical methods suitable for multi-dose formulation development of four HPV (6, 11, 16, and 18) Virus-Like Particles (VLPs) adsorbed to an aluminum adjuvant (Alhydrogel®, AH) was performed. The four monovalent AH-adsorbed HPV VLPs were then characterized using these down-selected methods. Second, stability-indicating competitive ELISA assays were developed using HPV serotype-specific neutralizing mAbs, to monitor relative antibody binding profiles of the four AH-adsorbed VLPs during storage. Third, concentration-dependent preservative-induced destabilization of HPV16 VLPs was demonstrated by addition of eight preservatives found in parenterally administered pharmaceuticals and vaccines, as measured by ELISA, dynamic light scattering, and differential scanning calorimetry. Finally, preservative stability and effectiveness in the presence of vaccine components were evaluated using a combination of RP-UHPLC, a microbial growth inhibition assay, and a modified version of the European Pharmacopoeia assay (Ph. Eur. 5.1.3). Results are discussed in terms of analytical challenges encountered to identify and develop high-throughput methods that facilitate multi-dose formulation development of aluminum-adjuvanted protein-based vaccine candidates.
Collapse
Affiliation(s)
- Kaushal Jerajani
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ying Wan
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Nitya Sharma
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Swathi R Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Oluwadara Ogun
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Shweta Mapari
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Neal Whitaker
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Sarah Brendle
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Neil D Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | - Harish Rao
- Serum Institute of India Pvt. Ltd., Pune, India
| | - Vikas Dogar
- Serum Institute of India Pvt. Ltd., Pune, India
| | | | | | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
13
|
Zeng Y, Song F, Luo G, Yang H, Li C, Liu W, Li T, Zhang S, Wang Y, Huang C, Ge S, Zhang J, Xia N. Generation and characterization of mouse monoclonal antibodies against the VP4 protein of group A human rotaviruses. Antiviral Res 2022; 207:105407. [PMID: 36152816 DOI: 10.1016/j.antiviral.2022.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Human rotaviruses (RVs) are the leading cause of severe diarrhea in infants and young children worldwide. Among the structural proteins, as a spike protein, rotavirus VP4 plays a key role in both viral attachment and penetration. Currently, studies on monoclonal antibodies (mAbs) against VP4 are limited. In this study, mice were immunized with truncated VP4* to produce murine mAbs. In total, 50 mAbs were produced and characterized. Twenty-four mAbs were genotype-specific and 20 mAbs recognized the common VP4 epitopes shared by P[8], P[4], and P[6] viruses. Thirty-five of the 50 mAbs were neutralizing mAbs, among which nine mAbs could neutralize all three P-genotype RVs, and 10 neutralizing mAbs exhibited conformational sensitivity. Ten mAbs recognized dominant neutralizing epitopes, including the broadly neutralizing mAb 9C4 recognized conformational epitope. Further investigation shows that S376 and S464 are key amino acids for 9C4 binding, however, the exact binding sites of 9C4 remain to be fully defined. Overall, this panel of mAbs has demonstrated utility as immunodiagnostic and research reagents, and could potentially serve as crucial tools for exploring the neutralizing mechanisms and quality control of VP4* protein-based RV subunit vaccines. Further evaluation of cross-neutralizing mAbs could not only improve the understanding of the heterotypic protection conferred by RV vaccines, but also facilitate the development of broadly protective RV vaccines.
Collapse
Affiliation(s)
- Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Feibo Song
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, People's Republic of China
| | - Guoxing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Han Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Cao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China; The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, People's Republic of China
| |
Collapse
|
14
|
Hillebrandt N, Vormittag P, Dietrich A, Hubbuch J. Process Monitoring Framework for Cross‐flow Diafiltration‐based Virus‐like Particle Disassembly: Tracing Product Properties and Filtration Performance. Biotechnol Bioeng 2022; 119:1522-1538. [DOI: 10.1002/bit.28063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Nils Hillebrandt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| | - Annabelle Dietrich
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| |
Collapse
|
15
|
Hillebrandt N, Vormittag P, Dietrich A, Wegner CH, Hubbuch J. Process development for cross-flow diafiltration-based VLP disassembly: A novel high-throughput screening approach. Biotechnol Bioeng 2021; 118:3926-3940. [PMID: 34170511 DOI: 10.1002/bit.27868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are particulate structures, which are applied as vaccines or delivery vehicles. VLPs assemble from subunits, named capsomeres, composed of recombinantly expressed viral structural proteins. During downstream processing, in vivo-assembled VLPs are typically dis- and reassembled to remove encapsulated impurities and to improve particle morphology. Disassembly is achieved in a high-pH solution and by the addition of a denaturant or reducing agent. The optimal disassembly conditions depend on the VLP amino acid sequence and structure, thus requiring material-consuming disassembly experiments. To this end, we developed a low-volume and high-resolution disassembly screening that provides time-resolved insight into the VLP disassembly progress. In this study, two variants of C-terminally truncated hepatitis B core antigen were investigated showing different disassembly behaviors. For both VLPs, the best capsomere yield was achieved at moderately high urea concentration and pH. Nonetheless, their disassembly behaviors differed particularly with respect to disassembly rate and aggregation. Based on the high-throughput screening results, a diafiltration-based disassembly process step was developed. Compared with mixing-based disassembly, it resulted in higher yields of up to 0.84 and allowed for integrated purification. This process step was embedded in a filtration-based process sequence of disassembly, capsomere separation, and reassembly, considerably reducing high-molecular-weight species.
