1
|
Qin F, Wang Q, Wang Y, Li Z, Liu A, Liu Q, Lin W, Mu X, Liu X, Wang Q, Lu Z. Exoticin as a selective agonist of 6TM μ opioid receptors identifies endogenous chaperones essential for its activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155898. [PMID: 39154526 DOI: 10.1016/j.phymed.2024.155898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Classical opioids are effective analgesics but carry various side effects, necessitating safer alternatives. Truncated six-transmembrane mu opioid receptors (6TM-μORs) mediate potent analgesia with fewer side effects and are a promising therapeutic target. However, few ligands known selectively target 6TM-μORs. Moreover, endogenous chaperones are believed essential for 6TM-μOR ligand binding and function. PURPOSE To identify a 6TM-μOR selective agonist and elucidate requisite endogenous chaperones. METHODS Virtual screening was used to identify promising selective 6TM-μOR agonists from traditional Chinese medicines. The role of 6TM-μOR in Exoticin analgesia was validated in loss- and gain-of-function models. APEX2 proteomics profiled proximal proteins under Exoticin or IBNtxA. Interactions were further characterized in vivo and in vitro. RESULTS Exoticin was shortlisted for its selective binding to 6TM-μOR and ability to induce 6TM-μOR-dependent signal transduction. Exoticin analgesia was sensitive to β-FNA and absent in E11 KO mice, but restored in mice infected with AAV-μOR1G. Slc3a2, Lrrc59, and Ppp1cb co-interacted with 6TM-μOR1G and were equally essential for Exoticin binding and 6TM-μOR1G activity. CONCLUSION Exoticin is a promising selective agonist of 6TM μ opioid receptors with broad-spectrum analgesic efficacy but few side effects. Slc3a2, Lrrc59, Ppp1cb are endogenous chaperones essential for 6TM-μOR ligand binding and function.
Collapse
Affiliation(s)
- Fenfen Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qisheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxuan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anlong Liu
- Nanjing Hospital of Traditional Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Qingyang Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weixin Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinru Mu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingjun Liu
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Qian Wang
- International Education college, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhigang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Liu S, Kang WJ, Abrimian A, Xu J, Cartegni L, Majumdar S, Hesketh P, Bekker A, Pan YX. Alternative Pre-mRNA Splicing of the Mu Opioid Receptor Gene, OPRM1: Insight into Complex Mu Opioid Actions. Biomolecules 2021; 11:biom11101525. [PMID: 34680158 PMCID: PMC8534031 DOI: 10.3390/biom11101525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Most opioid analgesics used clinically, including morphine and fentanyl, as well as the recreational drug heroin, act primarily through the mu opioid receptor, a class A Rhodopsin-like G protein-coupled receptor (GPCR). The single-copy mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating multiple splice variants or isoforms via a variety of alternative splicing events. These OPRM1 splice variants can be categorized into three major types based on the receptor structure: (1) full-length 7 transmembrane (TM) C-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Increasing evidence suggests that these OPRM1 splice variants are pharmacologically important in mediating the distinct actions of various mu opioids. More importantly, the OPRM1 variants can be targeted for development of novel opioid analgesics that are potent against multiple types of pain, but devoid of many side-effects associated with traditional opiates. In this review, we provide an overview of OPRM1 alternative splicing and its functional relevance in opioid pharmacology.
