1
|
Siripattanakulkajorn C, Sombutsuwan P, Villeneuve P, Baréa B, Domingo R, Lebrun M, Aryusuk K, Durand E. Physical properties and oxidative stability of mayonnaises fortified with natural deep eutectic solvent, either alone or enriched with pigmented rice bran. Food Chem 2025; 463:141124. [PMID: 39243623 DOI: 10.1016/j.foodchem.2024.141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
This article explores the novel use of natural deep eutectic solvents (NaDES) in real food by incorporating them into mayonnaise, either alone or with pigmented rice bran (RB). Results showed that NaDES-fortified mayonnaises could prevent lipid oxidation. Notably, mayonnaises with NaDES2 (betaine:sucrose:water) significantly reduced the production of lipid hydroperoxides, which was maintained to an average of 2.6 mmol LOOH/kg oil, which is 2.9 times lower than the control (7.5 mmol LOOH/kg oil), or 7.4 times lower than mayonnaise with citric acid (19.1 mmol LOOH/kg oil). NaDES2-fortified mayonnaises maintained high tocopherols levels (0.97 g/Kg oil) and reduced volatile compounds from secondary lipid oxidation. This effect may result from NaDES altering the aqueous phase properties of mayonnaise, notably by reducing water activity by ∼0.1. Finally, pre-enrichment of the NaDES phase with bioactive molecules (e.g. from pigmented RB) represents an innovative perspective to promote the health benefits of formulated foods.
Collapse
Affiliation(s)
- Chatchai Siripattanakulkajorn
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Piraporn Sombutsuwan
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Pierre Villeneuve
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Bruno Baréa
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Romain Domingo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Marc Lebrun
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Kornkanok Aryusuk
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand; Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand.
| | - Erwann Durand
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France.
| |
Collapse
|
2
|
Latib F, Zafendi MAI, Mohd Lazaldin MA. The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100224. [PMID: 39415777 PMCID: PMC11481750 DOI: 10.1016/j.fochms.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E's role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.
Collapse
Affiliation(s)
- Fazira Latib
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | | |
Collapse
|
3
|
Liang G, Kow ASF, Lee YZ, Yusof R, Tham CL, Ho YC, Lee MT. Ameliorative effect of α-tocopherol and tocotrienol-rich palm oil extract on menopause-associated mood disorder in ovariectomized mice. Biochem Biophys Res Commun 2024; 734:150443. [PMID: 39088981 DOI: 10.1016/j.bbrc.2024.150443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Menopause-associated mood disorder is characterized by emotional depression, anxiety, and stress, which accompany hypogonadism in women in the menopausal phase. The current treatment for menopause-associated mood disorder provides only symptomatic relief and is associated with many side effects. Supplementation with vitamin E has been shown to be effective in ameliorating anxiety and depression. However, the effects of vitamin E and its underlying mechanism in ameliorating menopause-associated mood disorders remain uncertain. This work evaluated the effects of α-tocopherol and tocotrienol-rich palm oil extract on depressive and anxiety-related phenotypes induced by estrogen deficiency through ovariectomy in mice. Our study revealed that ovariectomized mice exhibited alterations in behavior indicative of depressive- and anxiety-like behaviors. The serum corticosterone level, a glucocorticoid hormone associated with stress, was found to be elevated in ovariectomized mice as compared to the sham group. Oral administration of α-tocopherol (50 and 100 mg/kg) and tocotrienol-rich palm oil extract (100 and 200 mg/kg) for 14 days alleviated these behavioral changes, as observed in open field, social interaction, and tail suspension tests. However, treatment with tocotrienol-rich palm oil extract, but not α-tocopherol, modulated the depressive- and anxiety-like responses in ovariectomized mice subjected to chronic restraint stress. Both treatments suppressed the elevated serum corticosterone level. Our findings suggested that α-tocopherol and tocotrienol-rich palm oil extract alleviated menopause-associated mood disorder, at least in part, by modulating the hypothalamic-pituitary-adrenal (HPA) axis. The findings of this study can provide a new foundation for the treatment of menopause-associated depressive- and anxiety-like phenotypes, for the betterment of psychological wellbeing.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | | | - Yu-Zhao Lee
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, 56000, Malaysia; Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia; Office of Postgraduate Studies, UCSI University, Kuala Lumpur, 56000, Malaysia; UCSI Wellbeing Research Centre, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
4
|
Chi H, Wen S, Wen T, Er L, Lei R, Dai C, Bian G, Shen K, Liu T. Geranylgeraniol: Bio-based platform for teprenone, menaquinone-4, and α-tocotrienol synthesis. BIORESOURCE TECHNOLOGY 2024; 411:131349. [PMID: 39182791 DOI: 10.1016/j.biortech.2024.131349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
By utilizing the conformational selectivity of biosynthesis and the flexibility of chemical synthesis, researchers have formulated metabolic engineering-based semi-synthetic approaches that initiate with the final product's structure and identify key biosynthesis intermediates. Nonetheless, these tailored semi-synthetic routes focused on end-products, neglecting the possibility of biobased intermediates as a platform for derivatization. To address this challenge, this studyproposed a novel strategy resembling chemosynthesis-style divergent exploration to amplify the significance of biobased intermediates, in the case of geranylgeraniol (GGOH). Using the novel bifunctional terpene synthase PTTC066 and systematic metabolic engineering modifications, the engineered yeast straindemonstrated high GGOH production levels (3.32 g/L, 0.039 g/L/h). This platformenabled the semi-synthesis of various pharmaceuticals, including the anti-ulcer drug teprenone, the osteoporosis treatment drug menaquinone-4, and introduced a novel route for synthesizingα-tocotrienol. This study offers a fresh outlook on semi-synthetic approaches, opening avenues for improvements, substitutions, and innovations in industrial production processes.
Collapse
Affiliation(s)
- Haoming Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shun Wen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Tian Wen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Liying Er
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ru Lei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Chong Dai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; Wuhan Hesheng Technology Co., Ltd, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Zhu H, Wang FL, Zhang S, Xue L, Gao GQ, Dong HW, Wang Q, Sun WG, Liu JR. γ-Tocotrienol enhances autophagy of gastric cancer cells by the regulation of GSK3β/β-Catenin pathway. Mol Carcinog 2024; 63:2013-2025. [PMID: 38980215 DOI: 10.1002/mc.23790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
γ-Tocotrienol (γ-T3) is a major subtype of vitamin E, mainly extracted from palm trees, barley, walnuts, and other plants. γ-T3 has effects on anti-inflammation, anti-oxidation, and potential chemoprevention against malignancies. It is still uncompleted to understand the effect of γ-T3 on the inhibitory mechanism of cancer. This study aimed to investigate whether γ-T3 enhanced autophagy in gastric cancer and the underlying molecular mechanism. The results showed that γ-T3 (0-90 μmol/L) inhibited the proliferation of gastric cancer MKN45 cells and AGS cells, and arrested the cell cycle at the G0/G1 phase in a dose-dependent manner. Autophagy was increased in MKN45 cells treated with γ-T3 (0-45 μmol/L), especially at a dose of 30 μmol/L for 24 h. These effects were reversed by 3-methyladenine pretreatment. Furthermore, γ-T3 (30 μmol/L) also significantly downregulated the expression of pGSK-3β (ser9) and β-catenin protein in MKN45 cells, and γ-T3 (20 mg/kg b.w.) effectively decreased the growth of MKN45 cell xenografts in BABL/c mice. GSK-3β inhibitor-CHIR-99021 reversed the negative regulation of GSK-3β/β-Catenin signaling and autophagy. Our findings indicated that γ-T3 enhances autophagy in gastric cancer cells mediated by GSK-3β/β-Catenin signaling, which provides new insights into the role of γ-T3 enhancing autophagy in gastric cancer.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fa-Lin Wang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Zhang
- Department of Endoncrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Xue
- Department of Cardiovascular Ultrasound, Harbin, China
| | - Guang-Qiang Gao
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Wei Dong
- College of Public Health, Harbin Medical University, Harbin, China
| | - Qi Wang
- College of Public Health, Harbin Medical University, Harbin, China
| | - Wen-Guang Sun
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Ren Liu
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Khalid AQ, Zaidan TN, Bhuvanendran S, Magalingam KB, Mohamedahmed SM, Ramdas P, Radhakrishnan AK. Insights into the Anticancer Mechanisms Modulated by Gamma and Delta Tocotrienols in Colorectal Cancers. Nutr Rev 2024:nuae108. [PMID: 39181121 DOI: 10.1093/nutrit/nuae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.
Collapse
Affiliation(s)
- Ali Qusay Khalid
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Tabarek Najeeb Zaidan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Kasthuri B Magalingam
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Shaza M Mohamedahmed
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Ammu K Radhakrishnan
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
7
|
Abdullah G, Akpan A, Phelan MM, Wright HL. New insights into healthy ageing, inflammageing and frailty using metabolomics. FRONTIERS IN AGING 2024; 5:1426436. [PMID: 39044748 PMCID: PMC11263002 DOI: 10.3389/fragi.2024.1426436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Human ageing is a normal process and does not necessarily result in the development of frailty. A mix of genetic, environmental, dietary, and lifestyle factors can have an impact on ageing, and whether an individual develops frailty. Frailty is defined as the loss of physiological reserve both at the physical and cellular levels, where systemic processes such as oxidative stress and inflammation contribute to physical decline. The newest "omics" technology and systems biology discipline, metabolomics, enables thorough characterisation of small-molecule metabolites in biological systems at a particular time and condition. In a biological system, metabolites-cellular intermediate products of metabolic reactions-reflect the system's final response to genomic, transcriptomic, proteomic, epigenetic, or environmental alterations. As a relatively newer technique to characterise metabolites and biomarkers in ageing and illness, metabolomics has gained popularity and has a wide range of applications. We will give a comprehensive summary of what is currently known about metabolomics in studies of ageing, with a focus on biomarkers for frailty. Metabolites related to amino acids, lipids, carbohydrates, and redox metabolism may function as biomarkers of ageing and/or frailty development, based on data obtained from human studies. However, there is a complexity that underpins biological ageing, due to both genetic and environmental factors that play a role in orchestrating the ageing process. Therefore, there is a critical need to identify pathways that contribute to functional decline in people with frailty.