Collapse
Affiliation(s)
- Nils Hillebrandt
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Annabelle Dietrich
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Christina H Wegner
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| |
Collapse
|
16
|
Hyman P, Trubl G, Abedon ST. Virus-Like Particle: Evolving Meanings in Different Disciplines. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:11-15. [PMID: 36148434 PMCID: PMC9041479 DOI: 10.1089/phage.2020.0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Virus-like particle (VLP) is a term that has been in use for about 80 years. Usually, VLP has meant a particle that is like a virus, generally by appearance, but without either proven or actual virus functionality. Initially VLP referred to particles seen in electron microscope images of tissues. More recently, VLP has come to mean other things to other researchers. A key divergence has been use of VLP in association with vaccine and biotechnology applications versus use of VLP in enumeration of viruses in environmental samples. To these viral ecologists, a VLP is a particle that is virus sized, has nucleic acid, and could be a functional virus. But to vaccine developers and biotechnology researchers a VLP instead is a viral structure that intentionally lacks a viral genome. In this study, we look at the history of use of VLP, following changes in meaning as the technology to study VLPs changed.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology and Toxicology, Ashland University, Ashland, Ohio, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
17
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
18
|
Kombe Kombe AJ, Li B, Zahid A, Mengist HM, Bounda GA, Zhou Y, Jin T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front Public Health 2021; 8:552028. [PMID: 33553082 PMCID: PMC7855977 DOI: 10.3389/fpubh.2020.552028] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Diagnosed in more than 90% of cervical cancers, the fourth deadliest cancer in women, human papillomavirus (HPV) is currently the most common pathogen responsible for female cancers. Moreover, HPV infection is associated with many other diseases, including cutaneous and anogenital warts, and genital and upper aerodigestive tract cancers. The incidence and prevalence of these pathologies vary considerably depending on factors including HPV genotype, regional conditions, the study population, and the anatomical site sampled. Recently, features of the cervicovaginal microbiota are found to be associated with the incidence of HPV-related diseases, presenting a novel approach to identify high-risk women through both blood and cervical samples. Overall, the HPV repartition data show that HPV infection and related diseases are more prevalent in developing countries. Moreover, the available (2-, 4-, and 9-valent) vaccines based on virus-like particles, despite their proven effectiveness and safety, present some limitations in terms of system development cost, transport cold chain, and oncogenic HPV variants. In addition, vaccination programs face some challenges, leading to a considerable burden of HPV infection and related diseases. Therefore, even though the new (9-valent) vaccine seems promising, next-generation vaccines as well as awareness programs associated with HPV vaccination and budget reinforcements for immunization are needed.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Gabonese Scientific Research Consortium, Libreville, Gabon
| | - Bofeng Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ayesha Zahid
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hylemariam Mihiretie Mengist
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guy-Armel Bounda
- Gabonese Scientific Research Consortium, Libreville, Gabon.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Sinomedica Co., Ltd., Mong Kok, Hong Kong
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Chinese Academy of Science Center for Excellence in Molecular Cell Science, Shanghai, China
| |
Collapse
|
19
|
Hua T, Zhang D, Tang B, Chang C, Liu G, Zhang X. The immunogenicity of the virus-like particles derived from the VP2 protein of porcine parvovirus. Vet Microbiol 2020; 248:108795. [PMID: 32827923 DOI: 10.1016/j.vetmic.2020.108795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023]
Abstract
Porcine parvovirus (PPV) is a major cause of the syndrome of sow reproductive failure that can cause economic losses. In this study, we developed a subunit vaccine against porcine parvovirus (PPV), composed of virus-like particles (VLPs) derived from a prokaryotic system, and evaluated its potential against PPV infection. The soluble recombinant VP2 protein was expressed in E. coli Transetta(DE3) cells using a pCold II prokaryotic expression vector at a low temperature of 15 °C. After expression and purification, the recombinant VP2 protein was successfully assembled into VLPs with a similar shape of PPV viron and also hemagglutination activity. PPV VLPs formulated in a water-in-oil-in-water adjuvant evoked high hemagglutination inhibition antibody and neutralization antibody titres in both guinea pigs, used as reference model, and target species, pigs. Immunization with VLPs vaccine stimulated high hemagglutination inhibition antibody and neutralization antibody responses in guinea pigs, used as reference, and target species, weaned pigs, and primiparous gilts. PPV VLPs from E. coli yielded complete fetal protection against PPV infection in primiparous gilts immunized with a single-dose vaccine. PPV VLPs inhibited the replication and spread of PPV in primiparous gilts, which was confirmed by the detection of PPV DNA and infectious PPV in nasal and rectal swabs of challenged sows. These results suggest that VLPs-based PPV vaccine is a promising PPV vaccine candidate.
Collapse
Affiliation(s)
- Tao Hua
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Daohua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Guoyang Liu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| |
Collapse
|
20
|
Chang YH, Chiao DJ, Hsu YL, Lin CC, Wu HL, Shu PY, Chang SF, Chang JH, Kuo SC. Mosquito Cell-Derived Japanese Encephalitis Virus-Like Particles Induce Specific Humoral and Cellular Immune Responses in Mice. Viruses 2020; 12:v12030336. [PMID: 32204533 PMCID: PMC7150764 DOI: 10.3390/v12030336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is the major cause of an acute encephalitis syndrome in many Asian countries, despite the fact that an effective vaccine has been developed. Virus-like particles (VLPs) are self-assembled multi-subunit protein structures which possess specific epitope antigenicities related to corresponding native viruses. These properties mean that VLPs are considered safe antigens that can be used in clinical applications. In this study, we developed a novel baculovirus/mosquito (BacMos) expression system which potentially enables the scalable production of JEV genotype III (GIII) VLPs (which are secreted from mosquito cells). The mosquito-cell-derived JEV VLPs comprised 30-nm spherical particles as well as precursor membrane protein (prM) and envelope (E) proteins with densities that ranged from 30% to 55% across a sucrose gradient. We used IgM antibody-capture enzyme-linked immunosorbent assays to assess the resemblance between VLPs and authentic virions and thereby characterized the epitope specific antigenicity of VLPs. VLP immunization was found to elicit a specific immune response toward a balanced IgG2a/IgG1 ratio. This response effectively neutralized both JEV GI and GIII and elicited a mixed Th1/Th2 response in mice. This study supports the development of mosquito cell-derived JEV VLPs to serve as candidate vaccines against JEV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cell Line
- Culicidae/virology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/ultrastructure
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Enzyme-Linked Immunosorbent Assay
- Epitopes/immunology
- Fluorescent Antibody Technique
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Neutralization Tests
- Vaccines, Virus-Like Particle/immunology
- Virion
Collapse
Affiliation(s)
- Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsueh-Ling Wu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Jui-Huan Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: ; Tel.: +886-2-8177-7038 (ext. 19946)
| |
Collapse
|
21
|
He B, Zhang Z, Zhang X, Tang Z, Liu C, Zheng Z, Li S, Zhang J, Xia N, Zhao Q. Functional epitopes on hepatitis E virions and recombinant capsids are highly conformation-dependent. Hum Vaccin Immunother 2020; 16:1554-1564. [PMID: 31995442 DOI: 10.1080/21645515.2019.1703454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E virus (HEV) is responsible for epidemic and sporadic acute hepatitis cases, especially in developing countries. Hepatitis E has become a vaccine-preventable disease in recent years with the development of a licensed vaccine. Most functional and neutralizing monoclonal antibodies (mAbs) are known to be highly sensitive to antigen conformation. In this study, a similar approach was used to characterize the conformational sensitivity of antibodies in human or mouse serum samples. Interestingly, comparative binding analysis using different antigen forms showed that the antibodies in the sera of naturally infected individuals, of human vaccinees and from mice immunized with the HEV p239 vaccine all exhibited a strong preference to particulate antigens over the monomeric form of the truncated capsid protein. The degree of discriminating the two test antigens is similar for serum samples to that for the well-characterized murine mAbs. A functional assay for assessing the inhibition of subviral particle cell entry by antibodies was used to determine the functional titers of anti-HEV antibodies in mouse sera. A good correlation was observed between the functional and binding titers in mouse sera determined using two different methods. This result supports the continued use of the enzyme-linked immunosorbent assay as the primary serological assay assuming that the coating antigen contains conformational and native-like epitopes, as in the case for HEV p239.
