1
|
Kostrakiewicz-Gierałt K. Plant-Based Proteins, Peptides and Amino Acids in Food Products Dedicated for Sportspeople-A Narrative Review of the Literature. Nutrients 2024; 16:1706. [PMID: 38892638 PMCID: PMC11175001 DOI: 10.3390/nu16111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Plant proteins are increasingly seen as critical nutrient sources for both amateur and professional athletes. The aim of the presented study was to review the inventions and experimental articles referring to the application of plant-based proteins, peptides and amino acids in food products dedicated to sportspeople and published in the period 2014-2023. The literature search was conducted according to PRISMA statementsacross several key databases, including Scopus and ISI Web of Science. Altogether, 106 patents and 35 original articles were found. The survey of patents and inventions described in the articles showed the use of 52 taxa (mainly annual herbaceous plants), creating edible seeds and representing mainly the families Fabaceae and Poaceae. The majority of inventions were developed by research teams numbering from two to five scientists, affiliated in China, The United States of America and Japan. The greatest number of inventions applied plant-based proteins (especially protein isolates), declared the nutritional activity and were prepared in liquid or solid consistency. According to the reviewed studies, the intake of soybean and potato proteins might provide better results than animal-based protein (excluding resistance training), whereas the consumption of pea and rice protein does not possess any unique anabolic properties over whey protein. The analysis of other investigations demonstrated the varied acceptability and consumption of food products, while the high rating of the tested food products presented in four articles seems to be an effect of their sensual values, as well as other elements, such as production method, health benefits and cost-effectiveness. Considering the great potential of useful plant species, it might be concluded that future investigations focusing on searching for novel plant protein sources, suitable for the preparation of food products dedicated to amateur and professional sportspeople, remain of interest.
Collapse
Affiliation(s)
- Kinga Kostrakiewicz-Gierałt
- Department of Tourism Geography and Ecology, Institute of Tourism, Faculty of Tourism and Recreation, University of Physical Education in Kraków, Jana Pawła II 78, 31-571 Kraków, Poland
| |
Collapse
|
2
|
Yu X, Nie W, Chen X, Zou LF, Xu BC, Chen CG. Anionic polysaccharides benefit the bioavailability of pork myofibrillar protein gels: Evidence from a perspective of protein absorption and metabolism. Int J Biol Macromol 2024; 263:130246. [PMID: 38378115 DOI: 10.1016/j.ijbiomac.2024.130246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
This study aimed to probe the bioavailability of myofibrillar protein (MP) gels in mice as affected by incorporating anionic xanthan (XMP) and sodium alginate (SMP)/cationic chitosan (CSMP)/neutral curdlan (CMP) and konjac (KMP), respectively. The results showed that the numbers of peptides absorbed were obviously higher in anionic XMP and SMP groups (88 and 126, respectively) than in the cationic CSMP (51) group. The contents of free amino acids absorbed in SMP and XMP were significantly greater than that in CSMP and CMP groups (P < 0.05). Furthermore, the antioxidant capacity of bioactive compounds absorbed in the SMP group was higher than those in the other groups (P < 0.05), and the expression of tight junction protein (Occludin and ZO-1) was up-regulated in SMP group. The low contents of free ammonia, indole and p-cresol were observed in the anionic XMP, SMP and neutral KMP groups, compared to CSMP group. This work highlights the benefits of anionic polysaccharides (sodium alginate and xanthan) in developing low-fat meat products with high MP bioavailability.
Collapse
Affiliation(s)
- Xia Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui province, People's Republic of China.
| | - Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui province, People's Republic of China; School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, Anhui province, People's Republic of China
| | - Xing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Li-Fang Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui province, People's Republic of China.
| | - Bao-Cai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui province, People's Republic of China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei, 230601, Anhui province, People's Republic of China
| | - Cong-Gui Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui province, People's Republic of China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei, 230601, Anhui province, People's Republic of China.
| |
Collapse
|
3
|
Dalaka E, Politis I, Theodorou G. Antioxidant Activity of Sweet Whey Derived from Bovine, Ovine and Caprine Milk Obtained from Various Small-Scale Cheese Plants in Greece before and after In Vitro Simulated Gastrointestinal Digestion. Antioxidants (Basel) 2023; 12:1676. [PMID: 37759979 PMCID: PMC10525972 DOI: 10.3390/antiox12091676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Whey-derived peptides have been associated with different biological properties, but most peptides are usually further hydrolyzed during the digestive process. In the present study, the antioxidant capacity of 48 samples of sweet whey (SW) derived from cheeses obtained from small-scale cheese plants made with bovine, ovine, caprine or a mixture of ovine/caprine milk was assessed using both cell-free and cell-based assays. SW digestates (SW-Ds) and a fraction (<3 kDa; SW-D-P3) thereof were obtained after in vitro digestion and subsequent ultrafiltration. Antioxidant properties using four different assays were evaluated before and after digestion. Our data showed higher values (p < 0.05) for ORAC, ABTS, FRAP and P-FRAP after in vitro digestion (SW-Ds and SW-D-P3) when compared with the corresponding values before digestion. In the non-digested SW, ORAC values were higher (p < 0.05) for the bovine SW compared with all the other samples. In contrast, the ABTS assay indicated a higher antioxidant activity for the ovine SW both before digestion and for SW-D-P3 compared with the bovine SW. The fraction SW-D-P3 of the ovine SW, using HT29 cells and H2O2 as an oxidizing agent, increased (p < 0.05) the cellular antioxidant activity. Furthermore, the same fraction of the ovine/caprine mixed SW increased, through the NF-κB pathway, the expression of SOD1 and CAT, genes implicated in the oxidative response in macrophage-like THP-1 cells. These findings indicate that SW, and particularly bovine and ovine SW, could be a candidate source for physical antioxidants in human and animal nutrition.
Collapse
Affiliation(s)
| | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (E.D.); (I.P.)
| |
Collapse
|
4
|
Solstad RG, James P. Observations from the Hydrolysis of the Green Sea Urchin ( Strongylocentrotus droebachiensis). GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200078. [PMID: 37205929 PMCID: PMC10190573 DOI: 10.1002/gch2.202200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Indexed: 05/21/2023]
Abstract
There is a large amount of coproduct generated by the sea urchin fisheries around the world as well as a growing interest in removing large quantities of undersize and low value sea urchins from barren areas in the northern Atlantic and Pacific coasts as well as other areas around the world. The authors believe there is scope to develop a hydrolysate product from this and this study gives preliminary observations on the characteristics of hydrolysate from the sea urchin Strongylocentrotus droebachiensis. The biochemical composition for S. droebachiensis is moisture 64.1%, protein 3.4%, oil 0.9%, and ash 29.8%. Amino acid composition, molecular weight distribution, lipid-class, and fatty acid composition are also presented. The authors suggest a sensory-panel mapping be undertaken on future sea urchin hydrolysates. Possible uses for the hydrolysate are unclear at this stage but the combination of amino acids and the relatively high levels of glycine, aspartic acid, and glutamic acid should be further investigated.
