7
|
Qin Y, Ran L, Wang J, Yu L, Lang HD, Wang XL, Mi MT, Zhu JD. Capsaicin Supplementation Improved Risk Factors of Coronary Heart Disease in Individuals with Low HDL-C Levels. Nutrients 2017; 9:nu9091037. [PMID: 28930174 PMCID: PMC5622797 DOI: 10.3390/nu9091037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
Low high-density lipoprotein cholesterol (HDL-C) is associated with an increased risk of coronary heart disease (CHD). This study aimed to evaluate the effects of capsaicin intervention on the serum lipid profile in adults with low HDL-C. In a randomized, double-blind, controlled clinical trial, 42 eligible subjects were randomly assigned to the capsaicin (n = 21, 4 mg of capsaicin daily) or to the control group (n = 21, 0.05 mg of capsaicin daily) and consumed two capsaicin or control capsules, which contained the powder of the skin of different peppers, twice daily for three months. Thirty-five subjects completed the trial (18 in the capsaicin group and 17 in the control group). The baseline characteristics were similar between the two groups. Compared with the control group, fasting serum HDL-C levels significantly increased to 1.00 ± 0.13 mmol/L from 0.92 ± 0.13 mmol/L in the capsaicin group (p = 0.030), while levels of triglycerides and C-reactive protein and phospholipid transfer protein activity moderately decreased (all p < 0.05). Other lipids, apolipoproteins, glucose, and other parameters did not significantly change. In conclusion, capsaicin improved risk factors of CHD in individuals with low HDL-C and may contribute to the prevention and treatment of CHD.
Collapse
Affiliation(s)
- Yu Qin
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Li Ran
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jing Wang
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Li Yu
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - He-Dong Lang
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xiao-Lan Wang
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Man-Tian Mi
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jun-Dong Zhu
- Chongqing Medical Nutrition Research Center, Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
11
|
Jiang H, Yazdanyar A, Lou B, Chen Y, Zhao X, Li R, Hoang Bui H, Kuo MS, Navab M, Qin S, Li Z, Jin W, Jiang XC. Adipocyte phospholipid transfer protein and lipoprotein metabolism. Arterioscler Thromb Vasc Biol 2014; 35:316-22. [PMID: 25477345 DOI: 10.1161/atvbaha.114.303764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Phospholipid transfer protein (PLTP) is highly expressed in adipose tissues. Thus, the effect of adipose tissue PLTP on plasma lipoprotein metabolism was examined. APPROACH AND RESULTS We crossed PLTP-Flox-ΔNeo and adipocyte protein 2 (aP2)-Cre recombinase (Cre) transgenic mice to create PLTP-Flox-ΔNeo/aP2-Cre mice that have a 90 and a 60% reduction in PLTP mRNA in adipose tissue and macrophages, respectively. PLTP ablation resulted in a significant reduction in plasma PLTP activity (22%), high-density lipoprotein-cholesterol (21%), high-density lipoprotein-phospholipid (20%), and apolipoprotein A-I (33%) levels, but had no effect on nonhigh-density lipoprotein levels in comparison with those of PLTP-Flox-ΔNeo controls. To eliminate possible effects of PLTP ablation by macrophages, we lethally irradiated PLTP-Flox-ΔNeo/aP2-Cre mice and PLTP-Flox-ΔNeo mice, and then transplanted wild-type mouse bone marrow into them to create wild-type→PLTP-Flox-ΔNeo/aP2-Cre and wild-type→PLTP-Flox-ΔNeo mice. Thus, we constructed a mouse model (wild-type→PLTP-Flox-ΔNeo/aP2-Cre) with PLTP deficiency in adipocytes but not in macrophages. These knockout mice also showed significant decreases in plasma PLTP activity (19%) and cholesterol (18%), phospholipid (17%), and apolipoprotein A-I (26%) levels. To further investigate the mechanisms behind the reduction in plasma apolipoprotein A-I and high-density lipoprotein lipids, we measured apolipoprotein A-I-mediated cholesterol efflux in adipose tissue explants and found that endogenous and exogenous PLTP significantly increased cholesterol efflux from the explants. CONCLUSIONS Adipocyte PLTP plays a small but significant role in plasma PLTP activity and promotes cholesterol efflux from adipose tissues.
Collapse
Affiliation(s)
- Hui Jiang
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Amirfarbod Yazdanyar
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Bin Lou
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Yunqin Chen
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Xiaomin Zhao
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Ruohan Li
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Hai Hoang Bui
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Ming-Shang Kuo
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Mohamad Navab
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Shucun Qin
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Zhiqiang Li
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Weijun Jin
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.)
| | - Xian-Cheng Jiang
- From the Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (H.J., A.Y., Y.C., X.Z., R.L., Z.L., W.J., X.C.J.); Fudan University, Shanghai, China (B.L., Y.C.); Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York (Z.L., X.C.J); Institute of Atherosclerosis, Taishan Medical University, Taian, China (X.Z., S.Q.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (H.H.B., M.S.K.); and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.N.).
| |
Collapse
|