Collapse
Affiliation(s)
- Bin He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen, Fujian, PR China
| | - Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen, Fujian, PR China
| | - Xinyuan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen, Fujian, PR China
| | - Zimin Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen, Fujian, PR China
| | - Chang Liu
- School of Life Science, Xiamen University , Xiamen, Fujian, PR China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen, Fujian, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen, Fujian, PR China.,School of Life Science, Xiamen University , Xiamen, Fujian, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen, Fujian, PR China.,School of Life Science, Xiamen University , Xiamen, Fujian, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen, Fujian, PR China
| |
Collapse
|
22
|
Zhang Z, Zhang T, Cao L, Wang X, Cao J, Huang X, Cai Y, Lin Z, Pan H, Yuan Q, Fang M, Li S, Zhang J, Xia N, Zhao Q. Simultaneous in situ visualization and quantitation of dual antigens adsorbed on adjuvants using high content analysis. Nanomedicine (Lond) 2019; 14:2535-2548. [PMID: 31603382 DOI: 10.2217/nnm-2019-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Traditional antigenicity assay requires antigen recovery from the particulate adjuvants prior to analysis. An in situ method was developed for interrogating vaccine antigens with monoclonal antibodies while being adsorbed on adjuvants. Materials & methods: The fluorescence imaging-based high content analysis was used to visualize the antigen distribution on adjuvant agglomerates and to analyze the antigenicity for adsorbed antigens. Results: Simultaneous visualization and quantitation were achieved for dual antigens in a bivalent human papillomavirus vaccine with uniquely labeled antibodies. Good agreement was observed between the in situ multiplexed assays with well-established sandwich enzyme-linked immunosorbent assays. Conclusion: The streamlined procedures and the amenability for multiplexing make the in situ antigenicity analysis a favorable choice for in vitro functional assessment of bionanoparticles as vaccine antigens.
Collapse
Affiliation(s)
- Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Lu Cao
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Jiali Cao
- National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Yashuang Cai
- National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Zhijie Lin
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361022, PR China
| | - Huirong Pan
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361022, PR China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China.,National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China.,National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China.,National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| |
Collapse
|
23
|
Mesoscale model of the assembly and cross-linking of HPV virus-like particles. Virology 2019; 537:53-64. [PMID: 31450047 DOI: 10.1016/j.virol.2019.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022]
Abstract
We present a novel kinetic Monte Carlo model to simulate the real process time-scale of the assembly of Human Papillomavirus (HPV) virus-like particles (VLPs) incorporating the formation of intercapsomeric disulfide bonds. The objective was to develop insights into the underlying mechanisms of HPV VLP assembly and cross-linking during in vitro production of the HPV vaccine. The model integrates actual experimental data and detailed information of VLP geometrical structure in microscopic mechanistic steps. The principal novelty of this model is in the concurrent simulation of VLP assembly and cross-linking including a variable for spatial angular arrangement of capsomeres during their assembly that affects the overall rates of VLP assembly and cross-linking. The cross-linking modeled by using the mechanistic probability rules between involved cysteine residues. The model was utilized to better understand the actual process data and check on the hypothesis related to factors affecting the rates of HPV growth and maturation.
Collapse
|
24
|
Meyer BK, Kendall MAF, Williams DM, Bett AJ, Dubey S, Gentzel RC, Casimiro D, Forster A, Corbett H, Crichton M, Baker SB, Evans RK, Bhambhani A. Immune response and reactogenicity of an unadjuvanted intradermally delivered human papillomavirus vaccine using a first generation Nanopatch™ in rhesus macaques: An exploratory, pre-clinical feasibility assessment. Vaccine X 2019; 2:100030. [PMID: 31384745 PMCID: PMC6668242 DOI: 10.1016/j.jvacx.2019.100030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/21/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
The human papillomavirus (HPV) 9-valent, recombinant vaccine (Gardasil™9) helps protect young adults (males and females) against anogenital cancers and genital warts caused by certain HPV genotypes (ref. Gardasil™9 insert). This vaccine is administered intramuscularly (IM). The aim of this study was to determine preclinically whether intradermal (ID) vaccination with an unadjuvanted 9-valent recombinant HPV vaccine using a first-generation ID delivery device, the Nanopatch™, could enhance vaccine immunogenicity compared with the traditional ID route (Mantoux technique). IM injection of HPV VLPs formulated with Merck & Co., Inc., Kenilworth, NJ, USA Alum Adjuvant (MAA) were included in the rhesus study for comparison. The Nanopatch™ prototype contains a high-density array comprised of 10,000 microprojections/cm2, each 250 µm long. It was hypothesized the higher density array with shallower ID delivery may be superior to the Mantoux technique. To test this hypothesis, HPV VLPs without adjuvant were coated on the Nanopatch™, stability of the Nanopatch™ with unadjuvanted HPV VLPs were evaluated under accelerated conditions, skin delivery was verified using radiolabelled VLPs or FluoSpheres®, and the immune response and skin site reaction with the Nanopatch™ was evaluated in rhesus macaques. The immune response induced by Nanopatch™ administration, measured as HPV-specific binding antibodies, was similar to that induced using the Mantoux technique. It was also observed that a lower dose of unadjuvanted HPV VLPs delivered with the first-generation Nanopatch™ and applicator or Mantoux technique resulted in an immune response that was significantly lower compared to a higher-dose of alum adjuvanted HPV VLPs delivered IM in rhesus macaques. The study also indicated unadjuvanted HPV VLPs could be delivered with the first-generation Nanopatch™ and applicator to the skin in 15 s with a transfer efficiency of approximately 20%. This study is the first demonstration of patch administration in non-human primates with a vaccine composed of HPV VLPs.
Collapse
Affiliation(s)
- Brian K Meyer
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Mark A F Kendall
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia.,Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Donna M Williams
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Andrew J Bett
- Infectious Disease and Vaccines, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Sheri Dubey
- Infectious Disease and Vaccines, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Renee C Gentzel
- Movement Disorders and Translation, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Danilo Casimiro
- Infectious Disease and Vaccines, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Holly Corbett
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - Michael Crichton
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia.,Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - S Ben Baker
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia.,Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Robert K Evans
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Akhilesh Bhambhani
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| |
Collapse
|
25
|
Rüdt M, Vormittag P, Hillebrandt N, Hubbuch J. Process monitoring of virus-like particle reassembly by diafiltration with UV/Vis spectroscopy and light scattering. Biotechnol Bioeng 2019; 116:1366-1379. [PMID: 30684365 PMCID: PMC6593973 DOI: 10.1002/bit.26935] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
Virus-like particles (VLPs) have shown great potential as biopharmaceuticals in the market and in clinics. Nonenveloped, in vivo assembled VLPs are typically disassembled and reassembled in vitro to improve particle stability, homogeneity, and immunogenicity. At the industrial scale, cross-flow filtration (CFF) is the method of choice for performing reassembly by diafiltration. Here, we developed an experimental CFF setup with an on-line measurement loop for the implementation of process analytical technology (PAT). The measurement loop included an ultraviolet and visible (UV/Vis) spectrometer as well as a light scattering photometer. These sensors allowed for monitoring protein concentration, protein tertiary structure, and protein quaternary structure. The experimental setup was tested with three Hepatitis B core Antigen (HBcAg) variants. With each variant, three reassembly processes were performed at different transmembrane pressures (TMPs). While light scattering provided information on the assembly progress, UV/Vis allowed for monitoring the protein concentration and the rate of VLP assembly based on the microenvironment of Tyrosine-132. VLP formation was verified by off-line dynamic light scattering (DLS) and transmission electron microscopy (TEM). Furthermore, the experimental results provided evidence of aggregate-related assembly inhibition and showed that off-line size-exclusion chromatography does not provide a complete picture of the particle content. Finally, a Partial-Least Squares (PLS) model was calibrated to predict VLP concentrations in the process solution. Q 2 values of 0.947-0.984 were reached for the three HBcAg variants. In summary, the proposed experimental setup provides a powerful platform for developing and monitoring VLP reassembly steps by CFF.