Collapse
Affiliation(s)
- Genna Abdullah
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Asangaedem Akpan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Division of Internal Medicine, University of Western Australia, Bunbury, WA, Australia
- Faculty of Health Sciences, Curtis University, Bunbury, WA, Australia
- Department of Geriatric Medicine, Bunbury Regional Hospital, Bunbury, WA, Australia
| | - Marie M. Phelan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- High Field NMR Facility, Liverpool Shared Research Facilities University of Liverpool, Liverpool, United Kingdom
| | - Helen L. Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Shen CL, Wankhade UD, Shankar K, Najjar RS, Feresin RG, Elmassry MM, Dufour JM, Kaur G, Chintapalli SV, Piccolo BD, Dunn DM, Cao JJ. Effects of Statin and Annatto-extracted Tocotrienol Supplementation on Glucose Homeostasis, Bone Microstructure, and Gut Microbiota Composition in Obese Mice. In Vivo 2024; 38:1557-1570. [PMID: 38936927 PMCID: PMC11215603 DOI: 10.21873/invivo.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM This study examined the effects of tocotrienols (TT) in conjunction with statin on glucose homeostasis, bone microstructure, gut microbiome, and systemic and liver inflammatory markers in obese C57BL/6J mice. MATERIALS AND METHODS Forty male C57BL/6J mice were fed a high-fat diet (HFD) and assigned into four groups in a 2 (no statin vs. 120 mg statin/kg diet)×2 (no TT vs. 400 mg TT/kg diet) factorial design for 14 weeks. RESULTS Statin and TT improved glucose tolerance only when each was given alone, and only statin supplementation decreased insulin resistance. Consistently, only statin supplementation decreased serum insulin levels and HOMA-IR. Pancreatic insulin was also increased with statin treatment. Statin and TT, alone or in combination, reduced the levels of serum IL-6, but only TT attenuated the increased serum leptin levels induced by a HFD. Statin supplementation increased bone area/total area and connectivity density at LV-4, while TT supplementation increased bone area/total area and trabecular number, but decreased trabecular separation at the distal femur. Statin supplementation, but not TT, reduced hepatic inflammatory cytokine gene expression. Neither TT supplementation nor statin supplementation statistically altered microbiome species evenness or richness. However, they altered the relative abundance of certain microbiome species. Most notably, both TT and statin supplementation increased the relative abundance of Lachnospiraceae UCG-006. CONCLUSION TT and statin collectively benefit bone microstructure, glucose homeostasis, and microbial ecology in obese mice. Such changes may be, in part, associated with suppression of inflammation in the host.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A.;
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Obesity Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - Kartik Shankar
- Department of Pediatrics, University of Colorado School of Medicine, Section of Nutrition, Aurora, CO, U.S.A
| | - Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA, U.S.A
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA, U.S.A
| | - Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ, U.S.A
| | - Jannette M Dufour
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Obesity Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Gurvinder Kaur
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Jay J Cao
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, U.S.A
| |
Collapse
|
9
|
Ferreira J, Tkacz K, Turkiewicz IP, Santos I, Camoesas e Silva M, Lima A, Sousa I. Exploring the Bioactive Properties and Therapeutic Benefits of Pear Pomace. Antioxidants (Basel) 2024; 13:784. [PMID: 39061853 PMCID: PMC11273397 DOI: 10.3390/antiox13070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The fruit juice industry generates a significant amount of waste, with a strong impact on the environment and the economy. Therefore, researchers have been focusing on the characterization of resources considered as food waste. This work provides information about the lipophilic and polar metabolites of pear pomace flours (PPFs) as a tool that can shed more light on the bioactive potential of this residue. Using UPLC-PDA, UPLC-FLR, and GC-MS, the study identified and quantified PPF's polar and non-polar metabolites. Essential, conditional, and non-essential amino acids were found, with asparagine being the most abundant. Isoprenoids, including lutein, zeaxanthin, and carotene isomers, ranged from 10.8 to 22.9 mg/100 g dw. Total flavonoids and phenolic compounds were 520.5-636.4 mg/100 g dw and 536.9-660.1 mg/100 g dw, respectively. Tocotrienols and tocopherols were identified, with concentrations of 173.1-347.0 mg/100 g dw and 468.7-913.4 mg/100 g dw. Fatty acids were the major non-polar compounds. All fractions significantly reduced matrix metalloproteinase-9 (MMP-9) activity. Although PPF had lower antioxidant potential (3-6 mmol Trolox/100 g dw), it inhibited AChE and BuChE by 23-30% compared to physostigmine salicylate. These findings suggest that pear pomace waste can be repurposed into functional products with valuable bioactive properties by re-introducing it in the food chain.
Collapse
Affiliation(s)
- Joana Ferreira
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland; (K.T.); (I.P.T.)
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland; (K.T.); (I.P.T.)
| | - Isabel Santos
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisboa, Portugal; (I.S.); (A.L.)
| | - Mariana Camoesas e Silva
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisboa, Portugal;
| | - Ana Lima
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisboa, Portugal; (I.S.); (A.L.)
| | - Isabel Sousa
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| |
Collapse
|
10
|
Qi X, Guo J, Li Y, Fang C, Lin J, Chen X, Jia J. Vitamin E intake is inversely associated with NAFLD measured by liver ultrasound transient elastography. Sci Rep 2024; 14:2592. [PMID: 38296998 PMCID: PMC10831069 DOI: 10.1038/s41598-024-52482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases, whose severe form is associated with oxidative stress. Vitamin E as an antioxidant has a protective potential in NAFLD. Whether dietary intake of vitamin E, supplementary vitamin E use, and total vitamin E have a preventive effect on NAFLD requires investigation. A cross-sectional study used data from the National Health and Nutrition Examination Survey (2017-2020) was conducted. Vitamin E intake, including dietary vitamin E, supplementary vitamin E use, and total vitamin E, was obtained from the average of two 24-h dietary recall interviews. The extent of hepatic steatosis was measured by liver ultrasound transient elastography and presented as controlled attenuated parameter (CAP) scores. Participants were diagnosed with NAFLD based on CAP threshold values of 288 dB/m and 263 dB/m. The statistical software R and survey-weighted statistical models were used to examine the association between vitamin E intake and hepatic steatosis and NAFLD. Overall, 6122 participants were included for NAFLD analysis. After adjusting for age, gender, race, poverty level index, alcohol consumption, smoking status, vigorous recreational activity, body mass index, abdominal circumference, hyperlipidemia, hypertension, diabetes, and supplementary vitamin E use, dietary vitamin E was inversely associated with NAFLD. The corresponding odds ratios (OR) and 95% confidence intervals (CI) of NAFLD for dietary vitamin E intake as continuous and the highest quartile were 0.9592 (0.9340-0.9851, P = 0.0039) and 0.5983 (0.4136-0.8654, P = 0.0091) (Ptrend = 0.0056). Supplementary vitamin E was significantly inversely associated with NAFLD (fully adjusted model: OR = 0.6565 95% CI 0.4569-0.9432, P = 0.0249). A marginal improvement in total vitamin E for NAFLD was identified. The ORs (95% CIs, P) for the total vitamin E intake as continuous and the highest quartile in the fully adjusted model were 0.9669 (0.9471-0.9871, P = 0.0029) and 0.6743 (0.4515-1.0071, P = 0.0538). Sensitivity analysis indicated these findings were robust. The protective effects of vitamin E significantly differed in the stratum of hyperlipidemia (Pinteraction < 0.05). However, no statistically significant results were identified when the threshold value was set as 263 dB/m. Vitamin E intake, encompassing both dietary and supplemental forms, as well as total vitamin E intake, demonstrated a protective association with NAFLD. Augmenting dietary intake of vitamin E proves advantageous in the prevention of NAFLD, particularly among individuals devoid of hyperlipidemia.
Collapse
Affiliation(s)
- Xiangjun Qi
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiayun Guo
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanlong Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Caishan Fang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Jietao Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.12, Ji Chang Road, Baiyun District, Guangzhou, 510405, China
| | - Xueqing Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.12, Ji Chang Road, Baiyun District, Guangzhou, 510405, China
| | - Jie Jia
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.12, Ji Chang Road, Baiyun District, Guangzhou, 510405, China.
| |
Collapse
|
11
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
12
|
Aiges M, Ramana KV. Significance of Vitamin Supplementation in Reducing the Severity of COVID-19. Mini Rev Med Chem 2024; 24:254-264. [PMID: 36967461 DOI: 10.2174/1389557523666230324081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Coronavirus disease-19 (COVID-19), a serious pandemic due to the SARS-CoV-2 virus infection, caused significant lockdowns, healthcare shortages, and deaths worldwide. The infection leads to an uncontrolled systemic inflammatory response causing severe respiratory distress and multiple-organ failure. Quick development of several vaccines efficiently controlled the spread of COVID-19. However, the rise of various new subvariants of COVID-19 demonstrated some concerns over the efficacy of existing vaccines. Currently, better vaccines to control these variants are still under development as several new subvariants of COVID-19, such as omicron BA-4, BA-5, and BF-7 are still impacting the world. Few antiviral treatments have been shown to control COVID-19 symptoms. Further, control of COVID-19 symptoms has been explored with many natural and synthetic adjuvant compounds in hopes of treating the deadly and contagious disease. Vitamins have been shown to modulate the immune system, function as antioxidants, and reduce the inflammatory response. Recent studies have investigated the potential role of vitamins, specifically vitamins A, B, C, D, and E, in reducing the immune and inflammatory responses and severity of the complication. In this brief article, we discussed our current understanding of the role of vitamins in controlling COVID-19 symptoms and their potential use as adjuvant therapy.