Collapse
Affiliation(s)
- Runar Gjerp Solstad
- NofimaNorwegian Institute of Food Fisheries and Aquaculture ResearchMuninbakken 9‐13Tromsø9019Norway
| | - Philip James
- NofimaNorwegian Institute of Food Fisheries and Aquaculture ResearchMuninbakken 9‐13Tromsø9019Norway
| |
Collapse
|
5
|
Höhme L, Fischer C, Kleinschmidt T. Characterization of bitter peptides in casein hydrolysates using comprehensive two-dimensional liquid chromatography. Food Chem 2023; 404:134527. [DOI: 10.1016/j.foodchem.2022.134527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
|
6
|
Hypoxia-Driven Changes in a Human Intestinal Organoid Model and the Protective Effects of Hydrolyzed Whey. Nutrients 2023; 15:nu15020393. [PMID: 36678267 PMCID: PMC9863820 DOI: 10.3390/nu15020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Many whey proteins, peptides and protein-derived amino acids have been suggested to improve gut health through their anti-oxidant, anti-microbial, barrier-protective and immune-modulating effects. Interestingly, although the degree of hydrolysis influences peptide composition and, thereby, biological function, this important aspect is often overlooked. In the current study, we aimed to investigate the effects of whey protein fractions with different degrees of enzymatic hydrolysis on the intestinal epithelium in health and disease with a novel 2D human intestinal organoid (HIO) monolayer model. In addition, we aimed to assess the anti-microbial activity and immune effects of the whey protein fractions. Human intestinal organoids were cultured from adult small intestines, and a model enabling apical administration of nutritional components during hypoxia-induced intestinal inflammation and normoxia (control) in crypt-like and villus-like HIO was established. Subsequently, the potential beneficial effects of whey protein isolate (WPI) and two whey protein hydrolysates with a 27.7% degree of hydrolysis (DH28) and a 50.9% degree of hydrolysis (DH51) were assessed. In addition, possible immune modulatory effects on human peripheral immune cells and anti-microbial activity on four microbial strains of the whey protein fractions were investigated. Exposure to DH28 prevented paracellular barrier loss of crypt-like HIO following hypoxia-induced intestinal inflammation with a concomitant decrease in hypoxia inducible factor 1 alpha (HIF1α) mRNA expression. WPI increased Treg numbers and Treg expression of cluster of differentiation 25 (CD25) and CD69 and reduced CD4+ T cell proliferation, whereas no anti-microbial effects were observed. The observed biological effects were differentially mediated by diverse whey protein fractions, indicating that (degree of) hydrolysis influences their biological effects. Moreover, these new insights may provide opportunities to improve immune tolerance and promote intestinal health.
Collapse
|
7
|
Caballero-de la Peña K, Acevedo-Pacheco L, Sánchez-Reséndiz AI, Chuck-Hernández C, Serna-Saldívar SO. Protein quality and glycemic indexes of mango drinks fortified with a soybean/maize protein isolate with three levels of urease activity fed to weanling rats. Food Nutr Res 2022; 66:8576. [PMID: 36590858 PMCID: PMC9793766 DOI: 10.29219/fnr.v66.8576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Public health professionals established a direct link between obesity and the rise in high caloric beverage intake. Current recommendations promote the elimination of sweet fruit drinks from the population's diet. One way of evading this is by modifying the drink's nutritional characteristics regarding nutrient uptake and utilization. Objectives evaluate the protein quality of a soy/maize protein (SMP) and its physiological effects on nutrient intake and to assess glycemic indexes (GIs) of mango based drinks prepared with sucrose or stevia. Materials and methods Mango drinks were supplemented with different sources of protein (three SMP thermally treated to contain different urease activities (UA) or whey protein concentrate (WPC)) that were sweetened with sucrose or stevia/sucralose. The protein digestibility, net protein absorption (NPA), biological value (BV), net protein utilization (NPU) value and protein efficiency ratio (PER) were assessed with weanling rats. Moreover, the GIs of the mango drinks were measured in the same animal model. Results PER and NPA evaluated in a rat model showed that increased levels of UA decreased Biological (BV) and Net Protein Utilization (NPU) values. The GIs of the mango drinks significantly diminished with the addition of 3.5% of SMP, but unexpectedly the substitution of sucrose by stevia/sucralose did not significantly change the glycemic response. Conclusion the SMP isolate can be used to improve the nutritional profile and lower GIs of mango drinks.
Collapse
Affiliation(s)
| | | | | | | | - Sergio O. Serna-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, México,Sergio O. Serna-Saldívar, Eugenio Garza Sada 2501 Sur, Tecnológico, 64849 Monterrey, NL, México.
| |
Collapse
|
8
|
López-Martínez MI, Miguel M, Garcés-Rimón M. Protein and Sport: Alternative Sources and Strategies for Bioactive and Sustainable Sports Nutrition. Front Nutr 2022; 9:926043. [PMID: 35782926 PMCID: PMC9247391 DOI: 10.3389/fnut.2022.926043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nutrition and sport play an important role in achieving a healthy lifestyle. In addition to the intake of nutrients derived from the normal diet, some sport disciplines require the consumption of supplements that contribute positively to improved athletic performance. Protein intake is important for many aspects related to health, and current evidence suggests that some athletes require increased amounts of this nutrient. On the other hand, society's demand for more environmentally friendly products, focus on the search for alternative food sources more sustainable. This review aims to summarize the latest research on novel strategies and sources for greener and functional supplementation in sport nutrition. Alternative protein sources such as insects, plants or mycoproteins have proven to be an interesting substrate due to their high added value in terms of bioactivity and sustainability. Protein hydrolysis has proven to be a very useful technology to revalue by-products, such as collagen, by producing bioactive peptides beneficial on athletes performance and sport-related complications. In addition, it has been observed that certain amino acids from plant sources, as citrulline or theanine, can have an ergogenic effect for this target population. Finally, the future perspectives of protein supplementation in sports nutrition are discussed. In summary, protein supplementation in sports nutrition is a very promising field of research, whose future perspective lies with the search for alternatives with greater bioactive potential and more sustainable than conventional sources.
Collapse
Affiliation(s)
- Manuel I. López-Martínez
- Departamento de Bioactividad y Análisis de Alimenos, Instituto de Investigación en Ciencias de la Alimentación (CIAL, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Marta Miguel
- Departamento de Bioactividad y Análisis de Alimenos, Instituto de Investigación en Ciencias de la Alimentación (CIAL, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
- *Correspondence: Marta Miguel
| | - Marta Garcés-Rimón
- Grupo de Investigación en Biotecnología Alimentaria, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
9
|
Paladii IV, Vrabie EG, Sprinchan KG, Bologa MK. Part 1: Classification, Composition, Properties, Derivatives, and Application. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Rodrigues LA, Matias AA, Paiva A. Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Sun C, Shan Y, Tang X, Han D, Wu X, Wu H, Hosseininezhad M. Effects of enzymatic hydrolysis on physicochemical property and antioxidant activity of mulberry ( Morus atropurpurea Roxb.) leaf protein. Food Sci Nutr 2021; 9:5379-5390. [PMID: 34646509 PMCID: PMC8498073 DOI: 10.1002/fsn3.2474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
To improve the antioxidant efficiency of mulberry leaf protein (MLP), alcalase, protamex, papain, flavourzyme, neutrase, and trypsin were used to hydrolyze MLP. The yield of soluble peptides, secondary structures, molecular weight distributions, and antioxidant activities of MLP hydrolysates (MLPHs) were investigated. Results showed that the native MLP was rich in the fraction above 6.5 kDa and was mainly composed of β-sheets, while MLPHs were abundant in the fractions of 0.3-0.6 kDa and 0.6-6.5 kDa and were mainly composed of disordered coils and β-folds. Limited hydrolysis of MLP could lead to better antioxidant activity than extensive hydrolysis. After enzymatic hydrolysis, the content of total sugar and total phenol in MLP increased significantly. MLP hydrolysates prepared with neutrase, alcalase, and protamex were preferable to other enzymes. Meanwhile, an enzyme to substrate level of 1% and a hydrolysis time of 2 hr were the optimum conditions to obtain higher antioxidant hydrolysates using neutrase.