Collapse
Affiliation(s)
- Matthias Rüdt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Nils Hillebrandt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| |
Collapse
|
26
|
Multifaceted characterization of recombinant protein-based vaccines: An immunochemical toolbox for epitope-specific analyses of the hepatitis E vaccine. Vaccine 2018; 36:7650-7658. [PMID: 30396752 DOI: 10.1016/j.vaccine.2018.10.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023]
Abstract
The integrity of functional epitopes is a critical quality attribute for recombinant protein based vaccines since the presence of these native-like epitopes is the structural basis for vaccines to elicit functional antibodies. To demonstrate the quality and quantity of functional epitopes on vaccine antigens, a toolbox of assessing antigen characteristics is essential. Among the physicochemical, biophysical, immunochemical and in vivo potency analyses, the epitope-specific assays are most critical assessment of the antigen functionality. In this study, we used hepatitis E virus vaccine as an example to illustrated how the monoclonal antibody (mAb) based immunochemical assays were established for in-depth and multifaceted antigen characterization. A large panel of mAbs were developed and characterized using epitope clustering analysis. A subset of these mAbs recognizing non-overlapping epitopes were chosen to be used for assay development. Orthogonal methods, including surface plasma resonance-based BIAcore, solution competitive ELISA and sandwich ELISA, were developed for the antigenicity assessment. The sandwich ELISA with a pair of mAbs, recognizing two different epitopes, was used to assess the accelerated antigen stability, showing enhanced stability with adjuvant adsorption. Such a sandwich ELISA with robust performance has the potentials to be used for in vitro potency analysis to replace animal-based potency assay as product release test. In summary, using hepatitis E vaccine as an example, we demonstrated the importance and establishment of a mAb-based immunochemical toolbox for multifaceted antigen characterization. This is particularly important to demonstrate the successful reconstruction of the native-like and functional epitopes on a recombinant antigen post expression and purification. These epitope-specific and multifaceted assays serve as critical tools for process monitoring or lot consistency tests in support of vaccine development and manufacturing.
Collapse
|
27
|
Zhang C, Huang X, Chen S, Li Y, Li Y, Wang X, Tang J, Xia L, Lin Z, Luo W, Li T, Li S, Zhang J, Xia N, Zhao Q. Epitope clustering analysis for vaccine-induced human antibodies in relationship to a panel of murine monoclonal antibodies against HPV16 viral capsid. Vaccine 2018; 36:6761-6771. [PMID: 30287156 DOI: 10.1016/j.vaccine.2018.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
Abstract
Human papillomavirus (HPV) type 16 is the most common type implicated as the etiological agent that causes cervical cancer. The marketed prophylactic vaccines against HPV infection are composed of virus-like particles (VLPs) assembled from the recombinant major capsid protein L1. Elicitation of functional and neutralizing antibodies by vaccination is the mode of action by which the vaccines prevent the viral infection. In this study, a panel of murine mAbs against HPV16 L1 were generated and comprehensively characterized with respect to their mapping to the epitope spectrum on the viral capsid. These mAbs were categorized into five epitope bins by two different methods based on the pairwise cross-inhibition and competition with human polyclonal antibodies. In addition, a preliminary demonstration of the spatial relationship of the epitopes recognized by these mAbs was performed using a cross-blocking assay with a well-characterized human mAb, 26D1. Interestingly, two mAbs recognizing different epitopes were found to act synergistically in the pseudovirion-based neutralization assay (PBNA). To facilitate cross-lab and cross-study comparison, the international standard (IS) serum 05/134 was used to calibrate the mAbs as well as the human serum samples from the HPV16/18 vaccine recipients. The neutralizing mAbs, particularly those that recognizing immunodominant epitopes, would be useful in developing epitope-specific assays for monitoring the vaccine production process and for serological assessment.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Siyi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China
| | - Yike Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Yufang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Jixian Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Lin Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, Xiamen, Fujian, PR China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
28
|
Non-human papillomaviruses for gene delivery in vitro and in vivo. PLoS One 2018; 13:e0198996. [PMID: 29912929 PMCID: PMC6005490 DOI: 10.1371/journal.pone.0198996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Papillomavirus capsids are known to have the ability to package DNA plasmids and deliver them both in vitro and in vivo. Of all known papillomavirus types, human papillomaviruses (HPVs) are by far the most intensely studied. Although HPVs work well as gene transfer vectors, their use is limited as most individuals are exposed to this virus either through a HPV vaccination or natural infection. To circumvent these constraints, we produced pseudovirions (PsVs) of ten non-human papillomavirus types and tested their transduction efficiencies in vitro. PsVs based on Macaca fascicularis papillomavirus-11 and Puma concolor papillomavirus-1 were further tested in vivo. Intramuscular transduction by PsVs led to months-long expression of a reporter plasmid, indicating that PsVs have potential as gene delivery vectors.
Collapse
|
29
|
Purification of virus-like particles (VLPs) expressed in the silkworm Bombyx mori. Biotechnol Lett 2018; 40:659-666. [PMID: 29383470 DOI: 10.1007/s10529-018-2516-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
Virus-like particles (VLPs) are a promising and developing option for vaccination and gene therapy. They are also interesting as shuttles for drug targeting. Currently, several different gene expression systems are available, among which the silkworm expression system is known for its mass production capacity. However, cost-effective purification with high purity of the target protein is a particular bottleneck for this system. The present review evaluates the advances in the purification of VLPs, especially from silkworm larval hemolymph. Beginning with applicable pre-treatments for VLPs over to chromatography methods and quality control of the purified VLPs. Whereupon the main focus is on the different chromatography approaches for the purification, but the structure of the VLPs and their intended use for humans make also the quality control important. Within this, the stability of the VLPs which has to be considered for the purification is as well discussed.
Collapse
|
30
|
Abstract
Compared with biologics, vaccine potency assays represent a special challenge due to their unique compositions, multivalency, long life cycles and global distribution. Historically, vaccines were released using in vivo potency assays requiring immunization of dozens of animals. Modern vaccines use a variety of newer analytical tools including biochemical, cell-based and immunochemical methods to measure potency. The choice of analytics largely depends on the mechanism of action and ability to ensure lot-to-lot consistency. Live vaccines often require cell-based assays to ensure infectivity, whereas recombinant vaccine potency can be reliably monitored with immunoassays. Several case studies are presented to demonstrate the relationship between mechanism of action and potency assay. A high-level decision tree is presented to assist with assay selection.
