1
|
Chouhan D, Akhilesh, Tiwari V. Focal Adhesion Kinase Inhibition Ameliorates Burn Injury-Induced Chronic Pain in Rats. Mol Neurobiol 2024:10.1007/s12035-024-04548-z. [PMID: 39460902 DOI: 10.1007/s12035-024-04548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Burn injury-induced pain (BIP) is a significant global health concern, affecting diverse populations including children, military veterans, and accident victims. Current pharmacotherapeutics for the management of BIP are associated with severe side effects including drug addiction, respiratory depression, sedation, and constipation posing significant barrier to their clinical utility. In the present study, we have investigated the potential role of focal adhesion kinase (p-FAK) for the very first time in BIP and elucidated the associated underlying mechanisms. Defactinib (DFT), a potent p-FAK inhibitor, administered at doses of 5, 10, and 20 mg/kg via intraperitoneal injection, demonstrates significant efficacy in reducing both evoked and spontaneous pain without causing addiction or other central nervous system toxicities. Burn injury triggers p-FAK-mediated phosphorylation of Erk1/2 and NR2B signaling in the DRG, resulting in heightened hypersensitivity through microglial activation, neuropeptide release, and elevated proinflammatory cytokines. Defactinib (DFT) counteracts these effects by reducing NR2B upregulation, lowering substance P levels, inhibiting microglial activation, and restoring IL-10 levels while leaving CGRP levels unchanged. These findings provide valuable insights into the pivotal role of p-FAK in regulating BIP and highlight the potential for developing novel therapeutics for burn injury-induced pain with minimal side effects.
Collapse
Affiliation(s)
- Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Harder HJ, Gomez MG, Searles CT, Vogt ME, Murphy AZ. Increased LPS-Induced Fever and Sickness Behavior in Adult Male and Female Rats Perinatally Exposed to Morphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558690. [PMID: 37790325 PMCID: PMC10542495 DOI: 10.1101/2023.09.20.558690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
As a result of the current opioid crisis, the rate of children born exposed to opioids has skyrocketed. Later in life, these children have an increased risk for hospitalization and infection, raising concerns about potential immunocompromise, as is common with chronic opioid use. Opioids can act directly on immune cells or indirectly via the central nervous system to decrease immune system activity, leading to increased susceptibility, morbidity, and mortality to infection. However, it is currently unknown how perinatal opioid exposure (POE) alters immune function. Using a clinically relevant and translatable model of POE, we have investigated how baseline immune function and the reaction to an immune stimulator, lipopolysaccharide, is influenced by in utero opioid exposure in adult male and female rats. We report here that POE potentiates the febrile and neuroinflammatory response to lipopolysaccharide, likely as a consequence of suppressed immune function at baseline (including reduced antibody production). This suggests that POE increases susceptibility to infection by manipulating immune system development, consistent with the clinical literature. Investigation of the mechanisms whereby POE increases susceptibility to pathogens is critical for the development of potential interventions for immunosuppressed children exposed to opioids in utero.
Collapse
Affiliation(s)
- Hannah J Harder
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Morgan G Gomez
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Christopher T Searles
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Meghan E Vogt
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| |
Collapse
|
3
|
Soma K, Hitomi S, Hayashi Y, Soma C, Otsuji J, Shibuta I, Furukawa A, Urata K, Kurisu R, Yonemoto M, Hojo Y, Shirakawa T, Iwata K, Shinoda M. Neonatal injury modulates incisional pain sensitivity in adulthood: An animal study. Neuroscience 2023; 519:60-72. [PMID: 36958596 DOI: 10.1016/j.neuroscience.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Neonatal pain experiences including traumatic injury influences negatively on development of nociceptive circuit developments, resulting in persistent pain hypersensitivity in adults. However, the detailed mechanism is not yet well understood. In the present study, to clarify the pathogenesis of orofacial pain hypersensitivity associated with neonatal injury, the involvement of the voltage-gated sodium channel (Nav) 1.8 and the C-C chemokine ligand 2 (CCL2)/C-C chemokine receptor 2 (CCR2) signaling in the trigeminal ganglion (TG) in facial skin incisional pain hypersensitivity was examined in 190 neonatal facial-injured and sham male rats. The whisker pad skin was incised on postnatal day 4 and week 7 (Incision-Incision group). Compared to the group without neonatal incision (Sham-Incision group), mechanical hypersensitivity in the whisker pad skin was enhanced in Incision-Incision group. The number of Nav1.8-immunoreactive TG neurons and the amount of CCL2 expressed in the macrophages and satellite glial cells in the TG were increased on day 14 after re-incision in the Incision-Incision group, compared with Sham-Incision group. Blockages of Nav1.8 in the incised region and CCR2 in the TG suppressed the enhancement of mechanical hypersensitivity in the Incision-Incision group. Administration of CCL2 into the TG enhanced mechanical hypersensitivity in the Sham-Sham, Incision-Sham and Sham-Incision group. Our results suggest that neonatal facial injury accelerates the TG neuronal hyperexcitability following orofacial skin injury in adult in association with Nav1.8 overexpression via CCL2 signaling, resulting in the enhancement of orofacial incisional pain hypersensitivity in the adulthood.
Collapse
Affiliation(s)
- Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Chihiro Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Jo Otsuji
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Akihiko Furukawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ryoko Kurisu
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Orofacial Pain Clinic, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mamiko Yonemoto
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Yasushi Hojo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tetsuo Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
4
|
Asahara M, Ito N, Hoshino Y, Sasaki T, Yokomizo T, Nakamura M, Shimizu T, Yamada Y. Role of leukotriene B4 (LTB4)-LTB4 receptor 1 signaling in post-incisional nociceptive sensitization and local inflammation in mice. PLoS One 2022; 17:e0276135. [PMID: 36264904 PMCID: PMC9584502 DOI: 10.1371/journal.pone.0276135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
Leukotriene B4 (LTB4) is a potent lipid mediator involved in the recruitment and activation of neutrophils, which is an important feature of tissue injury and inflammation. The biological effects of LTB4 are primarily mediated through the high-affinity LTB4 receptor, BLT1. Postoperative incisional pain is characterized by persistent acute pain at the site of tissue injury and is associated with local inflammation. Here, we compared the role of LTB4-BLT1 signaling in postoperative incisional pain between BLT1-knockout (BLT1KO) and wild-type (BLT1WT) mice. A planter incision model was developed, and mechanical pain hypersensitivity was determined using the von Frey test before and after incision. Local infiltration of neutrophils and inflammatory monocytes was quantified by flow cytometry. Inflammatory cytokine levels in the incised tissue were also determined. Mechanical pain hypersensitivity was significantly reduced in BLT1KO mice compared to BLT1WT mice at 2, 3, and 4 days after incision. LTB4 levels in the tissue at the incision site peaked 3 hours after the incision. Infiltrated neutrophils peaked 1 day after the incision in both BLT1KO and BLT1WT mice. The accumulation of inflammatory monocytes increased 1-3 days after the incision and was significantly more reduced in BLT1KO mice than in BLT1WT mice. In BLT1KO mice, Interleukin-1β and Tumor Necrosis Factor-α levels 1 day after the incision were significantly lower than those of BLT1WT mice. Our data suggest that LTB4 is produced and activates its receptor BLT1 in the very early phase of tissue injury, and that LTB4-BLT1 signaling exacerbates pain responses by promoting local infiltration of inflammatory monocytes and cytokine production. Thus, LTB4-BLT1 signaling is a potential target for therapeutic intervention of acute and persistent pain induced by tissue injury.
Collapse
Affiliation(s)
- Miho Asahara
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Yoko Hoshino
- Department of Anesthesiology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takaharu Sasaki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Motonao Nakamura
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Lipidomics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitsugu Yamada
- International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Xu X, Yu C, Xu L, Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front Mol Neurosci 2022; 15:982202. [PMID: 36157074 PMCID: PMC9500148 DOI: 10.3389/fnmol.2022.982202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Keratinocytes are the predominant block-building cells in the epidermis. Emerging evidence has elucidated the roles of keratinocytes in a wide range of pathophysiological processes including cutaneous nociception, pruritus, and inflammation. Intraepidermal free nerve endings are entirely enwrapped within the gutters of keratinocyte cytoplasm and form en passant synaptic-like contacts with keratinocytes. Keratinocytes can detect thermal, mechanical, and chemical stimuli through transient receptor potential ion channels and other sensory receptors. The activated keratinocytes elicit calcium influx and release ATP, which binds to P2 receptors on free nerve endings and excites sensory neurons. This process is modulated by the endogenous opioid system and endothelin. Keratinocytes also express neurotransmitter receptors of adrenaline, acetylcholine, glutamate, and γ-aminobutyric acid, which are involved in regulating the activation and migration, of keratinocytes. Furthermore, keratinocytes serve as both sources and targets of neurotrophic factors, pro-inflammatory cytokines, and neuropeptides. The autocrine and/or paracrine mechanisms of these mediators create a bidirectional feedback loop that amplifies neuroinflammation and contributes to peripheral sensitization.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Catherine Yu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China,*Correspondence: Li Xu,
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Li Xu,
| |
Collapse
|
6
|
Ádám D, Arany J, Tóth KF, Tóth BI, Szöllősi AG, Oláh A. Opioidergic Signaling-A Neglected, Yet Potentially Important Player in Atopic Dermatitis. Int J Mol Sci 2022; 23:4140. [PMID: 35456955 PMCID: PMC9027603 DOI: 10.3390/ijms23084140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin diseases, the prevalence of which is especially high among children. Although our understanding about its pathogenesis has substantially grown in recent years, and hence, several novel therapeutic targets have been successfully exploited in the management of the disease, we still lack curative treatments for it. Thus, there is an unmet societal demand to identify further details of its pathogenesis to thereby pave the way for novel therapeutic approaches with favorable side effect profiles. It is commonly accepted that dysfunction of the complex cutaneous barrier plays a central role in the development of AD; therefore, the signaling pathways involved in the regulation of this quite complex process are likely to be involved in the pathogenesis of the disease and can provide novel, promising, yet unexplored therapeutic targets. Thus, in the current review, we aim to summarize the available potentially AD-relevant data regarding one such signaling pathway, namely cutaneous opioidergic signaling.