Collapse
Affiliation(s)
- Chongzhen Sun
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Yangwei Shan
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Xin Tang
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Duo Han
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Xiyang Wu
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Hui Wu
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Marzieh Hosseininezhad
- Department of Food BiotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
12
|
Carbohydrate and Protein Co-Ingestion Postexercise Does Not Improve Next-Day Performance in Trained Cyclists. Int J Sport Nutr Exerc Metab 2021; 31:466-474. [PMID: 34453013 DOI: 10.1123/ijsnem.2021-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg-1·2 hr-1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg-1·2 hr-1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L-1·2 hr-1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L-1·2 hr-1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.
Collapse
|
13
|
Shen M, Zhang W, Wu G, Zhu L, Qi X, Zhang H. A systematic review and meta-analysis: Effects of protein hydrolysate supplementation on fat-free mass and strength in resistance-trained individuals. Crit Rev Food Sci Nutr 2021; 63:964-974. [PMID: 34319174 DOI: 10.1080/10408398.2021.1956877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The quality of the existing evidence on the effects of protein hydrolysate supplementation on fat-free mass (FFM) and upper and lower body strength under resistance exercise intervention has not been evaluated. We conducted a structured literature search in PubMed, Web of Science, Cochrane Library, and Scopus database. A random effect model was used with continuous data of FFM and upper and lower body strength for healthy participants over 18 years old who received resistance training for ≥4 weeks and took protein hydrolysate or equivalent control supplements. Sensitivity and subgroup analyses were also conducted. Data from 330 participants in eight studies showed that supplemental protein hydrolysate had a positive effect on the FFM (n = 13, SMD = 0.36, 95% confidence interval (CI): 0.16-0.56, P = 0.000) and lower (n = 7, SMD = 0.43, 95% CI: 0.16-0.69, P = 0.001) and upper (n = 5, SMD = 0.17, 95% CI: -0.06-0.41, P = 0.145) body strength of resistance-trained individuals compared with placebo, showing an increase in physical fitness and muscle strength. However, the current evidence is insufficient to establish ingestion recommendations.
Collapse
Affiliation(s)
- Meng Shen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenjing Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Daher D, Deracinois B, Courcoux P, Baniel A, Chollet S, Froidevaux R, Flahaut C. Sensopeptidomic Kinetic Approach Combined with Decision Trees and Random Forests to Study the Bitterness during Enzymatic Hydrolysis Kinetics of Micellar Caseins. Foods 2021; 10:foods10061312. [PMID: 34200404 PMCID: PMC8228083 DOI: 10.3390/foods10061312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Protein hydrolysates are, in general, mixtures of amino acids and small peptides able to supply the body with the constituent elements of proteins in a directly assimilable form. They are therefore characterised as products with high nutritional value. However, hydrolysed proteins display an unpleasant bitter taste and possible off-flavours which limit the field of their nutrition applications. The successful identification and characterisation of bitter protein hydrolysates and, more precisely, the peptides responsible for this unpleasant taste are essential for nutritional research. Due to the large number of peptides generated during hydrolysis, there is an urgent need to develop methods in order to rapidly characterise the bitterness of protein hydrolysates. In this article, two enzymatic hydrolysis kinetics of micellar milk caseins were performed for 9 h. For both kinetics, the optimal time to obtain a hydrolysate with appreciable organoleptic qualities is 5 h. Then, the influence of the presence or absence of peptides and their intensity over time compared to the different sensory characteristics of hydrolysates was studied using heat maps, random forests and regression trees. A total of 22 peptides formed during the enzymatic proteolysis of micellar caseins and influencing the bitterness the most were identified. These methods represent simple and efficient tools to identify the peptides susceptibly responsible for bitterness intensity and predict the main sensory feature of micellar casein enzymatic hydrolysates.
Collapse
Affiliation(s)
- Dahlia Daher
- UMR Transfrontalière 1158 BioEcoAgro, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; (D.D.); (B.D.); (S.C.); (R.F.)
- Ingredia S.A. 51 Av. Lobbedez-CS 60946, CEDEX, 62033 Arras, France;
| | - Barbara Deracinois
- UMR Transfrontalière 1158 BioEcoAgro, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; (D.D.); (B.D.); (S.C.); (R.F.)
| | - Philippe Courcoux
- Oniris, StatSC, rue de la Géraudière, 44322 Nantes, France;
- INRA USC1381, 44322 Nantes, France
| | - Alain Baniel
- Ingredia S.A. 51 Av. Lobbedez-CS 60946, CEDEX, 62033 Arras, France;
| | - Sylvie Chollet
- UMR Transfrontalière 1158 BioEcoAgro, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; (D.D.); (B.D.); (S.C.); (R.F.)
| | - Rénato Froidevaux
- UMR Transfrontalière 1158 BioEcoAgro, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; (D.D.); (B.D.); (S.C.); (R.F.)
| | - Christophe Flahaut
- UMR Transfrontalière 1158 BioEcoAgro, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; (D.D.); (B.D.); (S.C.); (R.F.)
- Correspondence: ; Tel.: +33-321791780
| |
Collapse
|
15
|
Amino Acid Profiling with Chemometric Analysis as a Feasible Tool for the Discrimination of Marine-Derived Peptide Powders. Foods 2021; 10:foods10061294. [PMID: 34199884 PMCID: PMC8229220 DOI: 10.3390/foods10061294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/28/2023] Open
Abstract
Marine-derived peptide powders have suffered from adulteration via the substitution of lower-price peptides or the addition of adulterants in the market. This study aims to establish an effective approach for the discrimination and detection of adulterants for four representative categories of marine-derived peptide powders, namely, oyster peptides, sea cucumber peptides, Antarctic krill peptides, and fish skin peptides, based on amino acid profiling alongside chemometric analysis. The principal component analysis and orthogonal partial least squares discriminant analysis results indicate that four categories of marine-derived peptides could be distinctly classified into four clusters and aggregated with the respective raw materials. Taurine, glycine, lysine, and protein contents were the major discriminants. A reliable classification model was constructed and validated by the prediction dataset, mixture sample dataset, and unclassified sample dataset with accuracy values of 100%, 100%, and 100%, respectively.
Collapse
|
16
|
Kumar D, Mishra A, Tarafdar A, Kumar Y, Verma K, Aluko R, Trajkovska B, Badgujar PC. In vitro bioaccessibility and characterisation of spent hen meat hydrolysate powder prepared by spray and freeze-drying techniques. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Morgan PT, Breen L. The role of protein hydrolysates for exercise-induced skeletal muscle recovery and adaptation: a current perspective. Nutr Metab (Lond) 2021; 18:44. [PMID: 33882976 PMCID: PMC8061049 DOI: 10.1186/s12986-021-00574-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
The protein supplement industry is expanding rapidly and estimated to have a multi-billion market worth. Recent research has centred on understanding how the manufacturing processes of protein supplements may impact muscle recovery and remodeling. The hydrolysed forms of protein undergo a further heating extraction process during production which may contribute to amino acids (AA) appearing in circulation at a slightly quicker rate, or greater amplitude, than the intact form. Whilst the relative significance of the rate of aminoacidemia to muscle protein synthesis is debated, it has been suggested that protein hydrolysates, potentially through the more rapid delivery and higher proportion of di-, tri- and smaller oligo-peptides into circulation, are superior to intact non-hydrolysed proteins and free AAs in promoting skeletal muscle protein remodeling and recovery. However, despite these claims, there is currently insufficient evidence to support superior muscle anabolic properties compared with intact non-hydrolysed proteins and/or free AA controls. Further research is warranted with appropriate protein controls, particularly in populations consuming insufficient amounts of protein, to support and/or refute an important muscle anabolic role of protein hydrolysates. The primary purpose of this review is to provide the reader with a current perspective on the potential anabolic effects of protein hydrolysates in individuals wishing to optimise recovery from, and maximise adaptation to, exercise training.