Collapse
|
31
|
Frazer IH. Eradicating HPV-Associated Cancer Through Immunization: A Glass Half Full…. Viral Immunol 2018; 31:80-85. [PMID: 29298130 DOI: 10.1089/vim.2017.0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human papillomavirus (HPV) is an important causal agent of premalignant cervical epithelial changes and cervical cancers. These cancers account for ∼5% of all cancers globally and kill more than a quarter million women annually. HPV infections also associate with certain anogenital and oropharyngeal cancers. Events leading to the development of HPV vaccines to prevent associated cancers are described, with a further discussion of goals that must be met to achieve full virus eradication.
Collapse
Affiliation(s)
- Ian H Frazer
- The University of Queensland Diamantina Institute , Woolloongabba, Australia
| |
Collapse
|
32
|
Guan J, Bywaters SM, Brendle SA, Ashley RE, Makhov AM, Conway JF, Christensen ND, Hafenstein S. High-Resolution Structure Analysis of Antibody V5 and U4 Conformational Epitopes on Human Papillomavirus 16. Viruses 2017; 9:v9120374. [PMID: 29211035 PMCID: PMC5744149 DOI: 10.3390/v9120374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 01/14/2023] Open
Abstract
Cancers attributable to human papillomavirus (HPV) place a huge burden on the health of both men and women. The current commercial vaccines are genotype specific and provide little therapeutic benefit to patients with existing HPV infections. Identifying the conformational epitopes on the virus capsid supports the development of improved recombinant vaccines to maximize long-term protection against multiple types of HPV. Fragments of antibody (Fab) digested from the neutralizing monoclonal antibodies H16.V5 (V5) and H16.U4 (U4) were bound to HPV16 capsids and the structures of the two virus-Fab complexes were solved to near atomic resolution using cryo-electron microscopy. The structures reveal virus conformational changes, the Fab-binding mode to the capsid, the residues comprising the epitope and indicate a potential interaction of U4 with the minor structural protein, L2. Competition enzyme-linked immunosorbent assay (ELISA) showed V5 outcompetes U4 when added sequentially, demonstrating a steric interference even though the footprints do not overlap. Combined with our previously reported immunological and structural results, we propose that the virus may initiate host entry through an interaction between the icosahedral five-fold vertex of the capsid and receptors on the host cell. The highly detailed epitopes identified for the two antibodies provide a framework for continuing biochemical, genetic and biophysical studies.
Collapse
Affiliation(s)
- Jian Guan
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Stephanie M Bywaters
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Sarah A Brendle
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Robert E Ashley
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260, USA.
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260, USA.
| | - Neil D Christensen
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Susan Hafenstein
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Millennium Science Complex, University Park, State College, PA 16802, USA.
| |
Collapse
|
33
|
Luxembourg A, Moeller E. 9-Valent human papillomavirus vaccine: a review of the clinical development program. Expert Rev Vaccines 2017; 16:1119-1139. [PMID: 28956458 DOI: 10.1080/14760584.2017.1383158] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The 9-valent human papillomavirus (9vHPV) vaccine covers the same HPV types (6/11/16/18) as the quadrivalent HPV (qHPV) vaccine and 5 additional cancer-causing types (31/33/45/52/58). Epidemiological studies indicate that the 9vHPV vaccine could prevent approximately 90% of cervical cancers, 70-85% of high-grade cervical dysplasia (precancers), 85-95% of HPV-related vulvar, vaginal, and anal cancers, and 90% of genital warts. Areas covered: Study design features and key findings from the 9vHPV vaccine clinical development program are reviewed. In particular, 9vHPV vaccine efficacy was established in a Phase III study in young women age 16-26 years. Efficacy results in young women were extrapolated to pre- and young adolescent girls and boys and young men by immunological bridging (i.e., demonstration of non-inferior immunogenicity in these groups versus young women). Expert commentary: The development of the 9vHPV vaccine is the outcome of 20 years of continuous clinical research. Broad vaccination programs could help substantially decrease the incidence of HPV-related disease.
Collapse
|
34
|
Al-Ghobashy MA, Mostafa MM, Abed HS, Fathalla FA, Salem MY. Correlation between Dynamic Light Scattering and Size Exclusion High Performance Liquid Chromatography for Monitoring the Effect of pH on Stability of Biopharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:1-9. [DOI: 10.1016/j.jchromb.2017.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
|
35
|
Bettonville V, Nicol JTJ, Furst T, Thelen N, Piel G, Thiry M, Fillet M, Jacobs N, Servais AC. Quantitation and biospecific identification of virus-like particles of human papillomavirus by capillary electrophoresis. Talanta 2017; 175:325-330. [PMID: 28841998 DOI: 10.1016/j.talanta.2017.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/28/2023]
Abstract
Capillary electrophoresis (CE) for HPV-VLP quantitation is a very interesting alternative technique compared to those currently used in viral analysis, such as SDS-PAGE, Western blot or protein assay that are destructive and semi-quantitative or non specific. In this study, the quantitative performance of the CE method was evaluated. A main issue in virus quantitation is the absence of reference material. Therefore, the concentration of a HPV16-VLP sample produced in the laboratory was determined using ELISA with Gardasil®, after adjuvant dissolution, as reference material and conformational H16.V5 antibody. HPV16-VLP concentration was found to influence particles electrophoretic mobility until a plateau was reached for concentrations ≤ 50µgml-1. As zeta potential is directly proportional to the electrophoretic mobility, it was measured at different HPV-VLP concentrations and the results were in complete accordance with the measured electrophoretic mobilities. The concentration dependence of the electrophoretic mobility could be explained by an overlap of the electrical double layers of adjacent particles. The HPV16-VLP peak identity was demonstrated unequivocally by the study of HPV16-VLP/H16.V5 antibody complex formation using affinity CE. Finally, the CE method was successfully validated following the ICH Q2R1 guidelines. To overcome the sample heterogeneity issue, a well-designed sample preparation was used. Considering sample complexity, validation results were satisfactory with maximum repeatability and intermediate precision RSD of 12.2% and a maximum relative bias of 1.4%.