Collapse
Affiliation(s)
- Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Arany
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
| |
Collapse
|
7
|
Chung BC, Bouz GJ, Mayfield CK, Nakata H, Christ AB, Oakes DA, Lieberman JR, Heckmann ND. Dose-Dependent Early Postoperative Opioid Use Is Associated with Periprosthetic Joint Infection and Other Complications in Primary TJA. J Bone Joint Surg Am 2021; 103:1531-1542. [PMID: 34043598 DOI: 10.2106/jbjs.21.00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Opioids are commonly prescribed for postoperative pain following total joint arthroplasty. Despite widespread use, few studies have examined the dose-dependent effect of perioperative opioid use on postoperative complications following total hip arthroplasty (THA) and total knee arthroplasty (TKA). Therefore, we examined the dose-dependent relationship between opioid use and postoperative complications following primary THA and TKA. METHODS We queried the Premier Healthcare Database to identify adult patients who underwent primary elective THA or TKA from 2004 to 2014, and quantified opioid consumption within the first 3 postoperative days. Opioid consumption was standardized to morphine milligram equivalents (MMEs). Patients were divided into quintiles on the basis of MME exposure: <54, 54 to 82, 83 to 116, 117 to 172, and >172 MMEs. Primary outcomes included postoperative periprosthetic joint infection, pulmonary embolism, deep venous thrombosis, and pulmonary complications. Secondary outcomes included wound infection, wound dehiscence, and readmission within 30 and 90 days postoperatively. Univariate and multivariate analyses were performed to compare differences between groups and to account for confounders. RESULTS A total of 1,525,985 patients were identified. The mean age was 65.7 ± 10.8 years, 598,320 patients (39.2%) were male, and 1,174,314 patients (77.0%) were Caucasian. On multiple logistic regression analysis, increasing MME exposure was associated with a dose-dependent increased risk of postoperative complications. Compared with patients receiving <54 MMEs, exposure to >172 MMEs was associated with greater odds of periprosthetic joint infection (adjusted odds ratio [aOR], 1.37; 95% confidence interval [CI], 1.33 to 1.42), deep venous thromboembolism (aOR, 1.34; 95% CI, 1.30 to 1.38), pulmonary embolism (aOR, 1.29; 95% CI, 1.25 to 1.34), and pulmonary complications (aOR, 1.06; 95% CI, 1.05 to 1.08). Exposure to >172 MMEs was associated with increased risk of wound infection (aOR, 1.37; 95% CI, 1.33 to 1.41), wound dehiscence (aOR, 1.24; 95% CI, 1.19 to 1.31), and readmission within 30 (aOR, 1.21; 95% CI, 1.20 to 1.22) and 90 days (aOR, 1.20; 95% CI, 1.19 to 1.21). CONCLUSIONS Increasing opioid use within the early postoperative period following THA or TKA was associated with a dose-dependent increased risk of periprosthetic joint infection and venous thromboembolic events. LEVEL OF EVIDENCE Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Brian C Chung
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front Pharmacol 2021; 11:583777. [PMID: 33708109 PMCID: PMC7941276 DOI: 10.3389/fphar.2020.583777] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has caused a global health crisis, with no specific antiviral to treat the infection and the absence of a suitable vaccine to prevent it. While some individuals contracting the SARS-CoV-2 infection exhibit a well coordinated immune response and recover, others display a dysfunctional immune response leading to serious complications including ARDS, sepsis, MOF; associated with morbidity and mortality. Studies revealed that in patients with a dysfunctional immune response, there is a massive cytokine and chemokine release, referred to as the 'cytokine storm'. As a result, such patients exhibit higher levels of pro-inflammatory/modulatory cytokines and chemokines like TNFα, INFγ, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, MCSF, HGF and chemokines CXCL8, MCP1, IP10, MIP1α and MIP1β. Targeting this cytokine storm is a novel, promising treatment strategy to alleviate this excess influx of cytokines observed at the site of infection and their subsequent disastrous consequences. Natural immunosuppressant compounds, derived from plant sources like curcumin, luteolin, piperine, resveratrol are known to inhibit the production and release of pro-inflammatory cytokines and chemokines. This inhibitory effect is mediated by altering signal pathways like NF-κB, JAK/STAT, MAPK/ERK that are involved in the production and release of cytokines and chemokines. The use of these natural immunosuppressants as adjuvants to ameliorate the cytokine storm; in combination with antiviral agents and other treatment drugs currently in use presents a novel, synergistic approach for the treatment and effective cure of COVID-19. This review briefly describes the immunopathogenesis of the cytokine storm observed in SARS-CoV-2 infection and details some natural immunosuppressants that can be used as adjuvants in treating COVID-19 disease.
Collapse
Affiliation(s)
- Angela E. Peter
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. V. Sandeep
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. Ganga Rao
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - V. Lakshmi Kalpana
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam, India
| |
Collapse
|
9
|
Sensoy E, Akcan AC, Korkmaz M, Elmalı F, Topal U, Akgun H, Muhtaroglu S. Investigation of the effects of systemic meperidine administration on fascia healing in an experimental rat model. Acta Cir Bras 2020; 35:e351107. [PMID: 33331457 PMCID: PMC7748078 DOI: 10.1590/acb351107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022] Open
Abstract
Purpose: To evaluate the effects of meperidine on fascial healing. Methods: Seventy adult male Sprague-Dawley rats divided into 7 groups with 10 rats in each group. One of these groups was determined as the sham group, 3 of the remaining 6 groups as meperidine groups, and 3 as control groups. These were grouped as 1st, 2nd, and 6th weeks. In the anterior abdominal wall of the rat, the skin was detached and a wound model including the peritoneum was created with a median incision. Mice in the meperidine group were injected with meperidine intraperitoneally (IP) 3 × 20 mg/kg meperidine on postoperative days 0, 1 and 2, and 2 × 20 mg/kg meperidine on postoperative days 3, 4, 5, and 6 after surgical intervention. Similar to the control group, an equal volume of saline was administered, corresponding to the doses. After sacrifice, the midline fascia was used for facial tensile strength measurement, and the other for histopathological analysis. Results: When compared, the meperidine and control groups inflammatory cell density was higher in the 1st week (p < 0.05) in the meperidine group, fibroplasia density was found to be higher at the 2nd week in the meperidine group than the control group (p < 0.05) When the tensile strength in the meperidine and control groups were compared, there was no significant difference (p > 0.05) at each of the three weeks. Conclusion: The application of postoperative systemic meperidine affects positively wound healing in the inflammatory stage and fibroplasia without changing the resistance to traction.
Collapse
Affiliation(s)
| | | | | | | | - Ugur Topal
- Erciyes University Faculty of Medicine, Turkey
| | - Hulya Akgun
- Erciyes University Faculty of Medicine, Turkey
| | | |
Collapse
|
10
|
Wound Pain and Wound Healing Biomarkers From Wound Exudate: A Scoping Review. J Wound Ostomy Continence Nurs 2020; 47:559-568. [PMID: 33201141 DOI: 10.1097/won.0000000000000703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Effective management of wound pain is essential for optimal wound healing. Nevertheless, the outcomes of wound pain interventions are based on subjective measures, which can prove problematic in patients with cognitive impairment. Identification of biomarkers associated with wound pain and wound healing can be used to more objectively estimate wound pain and contribute to the development of precise management options to reduce wound pain and promote wound healing. This scoping review aimed to identify wound pain and wound healing biomarkers from wound exudates and to describe different wound collection methods to identify these biomarkers. METHODS We searched the literature (PROSPERO database registration number: CRD42018103843) via a scoping review. SEARCH STRATEGY The PubMed database was searched for articles that explored relationships between cutaneous wound pain, wound healing, and biomolecules. Inclusion criteria were articles that reported original data, used adult human samples, and were published in English. FINDINGS Twenty-one articles were retrieved: 17 investigated molecules from wound exudate associated with wound healing status, and 4 reported molecules associated with wound pain. The most frequently observed wound pain biomarkers were proinflammatory cytokines; the most frequently observed wound healing biomarkers were proteases including those in the matrix metalloproteinase family. Six wound exudate collection methods were identified to extract potential wound pain and wound healing biomarkers from wound exudate. IMPLICATIONS The results can guide future wound exudate research to validate these wound pain and wound healing biomarkers and to develop therapies targeting these biomarkers to reduce wound pain and promote wound healing.
Collapse
|
11
|
The Protective Effects of Pre- and Post-Administration of Micronized Palmitoylethanolamide Formulation on Postoperative Pain in Rats. Int J Mol Sci 2020; 21:ijms21207700. [PMID: 33080989 PMCID: PMC7589788 DOI: 10.3390/ijms21207700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Postoperative pain (PO) is a common form of acute pain. Inadequate PO treatment is an important health problem, as it leads to worse outcomes, such as chronic post-surgical pain. Therefore, it is necessary to acquire new knowledge on PO mechanisms to develop therapeutic options with greater efficacy than those available today and to lower the risk of adverse effects. For this reason, we evaluated the ability of micronized palmitoylethanolamide (PEA-m) to resolve the pain and inflammatory processes activated after incision of the hind paw in an animal model of PO. Methods: The animals were subjected to surgical paw incision and randomized into different groups. PEA-m was administered orally at 10 mg/kg at different time points before or after incision. Results: Our research demonstrated that the pre- and post-treatment with PEA-m reduced the activation of mast cells at the incision site and the expression of its algogenic mediator nerve growth factor (NGF) in the lumbar spinal cord. Furthermore, again at the spinal level, it was able to decrease the activation of phospho-extracellular signal-regulated kinases (p-ERK), ionized calcium binding adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and the expression of brain-derived neurotrophic factor (BDNF). PEA-m also reduced the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) spinal pathway, showing a protective effect in a rat model of PO. Conclusion: The results obtained reinforce the idea that PEA-m may be a potential treatment for the control of pain and inflammatory processes associated with PO. In addition, pre- and post-treatment with PEA-m is more effective than treatment alone after the surgery and this limits the time of taking the compound and the abuse of analgesics.
Collapse
|
12
|
Opioid-Mediated HIV-1 Immunopathogenesis. J Neuroimmune Pharmacol 2020; 15:628-642. [PMID: 33029670 DOI: 10.1007/s11481-020-09960-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
Despite the ability of combination antiretroviral therapy to dramatically suppress viremia, the brain continues to be a reservoir of HIV-1 low-level replication. Adding further complexity to this is the comorbidity of drug abuse with HIV-1 associated neurocognitive disorders and neuroHIV. Among several abused drugs, the use of opiates is highly prevalent in HIV-1 infected individuals, both as an abused drug as well as for pain management. Opioids and their receptors have attained notable attention owing to their ability to modulate immune functions, in turn, impacting disease progression. Various cell culture, animal and human studies have implicated the role of opioids and their receptors in modulating viral replication and virus-mediated pathology both positively and negatively. Further, the combinatorial effects of HIV-1/HIV-1 proteins and morphine have demonstrated activation of inflammatory signaling in the host system. Herein, we summarized the current knowledge on the role of opioids on peripheral immunopathogenesis, viral immunopathogenesis, epigenetic profiles of the host and viral genome, neuropathogenesis of SIV/SHIV-infected non-human primates, blood-brain-barrier, HIV-1 viral latency, and viral rebound. Overall, this review provides recent insights into the role of opioids in HIV-1 immunopathogenesis. Graphical abstract.