Collapse
Affiliation(s)
- Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
18
|
D'Souza K, Acquah C, Mercer A, Paudel Y, Pulinilkunnil T, Udenigwe CC, Kienesberger PC. Whey peptides exacerbate body weight gain and perturb systemic glucose and tissue lipid metabolism in male high-fat fed mice. Food Funct 2021; 12:3552-3561. [PMID: 33900305 DOI: 10.1039/d0fo02610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumption of milk-derived whey proteins has been demonstrated to have insulin-sensitizing effects in mice and humans, in part through the generation of bioactive whey peptides. While whey peptides can prevent insulin resistance in vitro, it is unclear whether consumption of whey peptides can prevent obesity-induced metabolic dysfunction in vivo. We sought to determine whether whey peptides consumption can protect from high fat (HF) diet-induced obesity and dysregulation of glucose homeostasis. Male C57BL/6J mice were fed either a low or HF diet for 13 weeks. HF diet fed mice were provided drinking water with no addition (control), undigested whey protein isolate (WPI, 1 mg ml-1) or whey protein hydrolysate (WPH, 1 mg ml-1) throughout the diet regimen. Mice consuming WPH gained more body weight and were more glucose intolerant compared to those consuming WPI or water only. Despite increased body weight gain, perigonadal adipose tissue weight and lipid accumulation were unchanged. However, excess lipids accumulated ectopically in the liver and skeletal muscle in mice consuming WPH, which was associated with elevated inflammatory markers systemically and in adipose tissue, liver, and skeletal muscle. In skeletal muscle, mitochondrial fat oxidation and electron transport chain proteins were decreased with WPH consumption, indicative of mitochondrial dysfunction. Taken together, our results demonstrate that WPH, but not WPI, exacerbates HF-induced body weight gain and impairs glucose homeostasis, which is accompanied by increased inflammation, ectopic fat accumulation and mitochondrial dysfunction. Thus, our results argue against the use of dietary whey peptide supplementation as a preventative option against HF diet-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Kenneth D'Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Jin J, Ohanenye IC, Udenigwe CC. Buckwheat proteins: functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Crit Rev Food Sci Nutr 2020; 62:1752-1764. [PMID: 33191773 DOI: 10.1080/10408398.2020.1847027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The need for protein in human nutrition is rapidly increasing because of the increasing world population and consumer preference for high-protein foods. Plant proteins are gaining attention as sustainable means of meeting the global protein need due to their lower carbon footprint. Nonetheless, the food industry has neglected or underutilized many plant proteins, including buckwheat protein. Buckwheat is a pseudocereal and its groats contain beneficial components such as proteins, dietary fiber, vitamins, and bioactive polyphenols. The protein quality of buckwheat seeds varies between the tartary and common buckwheat types; both are gluten-free and contain considerable amount of indispensable amino acids. This review provides a detailed discussion on the profile, amino acid composition, digestibility, allergenicity, functional properties, and bioactivity of buckwheat proteins. Prospects of processing buckwheat for improving protein digestibility and deactivating allergenic epitopes were also discussed. Based on the literature, buckwheat protein has a tremendous potential for utilization in structuring food products and developing peptide-based functional foods for disease prevention. Future research should develop new processing technologies for further improvement of the quality and functional properties of buckwheat protein in order to facilitate its utilization as an alternative plant-based protein toward meeting the global protein supply.
Collapse
Affiliation(s)
- Jian Jin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.,School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Ikenna C Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Soluble Whey Protein Hydrolysate Ameliorates Muscle Atrophy Induced by Immobilization via Regulating the PI3K/Akt Pathway in C57BL/6 Mice. Nutrients 2020; 12:nu12113362. [PMID: 33139592 PMCID: PMC7692342 DOI: 10.3390/nu12113362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia, a loss of skeletal muscle mass and function, is prevalent in older people and associated with functional decline and mortality. Protein supplementation is necessary to maintain skeletal muscle mass and whey protein hydrolysates have the best nutrient quality among food proteins. In the first study, C57BL/6 mice were subjected to immobilization for 1 week to induce muscle atrophy. Then, mice were administered with four different whey protein hydrolysates for 2 weeks with continuous immobilization. Among them, soluble whey protein hydrolysate (WP-S) had the greatest increase in grip strength, muscle weight, and cross-sectional area of muscle fiber than other whey protein hydrolysates. To investigate the molecular mechanism, we conducted another experiment with the same experimental design. WP-S significantly promoted the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway and inhibited the PI3K/Akt/forkhead box O (FoxO) pathway. In addition, it increased myosin heavy chain (MyHC) expression in both the soleus and quadriceps and changed MyHC isoform expressions. In conclusion, WP-S attenuated muscle atrophy induced by immobilization by enhancing the net protein content regulating muscle protein synthesis and degradation. Thus, it is a necessary and probable candidate for developing functional food to prevent sarcopenia.
Collapse
|
21
|
Fu Y, Zhang Y, Soladoye OP, Aluko RE. Maillard reaction products derived from food protein-derived peptides: insights into flavor and bioactivity. Crit Rev Food Sci Nutr 2019; 60:3429-3442. [PMID: 31738577 DOI: 10.1080/10408398.2019.1691500] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Food protein-derived peptides serve as food ingredients that can influence flavor and bioactivity of foods. The Maillard reaction plays a crucial role in food processing and storage, and generates a wide range of Maillard reaction products (MRPs) that contribute to flavor and bioactivity of foods. Even though the reactions between proteins and carbohydrates have been extensively investigated, the modifications of food protein-derived peptides and the subsequent impacts on flavor and bioactivity of foods have not been fully elucidated. In this review, the flavor and bioactive properties of food-derived peptides are reviewed. The formation mechanisms with respect to MRPs generated from food protein-derived peptides have been discussed. The state-of-the-art studies on impacts of the Maillard reaction on flavor and bioactivity of food protein-derived peptides are also discussed. In addition, some potential negative effects of MRPs are described.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta, Canada
| | - Rotimi E Aluko
- College of Food Science, Southwest University, Chongqing, China.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Mjøs I, Thorsen E, Hausken T, Lied E, Nilsen RM, Brønstad I, Edvardsen E, Frisk B. The effect of low dose marine protein hydrolysates on short-term recovery after high intensity performance cycling: a double-blinded crossover study. J Int Soc Sports Nutr 2019; 16:48. [PMID: 31665070 PMCID: PMC6819466 DOI: 10.1186/s12970-019-0318-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/10/2019] [Indexed: 11/23/2022] Open
Abstract
Background Knowledge of the effect of marine protein hydrolysate (MPH) supplementation to promote recovery after high intensity performance training is scarce. The aim of this study was to examine the effect of MPH supplementation to whey protein (WP) and carbohydrate (CHO): (CHO-WP-MPH), on short-term recovery following high intensity performance, compared to an isoenergetic and isonitrogenous supplement of WP and CHO: (CHO-WP), in male cyclists. Methods This was a double-blinded crossover study divided into three phases. Fourteen healthy men participated. In phase I, an incremental bicycle exercise test was performed for establishment of intensities used in phase II and III. In phase II (9–16 days after phase 1), the participants performed first one high intensity performance cycling session, followed by nutrition supplementation (CHO-WP-MPH or CHO-WP) and 4 hours of recovery, before a subsequent high intensity performance cycling session. Phase III (1 week after phase II), was similar to phase II except for the nutrition supplementation, where the participants received the opposite supplementation compared to phase II. Primary outcome was difference in time to exhaustion between the cycling sessions, after nutrition supplementations containing MPH or without MPH. Secondary outcomes were differences in heart rate (HR), respiratory exchange ratio (RER), blood lactate concentration and glucose. Results The mean age of the participants was 45.6 years (range 40–58). The maximal oxygen uptake (mean ± SD) measured at baseline was 54.7 ± 4.1 ml∙min− 1∙kg− 1. There were no significant differences between the two nutrition supplementations measured by time to exhaustion at the cycling sessions (meandiff = 0.85 min, p = 0.156, 95% confidence interval (CI), − 0.37, 2.06), HR (meandiff = 0.8 beats pr.min, p = 0.331, 95% CI, − 0.9, 2.5), RER (meandiff = − 0.05, p = 0.361, 95% CI -0.07 – 0.17), blood lactate concentration (meandiff = − 0.24, p = 0.511, 95% CI, − 1.00, 0.53) and glucose (meandiff = 0.23, p = 0.094, 95% CI, − 0.05, 0.51). Conclusions A protein supplement with MPH showed no effects on short-term recovery in middle-aged healthy male cyclists compared to a protein supplement without MPH. Trial registration The study was registered 02.05.2017 at ClinicalTrials.gov (Protein Supplements to Cyclists, NCT03136133, https://clinicaltrials.gov/ct2/show/NCT03136133?cond=marine+peptides&rank=1.