Collapse
Affiliation(s)
- Myia Aiges
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| | - Kota V Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| |
Collapse
|
13
|
Younes M, Loubnane G, Sleiman C, Rizk S. Tocotrienol isoforms: The molecular mechanisms underlying their effects in cancer therapy and their implementation in clinical trials. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:1-11. [PMID: 38336507 DOI: 10.1016/j.joim.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 07/19/2023] [Indexed: 02/12/2024]
Abstract
Tocotrienols are found in a variety of natural sources, like rice bran, annatto seeds and palm oil, and have been shown to have several health-promoting properties, particularly against chronic diseases such as cancer. The incidence of cancer is rapidly increasing around the world, not only a result of continued aging and population growth, but also due to the adoption of aspects of the Western lifestyle, such as high-fat diets and low-physical activity. The literature provides strong evidence that tocotrienols are able to inhibit the growth of various cancers, including breast, lung, ovarian, prostate, liver, brain, colon, myeloma and pancreatic cancers. These findings, along with the reported safety profile of tocotrienols in healthy human volunteers, encourage further research into these compounds' potential use in cancer prevention and treatment. The current review provided detailed information about the molecular mechanisms of action of different tocotrienol isoforms in various cancer models and evaluated the potential therapeutic effects of different vitamin E analogues on important cancer hallmarks, such as cellular proliferation, apoptosis, angiogenesis and metastasis. MEDLINE/PubMed and Scopus databases were used to identify recently published articles that investigated the anticancer effects of vitamin E derivatives in various types of cancer in vitro and in vivo along with clinical evidence of adjuvant chemopreventive benefits. Following an overview of pre-clinical studies, we describe several completed and ongoing clinical trials that are paving the way for the successful implementation of tocotrienols in cancer chemotherapy.
Collapse
Affiliation(s)
- Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Ghady Loubnane
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Christopher Sleiman
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
14
|
Saud Gany SL, Chin KY, Tan JK, Aminuddin A, Makpol S. Preventative and therapeutic potential of tocotrienols on musculoskeletal diseases in ageing. Front Pharmacol 2023; 14:1290721. [PMID: 38146461 PMCID: PMC10749321 DOI: 10.3389/fphar.2023.1290721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Musculoskeletal health is paramount in an ageing population susceptible to conditions such as osteoporosis, arthritis and fractures. Age-related changes in bone, muscle, and joint function result in declining musculoskeletal health, reduced mobility, increased risk of falls, and persistent discomfort. Preserving musculoskeletal wellbeing is essential for maintaining independence and enhancing the overall quality of life for the elderly. The global burden of musculoskeletal disorders is significant, impacting 1.71 billion individuals worldwide, with age-related muscle atrophy being a well-established phenomenon. Tocotrienols, a unique type of vitamin E found in various sources, demonstrate exceptional antioxidant capabilities compared to tocopherols. This characteristic positions them as promising candidates for addressing musculoskeletal challenges, particularly in mitigating inflammation and oxidative stress underlying musculoskeletal disorders. This review paper comprehensively examines existing research into the preventive and therapeutic potential of tocotrienols in addressing age-related musculoskeletal issues. It sheds light on the promising role of tocotrienols in enhancing musculoskeletal health and overall wellbeing, emphasizing their significance within the broader context of age-related health concerns.
Collapse
Affiliation(s)
- Siti Liyana Saud Gany
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Shrum SA, Nukala U, Shrimali S, Pineda EN, Krager KJ, Thakkar S, Jones DE, Pathak R, Breen PJ, Aykin-Burns N, Compadre CM. Tocotrienols Provide Radioprotection to Multiple Organ Systems through Complementary Mechanisms of Antioxidant and Signaling Effects. Antioxidants (Basel) 2023; 12:1987. [PMID: 38001840 PMCID: PMC10668991 DOI: 10.3390/antiox12111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Tocotrienols have powerful radioprotective properties in multiple organ systems and are promising candidates for development as clinically effective radiation countermeasures. To facilitate their development as clinical radiation countermeasures, it is crucial to understand the mechanisms behind their powerful multi-organ radioprotective properties. In this context, their antioxidant effects are recognized for directly preventing oxidative damage to cellular biomolecules from ionizing radiation. However, there is a growing body of evidence indicating that the radioprotective mechanism of action for tocotrienols extends beyond their antioxidant properties. This raises a new pharmacological paradigm that tocotrienols are uniquely efficacious radioprotectors due to a synergistic combination of antioxidant and other signaling effects. In this review, we have covered the wide range of multi-organ radioprotective effects observed for tocotrienols and the mechanisms underlying it. These radioprotective effects for tocotrienols can be characterized as (1) direct cytoprotective effects, characteristic of the classic antioxidant properties, and (2) other effects that modulate a wide array of critical signaling factors involved in radiation injury.
Collapse
Affiliation(s)
- Stephen A. Shrum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| | - Ujwani Nukala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Shivangi Shrimali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Edith Nathalie Pineda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Shraddha Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Darin E. Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Philip J. Breen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| |
Collapse
|
16
|
Gao Z, Zhu Y, Jin J, Jin Q, Wang X. Chemical-Physical Properties of Red Palm Oils and Their Application in the Manufacture of Aerated Emulsions with Improved Whipping Capabilities. Foods 2023; 12:3933. [PMID: 37959052 PMCID: PMC10648229 DOI: 10.3390/foods12213933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Red palm oil (RPO), which is rich in micronutrients, especially carotenoids, is different from its deodorized counterpart, palm oil. It is considered as one of the most promising food ingredients, owing to its unique compositions and nutritional values, while its usage could be further developed by improving its thermal behaviors. In this article, two typical commercial RPOs, HRPO (H. red palm oil) and NRPO (N. red palm oil), were evaluated by analyzing their fatty acids, triacylglycerols, micronutrients, oxidative stability index (OSI), and solid fat contents (SFCs). Micronutrients, mainly carotenes, tocopherols, polyphenols, and squalene, significantly increased the oxidative stability indices (OSIs) of the RPOs (from 10.02 to 12.06 h), while the OSIs of their micronutrient-free counterparts were only 1.12 to 1.82 h. HRPO exhibited a lower SFC than those of NRPO. RPOs softened at around 10 °C and completely melted near 20 °C. Although the softening problem may limit the usages of RPOs, that problem could be solved by incorporating RPOs with mango kernel fat (MKF). The binary blends containing 40% RPOs and 60% MKF exhibited desirable compatibilities, making that blend suitable for the manufacture of aerated emulsions with improved whipping performance and foam stabilities. The results provide a new application of RPOs and MKF in the manufacture of aerated emulsions with improved nutritional values and desired whipping capabilities.
Collapse
Affiliation(s)
| | | | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.G.); (Y.Z.); (Q.J.); (X.W.)
| | | | | |
Collapse
|
17
|
Gothandapani D, Makpol S. Effects of Vitamin E on the Gut Microbiome in Ageing and Its Relationship with Age-Related Diseases: A Review of the Current Literature. Int J Mol Sci 2023; 24:14667. [PMID: 37834115 PMCID: PMC10572321 DOI: 10.3390/ijms241914667] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Ageing is inevitable in all living organisms and is associated with physical deterioration, disease and eventually death. Dysbiosis, which is the alteration of the gut microbiome, occurs in individuals during ageing, and plenty of studies support that gut dysbiosis is responsible for the progression of different types of age-related diseases. The economic burden of age-linked health issues increases as ageing populations increase. Hence, an improvement in disease prevention or therapeutic approaches is urgently required. In recent years, vitamin E has garnered significant attention as a promising therapeutic approach for delaying the ageing process and potentially impeding the development of age-related disease. Nevertheless, more research is still required to understand how vitamin E affects the gut microbiome and how it relates to age-related diseases. Therefore, we gathered and summarized recent papers in this review that addressed the impact of the gut microbiome on age-related disease, the effect of vitamin E on age-related disease along with the role of vitamin E on the gut microbiome and the relationship with age-related diseases which are caused by ageing. Based on the studies reported, different bacteria brought on various age-related diseases with either increased or decreased relative abundances. Some studies have also reported the positive effects of vitamin E on the gut microbiome as beneficial bacteria and metabolites increase with vitamin E supplementation. This demonstrates how vitamin E is vital as it affects the gut microbiome positively to delay ageing and the progression of age-related diseases. The findings discussed in this review will provide a simplified yet deeper understanding for researchers studying ageing, the gut microbiome and age-related diseases, allowing them to develop new preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
18
|
Cheng Y, Xiang N, Chen H, Zhao Y, Wang L, Cheng X, Guo X. The modulation of light quality on carotenoid and tocochromanol biosynthesis in mung bean ( Vigna radiata) sprouts. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100170. [PMID: 36950347 PMCID: PMC10025981 DOI: 10.1016/j.fochms.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
This study aimed to identify the regulatory mechanisms of white, blue, red lights on carotenoid and tocochromanol biosynthesis in mung bean sprouts. Results showed that three lights stimulated the increase of the predominated lutein (3.2-8.1 folds) and violaxanthin (2.1-6.1 folds) in sprouts as compared with dark control, as well as β-carotene (20-36 folds), with the best yield observed under white light. Light signals also promoted α- and γ-tocopherol accumulation (up to 1.8 folds) as compared with dark control. The CRTISO, LUT5 and DXS (1.24-6.34 folds) exhibited high expression levels under light quality conditions, resulting in an overaccumulation of carotenoids. The MPBQ-MT, TC and TMT were decisive genes in tocochromanol biosynthesis, and were expressed up to 4.19 folds as compared with control. Overall, the results could provide novel insights into light-mediated regulation and fortification of carotenoids and tocopherols, as well as guide future agricultural cultivation of mung bean sprouts.