Collapse
|
13
|
Effect of Preperitoneal Versus Epidural Analgesia on Postoperative Inflammatory Response and Pain Following Radical Cystectomy: A Prospective, Randomized Trial. Clin J Pain 2020; 35:328-334. [PMID: 30829734 DOI: 10.1097/ajp.0000000000000679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Continuous wound infiltration of local anesthetics has been proposed as an alternative to epidural analgesia during abdominal surgery. Cytokines have a major role in inflammatory changes caused by surgery. This study aimed to compare the effects of continuous preperitoneal versus epidural analgesia on inflammatory cytokines postoperatively. MATERIALS AND METHODS Forty patients scheduled for radical cystectomy were included in this observer-blinded, randomized trial; patients were randomly assigned into 2 groups to receive; continuous preperitoneal wound infiltration (PPB) or epidural analgesia (EDB). Serum levels of interleukins (IL1β, IL6, IL10, and tumor necrosis factor α) were measured at baseline (before induction of anesthesia), preinfusion (before the start of local anesthetic infusion), 6 and 24 hours postoperatively. Visual Analog Scale at rest/movement (VAS-R/M), time to the first request of analgesia, total morphine consumption, sedation score, hemodynamics, and side effects were observed 24 hours postoperatively. RESULTS There was a significant reduction in IL6, IL1β and increase in IL10 in PPB compared with EDB at 6 and 24 hours postoperatively and compared with preinfusion levels (P≤0.001). In EDB, a significant increase in IL1β, IL10, and tumor necrosis factor α at 6 hours compared with preinfusion levels (P≤0.002). VAS-R/M was significantly decreased at 2, 4, 6, 8, and 12 hours in EDB compared with PPB (P≤0.014), with no significant difference in the mean time to the first request of analgesia and total morphine consumption between the 2 groups. CONCLUSION Continuous preperitoneal analgesia better attenuated postoperative inflammatory response and provided a comparable overall analgesia to that with continuous epidural analgesia following radical cystectomy.
Collapse
|
14
|
The effect of adjuvant oral application of honey in the management of postoperative pain after tonsillectomy in adults: A pilot study. PLoS One 2020; 15:e0228481. [PMID: 32040956 PMCID: PMC7010464 DOI: 10.1371/journal.pone.0228481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/15/2020] [Indexed: 12/02/2022] Open
Abstract
Objective To analyze the effect of adjuvant oral application of honey for treating postoperative pain after tonsillectomy. Design Single centre prospective cohort study. Setting Two cohorts of patients after tonsillectomy. Participants 56 patients treated with honey 8 times per day (honey group), 18 patients treated without honey (control group); baseline analgesia were non-steroidal anti-inflammatory drugs (NSAID) or coxibs; opioids were used as pro re nata (PRN) medication; mean age 34.4 ± 13.4 years; 36% women. Main outcome measures On first to fifth postoperative day, patients rated their pain using the validated questionnaire of the German-wide project Quality Improvement in Postoperative Pain Treatment (QUIPS) including a numeric rating scale (NRS, 0–10) for determination of patient's pain. QUIPS allows standardized assessment of patients' characteristics andpain-associated patient-reported outcomes (PROs). The influence of preoperative and postoperative parameters on patients' postoperative pain were estimated by univariate and multivariate statistical analysis. Results Average pain in activity in the control group was greater than 4 (NRS 4.4 ± 2.4) during the first five postoperative days, with a renewed increase in pain intensity on the fifth day (4.3 ± 2.5). In the honey group, the pain in activity decreased without any further pain increase and was only higher than 4 on the first three postoperative days (4.3 ± 2.1, all p>0.05). However; neither minimal nor maximal pain were significantly different between both groups on the first postoperative day (p = 0.217, p = 0.980). Over the five postoperative days, the minimal and maximal pain in the honey group decreased continuously and faster than in the control group. With regard to pain-related impairments on the first day, the honey group reported less pain-related sleep disturbance (p = 0.026), as well as significantly fewer episodes of postoperative oral bleeding (p = 0.028) than the control group. Patients without honey consumption had on the first and fifth postoperative day a higher risk of increased minimal pain (OR = -2.424, CI = -4.075 –-0.385). Gender was an independent factor for compliance of honey consumption on the second postoperative day (p = 0.037). Men had a lower probability for compliance of honey consumption (OR = -0.288, CI = -2.863 –-0.090). Conclusion There was a trend of reduced postoperative pain after oral honey application. Honey also seems to reduce pain-related impairments. The need for additional opioids on the first day could be reduced. A larger controlled trial is now needed to varify the effect of honey on pain after tonsillectomy. Clinical trial registration number German Clinical Trials Register DRKS00006153. The authors confirm that all ongoing and related trials for this drug/intervention are registered.
Collapse
|
15
|
Abstract
Research on the effects of opioids on immune responses was stimulated in the 1980s by the intersection of use of intravenous heroin and HIV infection, to determine if opioids were enhancing HIV progression. The majority of experiments administering opioid alkaloids (morphine and heroin) in vivo, or adding these drugs to cell cultures in vitro, showed that they were immunosuppressive. Immunosuppression was reported as down-regulation: of Natural Killer cell activity; of responses of T and B cells to mitogens; of antibody formation in vivo and in vitro; of depression of phagocytic and microbicidal activity of neutrophils and macrophages; of cytokine and chemokine production by macrophages, microglia, and astrocytes; by sensitization to various infections using animal models; and by enhanced replication of HIV in vitro. The specificity of the receptor involved in the immunosuppression was shown to be the mu opioid receptor (MOR) by using pharmacological antagonists and mice genetically deficient in MOR. Beginning with a paper published in 2005, evidence was presented that morphine is immune-stimulating via binding to MD2, a molecule associated with Toll-like Receptor 4 (TLR4), the receptor for bacterial lipopolysaccharide (LPS). This concept was pursued to implicate inflammation as a mechanism for the psychoactive effects of the opioid. This review considers the validity of this hypothesis and concludes that it is hard to sustain. The experiments demonstrating immunosuppression were carried out in vivo in rodent strains with normal levels of TLR4, or involved use of cells taken from animals that were wild-type for expression of TLR4. Since engagement of TLR4 is universally accepted to result in immune activation by up-regulation of NF-κB, if morphine were binding to TLR4, it would be predicted that opioids would have been found to be pro-inflammatory, which they were not. Further, morphine is immunosuppressive in mice with a defective TLR4 receptor. Morphine and morphine withdrawal have been shown to permit leakage of Gram-negative bacteria and LPS from the intestinal lumen. LPS is the major ligand for TLR4. It is proposed that an occult variable in experiments where morphine is being proposed to activate TLR4 is actually underlying sepsis induced by the opioid.
Collapse
Affiliation(s)
- Toby K. Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
DeMarco GJ, Nunamaker EA. A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies. Comp Med 2019; 69:520-534. [PMID: 31896389 PMCID: PMC6935697 DOI: 10.30802/aalas-cm-19-000041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most significant challenges facing investigators, laboratory animal veterinarians, and IACUCs, is how to balance appropriate analgesic use, animal welfare, and analgesic impact on experimental results. This is particularly true for in vivo studies on immune system function and inflammatory disease. Often times the effects of analgesic drugs on a particular immune function or model are incomplete or don't exist. Further complicating the picture is evidence of the very tight integration and bidirectional functionality between the immune system and branches of the nervous system involved in nociception and pain. These relationships have advanced the concept of understanding pain as a protective neuroimmune function and recognizing pathologic pain as a neuroimmune disease. This review strives to summarize extant literature on the effects of pain and analgesia on immune system function and inflammation in the context of preclinical in vivo studies. The authors hope this work will help to guide selection of analgesics for preclinical studies of inflammatory disease and immune system function.
Collapse
Key Words
- cb,endocannabinoid receptor
- cd,crohn disease
- cfa, complete freund adjuvant
- cgrp,calcitonin gene-related peptide
- cox,cyclooxygenase
- ctl, cytotoxic t-lymphocytes
- damp,damage-associated molecular pattern molecules
- drg,dorsal root ganglion
- dss, dextran sodium sulphate
- ecs,endocannabinoid system
- ibd, inflammatory bowel disease
- ifa,incomplete freund adjuvant
- las, local anesthetics
- pamp,pathogen-associated molecular pattern molecules
- pge2, prostaglandin e2
- p2y, atp purine receptor y
- p2x, atp purine receptor x
- tnbs, 2,4,6-trinitrobenzene sulphonic acid
- trp, transient receptor potential ion channels
- trpv, transient receptor potential vanilloid
- tg,trigeminal ganglion
- uc,ulcerative colitis
Collapse
Affiliation(s)
- George J DeMarco
- Department of Animal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts;,
| | | |
Collapse
|
17
|
Inan S, Eisenstein TK, Watson MN, Doura M, Meissler JJ, Tallarida CS, Chen X, Geller EB, Rawls SM, Cowan A, Adler MW. Coadministration of Chemokine Receptor Antagonists with Morphine Potentiates Morphine's Analgesic Effect on Incisional Pain in Rats. J Pharmacol Exp Ther 2018; 367:433-441. [PMID: 30249618 DOI: 10.1124/jpet.118.252890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Crossdesensitization between opioid and chemokine receptors and involvement of chemokines in pain modulation are well established. We investigated if coadministration of chemokine receptor antagonists (CRAs) with morphine would enhance the analgesic potency of morphine on incisional pain in rats. Animals underwent incisional surgery on the left hind paw and pain responses were evaluated using von Frey filaments at various time points postsurgery between 15 and 360 minutes and daily between 24 and 72 hours. Dose-response curves for morphine, maraviroc (a CCR5 antagonist), and AMD3100 (a CXCR4 antagonist) alone were established. While morphine significantly reduced pain in a time- and dose-dependent manner, maraviroc and AMD3100 had no effect by themselves. Coadministration of either maraviroc or AMD3100 with morphine significantly increased morphine's analgesic effect on incisional pain, shifting the dose-response curve to the left 2.3- and 1.8-fold, respectively. Coadministration of both CRAs with morphine significantly shifted further the morphine dose-response curve to the left 3.3-fold. The effect of treatments on mRNA levels in the draining popliteal lymph node for a panel of chemokines and cytokines showed that message for many of these mediators was upregulated by the incision, and the combination of morphine with the CRAs markedly downregulated them. The data show that combining morphine with CRAs potentiates morphine's analgesic effect on incisional pain. Thus, the same analgesic effect of morphine alone can be achieved with lower doses of morphine when combined with CRAs. Using morphine in lower doses could reduce unwanted side effects and possibly block development of tolerance and dependence.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Toby K Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Mia N Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Menahem Doura
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Joseph J Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Christopher S Tallarida
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xiaohong Chen
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ellen B Geller
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Alan Cowan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Martin W Adler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Snyder LM, Chiang MC, Loeza-Alcocer E, Omori Y, Hachisuka J, Sheahan TD, Gale JR, Adelman PC, Sypek EI, Fulton SA, Friedman RL, Wright MC, Duque MG, Lee YS, Hu Z, Huang H, Cai X, Meerschaert KA, Nagarajan V, Hirai T, Scherrer G, Kaplan DH, Porreca F, Davis BM, Gold MS, Koerber HR, Ross SE. Kappa Opioid Receptor Distribution and Function in Primary Afferents. Neuron 2018; 99:1274-1288.e6. [PMID: 30236284 PMCID: PMC6300132 DOI: 10.1016/j.neuron.2018.08.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 02/02/2023]
Abstract
Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.