Collapse
Affiliation(s)
- Virginie Bettonville
- Laboratory for the Analysis of Medicines (LAM), Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium
| | - Jérôme T J Nicol
- Cellular and Molecular Immunology, GIGA-Research University of Liège, Liège, Belgium
| | - Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium
| | - Nicolas Thelen
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium
| | - Nathalie Jacobs
- Cellular and Molecular Immunology, GIGA-Research University of Liège, Liège, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines (LAM), Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium.
| |
Collapse
|
36
|
Small W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, Jhingran A, Kitchener HC, Mileshkin LR, Viswanathan AN, Gaffney DK. Cervical cancer: A global health crisis. Cancer 2017; 123:2404-2412. [PMID: 28464289 DOI: 10.1002/cncr.30667] [Citation(s) in RCA: 735] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/03/2023]
Abstract
Cervical cancer is the fourth most common malignancy diagnosed in women worldwide. Nearly all cases of cervical cancer result from infection with the human papillomavirus, and the prevention of cervical cancer includes screening and vaccination. Primary treatment options for patients with cervical cancer may include surgery or a concurrent chemoradiotherapy regimen consisting of cisplatin-based chemotherapy with external beam radiotherapy and brachytherapy. Cervical cancer causes more than one quarter of a million deaths per year as a result of grossly deficient treatments in many developing countries. This warrants a concerted global effort to counter the shocking loss of life and suffering that largely goes unreported. This article provides a review of the biology, prevention, and treatment of cervical cancer, and discusses the global cervical cancer crisis and efforts to improve the prevention and treatment of the disease in underdeveloped countries. Cancer 2017;123:2404-12. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- William Small
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, Illinois
| | - Monica A Bacon
- Gynecological Cancer InterGroup, Kingston, Ontario, Canada
| | - Amishi Bajaj
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, Illinois
| | - Linus T Chuang
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Matthew M Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, Illinois
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Henry C Kitchener
- Department of Obstetrics and Gynecology, University of Manchester, Manchester, United Kingdom
| | - Linda R Mileshkin
- Division of Hematology and Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Akila N Viswanathan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David K Gaffney
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
37
|
Trausch JJ, Shank-Retzlaff M, Verch T. Development and Characterization of an HPV Type-16 Specific Modified DNA Aptamer for the Improvement of Potency Assays. Anal Chem 2017; 89:3554-3561. [PMID: 28233502 DOI: 10.1021/acs.analchem.6b04852] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Measuring vaccine potency is critical for vaccine release and is often accomplished using antibody-based ELISAs. Antibodies can be associated with significant drawbacks that are often overlooked including lot-to-lot variability, problems with cell-line maintenance, limited stability, high cost, and long discovery lead times. Here, we address many of these issues through the development of an aptamer, known as a slow off-rate modified DNA aptamer (SOMAmer), which targets a vaccine antigen in the human papillomavirus (HPV) vaccine Gardasil. The aptamer, termed HPV-07, was selected to bind the Type 16 virus-like-particle (VLP) formed by the self-assembling capsid protein L1. It is capable of binding with high sensitivity (EC50 of 0.1 to 0.4 μg/mL depending on assay format) while strongly discriminating against other VLP types. The aptamer competes for binding with the neutralizing antibody H16.V5, indicating at least partial recognition of a neutralizing and clinically relevant epitope. This makes it a useful reagent for measuring both potency and stability. When used in an ELISA format, the aptamer displays both high precision (intermediate precision of 6.3%) and a large linear range spanning from 25% to 200% of a typical formulation. To further exploit the advantages of aptamers, a simplified mix and read assay was also developed. This assay format offers significant time and resource reductions compared to a traditional ELISA. These results show aptamers are suitable reagents for biological potency assays, and we expect that their implementation could improve upon current assay formats.
Collapse
Affiliation(s)
- Jeremiah J Trausch
- Department of Vaccine Analytical Development, MRL, Merck & Co., Inc. , West Point, Pennsylvania 19486, United States
| | - Mary Shank-Retzlaff
- Department of Vaccine Analytical Development, MRL, Merck & Co., Inc. , West Point, Pennsylvania 19486, United States
| | - Thorsten Verch
- Department of Vaccine Analytical Development, MRL, Merck & Co., Inc. , West Point, Pennsylvania 19486, United States
| |
Collapse
|
38
|
Jeong H, Seong BL. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J Microbiol 2017; 55:220-230. [PMID: 28243941 PMCID: PMC7090582 DOI: 10.1007/s12275-017-7058-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023]
Abstract
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.
Collapse
Affiliation(s)
- Hotcherl Jeong
- Department of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Baik Lin Seong
- Department of Biotechnology & Vaccine Translational Research Center, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
39
|
Mohsen MO, Gomes AC, Cabral-Miranda G, Krueger CC, Leoratti FM, Stein JV, Bachmann MF. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. J Control Release 2017; 251:92-100. [PMID: 28257987 DOI: 10.1016/j.jconrel.2017.02.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 01/12/2023]
Abstract
DNA rich in unmethylated CG motifs (CpGs) engage Toll-Like Receptor 9 (TLR-9) in endosomes and are well described stimulators of the innate and adaptive immune system. CpGs therefore can efficiently improve vaccines' immunogenicity. Packaging CpGs into nanoparticles, in particular into virus-like particles (VLPs), improves the pharmacological characteristics of CpGs as the protein shell protects them from DNAse activity and delivers the oligomers to the endosomal compartments of professional antigen presenting cells (APCs). The current consensus in packaging and delivering CpGs in VLP-based vaccines is that both adjuvants and antigens should be kept in close proximity (i.e. physically linked) to ensure delivery of antigens and adjuvants to the same APCs. In the current study, we harness the draining properties of the lymphatic system and show that also non-linked VLPs are efficiently co-delivered to the same APCs in lymph nodes. Specifically, we have shown that CpGs can be packaged in one VLP and mixed with another VLP displaying the antigen prior to administration in vivo. Both VLPs efficiently reached the same draining lymph node where they were taken up and processed by the same APCs, namely dendritic cells and macrophages. This resulted in induction of specific CTLs producing cytokines and killing target cells in vivo at levels seen when using VLPs containing both CpGs and chemically conjugated antigen. Thus, delivery of antigens and adjuvants in separate nanoparticles eliminates the need of physical conjugation and thus can be beneficial when designing precision medicine VLP-based vaccines or help to re-formulate existing VLP vaccines not naturally carrying immunostimulatory sequences.
Collapse
Affiliation(s)
- Mona O Mohsen
- University of Oxford, Roosevelt Dr, Oxford OX3 7BN, UK; Qatar Foundation (QRLP), Doha, State of Qatar.
| | | | | | - Caroline C Krueger
- Inselspital, Universitatsklinik RIA, Immunologie, Sahlihaus 1, 3010 Bern, Switzerland
| | - Fabiana Ms Leoratti
- Inselspital, Universitatsklinik RIA, Immunologie, Sahlihaus 1, 3010 Bern, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Martin F Bachmann
- University of Oxford, Roosevelt Dr, Oxford OX3 7BN, UK; Inselspital, Universitatsklinik RIA, Immunologie, Sahlihaus 1, 3010 Bern, Switzerland
| |
Collapse
|
40
|
Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2017; 2:3. [PMID: 29263864 PMCID: PMC5627247 DOI: 10.1038/s41541-017-0006-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Recombinant virus-like particle-based vaccines are composed of viral structural proteins and mimic authentic native viruses but are devoid of viral genetic materials. They are the active components in highly safe and effective vaccines for the prevention of infectious diseases. Several expression systems have been used for virus-like particle production, ranging from Escherichia coli to mammalian cell lines. The prokaryotic expression system, especially Escherichia coli, is the preferred expression host for producing vaccines for global use. Hecolin, the first licensed virus-like particle vaccine derived from Escherichia coli, has been demonstrated to possess good safety and high efficacy. In this review, we focus on Escherichia coli-derived virus-like particle based vaccines and vaccine candidates that are used for prevention (immunization against microbial pathogens) or disease treatment (directed against cancer or non-infectious diseases). The native-like spatial or higher-order structure is essential for the function of virus-like particles. Thus, the tool box for analyzing the key physicochemical, biochemical and functional attributes of purified virus-like particles will also be discussed. In summary, the Escherichia coli expression system has great potentials for producing a range of proteins with self-assembling properties to be used as vaccine antigens given the proper epitopes were preserved when compared to those in the native pathogens or disease-related target molecules.