Collapse
Affiliation(s)
- Ingunn Mjøs
- Department of Health and Functioning, Western Norway University of Applied Sciences, Pb. 7030, 5020, Bergen, Norway.,Department of Physiotherapy, Haukeland University Hospital, Bergen, Norway
| | - Einar Thorsen
- Dept. of Clinical Science, University of Bergen, Bergen, Norway.,Dept. of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Trygve Hausken
- Dept. of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Einar Lied
- Firmenich Bjørge Biomarin A/S, Aalesund, Norway
| | - Roy M Nilsen
- Department of Health and Functioning, Western Norway University of Applied Sciences, Pb. 7030, 5020, Bergen, Norway
| | - Ingeborg Brønstad
- Dept. of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Edvardsen
- Dept. of Pulmonary Medicine, Oslo University Hospital, Ullevål, Oslo, Norway.,Norwegian School of Sport Sciences, Oslo, Norway
| | - Bente Frisk
- Department of Health and Functioning, Western Norway University of Applied Sciences, Pb. 7030, 5020, Bergen, Norway. .,Department of Physiotherapy, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
23
|
Pucciarini L, Gilardoni E, Ianni F, D'Amato A, Marrone V, Fumagalli L, Regazzoni L, Aldini G, Carini M, Sardella R. Development and validation of a HPLC method for the direct separation of carnosine enantiomers and analogues in dietary supplements. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121747. [DOI: 10.1016/j.jchromb.2019.121747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/05/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
|
24
|
Arenas-Jal M, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E. Trends in the food and sports nutrition industry: A review. Crit Rev Food Sci Nutr 2019; 60:2405-2421. [DOI: 10.1080/10408398.2019.1643287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Arenas-Jal
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - J. M. Suñé-Negre
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Pilar Pérez-Lozano
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Encarna García-Montoya
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Sartorius T, Weidner A, Dharsono T, Boulier A, Wilhelm M, Schön C. Postprandial Effects of a Proprietary Milk Protein Hydrolysate Containing Bioactive Peptides in Prediabetic Subjects. Nutrients 2019; 11:E1700. [PMID: 31340611 PMCID: PMC6683050 DOI: 10.3390/nu11071700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Milk proteins have been hypothesized to protect against type 2 diabetes (T2DM) by beneficially modulating glycemic response, predominantly in the postprandial status. This potential is, amongst others, attributed to the high content of whey proteins, which are commonly a product of cheese production. However, native whey has received substantial attention due to its higher leucine content, and its postprandial glycemic effect has not been assessed thus far in prediabetes. In the present study, the impact of a milk protein hydrolysate of native whey origin with alpha-glucosidase inhibiting properties was determined in prediabetics in a randomized, cross-over trial. Subjects received a single dose of placebo or low- or high-dosed milk protein hydrolysate prior to a challenge meal high in carbohydrates. Concentration-time curves of glucose and insulin were assessed. Incremental areas under the curve (iAUC) of glucose as the primary outcome were significantly reduced by low-dosed milk peptides compared to placebo (p = 0.0472), and a minor insulinotropic effect was seen. A longer intervention period with the low-dosed product did not strengthen glucose response but significantly reduced HbA1c values (p = 0.0244). In conclusion, the current milk protein hydrolysate of native whey origin has the potential to modulate postprandial hyperglycemia and hence may contribute in reducing the future risk of developing T2DM.
Collapse
Affiliation(s)
- Tina Sartorius
- BioTeSys GmbH, Schelztorstr. 54-56, 73728 Esslingen, Germany
| | - Andrea Weidner
- BioTeSys GmbH, Schelztorstr. 54-56, 73728 Esslingen, Germany
| | - Tanita Dharsono
- BioTeSys GmbH, Schelztorstr. 54-56, 73728 Esslingen, Germany
| | - Audrey Boulier
- Ingredia S.A., 51 Avenue F. Lobbedez CS 60946, 62033 Arras CEDEX, France
| | - Manfred Wilhelm
- Department of Mathematics, Natural and Economic Sciences, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081 Ulm, Germany
| | | |
Collapse
|
26
|
Park Y, Park HY, Kim J, Hwang H, Jung Y, Kreider R, Lim K. Effects of whey protein supplementation prior to, and following, resistance exercise on body composition and training responses: A randomized double-blind placebo-controlled study. J Exerc Nutrition Biochem 2019; 23:34-44. [PMID: 31337204 PMCID: PMC6651693 DOI: 10.20463/jenb.2019.0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The composition of protein supplements, the consumption timing immedi¬ately before and after resistance exercise training (RET), and the quantity of protein supplementation may be important factors for the im-provement of muscle mass and function. Although these factors should be considered comprehensively for effective improvement of muscular function in protein supplementation, relatively few studies have focused on this area. Therefore, this study was designed to investigate whether a protein blend supplement before and after resistance exercise for 12 weeks would be effective in increasing muscular function. METHODS In total, 18 participants were randomly assigned to a placebo (PLA) or protein blend supplement (PRO) group. All subjects followed the same training routine 3 times per week for 12 weeks, taking placebo or protein supplements immediately before and after each exercise session. The protein supplement consisted of 40 g of blend protein, including hydrolyzed whey protein. The RET consisted of lower body (barbell squat, dead lift, seated leg extension, and lying leg curl) and upper body (bench press, barbell rowing, preacher bench biceps curl, and dumbbell shoulder press) exercises. A repetition was defined as three sets of 10-12 times with 80% of one repetition maximum (1RM). RESULTS Although the PRO group had a lower protein intake in terms of total food intake than the PLA group, the mean changes in muscle circumference, strength, and exercise volume increased, especially at week 12, compared to the PLA group. CONCLUSION These results suggest that the composition and timing of protein intake are more important than the total amount.
Collapse
Affiliation(s)
- Yeram Park
- Department of Physical Education, Konkuk University, SeoulRepublic of Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Jisu Kim
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Hyejung Hwang
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Yanghoon Jung
- CJ Research Institute, CJ CheilJedang, SuwonRepublic of Korea
| | - Richard Kreider
- Department of Health and Kinesiology, Texas A&M University, TexasU.S.A.
| | - Kiwon Lim
- Department of Physical Education, Konkuk University, SeoulRepublic of Korea
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| |
Collapse
|
27
|
A systematic evaluation of various methods for quantifying food protein hydrolysate peptides. Food Chem 2019; 270:25-31. [DOI: 10.1016/j.foodchem.2018.07.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 01/05/2023]
|
28
|
Antioxidative Role of Buffalo (Bubalus bubalis) Colostrum Whey Derived Peptides During Oxidative Damage. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9795-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Fu Y, Chen J, Bak KH, Lametsch R. Valorisation of protein hydrolysates from animal by‐products: perspectives on bitter taste and debittering methods: a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Fu
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
| | - Jingru Chen
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
- College of Food Science and Nutritional Engineering China Agricultural University No. 17 Qinghua East Road, Haidian District Beijing 100083 China
| | - Kathrine H. Bak
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
| | - René Lametsch
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
| |
Collapse
|
30
|
Saidi O, Bezrati-Ben Ayed I, Benzarti A, Duché P, Serairi R. Intake of carbohydrate-protein supplements by recreational users at gyms: Body composition improved? Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The Gut Microbiota of Marine Fish. Front Microbiol 2018; 9:873. [PMID: 29780377 PMCID: PMC5946678 DOI: 10.3389/fmicb.2018.00873] [Citation(s) in RCA: 364] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research.