Collapse
Affiliation(s)
- Lindsey M Snyder
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael C Chiang
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emanuel Loeza-Alcocer
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yu Omori
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Junichi Hachisuka
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tayler D Sheahan
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jenna R Gale
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Adelman
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Elizabeth I Sypek
- Department of Anesthesiology, Perioperative, and Pain Medicine, Department of Molecular and Cellular Physiology, and Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephanie A Fulton
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert L Friedman
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Margaret C Wright
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melissa Giraldo Duque
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yeon Sun Lee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Zeyu Hu
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huizhen Huang
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Tsinghua University School of Medicine Beijing, Beijing 100084, China
| | - Xiaoyun Cai
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimberly A Meerschaert
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vidhya Nagarajan
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Toshiro Hirai
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory Scherrer
- Department of Anesthesiology, Perioperative, and Pain Medicine, Department of Molecular and Cellular Physiology, and Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; New York Stem Cell Foundation-Robertson Investigator, Stanford University, Palo Alto, CA 94304, USA
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85719, USA
| | - Brian M Davis
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael S Gold
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - H Richard Koerber
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Sarah E Ross
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Ben-Shaanan TL, Schiller M, Azulay-Debby H, Korin B, Boshnak N, Koren T, Krot M, Shakya J, Rahat MA, Hakim F, Rolls A. Modulation of anti-tumor immunity by the brain's reward system. Nat Commun 2018; 9:2723. [PMID: 30006573 PMCID: PMC6045610 DOI: 10.1038/s41467-018-05283-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Regulating immunity is a leading target for cancer therapy. Here, we show that the anti-tumor immune response can be modulated by the brain's reward system, a key circuitry in emotional processes. Activation of the reward system in tumor-bearing mice (Lewis lung carcinoma (LLC) and B16 melanoma) using chemogenetics (DREADDs), resulted in reduced tumor weight. This effect was mediated via the sympathetic nervous system (SNS), manifested by an attenuated noradrenergic input to a major immunological site, the bone marrow. Myeloid derived suppressor cells (MDSCs), which develop in the bone marrow, became less immunosuppressive following reward system activation. By depleting or adoptively transferring the MDSCs, we demonstrated that these cells are both necessary and sufficient to mediate reward system effects on tumor growth. Given the central role of the reward system in positive emotions, these findings introduce a physiological mechanism whereby the patient's psychological state can impact anti-tumor immunity and cancer progression.
Collapse
Affiliation(s)
- Tamar L Ben-Shaanan
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Maya Schiller
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Hilla Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Ben Korin
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Nadia Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Tamar Koren
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Maria Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Jivan Shakya
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Immunotherapy Lab, Carmel Medical Center, 3436212, Haifa, Israel
| | - Michal A Rahat
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.,The Immunotherapy Lab, Carmel Medical Center, 3436212, Haifa, Israel
| | - Fahed Hakim
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel. .,Pediatric Pulmonary Unit, Rambam Health Care Campus, 3109601, Haifa, Israel. .,Cancer Research Center, EMMS Hospital, 16100, Nazareth, Israel.
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel. .,Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel. .,The Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 3525422, Haifa, Israel.
| |
Collapse
|
20
|
Kim MS, Choi HG, Park EK, Kim SY, Kim JH, Park B. Natural course of tonsillectomy pain: A prospective patient cohort study. Auris Nasus Larynx 2018; 45:508-513. [DOI: 10.1016/j.anl.2017.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 10/18/2022]
|
21
|
Price TJ, Das V, Dussor G. Adenosine Monophosphate-activated Protein Kinase (AMPK) Activators For the Prevention, Treatment and Potential Reversal of Pathological Pain. Curr Drug Targets 2017; 17:908-20. [PMID: 26521775 DOI: 10.2174/1389450116666151102095046] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Pathological pain is an enormous medical problem that places a significant burden on patients and can result from an injury that has long since healed or be due to an unidentifiable cause. Although treatments exist, they often either lack efficacy or have intolerable side effects. More importantly, they do not reverse the changes in the nervous system mediating pathological pain, and thus symptoms often return when therapies are discontinued. Consequently, novel therapies are urgently needed that have both improved efficacy and disease-modifying properties. Here we highlight an emerging target for novel pain therapies, adenosine monophosphate-activated protein kinase (AMPK). AMPK is capable of regulating a variety of cellular processes including protein translation, activity of other kinases, and mitochondrial metabolism, many of which are thought to contribute to pathological pain. Consistent with these properties, preclinical studies show positive, and in some cases disease-modifying effects of either pharmacological activation or genetic regulation of AMPK in models of nerve injury, chemotherapy-induced peripheral neuropathy (CIPN), postsurgical pain, inflammatory pain, and diabetic neuropathy. Given the AMPK-activating ability of metformin, a widely prescribed and well-tolerated drug, these preclinical studies provide a strong rationale for both retrospective and prospective human pain trials with this drug. They also argue for the development of novel AMPK activators, whether orthosteric, allosteric, or modulators of events upstream of the kinase. Together, this review will present the case for AMPK as a novel therapeutic target for pain and will discuss future challenges in the path toward development of AMPK-based pain therapeutics.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, JO 4.212 800 W Campbell Rd, Richardson TX 75080, USA.
| | | | | |
Collapse
|
22
|
Segal JP, Tresidder KA, Bhatt C, Gilron I, Ghasemlou N. Circadian control of pain and neuroinflammation. J Neurosci Res 2017; 96:1002-1020. [PMID: 28865126 DOI: 10.1002/jnr.24150] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Abstract
The importance of a neuroinflammatory response to the development and maintenance of inflammatory and neuropathic pain have been highlighted in recent years. Inflammatory cells contributing to this response include circulating immune cells such as monocytes, T and B lymphocytes, and neutrophils, as well as microglia in the central nervous system. Pain signals are transmitted via sensory neurons in the peripheral nervous system, which express various receptors and channels that respond to mediators secreted from these inflammatory cells. Chronobiological rhythms, which include the 24-hr circadian cycle, have recently been shown to regulate both nervous and immune cell activity and function. This review examines the current literature on chronobiological control of neuroinflammatory processes, with a focus on inflammatory and neuropathic pain states. While the majority of this work has stemmed from observational studies in humans, recent advances in using animal models have highlighted distinct mechanisms underlying these interactions. Better understanding interactions between the circadian and neuroimmune systems can help guide the development of new treatments and provide improved care for patients suffering from acute and chronic pain.
Collapse
Affiliation(s)
- Julia P Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kaitlyn A Tresidder
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Charvi Bhatt
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Anesthesiology & Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Anesthesiology & Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
23
|
Luggya TS, Roche T, Ssemogerere L, Kintu A, Kasumba JM, Kwizera A, Tindimwebwa JVB. Effect of low-dose ketamine on post-operative serum IL-6 production among elective surgical patients: a randomized clinical trial. Afr Health Sci 2017; 17:500-507. [PMID: 29062346 PMCID: PMC5637036 DOI: 10.4314/ahs.v17i2.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Surgery and Anesthesia cause an excessive pro-inflammatory response. Mulago Hospital is faced with staff shortage making post-operative pain management difficult.Interleukin-6 (IL-6) drives inflammatory pain, endothelial cell dysfunction and fibrogenesis. Ketamine is cheap and, readily available. We hypothesized that its attenuation of serum IL-6 was a surrogate for clinical benefit. MATERIALS AND METHODS Institutional Review Board's approval was sought and RCT was registered at clinical trials.gov (identifier number: NCT01339065). Consenting patients were randomized to receive pre-incision intravenous ketamine - 0.5mg/kg or 0.9% saline placebo in weighted dosing. Blood samples were collected and laboratory analyzed at baseline, post-operatively in PACU, 24 and 48 hours respectively. RESULTS We recruited 39 patients of whom 18 were randomized to the ketamine arm and 21 in the placebo arm with follow up at 24 and 48 hours. Serum IL-6 and IL-1β levels were analyzed using ELIZA assay of pre-coated micro wells. Ketamine suppressed serum IL-6 at PACU with reduced increase at 24 hours. There was no reaction in 98% of IL-1β assayed. CONCLUSION Low-dose ketamine attenuated early serum IL-6 levels due to surgical response with reduced 24 hour increase, but the difference was not statistically significant and we recommend more studies.
Collapse
Affiliation(s)
| | - Tony Roche
- Department of Anesthesia Makerere University
- Anesthesia and Pain Medicine Department, University of Washington, Seattle, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ruiz-Miyazawa KW, Staurengo-Ferrari L, Mizokami SS, Domiciano TP, Vicentini FTMC, Camilios-Neto D, Pavanelli WR, Pinge-Filho P, Amaral FA, Teixeira MM, Casagrande R, Verri WA. Quercetin inhibits gout arthritis in mice: induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology 2017; 25:10.1007/s10787-017-0356-x. [PMID: 28508104 DOI: 10.1007/s10787-017-0356-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
We investigated the anti-inflammatory and analgesic effects of quercetin in monosodium urate crystals (MSU)-induced gout arthritis, and the sensitivity of quercetin effects to naloxone, an opioid receptor antagonist. Mice were treated with quercetin, and mechanical hyperalgesia was assessed at 1-24 h after MSU injection. In vivo, leukocyte recruitment, cytokine levels, oxidative stress, NFκB activation, and gp91phox and inflammasome components (NLRP3, ASC, Pro-caspase-1, and Pro-IL-1β) mRNA expression by qPCR were determined in the knee joints at 24 h after MSU injection. Inflammasome activation was determined, in vitro, in lipopolysaccharide-primed macrophages challenged with MSU. Quercetin inhibited MSU-induced mechanical hyperalgesia, leukocyte recruitment, TNFα and IL-1β production, superoxide anion production, inflammasome activation, decrease of antioxidants levels, NFκB activation, and inflammasome components mRNA expression. Naloxone pre-treatment prevented all the inhibitory effects of quercetin over MSU-induced gout arthritis. These results demonstrate that quercetin exerts analgesic and anti-inflammatory effect in the MSU-induced arthritis in a naloxone-sensitive manner.