Collapse
Key Words
- BL, blue light
- Biofortification
- Biosynthesis
- CK, dark control
- Carotenoids
- HPLC, high performance liquid chromatography
- LEDs, light-emitting diodes
- LHCII, light-harvesting complex of PSII
- LQ, light quality
- Light quality
- MEP, methylerythritol phosphate
- Mung bean
- NASH, nonalcoholic steatohepatitis
- PS, photosynthesis
- PSII, photosystem II
- PSs, photosystems
- RL, red light
- Tocopherols
- VAD, vitamin A deficiency
- WL, white light
Collapse
Affiliation(s)
- Yaoyao Cheng
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Nan Xiang
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Honglin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihan Zhao
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuzhen Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding authors.
| | - Xinbo Guo
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Corresponding authors.
| |
Collapse
|
19
|
Kiamiloglou D, Girousi S. Different Aspects of the Voltammetric Detection of Vitamins: A Review. BIOSENSORS 2023; 13:651. [PMID: 37367016 PMCID: PMC10296722 DOI: 10.3390/bios13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Vitamins comprise a group of organic chemical compounds that contribute significantly to the normal functioning of living organisms. Although they are biosynthesized in living organisms, some are also obtained from the diet to meet the needs of organisms, which is why they are characterized as essential chemical compounds. The lack, or low concentrations, of vitamins in the human body causes the development of metabolic dysfunctions, and for this reason their daily intake with food or as supplements, as well as the control of their levels, are necessary. The determination of vitamins is mainly accomplished by using analytical methods, such as chromatographic, spectroscopic, and spectrometric methods, while studies are carried out to develop new and faster methodologies and techniques for their analysis such as electroanalytical methods, the most common of which are voltammetry methods. In this work, a study is reported that was carried out on the determination of vitamins using both electroanalytical techniques, the common significant of which is the voltammetry technique that has been developed in recent years. Specifically, the present review presents a detailed bibliographic survey including, but not limited to, both electrode surfaces that have been modified with nanomaterials and serve as (bio)sensors as well as electrochemical detectors applied in the determination of vitamins.
Collapse
Affiliation(s)
| | - Stella Girousi
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
20
|
Loh WQ, Yin X, Kishida R, Chia SE, Ong CN, Seow WJ. Association between Vitamin A and E Forms and Prostate Cancer Risk in the Singapore Prostate Cancer Study. Nutrients 2023; 15:2677. [PMID: 37375581 DOI: 10.3390/nu15122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE This study aimed to assess associations between forms of vitamin A and E (both individually and collectively) and the risk of prostate cancer, as well as identify potential effect modifiers. METHODS Utilizing data from the Singapore Prostate Cancer Study, a hospital-based case-control study, we measured the serum concentrations of 15 different forms of vitamins A and E in 156 prostate cancer patients and 118 control subjects, using a high-performance liquid chromatography technique. These forms included retinol, lutein, zeaxanthin, α-cryptoxanthin, β-cryptoxanthin, α-carotene, β-carotene, lycopene, ubiquinone, δ-tocopherol, γ-tocopherol, α-tocopherol, δ-tocotrienol, γ-tocotrienol, and α-tocotrienol. The odds ratio and 95% confidence interval for associations between vitamin A and E and prostate cancer risk were estimated using logistic regression models after adjustment for potential confounders. The analyses were further stratified by smoking and alcohol consumption status. The mixture effect of micronutrient groups was evaluated using weighted quantile sum regression. RESULTS Higher concentrations of retinol, lutein, α-carotene, β-carotene, ubiquinone, α-tocopherol, δ-tocotrienol, γ-tocotrienol, and α-tocotrienol were significantly and positively associated with overall prostate cancer risk. Among ever-smokers, associations were stronger for lutein, β-cryptoxanthin and β-carotene compared with never-smokers. Among regular alcohol drinkers, associations were stronger for lutein, β-cryptoxanthin, ubiquinone, γ-tocotrienol and α-tocotrienol compared with non-regular alcohol drinkers. Retinol and α-tocotrienol contributed most to the group indices 'vitamin A and provitamin A carotenoids' and 'vitamin E', respectively. CONCLUSIONS Several serum vitamin A and E forms were associated with prostate cancer risk, with significant effect modification by smoking and alcohol consumption status. Our findings shed light on prostate cancer etiology.
Collapse
Affiliation(s)
- Wei Qi Loh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Xin Yin
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Rie Kishida
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Sin Eng Chia
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117597, Singapore
| |
Collapse
|
21
|
Shaikh SA, Muthuraman A. Tocotrienol-Rich Fraction Ameliorates the Aluminium Chloride-Induced Neurovascular Dysfunction-Associated Vascular Dementia in Rats. Pharmaceuticals (Basel) 2023; 16:828. [PMID: 37375775 DOI: 10.3390/ph16060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Neurovascular dysfunction leads to the second most common type of dementia, i.e., vascular dementia (VaD). Toxic metals, such as aluminium, increase the risk of neurovascular dysfunction-associated VaD. Hence, we hypothesized that a natural antioxidant derived from palm oil, i.e., tocotrienol-rich fraction (TRF), can attenuate the aluminium chloride (AlCl3)-induced VaD in rats. Rats were induced with AlCl3 (150 mg/kg) intraperitoneally for seven days followed by TRF treatment for twenty-one days. The elevated plus maze test was performed for memory assessment. Serum nitrite and plasma myeloperoxidase (MPO) levels were measured as biomarkers for endothelial dysfunction and small vessel disease determination. Thiobarbituric acid reactive substance (TBARS) was determined as brain oxidative stress marker. Platelet-derived growth factor-C (PDGF-C) expression in the hippocampus was identified using immunohistochemistry for detecting the neovascularisation process. AlCl3 showed a significant decrease in memory and serum nitrite levels, while MPO and TBARS levels were increased; moreover, PDGF-C was not expressed in the hippocampus. However, TRF treatment significantly improved memory, increased serum nitrite, decreased MPO and TBARS, and expressed PDGF-C in hippocampus. Thus, the results imply that TRF reduces brain oxidative stress, improves endothelial function, facilitates hippocampus PDGF-C expression for neovascularisation process, protects neurons, and improves memory in neurovascular dysfunction-associated VaD rats.
Collapse
Affiliation(s)
- Sohrab A Shaikh
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
22
|
Gupta L, Sood PK, Nehru B, Sharma S. Ameliorative Effect of Palm Oil in Aluminum Lactate Induced Biochemical and Histological Implications in Rat Brain. Biol Trace Elem Res 2023; 201:2843-2853. [PMID: 35869376 DOI: 10.1007/s12011-022-03366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
α-Tocotrienol is one of the major constituents of palm oil. It is a well-known antioxidant and cholesterol-lowering neuroprotectant. To prevent the initiation of Alzheimer's like symptoms, much attention has been shifted to the major role played by antioxidants. Previous epidemiological reports correlate the increasing incidence of developing Alzheimer's disease (AD), to the aluminum (Al) content in drinking water. Al, being a ubiquitous element, has a long history of being particularly reactive towards multiple aspects of neurobiology. So, the current study examines the effect of Al-induced behavioral, biochemical, and histopathological changes in rat brain; and the ameliorative effect of palm oil in reducing the resulting neurotoxicity. The experimental design consisted of 4 groups: control group which received rodent chow diet and water ad libitum; Al group received aluminum lactate (50 mg/kg bw); Al + palm oil group was administered with Al (50 mg/kg bw) and palm oil (60 mg/kg bw); and palm oil group received palm oil (60 mg/kg bw). Al was given by oral gavage once daily for 6 weeks and palm oil was administered intraperitoneally. After 6 weeks of supplementation, Al + palm oil group showed significantly lower malondialdehyde (MDA) content, but higher superoxide dismutase (SOD), catalase (CAT), GST, and GPx activity as compared to Al group. Al group has significantly higher level of MDA content, but lower SOD, CAT, GST, and GPx activity as compared to control group. In conclusion, this study suggested that palm oil was effective in preventing the Al-induced brain damage in rats.
Collapse
Affiliation(s)
- Liza Gupta
- Department of Biophysics, Panjab University, Chandigarh, India
| | | | - Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.
| |
Collapse
|
23
|
Spiezia C, Di Rosa C, Fintini D, Ferrara P, De Gara L, Khazrai YM. Nutritional Approaches in Children with Overweight or Obesity and Hepatic Steatosis. Nutrients 2023; 15:nu15112435. [PMID: 37299398 DOI: 10.3390/nu15112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Childhood obesity is a global public health problem. Worldwide, 41 million children under 5 years and 340 million children and adolescents between 5 and 19 years are overweight. In addition, the recent COVID-19 epidemic has further amplified this social phenomenon. Obesity is a condition associated with various comorbidities, such as nonalcoholic fatty liver disease (NAFLD). The pathophysiology of NAFLD in obesity is intricate and involves the interaction and dysregulation of several mechanisms, such as insulin resistance, cytokine signaling, and alteration of the gut microbiota. NAFLD is defined as the presence of hepatic steatosis in more than 5% of hepatocytes, evaluated by histological analysis. It can evolve from hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, hepatocellular carcinoma, and end-stage liver failure. Body weight reduction through lifestyle modification remains the first-line intervention for the management of pediatric NAFLD. Indeed, studies suggest that diets low in fat and sugar and conversely rich in dietary fibers promote the improvement of metabolic parameters. This review aims to evaluate the existing relationship between obesity and NAFLD in the pediatric population and to assess the dietary patterns and nutritional supplementations that can be recommended to prevent and manage obesity and its comorbidities.