Collapse
Affiliation(s)
- Sian Egerton
- School of Microbiology, University College Cork, Cork, Ireland.,School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Sarah Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jason Whooley
- Bio-marine Ingredients Ireland Ltd., Killybegs, Ireland
| | - Catherine Stanton
- Teagasc Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Teagasc and University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,Teagasc Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Teagasc and University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Nakayama K, Sanbongi C, Ikegami S. Effects of Whey Protein Hydrolysate Ingestion on Postprandial Aminoacidemia Compared with a Free Amino Acid Mixture in Young Men. Nutrients 2018; 10:nu10040507. [PMID: 29671767 PMCID: PMC5946292 DOI: 10.3390/nu10040507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023] Open
Abstract
To stimulate muscle protein synthesis, it is important to increase the plasma levels of essential amino acids (EAA), especially leucine, by ingesting proteins. Protein hydrolysate ingestion can induce postprandial hyperaminoacidemia; however, it is unclear whether protein hydrolysate is associated with higher levels of aminoacidemia compared with a free amino acid mixture when both are ingested orally. We assessed the effects of whey protein hydrolysate (WPH) ingestion on postprandial aminoacidemia, especially plasma leucine levels, compared to ingestion of a free amino acid mixture. This study was an open-label, randomized, 4 × 4 Latin square design. After 12–15 h of fasting, 11 healthy young men ingested the WPH (3.3, 5.0, or 7.5 g of protein) or the EAA mixture (2.5 g). Blood samples were collected before ingestion and at time points from 10 to 120 min after ingestion, and amino acids, insulin, glucose and insulin-like growth factor-1 (IGF-1) concentrations in plasma were measured. Even though the EAA mixture and 5.0 g of the WPH contained similar amounts of EAA and leucine, the WPH was associated with significantly higher plasma EAA and leucine levels. These results suggest that the WPH can induce a higher level of aminoacidemia compared with a free amino acid mixture when both are ingested orally.
Collapse
Affiliation(s)
- Kyosuke Nakayama
- Food Science & Technology Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan.
| | - Chiaki Sanbongi
- Food Science & Technology Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan.
| | - Shuji Ikegami
- Food Science & Technology Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan.
| |
Collapse
|
33
|
Bertram HC, Jakobsen LMA. Nutrimetabolomics: integrating metabolomics in nutrition to disentangle intake of animal-based foods. Metabolomics 2018; 14:34. [PMID: 30830329 DOI: 10.1007/s11306-018-1322-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/09/2018] [Indexed: 01/14/2023]
Abstract
Food intake and metabolization of foods is a complex and multi-facetted process that encompasses the introduction of new metabolite compounds in our body, initiation or alterations in endogenous metabolic processes and biochemical pathways, and likely also involving the activity of the gut microbial community that we host. The explorative nature of metabolomics makes it a superior tool for examining the whole response to food intake in a more thorough way and has led to the introduction of the term nutrimetabolomics. Protein derived from animal sources constitutes an important part of our diet, and there is therefore an interest in understanding how these animal-derived dietary sources influence us metabolically. This review aims to illuminate how the introduction of nutrimetabolomics has contributed to gain novel insight into metabolic and nutritional aspects related to intake of animal-based foods.
Collapse
|
34
|
Rondanelli M, Aquilani R, Verri M, Boschi F, Pasini E, Perna S, Faliva A, Condino AM. Plasma kinetics of essential amino acids following their ingestion as free formula or as dietary protein components. Aging Clin Exp Res 2017; 29:801-805. [PMID: 27406393 DOI: 10.1007/s40520-016-0605-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/28/2016] [Indexed: 12/01/2022]
Abstract
This investigation compares the levels of plasma kinetics of plasma essential amino acids (EAAs) after ingestion as free-form EAAs (FEAAs) or EAAs as components of dietary protein (DPEAAs), in eighteen healthy individuals, nine elderly (85 ± 6.7 years; 4 male) and nine young (28.7 ± 7 years; 3 males). For two consecutive days, each subject ingested EAAs in the form of (FEAAs) or (DPEAAs) in a random alternate pattern. Five minutes before EAA ingestion (baseline) and 30, 60, 90, 150 and 270 min after, venous blood samples were taken to determine the concentrations of EAAS (micromol/L). In both groups, ingested FEAAs compared to DPEAAs led to faster increase in plasma EAA levels at 30-150 min (p < 0.0001). Moreover, the increased plasma EAAs disappeared faster after FEAA compared to DPEAA. These results may be important in those subjects who have high requirement both for EAAs substrates and anabolic efficiency.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental Medicine & Forensic Section of Human Nutrition and Dietetics, School of Medicine, Azienda di Servizi alla Persona di Pavia, Servizio Endocrino Nutrizionale, Istituto di Riabilitazione "Santa Margherita", University of Pavia, 27100, Pavia, Italy
| | - Roberto Aquilani
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Manuela Verri
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli, 14, 27100, Pavia, Italy
| | - Evasio Pasini
- Fondazione S. Maugeri, IRCCS, Istituto Scientifico di Lumezzane, Via Mazzini, 9, 25065, Lumezzane, Brescia, Italy
| | - Simone Perna
- Department of Public Health, Experimental Medicine & Forensic Section of Human Nutrition and Dietetics, School of Medicine, Azienda di Servizi alla Persona di Pavia, Servizio Endocrino Nutrizionale, Istituto di Riabilitazione "Santa Margherita", University of Pavia, 27100, Pavia, Italy
| | - Anna Faliva
- Department of Public Health, Experimental Medicine & Forensic Section of Human Nutrition and Dietetics, School of Medicine, Azienda di Servizi alla Persona di Pavia, Servizio Endocrino Nutrizionale, Istituto di Riabilitazione "Santa Margherita", University of Pavia, 27100, Pavia, Italy
| | - Anna Maria Condino
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli, 14, 27100, Pavia, Italy.
| |
Collapse
|
35
|
Choi JS, Kim JW, Park JB, Pyo SE, Hong YK, Ku SK, Kim MR. Blood glycemia-modulating effects of melanian snail protein hydrolysates in mice with type II diabetes. Int J Mol Med 2017; 39:1437-1451. [PMID: 28487991 PMCID: PMC5428967 DOI: 10.3892/ijmm.2017.2967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
Freshwater animal proteins have long been used as nutrient supplements. In this study, melanian snail (Semisulcospira libertina) protein hydrolysates (MPh) were found to exert anti-diabetic and protective effects against liver and kidney damage in mice with type II diabetes adapted to a 45% kcal high-fat diet (HFD). The hypoglycemic, hepatoprotective and nephroprotective effects of MPh were analyzed after 12 weeks of the continuous oral administration of MPh at 125, 250 and 500 mg/kg. Diabetic control mice exhibited an increase in body weight, and blood glucose and insulin levels, with a decrease in serum high-density lipoprotein (HDL) levels. In addition, an increase in the regions of steatohepatitis, hepatocyte hypertrophy, and lipid droplet deposit-related renal tubular vacuolation degenerative lesions were detected, with noticeable expansion and hyperplasia of the pancreatic islets, and an increase in glucagon- and insulin-producing cells, insulin/glucagon cell ratios in the endocrine pancreas and hepatic lipid peroxidation, as well as decreased zymogen contents. Furthermore, a deterioration of the endogenous antioxidant defense system was observed, with reduced glucose utilization related hepatic glucokinase (GK) activity and an increase in hepatic gluconeogenesis-related phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6pase) activity. However, all of these diabetic complications were significantly inhibited by oral treatment with MPh in a dose-dependent manner. In addition, the marked dose-dependent inhibition of hepatic lipid peroxidation, the depletion of the liver endogenous antioxidant defense system, and changes in hepatic glucose-regulating enzyme activities were also observed. The results of this study suggest that MPh exerts potent anti-diabetic effects, along with the amelioration of related complications in mice with type II diabetes. The overall effects of MPh at a dose of 125 mg/kg on HFD-induced diabetes and related complications were similar or more potent than those of metformin (250 mg/kg).