Collapse
Affiliation(s)
- Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Talita P Domiciano
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Fabiana T M C Vicentini
- Farmacore Biotecnologia LTDA, Rua Edson Souto, 728, Lagoinha, 14095-250, Ribeirão Preto, São Paulo, Brazil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Healthy Sciences Center, Londrina State University, Av. Robert Koch, 60, Londrina, Paraná, CEP 86038-350, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
- Departamento de Patologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
25
|
Saine L, Hélie P, Vachon P. Effects of fentanyl on pain and motor behaviors following a collagenase-induced intracerebral hemorrhage in rats. J Pain Res 2016; 9:1039-1048. [PMID: 27895509 PMCID: PMC5118023 DOI: 10.2147/jpr.s121415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Intracerebral hemorrhage (IH) and cephalalgia are common consequences of traumatic brain injury. One of the primary obstacles for patient recovery is the paucity of treatments to support an appropriate analgesic protocol. The present study aimed to assess pain and motor behaviors following different doses of fentanyl on a rat model of IH. Methods Twenty-one male Sprague Dawley rats underwent a stereotaxic surgery to produce a collagenase-induced IH in the right caudoputamen nucleus. The control group (n=6) received saline subcutaneously (SC), and experimental groups received either 5 (n=6), 10 (n=6), or 20 (n=3) µg/kg of fentanyl SC, 2 hours following surgery and on 2 subsequent days. Only 3 animals received 20 µg/kg because this dose caused catalepsy for 15–20 minutes following the injection. The rat grimace scale, a neurological examination, balance beam test, and rotarod test were performed for 5 consecutive days postoperatively to evaluate pain and motor performance. At the end of the experimentation, the brains were evaluated to determine hematoma volume, and the number of reactive astrocytes and necrotic neurons. Results When compared to controls, the grimace scale showed that 5 µg/kg fentanyl significantly alleviated pain on day 2 only (P<0.01) and that 10 µg/kg alleviated pain on days 1 (P<0.01), 2 (P<0.001), and 3 (P<0.01). For the rotarod test, only the 10 µg/kg group showed significant decreases in performance on days 5 (P<0.05) and 6 (P<0.02). The neurological examination was not significantly different between the groups, but only the hopping test showed poor recuperation for the 5 and 10 µg/kg fentanyl group when compared to saline (P<0.01). No differences were found between the groups for the balance beam test, the histopathological results. Conclusion Fentanyl, at a dose of 10 µg/kg SC, provides substantial analgesia following a collagenase-induced IH in rats; however, it can alter motor performance following analgesic treatments.
Collapse
Affiliation(s)
- Laurence Saine
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine
| | - Pierre Hélie
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Pascal Vachon
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine
| |
Collapse
|
26
|
Abstract
Chronic pain is a major clinical problem that is poorly treated with available therapeutics. Adenosine monophosphate-activated protein kinase (AMPK) has recently emerged as a novel target for the treatment of pain with the exciting potential for disease modification. AMPK activators inhibit signaling pathways that are known to promote changes in the function and phenotype of peripheral nociceptive neurons and promote chronic pain. AMPK activators also reduce the excitability of these cells suggesting that AMPK activators may be efficacious for the treatment of chronic pain disorders, like neuropathic pain, where changes in the excitability of nociceptors is thought to be an underlying cause. In agreement with this, AMPK activators have now been shown to alleviate pain in a broad variety of preclinical pain models indicating that this mechanism might be engaged for the treatment of many types of pain in the clinic. A key feature of the effect of AMPK activators in these models is that they can lead to a long-lasting reversal of pain hypersensitivity even long after treatment cessation, indicative of disease modification. Here, we review the evidence supporting AMPK as a novel pain target pointing out opportunities for further discovery that are likely to have an impact on drug discovery efforts centered around potent and specific allosteric activators of AMPK for chronic pain treatment.
Collapse
|
27
|
Oren Y, Nachshon A, Frishberg A, Wilentzik R, Gat-Viks I. Linking traits based on their shared molecular mechanisms. eLife 2015; 4. [PMID: 25781485 PMCID: PMC4362207 DOI: 10.7554/elife.04346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/20/2015] [Indexed: 12/29/2022] Open
Abstract
There is growing recognition that co-morbidity and co-occurrence of disease traits are often determined by shared genetic and molecular mechanisms. In most cases, however, the specific mechanisms that lead to such trait-trait relationships are yet unknown. Here we present an analysis of a broad spectrum of behavioral and physiological traits together with gene-expression measurements across genetically diverse mouse strains. We develop an unbiased methodology that constructs potentially overlapping groups of traits and resolves their underlying combination of genetic loci and molecular mechanisms. For example, our method predicts that genetic variation in the Klf7 gene may influence gene transcripts in bone marrow-derived myeloid cells, which in turn affect 17 behavioral traits following morphine injection; this predicted effect of Klf7 is consistent with an in vitro perturbation of Klf7 in bone marrow cells. Our analysis demonstrates the utility of studying hidden causative mechanisms that lead to relationships between complex traits.
Collapse
Affiliation(s)
- Yael Oren
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aharon Nachshon
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Frishberg
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roni Wilentzik
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gat-Viks
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Melemedjian OK, Khoutorsky A. Translational control of chronic pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:185-213. [PMID: 25744674 DOI: 10.1016/bs.pmbts.2014.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pain is a crucial physiological response to injury and pathologies. The development and maintenance of pain requires the expression of novel genes. The expression of such genes occurs in highly regulated and orchestrated manner where protein translation provides an exquisite temporal and spatial fidelity within the axons and dendrites of neurons. Signaling pathways that regulate local translation are activated by cytokines, neurotrophic factors, or neurotransmitters, which are released either due to tissue damage or neuronal activity. In recent years, the ERK and mTOR pathways have been demonstrated to be central in regulating local translation in neurons of both the peripheral and central nervous systems in diverse models of chronic pain. The ERK and mTOR pathways converge onto the cap-dependent translational machinery that regulates genes essential for the development of nociceptive sensitization. Moreover, inhibition of these pathways has proved to be effective in normalizing the biochemical changes and the associated pain in various preclinical models.
Collapse
Affiliation(s)
- Ohannes K Melemedjian
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA.
| | - Arkady Khoutorsky
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
29
|
|
30
|
Cardozo LB, Cotes LC, Kahvegian MAP, Rizzo MFCI, Otsuki DA, Ferrigno CRA, Fantoni DT. Evaluation of the effects of methadone and tramadol on postoperative analgesia and serum interleukin-6 in dogs undergoing orthopaedic surgery. BMC Vet Res 2014; 10:194. [PMID: 25193623 PMCID: PMC4173003 DOI: 10.1186/s12917-014-0194-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/15/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Acute postsurgical pain is of great interest due to potential risk of becoming chronic if not treated properly, worsening patient's recovery and quality of life. Twenty-eight dogs with ruptured cruciate ligaments were divided into three groups that received intramuscular injections of 4 mg/kg of tramadol (TRA), 0.5 mg/kg of methadone (MET0.5), or 0.7 mg/kg of methadone (MET0.7). Physiological parameters (heart and respiratory rates and blood pressure) were evaluated at specified times: baseline (TBL), 1 (T1), 2 (T2), 4 (T4), 6 (T6), and 24 (T24) hours after premedication. Pain scores were described by visual analogue scale (VAS), modified Glasgow Composite, and Colorado University Acute Pain scales. Blood samples for measurement of interleukin (IL)-6 were collected at TBL, T1, T6, and T24. This was a prospective, randomised investigation to evaluate the efficacy of tramadol and methadone as premedications in dogs undergoing osteotomies. RESULTS There were no statistically significant differences between groups with respect to age, weight, gender, surgery time, and time to extubation. Heart rate, respiratory rate, and blood pressure values were maintained within acceptable ranges, and a reduction was observed at T2 in MET0.5 and MET0.7 compared with TBL. Increases in VAS scores were observed in TRA at T4 compared with TBL, T1, and T24 and between T1 and T6 (p < 0.001). In MET0.5, there was significant increase in VAS score at T4 compared with T1 (p < 0.001). TRA and MET0.5 showed significantly higher mean ± SD VAS scores (3.4 ± 2.5 and 2.5 ± 2.6, respectively) than MET0.7 (1.1 ± 1.5) at T4 (p < 0.001). TRA showed greater demand of rescue analgesia (four animals in T4 and two in T6) (p < 0.037). There were no statistically significant differences in sedation scores, Colorado Scale scores, or interleukin levels between groups and time points. CONCLUSIONS Methadone given as premedication in doses of 0.7 mg/kg was better at controlling pain compared with lower doses and tramadol. However, dosage increases, administered as rescue analgesia, promoted adequate pain control even in tramadol group. Influence of these analgesics on IL-6 release could not be demonstrated, but significant levels were not found.