Collapse
Affiliation(s)
- Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Life Science, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| |
Collapse
|
41
|
Mostafa MM, Al-Ghobashy MA, Fathalla FA, Salem MY. Immunoaffinity extraction using conformation-dependent antibodies coupled to SE-HPLC for the development of stability and potency-indicating assay for quadrivalent human papillomavirus vaccine. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:211-217. [PMID: 27037127 DOI: 10.1016/j.jchromb.2016.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/12/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Quadrivalent human papillomavirus (HPV) vaccine is formulated of four types of non-infectious recombinant virus like particles (VLPs) that are structurally and immunologically similar to the corresponding infectious HPV virus types 6, 11, 16 and 18. With almost identical physical, chemical and structural properties of the four types of VLPs, ELISA remains the only approved in vitro potency testing assay. In this study, an alternative industry-friendly, stability- and potency-indicating assay protocol was developed and validated for the determination of HPV vaccine. Vacuum-driven immunoaffinity extraction (IAE) was employed using type-specific, conformation-dependent antibodies against each type of HPV VLPs. ELISA assay was employed to evaluate the ability of IAE columns to specifically separate each of the four types of VLPs from their quadrivalent mixture. Mean percentage recoveries of 76.76±2.69, 69.12±5.79, 84.86±5.25 and 71.14±4.50% were obtained for VLPs types 6, 11, 16 and 18, respectively with no significant interference in each case. Antigen content was then determined using SE-HPLC over a concentration range of 5.00-20.00μg/mL (r>0.998) for VLPs type 6, 11, 16 and 18, respectively. The SE-HPLC assay was found accurate and precise (RSD<10.00%) with LOD ranging from 1.23-3.85μg/mL. The assay protocol was found superior to conventional ELISA assay with respect to simplicity, total analysis time and cost. Good correlation between the results of analysis obtained using IAE-SE-HPLC and ELISA demonstrated the suitability of the suggested assay protocol for stability and potency assessment with a good potential for implementation for batch release. This approach should be applicable for quality assessment of other vaccine preparations based on VLPs.
Collapse
Affiliation(s)
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, Faculty of Pharmacy, Cairo University, Egypt.
| | - Faten A Fathalla
- National Organization for Research and Control of Biologicals, Egypt
| | - Maissa Y Salem
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
42
|
Li M, Wang X, Cao L, Lin Z, Wei M, Fang M, Li S, Zhang J, Xia N, Zhao Q. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants. Vaccine 2016; 34:4422-8. [PMID: 27426626 DOI: 10.1016/j.vaccine.2016.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 12/16/2022]
Abstract
Human papillomavirus (HPV) 6 is a human pathogen which causes genital warts. Recombinant virus-like particle (VLP) based antigens are the active components in prophylactic vaccines to elicit functional antibodies. The binding and functional characteristics of a panel of 15 murine monoclonal antibodies (mAbs) against HPV6 was quantitatively assessed. Elite conformational indicators, recognizing the conformational epitopes, are also elite viral neutralizers as demonstrated with their viral neutralization efficiency (5 mAbs with neutralization titer below 4ng/mL) in a pseudovirion (PsV)-based system. The functionality of a given mAb is closely related to the nature of the corresponding epitope, rather than the apparent binding affinity to antigen. The epitope-specific antigenicity assays can be used to assess the binding activity of PsV or VLP preparations to neutralizing mAbs. These mAb-based assays can be used for process monitoring and for product release and characterization to confirm the existence of functional epitopes in purified antigen preparations. Due to the particulate nature of the alum adjuvants, the vaccine antigen adsorbed on adjuvants was considered largely as "a black box" due to the difficulty in analysis and visualization. Here, a novel method with fluorescence-based high content imaging for visualization and quantitating the immunoreactivity of adjuvant-adsorbed VLPs with neutralizing mAbs was developed, in which antigen desorption was not needed. The facile and quantitative in situ antigenicity analysis was amendable for automation. The integrity of a given epitope or two non-overlapping epitopes on the recombinant VLPs in their adjuvanted form can be assessed in a quantitative manner for cross-lot or cross-product comparative analysis with minimal manipulation of samples.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Lu Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Zhijie Lin
- Innovax Corporation, Xiamen, Fujian 361000, PR China.
| | - Minxi Wei
- Innovax Corporation, Xiamen, Fujian 361000, PR China.
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
43
|
Chan CP. Forced degradation studies: current trends and future perspectives for protein-based therapeutics. Expert Rev Proteomics 2016; 13:651-8. [DOI: 10.1080/14789450.2016.1200469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Christine P. Chan
- Global Manufacturing Science & Technology, Specialty Care Operations, Sanofi, Framingham, MA, USA
| |
Collapse
|
44
|
Abd-ElSalam HAH, Al-Ghobashy MA, Al-Shorbagy M, Nassar N, Zaazaa HE, Ibrahim MA. Correlation of In Vivo and In Vitro Assay Results for Assessment of Free Radical Scavenging Activity of Green Tea Nutraceuticals. J Food Sci 2016; 81:C1707-15. [PMID: 27275932 DOI: 10.1111/1750-3841.13362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 12/27/2022]
Abstract
Green tea (GT)-derived catechins; epigallocatechin gallate (EGCG) in particular are commonly used nutraceuticals for their free-radical scavenging activity (FRSA). The influence of photodegradation on the protective power of GT nutracenticals against oxidative stress was thoroughly explored. Photodegradation of GT extracts was carried out and monitored using orthogonal stability-indicating testing protocol; in vitro and in vivo assays. Total polyphenol content (TPC) and FRSA were determined spectrophotometrically while EGCG was selectively monitored using SPE-HPLC. In vivo assessment of photodegraded samples was investigated via measuring a number of biomarkers for hepatic oxidative stress and apoptosis (caspase-3, inducible nitric oxide synthase, nitric oxide, mitogen-activated protein kinase, glutathione, thiobarbituric acid reactive substances, nuclear factor kappa beta, and nuclear factor erythroid 2-related factor) as well as liver damage (alanine transaminase and aspartate transaminase) in serum of rats previously subjected to oxidative stress. Results showed complete degradation of EGCG in photodegraded green tea samples with no correlation with either TPC or FRSA. On the other hand, in vivo assay results revealed not only loss of activity but formation of harmful pro-oxidants. Photostability was found crucial for the protective effect of GT extract against lead acetate insult. Results confirmed that careful design of quality control protocols requires correlation of chemical assays to bioassays to verify efficacy, stability, and most importantly safety of nutraceuticals.