Collapse
Affiliation(s)
- Chiara Spiezia
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Claudia Di Rosa
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Danilo Fintini
- Endocrinology and Diabetology Unit, Bambino Gesù Children's Hospital, IRCCS L.go S.Onofrio, 4-00165 Roma, Italy
| | - Pietro Ferrara
- Operative Research Unit of Pediatrics, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200-00128 Roma, Italy
| | - Laura De Gara
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Yeganeh Manon Khazrai
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
- Operative Research Unit of Nutrition and Prevention, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200-00128 Roma, Italy
| |
Collapse
|
24
|
Pan L, Sui J, Xu Y, Zhao Q. Effect of Nut Consumption on Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15102394. [PMID: 37242277 DOI: 10.3390/nu15102394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Although previous epidemiological studies have been conducted to investigate the relationship between nut consumption and the risk of nonalcoholic fatty liver disease (NAFLD), the evidence remains inconclusive and contentious. The aim of our study was to further conduct a meta-analysis of observational studies to explore the latest evidence of the influence of nut consumption on NAFLD. This meta-analysis included a comprehensive search of all articles published in the PubMed and Web of Science online databases as of April 2023. A total of 11 articles were included, comprising 2 prospective cohort studies, 3 cross-sectional studies, and 7 case-control studies, and a random effects model was used to evaluate the relationship between nuts and NAFLD. Results showed that the odds ratio (OR) of NAFLD was 0.90 (95% CI: 0.81-0.99, p < 0.001) when comparing the highest and lowest total nut intake, indicating a significant negative correlation. Furthermore, subgroup analysis revealed that the protective effect of nuts on NAFLD was more significant in females (OR = 0.88; 95% CI: 0.78-0.98, I2 = 76.2%). In summary, our findings provide support for a protective relationship between nut intake and risk of NAFLD. Further exploration of the association between other dietary components and NAFLD is an important avenue for future research.
Collapse
Affiliation(s)
- Ling Pan
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Xu
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qun Zhao
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
25
|
Xie L, Yan J. γ-tocotrienol regulates gastric cancer by targeting notch signaling pathway. Hereditas 2023; 160:15. [PMID: 37055846 PMCID: PMC10100483 DOI: 10.1186/s41065-023-00277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Gastric cancer is a common cause of death from cancer and an important global health care issue. Consequently, there is an urgent need to find new drugs and therapeutic targets for the treatment of gastric cancer. Recent studies have shown that tocotrienols (T3) have significant anticancer ability in cancer cell lines. Our previous study found that γ-tocotrienol (γ-T3) induced apoptosis in gastric cancer cells. We further explored the possible mechanisms of γ-T3 therapy for gastric cancer. METHODS In this study, we treated gastric cancer cells with γ-T3, collect and deposit the cells. γ-T3-treated gastric cancer cells group and untreated group were subjected to RNA-seq assay, and analysis of sequencing results. RESULTS Consistent with our previous findings, the results suggest that γ-T3 can inhibit mitochondrial complexes and oxidative phosphorylation. Analysis reveals that γ-T3 has altered mRNA and ncRNA in gastric cancer cells. Significantly altered signaling pathways after γ-T3 treatment were enriched for human papillomavirus infection (HPV) pathway and notch signaling pathway. The same significantly down-regulated genes notch1 and notch2 were present in both pathways in γ-T3-treated gastric cancer cells compared to controls. CONCLUSIONS It is indicated that γ-T3 may cure gastric cancer by inhibiting the notch signaling pathway. To provide a new and powerful basis for the clinical treatment of gastric cancer.
Collapse
Affiliation(s)
- Ling Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
26
|
Mathew AM, Bhuvanendran S, Nair RS, K Radhakrishnan A. Exploring the anti-inflammatory activities, mechanism of action and prospective drug delivery systems of tocotrienol to target neurodegenerative diseases. F1000Res 2023; 12:338. [PMID: 39291146 PMCID: PMC11406131 DOI: 10.12688/f1000research.131863.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 09/19/2024] Open
Abstract
A major cause of death in the elderly worldwide is attributed to neurodegenerative diseases, such as AD (Alzheimer's disease), PD (Parkinson's disease), ALS (Amyotrophic lateral sclerosis), FRDA (Friedreich's ataxia), VaD (Vascular dementia) etc. These can be caused due to multiple factors such as genetic, physiological problems like stroke or tumor, or even external causes like viruses, toxins, or chemicals. T3s (tocotrienols) exhibit various bioactive properties where it acts as an antioxidant, anti-inflammatory, anti-tumorigenic, and cholesterol lowering agent. Since T3 interferes with and influences several anti-inflammatory mechanisms, it aids in combating inflammatory responses that lead to disease progression. T3s are found to have a profound neuroprotective ability, however, due to their poor oral bioavailability, their full potential could not be exploited. Hence there is a need to explore other drug delivery techniques, especially focusing on aspects of nanotechnology. In this review paper we explore the anti-inflammatory mechanisms of T3 to apply it in the treatment of neurodegenerative diseases and also discusses the possibilities of nano methods of administering tocotrienols to target neurodegenerative diseases.
Collapse
Affiliation(s)
- Angela Maria Mathew
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Saatheeyavaane Bhuvanendran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
27
|
Borges GSM, Sicard P, de Mello Gomides Loures C, Evangelista FGC, Sales CC, de Paula Sabino A, Fernandes C, Ferreira LAM, Richard S. Tocotrienols-enriched Self-nanoemulsifying Drug Delivery System Enhances the Antileukemic Activity of All-trans Retinoic Acid but not Electrocardiogram Alterations Evoked by Its Combination with Arsenic Trioxide. AAPS PharmSciTech 2023; 24:79. [PMID: 36918482 DOI: 10.1208/s12249-023-02531-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
All-trans retinoic acid and arsenic trioxide are the leading choices for the treatment of acute promyelocytic leukemia. Notwithstanding the impressive differentiative properties of all-trans retinoic acid and the apoptotic properties of arsenic trioxide, some problems still occur in acute promyelocytic leukemia treatment. These problems are due to patients' relapses, mainly related to changes in the ligand-binding domain of RARα (retinoic acid receptor α) and the cardiotoxic effects caused by arsenic trioxide. We previously developed a self-nanoemulsifying drug delivery system enriched with tocotrienols to deliver all-trans retinoic acid (SNEDDS-TRF-ATRA). Herein, we have evaluated if tocotrienols can help revert ATRA resistance in an APL cell line (NB4-R2 compared to sensitive NB4 cells) and mitigate the cardiotoxic effects of arsenic trioxide in a murine model. SNEDDS-TRF-ATRA enhanced all-trans retinoic acid cytotoxicity in NB4-R2 (resistant) cells but not in NB4 (sensitive) cells. Moreover, SNEDDS-TRF-ATRA did not significantly change the differentiative properties of all-trans retinoic acid in both NB4 and NB4-R2 cells. Combined administration of SNEDDS-TRF-ATRA and arsenic trioxide could revert QTc interval prolongation caused by ATO but evoked other electrocardiogram alterations in mice, such as T wave flattening. Therefore, SNEDDS-TRF-ATRA may enhance the antileukemic properties of all-trans retinoic acid but may influence ECG changes caused by arsenic trioxide administration. SNEDDS-TRF-ATRA presents cytotoxicity in resistant APL cells (NB4-R2). Combined administration of ATO and SNEDDS-TRF-ATRA in mice prevented the prolongation of the QTc interval caused by ATO but evoked ECG abnormalities such as T wave flattening.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil.,PhyMedExp, Inserm, University of Montpellier, Montpellier, France
| | - Pierre Sicard
- PhyMedExp, Inserm, University of Montpellier, Montpellier, France.,IPAM, Biocampus, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Cristina de Mello Gomides Loures
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Camila Campos Sales
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christian Fernandes
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil.
| | - Sylvain Richard
- PhyMedExp, Inserm, University of Montpellier, Montpellier, France. .,IPAM, Biocampus, INSERM, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
28
|
Iguchi N, Dönmez Mİ, Malykhina AP, Wilcox DT. Anti-fibrotic effect of tocotrienols for bladder dysfunction due to partial bladder outlet obstruction. Investig Clin Urol 2023; 64:189-196. [PMID: 36882179 PMCID: PMC9995959 DOI: 10.4111/icu.20220328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
PURPOSE To investigate potential beneficial effects of tocotrienols which have been suggested to inhibit hypoxia-inducible factor (HIF) pathway, on partial bladder outlet obstruction (PBOO)-induced bladder pathology. MATERIALS AND METHODS PBOO was surgically created in juvenile male mice. Sham-operated mice were used as controls. Animals received daily oral administration of either tocotrienols (T3) or soybean oil (SBO, vehicle) from day 0 to 13 post-surgery. Bladder function was examined in vivo by void spot assay. At 2 weeks post-surgery, the bladders were subjected to physiological evaluation of detrusor contractility in vitro using bladder strips, histology by H&E staining and collagen imaging, and gene expression analyses by quantitative PCR. RESULTS A significant increase in the number of small voids was observed after 1 week of PBOO compared to the control groups. At 2 weeks post-surgery, PBOO+SBO mice showed a further increase in the number of small voids, which was not observed in PBOO+T3 group. PBOO-induced decrease in detrusor contractility was similar between two treatments. PBOO induced bladder hypertrophy to the same degree in both SBO and T3 treatment groups, however, fibrosis in the bladder was significantly less prominent in the T3 group than the SBO group following PBOO (1.8- vs. 3.0-fold increase in collagen content compared to the control). Enhanced levels of HIF target genes in the bladders were observed in PBOO+SBO group, but not in PBOO+T3 group compared to the control. CONCLUSIONS Oral tocotrienol treatment reduced the progression of urinary frequency and bladder fibrosis by suppressing HIF pathways triggered by PBOO.
Collapse
Affiliation(s)
- Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - M İrfan Dönmez
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA.,Division of Pediatric Urology, Department of Urology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Duncan T Wilcox
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, USA.,Department of Pediatric Urology, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
29
|
Gardinassi LG, Servian CDP, Lima GDS, dos Anjos DCC, Gomes Junior AR, Guilarde AO, Borges MASB, dos Santos GF, Moraes BGN, Silva JMM, Masson LC, de Souza FP, da Silva RR, de Araújo GL, Rodrigues MF, da Silva LC, Meira S, Fiaccadori FS, Souza M, Romão PRT, Spadafora Ferreira M, Coelho V, Chaves AR, Simas RC, Vaz BG, Fonseca SG. Integrated Metabolic and Inflammatory Signatures Associated with Severity of, Fatality of, and Recovery from COVID-19. Microbiol Spectr 2023; 11:e0219422. [PMID: 36852984 PMCID: PMC10100880 DOI: 10.1128/spectrum.02194-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.