Collapse
|
31
|
Sun Y, Sahbaie P, Liang D, Li W, Clark JD. Opioids enhance CXCL1 expression and function after incision in mice. THE JOURNAL OF PAIN 2014; 15:856-66. [PMID: 24887006 PMCID: PMC4131856 DOI: 10.1016/j.jpain.2014.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/29/2014] [Accepted: 05/20/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED Chronic opioid consumption increases postoperative pain. Epigenetic changes related to chronic opioid use and surgical incision may be partially responsible for this enhancement. The CXCL1/CXCR2 signaling pathway, implicated in several pain models, is known to be epigenetically regulated via histone acetylation. The current study was designed to investigate the role of CXCL1/CXCR2 signaling in opioid-enhanced incisional sensitization and to elucidate the possible epigenetic mechanism underlying CXCL1/CXCR2 pathway-mediated regulation of nociceptive sensitization in mice. Chronic morphine treatment generated mechanical and thermal nociceptive sensitization and also significantly exacerbated incision-induced mechanical allodynia. Peripheral but not central messenger RNA levels of CXCL1 and CXCR2 were increased after incision. The source of peripheral CXCL1 appeared to be wound area neutrophils. Histone H3 subunit acetylated at the lysine 9 position (AcH3K9) was increased in infiltrating dermal neutrophils after incision and was further increased in mice with chronic morphine treatment. The association of AcH3K9 with the promoter region of CXCL1 was enhanced in mice after chronic morphine treatment. The increase in CXCL1 near wounds caused by chronic morphine pretreatment was mimicked by pharmacologic inhibition of histone deacetylation. Finally, local injection of CXCL1 induced mechanical sensitivity in naive mice, whereas blocking CXCR2 reversed mechanical hypersensitivity after hind paw incision. PERSPECTIVE Peripheral CXCL1/CXCR2 signaling helps to control nociceptive sensitization after incision, and epigenetic regulation of CXCL1 expression explains in part opioid-enhanced incisional allodynia in mice. These results suggest that targeting CXCL1/CXCR2 signaling may be useful in treating nociceptive sensitization, particularly for postoperative pain in chronic opioid-consuming patients.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Chemokine CXCL1/genetics
- Chemokine CXCL1/metabolism
- Disease Models, Animal
- Drug Administration Schedule
- Gene Expression Regulation/drug effects
- Hyperalgesia/drug therapy
- Hyperalgesia/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Morphine/administration & dosage
- Neutrophils/drug effects
- Neutrophils/metabolism
- Pain Measurement
- Pain Threshold/drug effects
- Pain, Postoperative/drug therapy
- Pain, Postoperative/metabolism
- Phenylurea Compounds/administration & dosage
- Phenylurea Compounds/pharmacology
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/genetics
- Time Factors
- Wounds, Penetrating/complications
- Wounds, Penetrating/drug therapy
Collapse
Affiliation(s)
- Yuan Sun
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California; Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Peyman Sahbaie
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California; Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - DeYong Liang
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California; Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Wenwu Li
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California
| | - J David Clark
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California; Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
32
|
Abstract
BACKGROUND Acute pain after surgery remains moderate to severe for 20% to 30% of patients despite advancements in the use of opioids, adjuvant drugs, and regional anesthesia. Depending on the type of surgery, 10% to 50% of patients experience persistent pain postoperatively, and there are no established methods for its prevention. Curcumin (diferuloylmethane) is one of the phenolic constituents of turmeric that has been used in Eastern traditional medicine as an antiseptic, antioxidant, anti-inflammatory, and analgesic agent. It may be effective for treating postoperative pain. METHODS We used the hindpaw incision model with C57BL/6 mice. Sensitization to mechanical and thermal stimuli as well as effects on edema and temperature were measured up to 7 days after surgery. Spontaneous pain after incision was assessed by using conditioned place preference (CPP), and alterations in gait function were assessed using multiparameter digital gait analysis. RESULTS Curcumin (50 mg/kg) significantly reduced the intensity of mechanical and heat sensitization after hindpaw incision in mice. No effects of curcumin on baseline nociceptive thresholds were observed. Curcumin also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. In addition, perioperative curcumin treatment attenuated hyperalgesic priming due to incision when mice were subsequently challenged with hindpaw prostaglandin E2 application. Furthermore, while vehicle-treated mice had evidence of spontaneous pain 48 hours after incision in the CPP paradigm, no evidence of ongoing pain was observed in the mice treated with curcumin. Likewise, hindpaw incision caused changes in several gait-related indices, but most of these were normalized in the curcumin-treated animals. The peri-incisional levels of several pronociceptive immune mediators including interleukin (IL)-1β, IL-6, tumor necrosis factor α, and macrophage inflammatory protein-1α were either not reduced or were even augmented 1 and 3 days after incision in curcumin-treated mice. The anti-inflammatory cytokine IL-10 was unchanged, while transforming growth factor-β levels were enhanced under the same conditions. CONCLUSIONS Our studies suggest that curcumin treatment is effective in alleviating incision-induced inflammation, nociceptive sensitization, spontaneous pain, and functional gait abnormalities. Augmented transforming growth factor-β production provides one possible mechanism. These preclinical findings demonstrate curcumin's potential as a preventative strategy in postoperative pain treatment.
Collapse
|
33
|
Peripheral administration of morphine attenuates postincisional pain by regulating macrophage polarization through COX-2-dependent pathway. Mol Pain 2014; 10:36. [PMID: 24928142 PMCID: PMC4079829 DOI: 10.1186/1744-8069-10-36] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Macrophage infiltration to inflammatory sites promotes wound repair and may be involved in pain hypersensitivity after surgical incision. We recently reported that the development of hyperalgesia during chronic inflammation is regulated by macrophage polarity, often referred to as proinflammatory (M1) or anti-inflammatory (M2) macrophages. Although opioids such as morphine are known to alter the inflammatory milieu of incisional wounds through interactions with immunocytes, the macrophage-mediated effects of morphine on the development of postincisional pain have not been well investigated. In this study, we examined how morphine alters pain hypersensitivity through phenotypic shifts in local macrophages during the course of incision-induced inflammation. RESULTS Local administration of morphine in the early phase, but not in the late phase alleviated mechanical hyperalgesia, and this effect was reversed by clodronate-induced peripheral depletion of local macrophages. At the morphine-injected incisional sites, the number of pro-inflammatory F4/80+iNOS+M1 macrophages was decreased during the course of pain development whereas increased infiltration of wound healing F4/80+CD206+M2 macrophages was observed during the early phase. Morphine increased the gene expression of endogenous opioid, proenkephalin, and decreased the pronociceptive cytokine, interleukin-1β. Heme oxygenase (HO)-1 promotes the differentiation of macrophages to the M2 phenotype. An inhibitor of HO-1, tin protoporphyrin reversed morphine-induced analgesic effects and the changes in macrophage phenotype. However, local expression levels of HO-1 were not altered by morphine. Conversely, cyclooxygenase (COX)-2, primarily produced from peripheral macrophages in acute inflammation states, was up-regulated in the early phase at morphine-injected sites. In addition, the analgesic effects and a phenotype switching of infiltrated macrophages by morphine was reversed by local administration of a COX inhibitor, indomethacin. CONCLUSIONS Local administration of morphine alleviated the development of postincisional pain, possibly by altering macrophage polarity at the incisional sites. A morphine-induced shift in macrophage phenotype may be mediated by a COX-2-dependent mechanism. Therefore, μ-opioid receptor signaling in macrophages may be a potential therapeutic target during the early phase of postincisional pain development.
Collapse
|
34
|
Martinez RM, Zarpelon AC, Cardoso RDR, Vicentini FTMC, Georgetti SR, Baracat MM, Andrei CC, Moreira IC, Verri WA, Casagrande R. Tephrosia sinapou ethyl acetate extract inhibits inflammatory pain in mice: opioid receptor dependent inhibition of TNFα and IL-1β production. PHARMACEUTICAL BIOLOGY 2013; 51:1262-1271. [PMID: 23855752 DOI: 10.3109/13880209.2013.786099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED CONTEXT. Tephrosia toxicaria is currently known as Tephrosia sinapou (Buc'hoz) A. Chev. (Fabaceae) and is a source of compounds such as flavonoids that inhibit inflammatory pain. OBJECTIVE To investigate the analgesic effect and mechanisms of the ethyl acetate extract of T. sinapou in inflammatory pain in mice. MATERIALS AND METHODS Behavioral responses were evaluated using mechanical (1-24 h) and thermal hyperalgesia (0.5-5 h), writhing response (20 min) and rota-rod (1-5 h) tests. Neutrophil recruitment (myeloperoxidase activity), cytokines (tumor necrosis factor [TNF]α and interleukin [IL]-1β), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) serum levels were determined by colorimetric assays. Pharmacological treatments were opioid receptor antagonist (naloxone, 0.1-1 mg/kg) and control opioid (morphine, 5 mg/kg). Inflammatory stimuli were carrageenin (100 µg/paw), complete Freund's adjuvant (CFA, 10 µl/paw), prostaglandin E2 (PGE2, 100 ng/paw) and acetic acid (0.8%). RESULTS The intraperitoneal pre-treatment with extract inhibited in a dose-dependent (30-300 mg/kg) dependent manner the mechanical hyperalgesia induced by carrageenin (up to 93% inhibition). The post-treatment (100 mg/kg) inhibited CFA-induced hyperalgesia (up to 63% inhibition). Naloxone (1 mg/kg) prevented the inhibitory effect of the extract over carrageenin-induced mechanical (100%) and thermal (100%) hyperalgesia, neutrophil recruitment (52%) and TNFα (63%) and IL-1β (98%) production, thermal threshold in naïve mice (99%), PGE2-induced mechanical hyperalgesia (88%) and acetic acid-induced writhing response (49%). There was no significant alteration in the rota-rod test, and AST and ALT serum levels by extract treatment. Discussion and conclusion. Tephrosia sinapou ethyl acetate extract reduces inflammatory pain by activating an opioid receptor-dependent mechanism.
Collapse
Affiliation(s)
- Renata M Martinez
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, Parana, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Castel D, Willentz E, Doron O, Brenner O, Meilin S. Characterization of a porcine model of post-operative pain. Eur J Pain 2013; 18:496-505. [DOI: 10.1002/j.1532-2149.2013.00399.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2013] [Indexed: 11/12/2022]
Affiliation(s)
- D. Castel
- The Neufeld Cardiac Research Institute and Department of Physiology and Pharmacology; Sackler School of Medicine; Tel-Aviv University; Israel
| | | | - O. Doron
- Lahav Research Institute; Negev Israel
| | - O. Brenner
- Department of Veterinary Resources; The Weizmann Institute of Science; Rehovot Israel
| | - S. Meilin
- Neurology Division; MD Biosciences; Ness Ziona Israel
| |
Collapse
|
36
|
Madera-Salcedo IK, Cruz SL, Gonzalez-Espinosa C. Morphine prevents lipopolysaccharide-induced TNF secretion in mast cells blocking IκB kinase activation and SNAP-23 phosphorylation: correlation with the formation of a β-arrestin/TRAF6 complex. THE JOURNAL OF IMMUNOLOGY 2013; 191:3400-9. [PMID: 23960234 DOI: 10.4049/jimmunol.1202658] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have previously shown that morphine pretreatment inhibits mast cell-dependent TNF production after LPS injection in the murine peritoneal cavity. In this study, we used bone marrow-derived mast cells (BMMCs) to investigate the molecular mechanisms of that inhibition. We found that morphine prevented LPS-induced TNF secretion in these cells. The observed inhibition was not due to morphine-induced TLR4 internalization and it was related to the blockage of preformed TNF secretion. LPS-induced TNF exocytosis in BMMCs was dependent on tetanus toxin-insensitive vesicle-associated membrane proteins and calcium mobilization, as well as PI3K, MAPK, and IκB kinase (IKK) activation. TNF secretion was also associated to the phosphorylation of synaptosomal-associated protein 23 (SNAP-23), which was found forming a complex with IKK in LPS-activated BMMCs. Morphine pretreatment prevented TLR4-dependent ERK and IKK phosphorylation. Analyzing the signaling events upstream of IKK activation, we found diminished TGF-β-activated kinase 1 (TAK1) phosphorylation and TNFR-associated factor (TRAF) 6 ubiquitination in BMMCs pretreated with morphine and stimulated with LPS. Morphine pretreatment provoked a marked increase in the formation of a molecular complex composed of TRAF6 and β-arrestin-2. Naloxone and a combination of μ and δ opioid receptor antagonists prevented morphine inhibitory actions. In conclusion, our results show that activation of μ and δ opioid receptors with morphine suppresses TLR4-induced TNF release in mast cells, preventing the IKK-dependent phosphorylation of SNAP-23, which is necessary for TNF exocytosis, and this inhibition correlates with the formation of a β-arrestin-2/TRAF6 complex. To our knowledge, these findings constitute the first evidence of molecular crosstalk between opioid receptors and the TLR4 signal transduction system in mast cells.