Collapse
Affiliation(s)
- Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| | - Joo-Wan Kim
- Aribio Inc., Byeoksan Digital Valley, Yeongdeungpo-gu, Seoul 07286, Republic of Korea
| | - Jeong Been Park
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| | - Sang Eun Pyo
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Nam-Gu, Busan 48513, Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Mi-Ryung Kim
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| |
Collapse
|
36
|
Roeseler DA, McGraw NJ, Butteiger DN, Shah N, Hall-Porter J, Mukherjea R, Krul ES. Muscle Protein Signaling in C2C12 Cells Is Stimulated to Similar Degrees by Diverse Commercial Food Protein Sources and Experimental Soy Protein Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2956-2964. [PMID: 28339214 DOI: 10.1021/acs.jafc.6b05460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dietary protein stimulates muscle protein synthesis and is essential for muscle health. We developed a screening assay using C2C12 mouse muscle cells to assess the relative abilities of diverse commercial protein sources and experimental soy protein hydrolysates (ESH), after simulated gut digestion (SGD), to activate the mechanistic target of rapamycin complex I (mTORC1) muscle protein synthesis signaling pathway (p70S6K(Thr389) phosphorylation). Activation of mTORC1 was expressed as a percentage of a maximal insulin response. The bioactivities of proteins grouped by source including fish (81.3 ± 10.6%), soy (66.2 ± 4.7%), dairy (61.8 ± 4.3%), beef (53.7 ± 8.6%), egg (52.3 ± 10.6%), soy whey (43.4 ± 8.6%), and pea (31.4 ± 10.6%) were not significantly different from each other. Bioactivity for ESH ranged from 28.0 ± 7.5 to 98.2 ± 6.6%. The results indicate that both the protein source and processing conditions are key determinants for mTORC1 activation. Regression analyses demonstrated that neither leucine nor total branched-chain amino acid content of proteins is the sole predictor of mTORC1 activity and that additional factors are necessary.
Collapse
Affiliation(s)
- David A Roeseler
- DuPont Nutrition & Health , St. Louis, Missouri 63110, United States
| | - Nancy J McGraw
- DuPont Nutrition & Health , St. Louis, Missouri 63110, United States
| | | | - Naina Shah
- DuPont Nutrition & Health , St. Louis, Missouri 63110, United States
| | | | - Ratna Mukherjea
- DuPont Nutrition & Health , St. Louis, Missouri 63110, United States
| | - Elaine S Krul
- DuPont Nutrition & Health , St. Louis, Missouri 63110, United States
| |
Collapse
|
37
|
Abd El-Salam MH, El-Shibiny S. Preparation, properties, and uses of enzymatic milk protein hydrolysates. Crit Rev Food Sci Nutr 2017; 57:1119-1132. [PMID: 25880259 DOI: 10.1080/10408398.2014.899200] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Enzymatic hydrolysis of milk proteins has been a subject of numerous research studies and patents. The driving force for these studies has been the increased utilization of milk proteins. The industrial uses of milk proteins are based on their unique composition, functionality, and nutritive values. The diversity of milk protein fraction, the large number of proteinases, and controlled hydrolysis conditions used resulted in the preparation of hydrolysates suitable for several purposes. Enzymatic hydrolysis of milk proteins modifies the techno-functional and biofunctional properties of hydrolysates depending on the enzyme(s) and hydrolysis conditions used. Milk protein hydrolysates (MPH) are used commonly in normal and clinical nutrition and as a functional food ingredient. In the present review, emphasis has been made to highlight methods applied for the preparation of MPH, and the functional properties and utilization of the obtained hydrolysates.
Collapse
Affiliation(s)
- M H Abd El-Salam
- a Dairy Department , National Research Centre , Dokki, Cairo , Egypt
| | - S El-Shibiny
- a Dairy Department , National Research Centre , Dokki, Cairo , Egypt
| |
Collapse
|
38
|
Ashok NR, Aparna HS. Empirical and bioinformatic characterization of buffalo (Bubalus bubalis) colostrum whey peptides & their angiotensin I-converting enzyme inhibition. Food Chem 2017; 228:582-594. [PMID: 28317767 DOI: 10.1016/j.foodchem.2017.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
Whey based peptides are well known for their nutritional and multifunctional properties. In this context, whey proteins from buffalo colostrum & milk were digested by in vitro simulation digestion and analyzed by nano-LC-MS/MS. Functional protein association networks, gene annotations and localization of identified proteins were carried out. An ACE inhibitory peptide sorted from the library was custom synthesized and an in vitro ACE assay was performed. The study led to the identification of 74 small peptides which were clustered into 5 gene functional groups and majority of them were secretory proteins. Among the identified peptides, majority of them were found identical to angiotensin I-converting enzyme (ACE) inhibitors, antioxidant, antimicrobial, immunomodulatory and opioidal peptides. An octapeptide (m/z - 902.51, IQKVAGTW) synthesized was found to inhibit ACE with an IC50 of 300±2µM. The present investigation thus establishes newer vista for food derived peptides having ACE inhibitory potential for nutraceutical or therapeutic applications.
Collapse
Affiliation(s)
- N R Ashok
- Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka 570 006 India
| | - H S Aparna
- Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka 570 006 India.
| |
Collapse
|
39
|
Hamarsland H, Laahne JAL, Paulsen G, Cotter M, Børsheim E, Raastad T. Native whey induces higher and faster leucinemia than other whey protein supplements and milk: a randomized controlled trial. BMC Nutr 2017. [DOI: 10.1186/s40795-017-0131-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
40
|
Abd El-Salam MH, El-Shibiny S. Separation of Bioactive Whey Proteins and Peptides. INGREDIENTS EXTRACTION BY PHYSICOCHEMICAL METHODS IN FOOD 2017:463-494. [DOI: 10.1016/b978-0-12-811521-3.00012-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
41
|
Nasri M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 81:109-159. [PMID: 28317603 DOI: 10.1016/bs.afnr.2016.10.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, a great deal of interest has been expressed regarding the production, characterization, and applications of protein hydrolysates and food-derived biopeptides due to their numerous beneficial health effects. In this regard, research is mainly focused on investigating the therapeutic potential of these natural compounds. Based on their amino acids composition, sequences, hydrophobicity, and length, peptides released from food proteins, beyond their nutritional properties, can exhibit various biological activities including antihypertensive, antioxidative, antithrombotic, hypoglycemic, hypocholesterolemic, and antibacterial activities among others. Protein hydrolysates are essentially produced by enzymatic hydrolysis of whole protein sources by appropriate proteolytic enzymes under controlled conditions, followed by posthydrolysis processing to isolate desired and potent bioactive peptides from a complex mixture of active and inactive peptides. Therefore, because of their human health potential and safety profiles, protein hydrolysates and biopeptides may be used as ingredients in functional foods and pharmaceuticals to improve human health and prevent diseases. In this review, we have focused on the major variables influencing the enzymatic process of protein hydrolysates production. The biological properties of protein hydrolysates will be described as well as their applications in foods and health benefits.