Collapse
Affiliation(s)
- Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Carolina do Prado Servian
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Gesiane da Silva Lima
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Déborah Carolina Carvalho dos Anjos
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Antonio Roberto Gomes Junior
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Adriana Oliveira Guilarde
- Departamento de Medicina Tropical e Dermatologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Moara Alves Santa Bárbara Borges
- Departamento de Medicina Tropical e Dermatologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Gabriel Franco dos Santos
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - João Marcos Maia Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Letícia Carrijo Masson
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Flávia Pereira de Souza
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rodolfo Rodrigues da Silva
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Giovanna Lopes de Araújo
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Marcella Ferreira Rodrigues
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lidya Cardozo da Silva
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sueli Meira
- Laboratório Prof Margarida Dobler Komma, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fabiola Souza Fiaccadori
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Menira Souza
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Verônica Coelho
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia, São Paulo, São Paulo, Brazil
| | - Andréa Rodrigues Chaves
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rosineide Costa Simas
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Boniek Gontijo Vaz
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Simone Gonçalves Fonseca
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Free tocopherols and tocotrienols in 82 plant species' oil: Chemotaxonomic relation as demonstrated by PCA and HCA. Food Res Int 2023; 164:112386. [PMID: 36737971 DOI: 10.1016/j.foodres.2022.112386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The tocopherol (T) and tocotrienol (T3) profile were investigated in the present study for four hundred and eighteen plant oil samples, including thirty-one families, eighty-two species, and five cross-species. Fifteen species were dominated by tocotrienols, while sixty-seven - by tocopherols. The mean proportion of γ-T was almost half of the total tocochromanol content (49.3%) in the investigated samples, while α-T constituted to one quarter (25.0%), and the remaining other tocochromanols were present as minor constituents. A strong relationship between the taxonomic plant origin and the presence of the characteristic tocochromanol profile in oils obtained from those plants was noted. This is the first study to demonstrate that not only monocotyledonous, but also dicotyledons families can be rich in tocotrienols. The usefulness of statistical tools - principal component analysis (PCA) and hierarchical cluster analysis (HCA) for plant sample discrimination based on their tocochromanol profile was also shown.
Collapse
|
31
|
Palm Oil Derived Tocotrienol-Rich Fraction Attenuates Vascular Dementia in Type 2 Diabetic Rats. Int J Mol Sci 2022; 23:ijms232113531. [PMID: 36362316 PMCID: PMC9653761 DOI: 10.3390/ijms232113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Vascular dementia (VaD) is a serious global health issue and type 2 diabetes mellitus (T2DM) patients are at higher risk. Palm oil tocotrienol-rich fraction (TRF) exhibits neuroprotective properties; however, its effect on VaD is not reported. Hence, we evaluated TRF effectiveness in T2DM-induced VaD rats. Rats were given a single dose of streptozotocin (STZ) and nicotinamide (NA) to develop T2DM. Seven days later, diabetic rats were given TRF doses of 30, 60, and 120 mg/kg orally for 21 days. The Morris water maze (MWM) test was performed for memory assessment. Biochemical parameters such as blood glucose, plasma homocysteine (HCY) level, acetylcholinesterase (AChE) activity, reduced glutathione (GSH), superoxide dismutase (SOD) level, and histopathological changes in brain hippocampus and immunohistochemistry for platelet-derived growth factor-C (PDGF-C) expression were evaluated. VaD rats had significantly reduced memory, higher plasma HCY, increased AChE activity, and decreased GSH and SOD levels. However, treatment with TRF significantly attenuated the biochemical parameters and prevented memory loss. Moreover, histopathological changes were attenuated and there was increased PDGF-C expression in the hippocampus of VaD rats treated with TRF, indicating neuroprotective action. In conclusion, this research paves the way for future studies and benefits in understanding the potential effects of TRF in VaD rats.
Collapse
|
32
|
Górnaś P, Baškirovs G, Siger A. Free and Esterified Tocopherols, Tocotrienols and Other Extractable and Non-Extractable Tocochromanol-Related Molecules: Compendium of Knowledge, Future Perspectives and Recommendations for Chromatographic Techniques, Tools, and Approaches Used for Tocochromanol Determination. Molecules 2022; 27:6560. [PMID: 36235100 PMCID: PMC9573122 DOI: 10.3390/molecules27196560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Free and esterified (bound) tocopherols, tocotrienols and other tocochromanol-related compounds, often referred to "tocols", are lipophilic antioxidants of great importance for health. For instance, α-tocopherol is the only tocochromanol with vitamin E activity, while tocotrienols have a positive impact on health and are proposed in the prevention and therapy of so-called modern diseases. Tocopherols, tocotrienols and plastochromanol-8 are the most well-known tocochromanols; in turn, knowledge about tocodienols, tocomonoenols, and other rare tocochromanol-related compounds is limited due to several challenges in analytical chemistry and/or low concentration in plant material. The presence of free, esterified, and non-extractable tocochromanols in plant material as well as their biological function, which may be of great scientific, agricultural and medicinal importance, is also poorly studied. Due to the lack of modern protocols as well as equipment and tools, for instance, techniques suitable for the efficient and simultaneous chromatographical separation of major and minor tocochromanols, the topic requires attention and new solutions, and/or standardization, and proper terminology. This review discusses the advantages and disadvantages of different chromatographic techniques, tools and approaches used for the separation and detection of different tocochromanols in plant material and foodstuffs. Sources of tocochromanols and procedures for obtaining different tocochromanol analytical standards are also described. Finally, future challenges are discussed and perspective green techniques for tocochromanol determination are proposed along with best practice recommendations. The present manuscript aims to present key aspects and protocols related to tocochromanol determination, correct identification, and the interpretation of obtained results.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia
| | | | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
33
|
Wu SJ, Li KJ, Tsai MH, Ng LT. Comparative effects of black pigmented and non-pigmented brown rice on hypolipidemic activity and their mechanisms of action in high fat diet-induced hamsters. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Ranasinghe R, Mathai M, Zulli A. Revisiting the therapeutic potential of tocotrienol. Biofactors 2022; 48:813-856. [PMID: 35719120 PMCID: PMC9544065 DOI: 10.1002/biof.1873] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Mathai
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Anthony Zulli
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
35
|
Lee HA, Chang Y, Sung PS, Yoon EL, Lee HW, Yoo JJ, Lee YS, An J, Song DS, Cho YY, Kim SU, Kim YJ. Therapeutic mechanisms and beneficial effects of non-antidiabetic drugs in chronic liver diseases. Clin Mol Hepatol 2022; 28:425-472. [PMID: 35850495 PMCID: PMC9293616 DOI: 10.3350/cmh.2022.0186] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
The global burden of chronic liver disease (CLD) is substantial. Due to the limited indication of and accessibility to antiviral therapy in viral hepatitis and lack of effective pharmacological treatment in nonalcoholic fatty liver disease, the beneficial effects of antidiabetics and non-antidiabetics in clinical practice have been continuously investigated in patients with CLD. In this narrative review, we focused on non-antidiabetic drugs, including ursodeoxycholic acid, silymarin, dimethyl4,4'-dimethoxy-5,6,5',6'-dimethylenedixoybiphenyl-2,2'-dicarboxylate, L-ornithine L-aspartate, branched chain amino acids, statin, probiotics, vitamin E, and aspirin, and summarized their beneficial effects in CLD. Based on the antioxidant, anti-inflammatory properties, and regulatory functions in glucose or lipid metabolism, several non-antidiabetic drugs have shown beneficial effects in improving liver histology, aminotransferase level, and metabolic parameters and reducing risks of hepatocellular carcinoma and mortality, without significant safety concerns, in patients with CLD. Although the effect as the centerpiece management in patients with CLD is not robust, the use of these non-antidiabetic drugs might be potentially beneficial as an adjuvant or combined treatment strategy.
Collapse
Affiliation(s)
- Han Ah Lee
- Departments of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Young Chang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Pil Soo Sung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eileen L Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Youn Cho
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Teo CWL, Png SJY, Ung YW, Yap WN. Therapeutic effects of intranasal tocotrienol-rich fraction on rhinitis symptoms in platelet-activating factor induced allergic rhinitis. Allergy Asthma Clin Immunol 2022; 18:52. [PMID: 35698169 PMCID: PMC9195334 DOI: 10.1186/s13223-022-00695-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Background Platelet-activating factor (PAF) has been suggested to be a potent inflammatory mediator in Allergic rhinitis (AR) pathogenesis. Vitamin E, an essential nutrient that comprises tocopherol and tocotrienol, is known as a potential therapeutic agent for airway allergic inflammation. This study aimed to investigate the beneficial effects of intranasal Tocotrienol-rich fraction (TRF) on PAF-induced AR in a rat model. Methods Sprague Dawley rats were randomly assigned into 3 groups: Control, PAF-induced AR and PAF-induced AR with TRF treatment. To induce AR, 50 μl of 16 μg/ml PAF was nasally instilled into each nostril. From day 1 to 7 after AR induction, 10 μl of 16 μg/μl TRF was delivered intranasally to the TRF treatment group. Complete upper skulls were collected for histopathological evaluation on day 8. Results The average severity scores of AR were significantly higher in the PAF-induced AR rats compared to both control and PAF-induced AR with TRF treatment. The histologic examination of the nasal structures showed moderate degree of inflammation and polymorphonuclear cells infiltration in the lamina propria, mucosa damage and vascular congestion in the PAF-induced AR rats. TRF was able to ameliorate the AR symptoms by restoring the nasal structures back to normal. H&E staining demonstrated a statistically significant benefit upon TRF treatment, where minimal degree of inflammation, and a reduction in the infiltration of polymorphonuclear cells, mucosa damage and vascular congestion were observed. Conclusion TRF exhibited symptomatic relief action in AR potentially due to its antioxidant, anti-inflammatory and anti-allergic properties.