Collapse
Affiliation(s)
- Iris K Madera-Salcedo
- Departamento de Farmacobiologia, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | | | | |
Collapse
|
37
|
Shi X, Wang L, Clark JD, Kingery WS. Keratinocytes express cytokines and nerve growth factor in response to neuropeptide activation of the ERK1/2 and JNK MAPK transcription pathways. ACTA ACUST UNITED AC 2013; 186:92-103. [PMID: 23958840 DOI: 10.1016/j.regpep.2013.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022]
Abstract
Sensory neurons innervating the skin can release neuropeptides that are believed to modulate cellular proliferation, wound healing, pigmentation, and keratinocyte innate immune responses. While the ability of neuropeptides to stimulate keratinocyte production of inflammatory mediators has been demonstrated, there is no information concerning the mechanisms by which neuropeptide activation of keratinocyte cell surface receptors ultimately leads to the up-regulation of mediator production. In this study we used a keratinocyte cell line to identify the presence of substance P (SP) and calcitonin gene-related peptide (CGRP) receptors on keratinocytes and examined the effects of SP and CGRP stimulation on keratinocyte neuropeptide signaling, cell proliferation, and interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and nerve growth factor (NGF) expression. Neuropeptide stimulation caused an up-regulation of neuropeptide receptor expression in keratinocytes and a dramatic increase in keratinocyte secretion of SP and CGRP, suggesting possible autocrine or paracrine stimulatory effects and amplification of neuropeptide signaling. Both SP and CGRP concentration-dependently stimulated cellular proliferation and the expression and secretion of inflammatory cytokines and NGF in keratinocytes. SP also activated all 3 families of mitogen activated protein kinase (MAPK) and nuclear factor κB (NFκB) in keratinocytes, while CGRP only activated p38 and extracellular signal related kinase1/2 (ERK1/2) MAPKs. Neuropeptide stimulated inflammatory mediatory production in keratinocytes was reversed by ERK1/2 and JNK inhibitors. The current study is the first to observe; 1) that CGRP stimulates keratinocyte expression of CGRP and its receptor complex, 2) that SP and CGRP stimulate IL-6 and TNF-α secretion in keratinocytes, 3) that SP activated all three MAPK families and the NFκB transcriptional signaling pathway in keratinocytes, and 4) that SP and CGRP stimulated inflammatory mediator production in keratinocytes is dependent on ERK1/2 and JNK activation. These studies provide evidence suggesting that disruption of ERK1/2 and JNK signaling may potentially be an effective therapy for inflammatory skin diseases and pain syndromes mediated by exaggerated sensory neuron-keratinocyte signaling.
Collapse
Affiliation(s)
- Xiaoyou Shi
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA.,Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA.,Department of Anesthesiolgy, Stanford University School of Medicine, Stanford, CA
| | - Liping Wang
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA.,Department of Anesthesiolgy, Stanford University School of Medicine, Stanford, CA
| | - Wade S Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
38
|
AMPK: An emerging target for modification of injury-induced pain plasticity. Neurosci Lett 2013; 557 Pt A:9-18. [PMID: 23831352 DOI: 10.1016/j.neulet.2013.06.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/24/2013] [Indexed: 12/11/2022]
Abstract
Chronic pain is a critical medical problem afflicting hundreds of millions of people worldwide with costly effects on society and health care systems. Novel therapeutic avenues for the treatment of pain are needed that are directly targeted to the molecular mechanisms that promote and maintain chronic pain states. Recent evidence suggests that peripheral pain plasticity is promoted and potentially maintained via changes in translation control that are mediated by mTORC1 and MAPK pathways. While these pathways can be targeted individually, stimulating the AMPK pathway with direct or indirect activators achieves inhibition of these pathways via engagement of a single kinase. Here we review the form, function and pharmacology of AMPK with special attention to its emerging role as a potential target for pain therapeutics. We present the existing evidence supporting a role of AMPK activation in alleviating symptoms of peripheral nerve injury- and incision-induced pain plasticity and the blockade of the development of chronic pain following surgery. We argue that these preclinical findings support a strong rationale for clinical trials of currently available AMPK activators and further development of novel pharmacological strategies for more potent and efficacious manipulation of AMPK in the clinical setting. Finally, we posit that AMPK represents a unique opportunity for drug development in the kinase area for pain because it is pharmacologically manipulated via activation rather than inhibition potentially offering a wider therapeutic window with interesting additional pharmacological opportunities. Altogether, the physiology, pharmacology and therapeutic opportunities surrounding AMPK make it an attractive target for novel intervention for chronic pain and its prevention.
Collapse
|
39
|
Sahbaie P, Shi X, Li X, Liang D, Guo TZ, Qiao Y, Yeomans DC, Kingery WS, David Clark J. Preprotachykinin-A gene disruption attenuates nociceptive sensitivity after opioid administration and incision by peripheral and spinal mechanisms in mice. THE JOURNAL OF PAIN 2013; 13:997-1007. [PMID: 23031399 DOI: 10.1016/j.jpain.2012.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/30/2012] [Accepted: 07/20/2012] [Indexed: 01/28/2023]
Abstract
UNLABELLED The preprotachykinin A gene (ppt-A) codes for Substance P (SP), supports nociceptive sensitization, and modulates inflammatory responses after incision. Repeated opioid use produces paradoxical pain sensitization-termed opioid-induced hyperalgesia (OIH) -which can exacerbate pain after incision. Here the contribution of SP to peri-incisional nociceptive sensitization and nociceptive mediator production after opioid treatment was examined utilizing ppt-A knockout (-/-) mice and the neurokinin (NK1) receptor antagonist LY303870. Less mechanical allodynia was observed in ppt-A(-/-) mice compared to wild types (wt) after morphine treatment both before and after incision. Moreover, LY303870 administered with morphine reduced incisional hyperalgesia in wt mice. Incision after saline or escalating morphine treatment upregulated skin IL-1β, IL-6, G-CSF and MIP-1α levels in ppt-A(-/-) and wt mice similarly. However, chronic morphine treatment greatly exacerbated increases in skin nerve growth factor levels after incision, an effect entirely dependent upon intact SP signaling. Additionally, SP dependent upregulation of prodynorphin, NMDA1 and NK1 receptor expression in spinal cord was seen after morphine treatment and incision. A similar pattern was seen for 5-HT3 receptor expression in tissue from dorsal root ganglia. Therefore, SP may work at both central and peripheral sites to enhance nociceptive sensitization after morphine treatment and incision. PERSPECTIVE These studies show that SP signaling modulates enhanced nerve growth factor production and changes in neuronal gene expression seen after incision in mice previously exposed to morphine.
Collapse
Affiliation(s)
- Peyman Sahbaie
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Carvalho B, Lemmens HJ, Ting V, Angst MS. Postoperative Subcutaneous Instillation of Low-Dose Ketorolac But Not Hydromorphone Reduces Wound Exudate Concentrations of Interleukin-6 and Interleukin-10 and Improves Analgesia Following Cesarean Delivery. THE JOURNAL OF PAIN 2013; 14:48-56. [DOI: 10.1016/j.jpain.2012.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/16/2012] [Accepted: 10/02/2012] [Indexed: 01/18/2023]
|
41
|
Carreira EU, Carregaro V, Teixeira MM, Moriconi A, Aramini A, Verri WA, Ferreira SH, Cunha FQ, Cunha TM. Neutrophils recruited by CXCR1/2 signalling mediate post-incisional pain. Eur J Pain 2012; 17:654-63. [PMID: 23132735 DOI: 10.1002/j.1532-2149.2012.00240.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neutrophil recruitment mediated by the CXCL1/KC chemokine and its receptors CXCR1/CXCR2 plays a critical role in inflammatory diseases. Recently, neutrophil migration and activation triggered by CXCL1-CXCR1/2 signalling was implicated in inflammatory nociception; however, their role in post-surgical pain has not been elucidated. In this study, we addressed the function of neutrophils in the genesis of post-incisional pain in an experimental model of post-surgical pain. METHODS Mechanical hyperalgesia was determined with an electronic von Frey test in a mouse hindpaw incisional model. Neutrophil accumulation and the level of CXCL1/KC in the plantar tissue were determined by myeloperoxidase activity assay and enzyme-linked immunosorbent assay, respectively. RESULTS An incision in the mouse hindpaw produces long-lasting mechanical hyperalgesia that persists for at least 72 h after surgery. Following surgery, there was an increase in both neutrophil accumulation and the CXCL1/KC level in the incised paws. The depletion of the mouse neutrophils by vinblastine sulphate or anti-neutrophil antibody treatments reduced the mechanical hyperalgesia after paw incision. Furthermore, the treatment of mice with ladarixin, an orally acting CXCR1/2 antagonist, also reduced both the mechanical hyperalgesia and the infiltration of neutrophils in the incised paws. CONCLUSION In conclusion, it appears that after surgical processes, neutrophils are recruited by CXCL1-CXCR1/2 signalling and participate in the cascade of events, leading to mechanical hyperalgesia. These results suggest that blocking neutrophil migration through the inhibition of CXCL1-CXCR1/2 signalling might be a target to control post-surgical pain.
Collapse
Affiliation(s)
- E U Carreira
- Department of Pharmacology, School of Medicine of Ribeirão Preto University of Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
miR-203 regulates nociceptive sensitization after incision by controlling phospholipase A2 activating protein expression. Anesthesiology 2012; 117:626-38. [PMID: 22846677 DOI: 10.1097/aln.0b013e31826571aa] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND After incision keratinocytes in the epidermis become activated to produce a range of pain-related mediators. microRNA 203 (miR-203) is known to be involved in keratinocyte growth, differentiation, and skin inflammation. We hypothesized that one or more of these mediators might be under the control of miR-203. METHODS The expression of miR-203 and its target gene, phospholipase A2 activating protein (PLAA), were examined after hind paw incision in mice. We investigated the local effect of intraplantar PLAA peptide injection in normal mice and the effects of a selective secretory phospholipase A2 inhibitor (HK064) on PLAA or incision-induced mechanical allodynia. Last, we investigated the role of substance P signaling in regulating miR-203 and PLAA expression in vitro and in vivo. RESULTS Levels of miR-203 were strongly down-regulated in keratinocytes after incision. Informatics-based approaches identified PLAA as a likely candidate for regulation by miR-203. PLAA caused mechanical allodynia and conditioned place aversion but not thermal sensitization. HK064 reduced mechanical allodynia after incision and after intraplantar injection of PLAA. Using preprotachykinin gene knockout mice or with neurokinin-1 selective antagonist LY303870 treatment, we observed that substance P-mediated signaling was also required for miR-203 and PLAA regulation after incision. Finally, using the rat epidermal keratinocyte cell line, we observed that a miR-203 mimic molecule could block the substance P-induced increase in PLAA expression observed under control conditions. CONCLUSIONS miR-203 may regulate expression of the novel nociceptive mediator PLAA after incision. Furthermore, the regulation of miR-203 and PLAA levels is reliant upon intact substance P signaling.