Collapse
Affiliation(s)
| | - Medhat A Al-Ghobashy
- Bioanalysis Research Group, Faculty of Pharmacy, Cairo Univ, Egypt.,Analytical Chemistry Dept., Faculty of Pharmacy, Cairo Univ, Egypt
| | | | - Noha Nassar
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Cairo Univ, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Dept., Faculty of Pharmacy, Cairo Univ, Egypt
| | | |
Collapse
|
45
|
Bryan JT, Buckland B, Hammond J, Jansen KU. Prevention of cervical cancer: journey to develop the first human papillomavirus virus-like particle vaccine and the next generation vaccine. Curr Opin Chem Biol 2016; 32:34-47. [DOI: 10.1016/j.cbpa.2016.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
|
46
|
Zhang X, Xin L, Li S, Fang M, Zhang J, Xia N, Zhao Q. Lessons learned from successful human vaccines: Delineating key epitopes by dissecting the capsid proteins. Hum Vaccin Immunother 2016; 11:1277-92. [PMID: 25751641 DOI: 10.1080/21645515.2015.1016675] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recombinant VLP-based vaccines have been successfully used against 3 diseases caused by viral infections: Hepatitis B, cervical cancer and hepatitis E. The VLP approach is attracting increasing attention in vaccine design and development for human and veterinary use. This review summarizes the clinically relevant epitopes on the VLP antigens in successful human vaccines. These virion-like epitopes, which can be delineated with molecular biology, cryo-electron microscopy and x-ray crystallographic methods, are the prerequisites for these efficacious vaccines to elicit functional antibodies. The critical epitopes and key factors influencing these epitopes are discussed for the HEV, HPV and HBV vaccines. A pentamer (for HPV) or a dimer (for HEV and HBV), rather than a monomer, is the basic building block harboring critical epitopes for the assembly of VLP antigen. The processing and formulation of VLP-based vaccines need to be developed to promote the formation and stabilization of these epitopes in the recombinant antigens. Delineating the critical epitopes is essential for antigen design in the early phase of vaccine development and for critical quality attribute analysis in the commercial phase of vaccine manufacturing.
Collapse
Affiliation(s)
- Xiao Zhang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University ; Xiamen , Fujian , PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Vega JF, Vicente-Alique E, Núñez-Ramírez R, Wang Y, Martínez-Salazar J. Evidences of Changes in Surface Electrostatic Charge Distribution during Stabilization of HPV16 Virus-Like Particles. PLoS One 2016; 11:e0149009. [PMID: 26885635 PMCID: PMC4757414 DOI: 10.1371/journal.pone.0149009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development.
Collapse
Affiliation(s)
- Juan F. Vega
- Biophym, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
- * E-mail:
| | - Ernesto Vicente-Alique
- Biophym, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| | - Rafael Núñez-Ramírez
- Biophym, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| | - Yang Wang
- Sino Biological, Inc., Beijing, People’s Republic of China
| | - Javier Martínez-Salazar
- Biophym, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| |
Collapse
|
48
|
Li SW, Zhao Q, Wu T, Chen S, Zhang J, Xia NS. The development of a recombinant hepatitis E vaccine HEV 239. Hum Vaccin Immunother 2016; 11:908-14. [PMID: 25714510 DOI: 10.1080/21645515.2015.1008870] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) infection is one of the main causes of acute hepatitis worldwide. A recombinant hepatitis E vaccine, HEV 239, has been licensed in China for immunizing adults of 16 y old and above. The vaccine antigen contains pORF2 aa 368 - 606 of the HEV genotype 1 expressed in E. coli. The quality of the vaccine is controlled through a combination of biophysical, biochemical and immunochemical methods. The vaccine is well tolerated in adults. The efficacy of the HEV 239 vaccine against symptomatic and asymptomatic infection had been proven to be high during a Phase III clinical trial and long-term follow up. The safety and efficacy of HEV 239 vaccine in certain high-risk populations remains to be further investigated.
Collapse
Affiliation(s)
- Shao-Wei Li
- a National Institute of Diagnostics and Vaccine Development in Infectious Diseases ; Xiamen University ; Xiamen , PR China
| | | | | | | | | | | |
Collapse
|
49
|
Fang M, Diao W, Dong B, Wei H, Liu J, Hua L, Zhang M, Guo S, Xiao Y, Yu Y, Wang L, Wan M. Detection of the Assembly and Disassembly of PCV2b Virus-Like Particles Using Fluorescence Spectroscopy Analysis. Intervirology 2016; 58:318-23. [PMID: 26783743 DOI: 10.1159/000442751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/20/2015] [Indexed: 11/19/2022] Open
Abstract
Monitoring the assembly and disassembly of virus-like particles (VLPs) is important in developing effective VLP-based vaccines. We tried to establish a simple and rapid method to evaluate the status of VLP assembly using fluorescence spectroscopic analysis (FSA) while developing a VLP-based vaccine against porcine circovirus type 2b (PCV2b). We synthesized the gene coding for PCV2b capsid protein (CP). The CP was expressed in Escherichia coli in a soluble form, dialyzed into three different buffers, and assembled into VLPs. The immunogenicity of the VLPs was evaluated by an enzyme-linked immunosorbent assay using the sera of mice immunized with inactivated PCV2b. The VLP assembly was detected using transmission electron microscopy and FSA. The assembled VLPs showed a distinct FSA curve with a peak at 320 nm. We found that the assembly status was related to the immunogenicity, fluorescence intensity, and morphology of the VLP. The FSA assay was able to monitor the various denatured statuses of PCV2b VLPs treated with β-mercaptoethanol or β-mercaptoethanol plus urea. We have demonstrated that FSA can be used to detect the assembly of PCV2b VLPs produced in E. coli. This provides a simple solution for monitoring VLP assembly during the production of VLP-based vaccines.
Collapse
Affiliation(s)
- Mingli Fang
- Departments of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xia L, Xian Y, Wang D, Chen Y, Huang X, Bi X, Yu H, Fu Z, Liu X, Li S, An Z, Luo W, Zhao Q, Xia N. A human monoclonal antibody against HPV16 recognizes an immunodominant and neutralizing epitope partially overlapping with that of H16.V5. Sci Rep 2016; 6:19042. [PMID: 26750243 PMCID: PMC4707464 DOI: 10.1038/srep19042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen, indicating that the epitopes are critical for viral cell attachment/entry. Hybrid VLP binding with surface loop swapping between types indicated the essential roles of the DE and FG loops for both 26D1 (DEa in particular) and H16.V5 binding. Specifically, Tyr(135) and Val(141) on the DEa loop were shown to be critical residues for 26D1 binding via site-directed mutagenesis. Partially overlap between the epitopes between 26D1 and H16.V5 was shown using pairwise epitope mapping, and their binding difference is demonstrated to be predominantly in DE loop region. In addition, 26D1 epitope is immunodominant epitope recognized by both antibodies elicited by the authentic virus from infected individuals and polyclonal antibodies from vaccinees. Overall, a partially overlapping but distinct neutralizing epitope from that of H16.V5 was identified using a human N-mAb, shedding lights to the antibody arrays as part of human immune response to vaccination and infection.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Yangfei Xian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Yuanzhi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xingjian Bi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Zheng Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xinlin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
- Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston TX77030, USA
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| |
Collapse
|