Collapse
Affiliation(s)
- Cheryl Wei Ling Teo
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19, Synapse, 138623, Singapore, Singapore. .,Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia.
| | - Stephanie Jia Ying Png
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Yee Wei Ung
- Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Wei Ney Yap
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19, Synapse, 138623, Singapore, Singapore.,Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
37
|
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022; 156:111175. [DOI: 10.1016/j.foodres.2022.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
|
38
|
Oluwole DO, Coleman L, Buchanan W, Chen T, La Ragione RM, Liu LX. Antibiotics-Free Compounds for Chronic Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14051021. [PMID: 35631606 PMCID: PMC9143489 DOI: 10.3390/pharmaceutics14051021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
The rapid rise in the health burden associated with chronic wounds is of great concern to policymakers, academia, and industry. This could be attributed to the devastating implications of this condition, and specifically, chronic wounds which have been linked to invasive microbial infections affecting patients' quality of life. Unfortunately, antibiotics are not always helpful due to their poor penetration of bacterial biofilms and the emergence of antimicrobial resistance. Hence, there is an urgent need to explore antibiotics-free compounds/formulations with proven or potential antimicrobial, anti-inflammatory, antioxidant, and wound healing efficacy. The mechanism of antibiotics-free compounds is thought to include the disruption of the bacteria cell structure, preventing cell division, membrane porins, motility, and the formation of a biofilm. Furthermore, some of these compounds foster tissue regeneration by modulating growth factor expression. In this review article, the focus is placed on a number of non-antibiotic compounds possessing some of the aforementioned pharmacological and physiological activities. Specific interest is given to Aloevera, curcumin, cinnamaldehyde, polyhexanide, retinoids, ascorbate, tocochromanols, and chitosan. These compounds (when alone or in formulation with other biologically active molecules) could be a dependable alternative in the management or prevention of chronic wounds.
Collapse
Affiliation(s)
- David O. Oluwole
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
- Correspondence: (D.O.O.); (L.X.L.)
| | - Lucy Coleman
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
| | | | - Tao Chen
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
| | - Roberto M. La Ragione
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Lian X. Liu
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
- Correspondence: (D.O.O.); (L.X.L.)
| |
Collapse
|
39
|
Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, Kumar S, Bhatti GK, Reddy PH. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184:114-134. [PMID: 35398495 DOI: 10.1016/j.freeradbiomed.2022.03.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2DM) is a persistent metabolic disorder rising rapidly worldwide. It is characterized by pancreatic insulin resistance and β-cell dysfunction. Hyperglycemia induced reactive oxygen species (ROS) production and oxidative stress are correlated with the pathogenesis and progression of this metabolic disease. To counteract the harmful effects of ROS, endogenous antioxidants of the body or exogenous antioxidants neutralise it and maintain bodily homeostasis. Under hyperglycemic conditions, the imbalance between the cellular antioxidant system and ROS production results in oxidative stress, which subsequently results in the development of diabetes. These ROS are produced in the endoplasmic reticulum, phagocytic cells and peroxisomes, with the mitochondrial electron transport chain (ETC) playing a pivotal role. The exacerbated ROS production can directly cause structural and functional modifications in proteins, lipids and nucleic acids. It also modulates several intracellular signaling pathways that lead to insulin resistance and impairment of β-cell function. In addition, the hyperglycemia-induced ROS production contributes to micro- and macro-vascular diabetic complications. Various in-vivo and in-vitro studies have demonstrated the anti-oxidative effects of natural products and their derived bioactive compounds. However, there is conflicting clinical evidence on the beneficial effects of these antioxidant therapies in diabetes prevention. This review article focused on the multifaceted role of oxidative stress caused by ROS overproduction in diabetes and related complications and possible antioxidative therapeutic strategies targeting ROS in this disease.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Abhishek Sehrawat
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Jayapriya Mishra
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Inderpal Singh Sidhu
- Department of Zoology, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India.
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
40
|
Ju L, Wei X, Yu D, Fang H, Cheng X, Piao W, Guo Q, Xu X, Li S, Cai S, Zhao L. Dietary Micronutrient Status and Relation between Micronutrient Intakes and Overweight and Obesity among Non-Pregnant and Non-Lactating Women Aged 18 to 49 in China. Nutrients 2022; 14:1895. [PMID: 35565860 PMCID: PMC9105399 DOI: 10.3390/nu14091895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Women between the ages of 18 and 49 are women of reproductive age, for whom physical health and nutritional status are closely related to successful pregnancy, good pregnancy outcomes and the nurturing of the next generation. Overweight and obesity have become important nutrition and health problems of women aged 18−49 years in China. In social life, non-pregnant and non-lactating Chinese women aged 18−49 are the most vulnerable and neglected group. At present, there are no research data on their dietary micronutrient intake, and the relationship between dietary micronutrient intake and overweight and obesity in China. However, non-pregnant and non-lactating women aged 18−49 are the best window of opportunity to implement strategies, correct nutrition and improve physical health. It remains to be explored whether their overweight and obesity are related to inadequate dietary micronutrient intake. The aim of this study was to evaluate dietary micronutrient intake in non-pregnant and non-lactating Chinese women aged 18−49 years, and to analyze the relationship between dietary micronutrient intake and overweight and obesity. Data were obtained from 2015 China Adult Chronic Disease and Nutrition Surveillance (CACDNS 2015). In CACDNS 2015, 12,872 women aged 18 to 49 years (excluding pregnant women and lactating mothers) were surveyed for a three-day 24 h dietary recall and a three-day household weighing of edible oil and condiments. The average daily dietary intake of micronutrients was calculated according to the Chinese food composition table. In 2015, the median intake of vitamin A, vitamin B1, vitamin B2, vitamin C and folate in non-pregnant and non-lactating women aged 18−49 years in China was 267.0 μg RE/day, 0.7 mg/day, 0.6 mg/day, 63.5 mg/day and 121.0 μg/day, respectively. The median mean intake of vitamin A, niacin, calcium and zinc in overweight/obese group was lower than that in non-overweight/obese group, and the difference was statistically significant (p < 0.05). Multivariate Logistic regression analysis showed that vitamin A intake (Q3 vs. Q1: OR = 0.785, 95% CI: 0.702~0.878; Q4 vs. Q1: OR = 0.766, 95% CI: 0.679~0.865), niacin intake (Q2 vs. Q1: OR = 0.801, 95% CI: 0.715−0.898; Q3 vs. Q1: OR = 0.632, 95% CI: 0.554~0.721; Q4 vs. Q1: OR = 0.662, 95% CI: 0.568~0.772), Zinc intake (Q4 vs. Q1: OR = 0.786, 95% CI: 0.662~0.932) were a protective factor for overweight/obesity in women, while vitamin B2 intake (Q2 vs. Q1: OR = 1.256, 95% CI: 1.120~1.408; Q3 vs. Q1: OR = 1.416, 95% CI: 1.240~1.617; Q4 vs. Q1: OR = 1.515, 95% CI: 1.293−1.776), vitamin E intake (Q2 vs. Q1: OR = 1.114, 95% CI: 1.006−0.235; Q3 vs. Q1: OR = 1.162, 95% CI: 1.048~0.288; Q4 vs. Q1: OR = 1.234, 95% CI: 1.112−1.371) was a risk factor for overweight/obesity in females. The intakes of most dietary micronutrients in non-pregnant and non-lactating women aged 18−49 in China were low. The intakes of dietary vitamin A, niacin and zinc were negatively correlated with the risk of overweight/obesity, while the intakes of vitamin B2 and vitamin E were positively correlated with the risk of overweight/obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liyun Zhao
- Chinese Center for Disease Control and Prevention, Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Beijing 100050, China; (L.J.); (X.W.); (D.Y.); (H.F.); (X.C.); (W.P.); (Q.G.); (X.X.); (S.L.); (S.C.)
| |
Collapse
|
41
|
Quantification of tocochromanols in vitamin E dietary supplements by instrumental thin-layer chromatography. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractA variety of vitamin E dietary supplement capsules (DSC) based on different natural oils or synthesis products are currently found on the market whose vitamin contents need to be controlled before and after marketing. Here, we present an instrumental thin-layer chromatography (TLC) method which allows a direct determination of all tocopherols (T) and tocotrienols (T3) as well as α-tocopherol acetate simultaneously in one run with short analysis time. For this purpose, contents of the DSC were extracted, applied on silica gel 60 plates, and developed with n-hexane/ethyl acetate/acetic acid, 90:10:2 (v/v/v) as mobile phase. The UV scan of the plate at 293 nm was used for quantification based on the peak height. Following the scan, the plate was treated with 10% sulphuric acid in methanol which led to characteristic yellow-to-brown colouring of the tocochromanol spots which allowed to distinguish tocochromanols from matrix components with similar Rf values. In most cases, determined vitamin E contents matched well with the information listed on the label of the investigated DSC samples. The method is fast, easy to perform and gently treats the analytes as it requires no thermal treatment prior to quantification, which makes it suitable as a screening method.