Collapse
|
43
|
Abstract
BACKGROUND Neutrophils are one of the predominant immune cells initially migrating to surgical wound edges. They produce mediators both associated with supporting (interleukin [IL]-1β, C5a) and reducing (opioid peptides) pain. Studies demonstrate neutrophil depletion/blockade reduces nociceptive sensitization after nerve injury and carrageenan administration, but enhance sensitization in complete Freund's adjuvant inflammation. This research identifies the contribution of infiltrating neutrophils to incisional pain and inflammation. METHODS Antibody-mediated Gr1 neutrophil depletion preceded hind paw incisions. Sensitization to mechanical and thermal stimuli, effects on edema and local levels of IL-1β and C5a were measured. Local effects of C5a or IL-1 receptor antagonists PMX-53 and anakinra on sensitization after neutrophil depletion were examined. Groups of 4-8 mice were used. RESULTS Anti-Gr1 antibody depleted more than 90% of circulating and infiltrating skin neutrophils after incision. Neutrophil depletion did not change magnitude or duration of mechanical hypersensitivity in incised mice. However, paw edema was significantly reduced and heat hypersensitivity was slightly increased in depleted animals. In depleted animals IL-1β levels were half of controls 24 h after incision, whereas C5a levels were increased in both. Prominent IL-1β immunohistochemical staining of epidermis was seen in both groups. PMX-53 and anakinra reduced incisional mechanical and heat nociceptive sensitization to the same extent, regardless of neutrophil depletion. CONCLUSIONS Neutrophil-derived IL-1β and C5a do not appear to contribute critically to peri-incisional nociceptive signaling. Other sources of mediators, such as epidermal cells, may need to be considered. Controlling inflammatory activation of resident cells in epidermis/deeper structures may show therapeutic efficacy in reducing pain from surgical incisions.
Collapse
|
44
|
Carvalho B, Clark DJ, Yeomans D, Angst MS. Collecting and measuring wound exudate biochemical mediators in surgical wounds. J Vis Exp 2012:50133. [PMID: 23117346 DOI: 10.3791/50133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We describe a methodology by which we are able to collect and measure biochemical inflammatory and nociceptive mediators at the surgical wound site. Collecting site-specific biochemical markers is important to understand the relationship between levels in serum and surgical wound, determine any associations between mediator release, pain, analgesic use and other outcomes of interest, and evaluate the effect of systemic and peripheral drug administration on surgical wound biochemistry. This methodology has been applied to healthy women undergoing elective cesarean delivery with spinal anesthesia. We have measured wound exudate and serum mediators at the same time intervals as patient's pain scores and analgesics consumption for up to 48 hours post-cesarean delivery. Using this methodology we have been able to detect various biochemical mediators including nerve growth factor (NGF), prostaglandin E2 (PG-E2) substance P, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, TNFα, INFγ, G-CSF, GM-CSF, MCP-1 and MIP-1β. Studies applying this human surgical wound bioassay have found no correlations between wound and serum cytokine concentrations or their time-release profile (J Pain. 2008; 9(7):650-7).(1) We also documented the utility of the technique to identify drug-mediated changes in wound cytokine content.
Collapse
Affiliation(s)
- Brendan Carvalho
- Department of Anesthesia, Stanford University School of Medicine, CA, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Objectives: We performed a prospective observation study in an outpatient surgical and office setting to compare human post-tonsillectomy healing to human cutaneous wound healing and to established animal models of oral healing. Methods: Fourteen teenaged patients underwent planned tonsillectomy. Intraoral digital photographs were collected at the time of tonsillectomy, during the management of complications, and at postoperative office visits. Serial intraoral photographs of one patient were taken at 48-hour intervals from the time of surgery until postoperative day 17. Results: Intraoral photographs from the days after tonsillectomy revealed a pattern of inflammation and healing that closely paralleled that in human skin and in canine and porcine oral wound models. Conclusions: Edema and pain are greatest immediately after surgery, probably as a result of thermal effects and expression of inflammatory mediators that stimulate pharyngeal nociceptors. Pain gradually decreases over time, with an increase in analog pain measures on postoperative days 3 to 5 corresponding to the maximal wound inflammation documented in experimental models. Epithelial ingrowth beneath a fibrin clot begins shortly after wounding. Separation of the fibrin clot about 7 days after surgery exposes vascular stroma. Involution of the vascular stroma and completion of epithelial coverage correlate with decreased pain levels and a lessened risk of bleeding.
Collapse
|
46
|
Hasegawa-Moriyama M, Ohnou T, Godai K, Kurimoto T, Nakama M, Kanmura Y. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization. Biochem Biophys Res Commun 2012; 426:76-82. [DOI: 10.1016/j.bbrc.2012.08.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 10/28/2022]
|
47
|
Can morphine interfere in the healing process during chronic stress? Arch Dermatol Res 2012; 304:413-20. [DOI: 10.1007/s00403-012-1261-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 06/07/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
48
|
Harrison AP, Hansen SH, Bartels EM. Transdermal opioid patches for pain treatment in ancient Greece. Pain Pract 2012; 12:620-5. [PMID: 22448887 DOI: 10.1111/j.1533-2500.2012.00546.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pain treatment in ancient Greece, and through the middle ages in Europe, was to a great extent based on the expertise of the Greek physician Galen (c. 129-200 A.D.). Galen makes particular reference to "Olympic Victor's Dark Ointment" (OVDO), which is listed with a number of collyria. Galen states that OVDO can be useful for treating extreme pain and swellings, forming one of the best eye salves. Olympic Victor's Dark Ointment, an opium-based treatment, forms a "patch" when applied externally as an ointment, because it quickly dries to cover a localized region but still retains its elastic properties. This study has recreated OVDO and applied the ointment to abdominal mouse skin, in vitro. To assess the efficacy of OVDO, the transdermal transfer of morphine was measured when given as OVDO and compared to morphine administered in the form of a solution of Opium + PBS (ringer). Olympic Victor's Dark Ointment showed a transdermal transfer of morphine over time comparable to 25% of the most efficient modern transdermal opioid patches, while hardly any morphine was able to penetrate the skin when applied mixed in PBS. We conclude that OVDO is very efficient in its composition and may carry some forgotten abilities in terms of drug delivery, which could be transferred to modern medicine. Indeed, this may lead to a better choice of morphine use and controlled management in individual patient cases, taking both pain relief and anti-inflammatory aspects into account.
Collapse
Affiliation(s)
- Adrian P Harrison
- Department of Animal and Veterinary Basic Sciences (IBHV), Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark.
| | | | | |
Collapse
|
49
|
Han Z, Koirala A, Makkia R, Cooper MJ, Naash MI. Direct gene transfer with compacted DNA nanoparticles in retinal pigment epithelial cells: expression, repeat delivery and lack of toxicity. Nanomedicine (Lond) 2012; 7:521-39. [PMID: 22356602 DOI: 10.2217/nnm.11.158] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To evaluate the safety of compacted DNA nanoparticles (NPs) in retinal pigment epithelial (RPE) cells. MATERIALS & METHODS Enhanced GFP expression cassettes controlled by the RPE-specific vitelloform macular dystrophy promoter were constructed with and without a bacterial backbone and compacted into NPs formulated with polyethylene glycol-substituted lysine 30-mers. Single or double subretinal injections were administered in adult BALB/c mice. Expression levels of enhanced GFP, proinflammatory cytokines and neutrophil/macrophage mediators, and retinal function by electroretinogram were evaluated at different time-points postinjection. RESULTS Immunohistochemistry and real-time PCR demonstrated that NPs specifically transfect RPE cells at a higher efficiency than naked DNA and similar results were observed after the second injection. At 6 h postinjections, a transient inflammatory response was observed in all cohorts, including saline, indicating an adverse effect to the injection procedure. Subsequently, no inflammation was detected in all experimental groups. CONCLUSION This study demonstrates the safety and efficacy of NP-mediated RPE gene transfer therapy following multiple subretinal administrations.
Collapse
Affiliation(s)
- Zongchao Han
- Department of Cell Biology, University of Oklahoma Health Sciences Center, BMSB 781, 940 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
50
|
Yan J, Melemedjian OK, Price TJ, Dussor G. Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6). Mol Pain 2012; 8:6. [PMID: 22273495 PMCID: PMC3274468 DOI: 10.1186/1744-8069-8-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/24/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Migraine headache is one of the most common neurological disorders, but the pathophysiology contributing to migraine is poorly understood. Intracranial interleukin-6 (IL-6) levels have been shown to be elevated during migraine attacks, suggesting that this cytokine may facilitate pain signaling from the meninges and contribute to the development of headache. METHODS Cutaneous allodynia was measured in rats following stimulation of the dura with IL-6 alone or in combination with the MEK inhibitor, U0126. The number of action potentials and latency to the first action potential peak in response to a ramp current stimulus as well as current threshold were measured in retrogradely-labeled dural afferents using patch-clamp electrophysiology. These recordings were performed in the presence of IL-6 alone or in combination with U0126. Association between ERK1 and Nav1.7 following IL-6 treatment was also measured by co-immunoprecipitation. RESULTS Here we report that in awake animals, direct application of IL-6 to the dura produced dose-dependent facial and hindpaw allodynia. The MEK inhibitor U0126 blocked IL-6-induced allodynia indicating that IL-6 produced this behavioral effect through the MAP kinase pathway. In trigeminal neurons retrogradely labeled from the dura, IL-6 application decreased the current threshold for action potential firing. In response to a ramp current stimulus, cells treated with IL-6 showed an increase in the numbers of action potentials and a decrease in latency to the first spike, an effect consistent with phosphorylation of the sodium channel Nav1.7. Pretreatment with U0126 reversed hyperexcitability following IL-6 treatment. Moreover, co-immunoprecipitation experiments demonstrated an increased association between ERK1 and Nav1.7 following IL-6 treatment. CONCLUSIONS Our results indicate that IL-6 enhances the excitability of dural afferents likely via ERK-mediated modulation of Nav1.7 and these responses contribute to migraine-related pain behavior in vivo. These data provide a cellular mechanism by which IL-6 in the meninges causes sensitization of dural afferents therefore contributing to the pathogenesis of migraine headache.
Collapse
Affiliation(s)
- Jin Yan
- Department of Pharmacology, University of Arizona College of Medicine, 1501 N Campbell Ave, PO Box 245050, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|