Collapse
Affiliation(s)
- M Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia.
| |
Collapse
|
42
|
Liang Z, Li L, Qi H, Zhang X, Xu Z, Li B. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates. Int J Mol Sci 2016; 17:ijms17071053. [PMID: 27384561 PMCID: PMC4964429 DOI: 10.3390/ijms17071053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/27/2022] Open
Abstract
Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs) in foods. Peptide-enriched drinks (PEDs) are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr). In this study we determined free-form pyrraline (Free-Pyr) and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH), soy protein hydrolysate (SPH) and collagen protein hydrolysate (CPH). A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE). The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD) of <5%. The limits of detection and quantification obtained were 30.4 and 70.3 ng/mL, respectively. Pep-Pyr was identified as the most abundant form (above 96 percent) of total pyrraline, whereas Free-Pyr was present in a small proportion (less than four percent) of total pyrraline. The results indicate that PED is an important extrinsic source of pyrraline, especially Pep-Pyr. As compared with CPH- and SPH-enriched drinks, WPH-enriched drinks contained high content of Pep-Pyr. The Pep-Pyr content is associated with the distribution of peptide lengths and the amino acid compositions of protein in PEDs.
Collapse
Affiliation(s)
- Zhili Liang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lin Li
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- University Affairs Committee, Dongguan University of Technology, Dongguan 523808, China.
| | - Haiping Qi
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xia Zhang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhenbo Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD 21201, USA.
| | - Bing Li
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
43
|
Size-exclusion HPLC as a sensitive and calibrationless method for complex peptide mixtures quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1006:71-79. [DOI: 10.1016/j.jchromb.2015.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/23/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
|
44
|
Application of peptidases from Maclura pomifera fruit for the production of active biopeptides from whey protein. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.05.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Jin J, Ma H, Zhou C, Luo M, Liu W, Qu W, He R, Luo L, Yagoub AEGA. Effect of degree of hydrolysis on the bioavailability of corn gluten meal hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2501-2509. [PMID: 25367020 DOI: 10.1002/jsfa.6982] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Under the situation that the shortage of proteins and large quantity of corn gluten meal (CGM), which is a superior protein resource, is under-exploited, the enzymatic hydrolysis of CGM was employed to improve its bioavailability because of its special amino acid composition. RESULTS The apparent faecal digestibility and true faecal digestibility of all corn gluten meal hydrolysates (CGMHs) decreased in varied amounts compared with those of CGM. However, the protein efficiency ratio, the net protein ratio, the biological value, and the net protein utilization of the CGMHs with degree of hydrolysis (DH) of 4.94% and with DH of 10.06% increased significantly (P < 0.05). The results of in vitro gastro-intestinal digestion showed that the molecular weight distribution and amino acid composition among different DHs resulted in variances in bioavailability. CONCLUSION Partial hydrolysis of CGM can improve its bioavailability, providing a future protein supplement for protein resources.
Collapse
Affiliation(s)
- Jian Jin
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
- Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
- Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Min Luo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Wan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
- Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Lin Luo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
- Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Abu El-Gasim A Yagoub
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
- Faulty of Agriculture, University of Zalingei, P.O. Box 6, Zalingei, Sudan
| |
Collapse
|
46
|
Brandelli A, Daroit DJ, Corrêa APF. Whey as a source of peptides with remarkable biological activities. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.01.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
|
48
|
Almeida CC, Monteiro MLG, Costa-Lima BRCD, Alvares TS, Conte-Junior CA. In vitro digestibility of commercial whey protein supplements. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.11.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Abstract
PURPOSE OF REVIEW To highlight the recent evicence for optimal protein intake and protein supplementation in older adults. A special focus has been placed on the effects on muscle protein synthesis, strength and overall performance in this population. RECENT FINDINGS Although for older adults, some additional evidence on the benefits of a higher protein intake than 0.8 g/kg body weight per day has been provided, the results of studies focusing on the timing of protein intake over the day have been contradictory. Supplementation with so-called 'fast' proteins, which are also rich in leucine, for example whey protein, proved superior with regard to muscle protein synthesis. First studies in frail older persons showed increased strength after supplementation with milk protein, whereas the combination with physical exercise increased muscle mass without additional benefit for strength or functionality. SUMMARY Recent evidence suggests positive effects of protein supplementation on muscle protein synthesis, muscle mass and muscle strength. However, as most studies included only small numbers of participants for short treatment periods, larger studies with longer duration are necessary to support the clinical relevance of these observations.
Collapse
Affiliation(s)
- Juergen M Bauer
- Department of Geriatric Medicine, Klinikum Oldenburg gGmbH, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
50
|
Spillane M, Schwarz N, Willoughby DS. Heavy resistance training and peri-exercise ingestion of a multi-ingredient ergogenic nutritional supplement in males: effects on body composition, muscle performance and markers of muscle protein synthesis. J Sports Sci Med 2014; 13:894-903. [PMID: 25435783 PMCID: PMC4234960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/29/2014] [Indexed: 06/04/2023]
Abstract
This study determined the effects of heavy resistance training and peri-exercise ergogenic multi-ingredient nutritional supplement ingestion on blood and skeletal markers of muscle protein synthesis (MPS), body composition, and muscle performance. Twenty-four college-age males were randomly assigned to either a multi-ingredient SizeOn Maximum Performance (SIZE) or protein/carbohydrate/creatine (PCC) comparator supplement group in a double-blind fashion. Body composition and muscle performance were assessed, and venous blood samples and muscle biopsies were obtained before and after 6 weeks of resistance training and supplementation. Data were analyzed by 2-way ANOVA (p ≤ 0.05). Total body mass, body water, and fat mass were not differentially affected (p > 0.05). However, fat-free mass was significantly increased in both groups in response to resistance training (p = 0.037). Lower-body muscle strength (p = 0.029) and endurance (p = 0.027) were significantly increased with resistance training, but not supplementation (p > 0.05). Serum insulin, IGF-1, GH, and cortisol were not differentially affected (p > 0.05). Muscle creatine content was significantly increased in both groups from supplementation (p = 0.044). Total muscle protein (p = 0.038), MHC 1 (p = 0.041), MHC 2A, (p = 0.029), total IRS- (p = 0.041), and total Akt (p = 0.011) were increased from resistance training, but not supplementation. In response to heavy resistance training when compared to PCC, the peri-exercise ingestion of SIZE did not preferentially improve body composition, muscle performance, and markers indicative of MPS. Key pointsIn response to 42 days of heavy resistance training and either SizeOn Maximum Performance or protein/carbohydrate/creatine supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups.The supplementation of SizeOn Maximum Performance had no preferential effect on augmenting serum insulin, IGF-1, and GH, or in decreasing cortisol.While resistance training was effective in increasing total creatine content in skeletal muscle, myofibrillar protein, and the content of total IRS-1 and Akt, it was not preferentially due to SizeOn Maximum Performance supplementation.At the daily dose of 50 g, SizeOn Maximum Performance supplementation for 42 days combined with resistance training does not increases muscle mass and strength due to its ability to elevate serum hormones and growth factors or in its ability to augment skeletal muscle signaling pathway markers indicative of muscle protein synthesis when compared to an equivalent daily dose of protein/carbohydrate/creatine.
Collapse
Affiliation(s)
- Mike Spillane
- Department of Health, Human Performance, and Recreation, Baylor University , Waco, TX, USA
| | - Neil Schwarz
- Department of Health, Human Performance, and Recreation, Baylor University , Waco, TX, USA
| | - Darryn S Willoughby
- Department of Health, Human Performance, and Recreation, Baylor University , Waco, TX, USA
| |
Collapse
|