Collapse
|
42
|
Othman N, Hean CG, Azman EM, Suleiman N. Effect of Process Variables in Supercritical Carbon Dioxide Extraction of Tocotrienols from Hydrolysed Palm Fatty Acid Distillate (
PFAD
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. Othman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - C. G. Hean
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - E. M. Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - N Suleiman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| |
Collapse
|
43
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 2022; 232:114175. [PMID: 35151223 PMCID: PMC8813210 DOI: 10.1016/j.ejmech.2022.114175] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Liviu Bilteanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Blvd, Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
44
|
Yang S, Yang J, Zhao H, Deng R, Fan H, Zhang J, Yang Z, Zeng H, Kuang B, Shao L. The Protective Effects of γ-Tocotrienol on Muscle Stem Cells Through Inhibiting Reactive Oxidative Stress Production. Front Cell Dev Biol 2022; 10:820520. [PMID: 35372342 PMCID: PMC8965065 DOI: 10.3389/fcell.2022.820520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudotrophic muscular dystrophy is a common clinical skeletal muscle necrotic disease, among which Duchenne muscular dystrophy (DMD) is the predominant. For such diseases, there is no clinically effective treatment, which is only symptomatic or palliative treatment. Oxidative stress and chronic inflammation are common pathological features of DMD. In recent years, it has been found that the pathophysiological changes of skeletal muscle in DMD mice are related to muscle stem cell failure. In the present study, we established a DMD mice model and provided tocotrienol (γ-tocotrienol, GT3), an antioxidant compound, to explore the relationship between the physiological state of muscle stem cells and oxidative stress. The results showed that the application of GT3 can reduce ROS production and cellular proliferation in the muscle stem cells of DMD mice, which is beneficial to promote the recovery of muscle stem cell function in DMD mice. GT3 treatment improved the differentiation ability of muscle stem cells in DMD mice with increasing numbers of MyoD+ cells. GT3 application significantly decreased percentages of CD45+ cells and PDGFRα+ fibro-adipogenic progenitors in the tibialis anterior of DMD mice, indicating that the increased inflammation and fibro-adipogenic progenitors were attenuated in GT3-treated DMD mice. These data suggest that increased ROS production causes dysfunctional muscle stem cell in DMD mice, which might provide a new avenue to treat DMD patients in the clinic.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Juan Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Huiwen Zhao
- Department of Biological Genetics, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Rong Deng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Hancheng Fan
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jinfu Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Zihao Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Bohai Kuang
- Department of Biological Genetics, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
- *Correspondence: Lijian Shao,
| |
Collapse
|
45
|
Md Amin NA, Sheikh Abdul Kadir SH, Arshad AH, Abdul Aziz N, Abdul Nasir NA, Ab Latip N. Are Vitamin E Supplementation Beneficial for Female Gynaecology Health and Diseases? Molecules 2022; 27:molecules27061896. [PMID: 35335260 PMCID: PMC8955126 DOI: 10.3390/molecules27061896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin E is known as an essential vitamin, and many studies had demonstrated the importance of vitamin E throughout the reproductive process, such as miscarriage, premature birth, preeclampsia, and intrauterine growth restriction, which could be caused by a lack of vitamin E during pregnancy. Its potent antioxidant properties can counteract the oxidative stress induced by oxygen free radicals and imbalance of oxidative-antioxidant levels, hence it may play a role in maintaining the normal function of the female reproductive system. Despite the fact that vitamin E is acknowledged as the substance needed for reproduction, its beneficial effects on female fertility, gynaecological health, and diseases are still poorly understood and lacking. Therefore, the goal of this paper is to provide a summary of the known roles of vitamin E supplementation in women for gynaecological health and reproductive-related diseases, as well as its future perspective.
Collapse
Affiliation(s)
- Nur Amira Md Amin
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Correspondence:
| | - Akmal Hisyam Arshad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Norhaslinda Abdul Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia;
| | - Nurul Alimah Abdul Nasir
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
| | - Normala Ab Latip
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia;
| |
Collapse
|
46
|
Wojdyło A, Turkiewicz IP, Tkacz K, Hernandez F. Fruit tree leaves as valuable new source of tocopherol and tocotrienol compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1466-1474. [PMID: 34398983 DOI: 10.1002/jsfa.11481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nowadays it is highly important to find new, cheap and widely available sources of tocopherol and tocotrienol compounds, and leaves are promising unconventional sources. The main goal of this study was to extend the currently limited knowledge concerning tocopherol and tocotrienol isomers composition determined using ultra-high performance liquid chromatography with fluorescence detection analysis for various fruit tree leaves such as apple, pear, quince, apricot, peach, plum, sour cherry and sweet cherry. The leaves were collected 2 weeks after tree blooming and after fruit collection. Tocopherol and tocotrienol isomers were identified and quantified for the first time in all fruit tree leaves. RESULTS The total tocopherol content ranged from 203.34 to 260.86 μg g-1 dry weight for spring leaves and from 23.83 to 235.62 μg g-1 dry weight for autumn leaves and consisted mainly of α-tocopherol. The rest of the isomers of tocopherol and tocotrienols were also found, but in trace amounts. A significantly lower content of tocopherols and tocotrienols was detected in leaves after autumn collection of fruits compared to leaves collected after blooming. Among the analyzed leaves, time collected and species were significantly more important than their cultivars. Regarding quantification analysis, apricot > peach > > plums > apples leaves were identified as the best sources of tocopherols, and sweet and sour cherry leaves exhibited a lower content. CONCLUSION Fruit tree leaves are a novel significant source and good material for isolation of α-tocopherol for application in cosmetics, pharmaceuticals or in the food industry - for example, production of beverages or other functional foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Francisca Hernandez
- Department of Plant Science and Microbiology, Universidad Miguel Hernández de Elche, Alicante, Spain
| |
Collapse
|
47
|
Toxicity Studies on Essential Oil from Phoenix dactylifera (L.) Seed in Wistar Rats. Biologics 2022. [DOI: 10.3390/biologics2010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study evaluated the toxicological effect of oral administration of Phoenix dactylifera seed essential oil (PDEO) in Wistar rats. PDEO was extracted through a steam-distillation technique. Acute toxicity study evaluated administration of a single dose of the oil in a group (n = 5) of rats followed by 24 h observation, for sub-acute toxicity evaluation, the animals were randomly divided into five groups (n = 3). Group 1 to 4 rats, respectively, received 62.5, 125, 250, and 500 mg/kg bw of PDEO for fourteen days, while the fifth group served as control. At the termination of the study, blood samples were obtained for biochemical and hematological analyses, while vital organs were histopathologically examined. Results from this study revealed no mortality or abnormal behavioral changes in the animals. A dose-related increase in bodyweight and hematological parameters was observed across the treated groups (p < 0.05). At a dosage of 500 mg/kg bw, PDEO caused slight elevation in biochemical marker levels and mild changes in histological architecture of liver and kidney of the test rats. This study revealed that PDEO exhibited significant hematopoietic attributes with no adverse effect on the experimental rats’ vital organs at concentrations below 500 mg/kg bw.
Collapse
|
48
|
Shen CL, Mo H, Dunn DM, Watkins BA. Tocotrienol Supplementation Led to Higher Serum Levels of Lysophospholipids but Lower Acylcarnitines in Postmenopausal Women: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Front Nutr 2022; 8:766711. [PMID: 35004805 PMCID: PMC8740329 DOI: 10.3389/fnut.2021.766711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a major health problem in postmenopausal women. Herein we evaluated the effects of 12-week tocotrienols (TT) supplementation on serum metabolites in postmenopausal, osteopenic women. Eighty-nine participants (59.7 ± 6.8 yr, BMI 28.7 ± 5.7 kg/m2) were assigned to 3 treatments: placebo (860 mg olive oil/day), 300mg TT (300 mg TT/day), and 600mg TT (600 mg TT/day) for 12 weeks. TT consisted of 90% δ-TT and 10% γ-TT. In this metabolomic study, we evaluated the placebo and 600mgTT at baseline and 12 weeks. As expected, TT and its metabolite levels were higher in the supplemented group after 12 weeks. At baseline, there were no differences in demographic parameters or comprehensive metabolic panels (CMP). Metabolomics analysis of serum samples revealed that 48 biochemicals were higher and 65 were lower in the 600mg TT group at 12 weeks, compared to baseline. The results confirmed higher serum levels of tocotrienols and lysophospholipids, but lower acylcarnitines and catabolites of tryptophan and steroids in subjects given 600mg TT. In summary, 12-week TT supplementation altered many serum metabolite levels in postmenopausal women. The present study supports our previous findings that TT supplementation helps reduce bone loss in postmenopausal osteopenic women by suppressing inflammation and oxidative stress. Furthermore, the body incorporates TT which restructures biomembranes and modifies phospholipid metabolism, a response potentially linked to reduced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Huanbiao Mo
- Nutrition, Georgia State University, Atlanta, GA, United States
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
49
|
Autophagy as a Therapeutic Target of Natural Products Enhancing Embryo Implantation. Pharmaceuticals (Basel) 2021; 15:ph15010053. [PMID: 35056110 PMCID: PMC8779555 DOI: 10.3390/ph15010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infertility is an emerging health issue worldwide, and female infertility is intimately associated with embryo implantation failure. Embryo implantation is an essential process during the initiation of prenatal development. Recent studies have strongly suggested that autophagy in the endometrium is the most important factor for successful embryo implantation. In addition, several studies have reported the effects of various natural products on infertility improvement via the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is unclear whether natural products can improve embryo implantation ability by regulating endometrial autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo implantation, natural products, and female infertility. Based on the information from these studies, this review suggests a new treatment strategy for female infertility by proposing natural products that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we provide a comprehensive understanding of the relationship between the regulation of endometrial autophagy by natural products and female infertility, with an emphasis on embryo implantation.
Collapse
|
50
|
Abstract
Tomato processing leads to the production of considerable amounts of residues, mainly in the form of tomato skins, seeds and vascular tissues, which still contain bioactive molecules of interest for food, pharmaceutical and nutraceutical industries. These include carotenoids, such as lycopene and β-carotene, tocopherols and sitosterols, among others. Supercritical fluid extraction is well positioned for the valorization of tomato residues prior to disposal, because it remains an environmentally safe extraction process, especially when using carbon dioxide as the solvent. In this article, we provide an extensive literature overview of the research on the supercritical fluid extraction of tomato residues. We start by identifying the most relevant extractables present in tomatoes (e.g., lycopene) and their main bioactivities. Then, the main aspects affecting the extraction performance are covered, starting with the differences between tomato matrixes (e.g., seeds, skins and pulp) and possible pretreatments to enhance extraction (e.g., milling, drying and enzymatic digestion). Finally, the effects of extraction conditions, such as pressure, temperature, cosolvent, flow rate and time, are discussed.
Collapse
|