Collapse
Affiliation(s)
- Shan Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Wen-Jia Kang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Anna Abrimian
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Luca Cartegni
- Department of Chemical Biology, Ernest Mario School of Pharmacy Rutgers University, Piscataway, NJ 08854, USA;
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Patrick Hesketh
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
- Correspondence: ; Tel.: +1-973-972-3213
| |
Collapse
|
3
|
Rossi GC, Bodnar RJ. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cell Mol Neurobiol 2021; 41:863-897. [PMID: 32970288 DOI: 10.1007/s10571-020-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Almost a half century of research has elaborated the discoveries of the central mechanisms governing the analgesic responses of opiates, including their receptors, endogenous peptides, genes and their putative spinal and supraspinal sites of action. One of the central tenets of "gate-control theories of pain" was the activation of descending supraspinal sites by opiate drugs and opioid peptides thereby controlling further noxious input. This review in the Special Issue dedicated to the research of Dr. Gavril Pasternak indicates his contributions to the understanding of supraspinal mediation of opioid analgesic action within the context of the large body of work over this period. This review will examine (a) the relevant supraspinal sites mediating opioid analgesia, (b) the opioid receptor subtypes and opioid peptides involved, (c) supraspinal site analgesic interactions and their underlying neurophysiology, (d) molecular (particularly AS) tools identifying opioid receptor actions, and (e) relevant physiological variables affecting site-specific opioid analgesia. This review will build on classic initial studies, specify the contributions that Gavril Pasternak and his colleagues did in this specific area, and follow through with studies up to the present.
Collapse
Affiliation(s)
- Grace C Rossi
- Department of Psychology, C.W. Post College, Long Island University, Post Campus, Brookville, NY, USA.
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
- CUNY Neuroscience Collaborative, Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
4
|
Gledhill LJ, Babey AM. Synthesis of the Mechanisms of Opioid Tolerance: Do We Still Say NO? Cell Mol Neurobiol 2021; 41:927-948. [PMID: 33704603 DOI: 10.1007/s10571-021-01065-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/12/2021] [Indexed: 10/21/2022]
Abstract
The use of morphine as a first-line agent for moderate-to-severe pain is limited by the development of analgesic tolerance. Initially opioid receptor desensitization in response to repeated stimulation, thought to underpin the establishment of tolerance, was linked to a compensatory increase in adenylate cyclase responsiveness. The subsequent demonstration of cross-talk between N-methyl-D-aspartate (NMDA) glutamate receptors and opioid receptors led to the recognition of a role for nitric oxide (NO), wherein blockade of NO synthesis could prevent tolerance developing. Investigations of the link between NO levels and opioid receptor desensitization implicated a number of events including kinase recruitment and peroxynitrite-mediated protein regulation. Recent experimental advances and the identification of new cellular constituents have expanded the potential signaling candidates to include unexpected, intermediary compounds not previously linked to this process such as zinc, histidine triad nucleotide-binding protein 1 (HINT1), micro-ribonucleic acid (mi-RNA) and regulator of G protein signaling Z (RGSZ). A further complication is a lack of consistency in the protocols used to create tolerance, with some using acute methods measured in minutes to hours and others using days. There is also an emphasis on the cellular changes that are extant only after tolerance has been established. Although a review of the literature demonstrates a lack of spatio-temporal detail, there still appears to be a pivotal role for nitric oxide, as well as both intracellular and intercellular cross-talk. The use of more consistent approaches to verify these underlying mechanism(s) could provide an avenue for targeted drug development to rescue opioid efficacy.
Collapse
Affiliation(s)
- Laura J Gledhill
- CURA Pharmacy, St. John of God Hospital, Bendigo, VIC, 3550, Australia
| | - Anna-Marie Babey
- Faculty of Medicine and Health, University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
5
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
6
|
Candidate gene analyses for acute pain and morphine analgesia after pediatric day surgery: African American versus European Caucasian ancestry and dose prediction limits. THE PHARMACOGENOMICS JOURNAL 2019; 19:570-581. [PMID: 30760877 PMCID: PMC6693985 DOI: 10.1038/s41397-019-0074-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/30/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022]
Abstract
Acute pain and opioid analgesia demonstrate inter-individual variability and polygenic influence. In 241 children of African American and 277 of European Caucasian ancestry, we sought to replicate select candidate gene associations with morphine dose and postoperative pain and then to estimate dose prediction limits. Twenty-seven single-nucleotide polymorphisms (SNPs) from nine genes (ABCB1, ARRB2, COMT, DRD2, KCNJ6, MC1R, OPRD1, OPRM1, and UGT2B7) met selection criteria and were analyzed along with TAOK3. Few associations replicated: morphine dose (mcg/kg) in African American children and ABCB1 rs1045642 (A allele, β = -9.30, 95% CI: -17.25 to -1.35, p = 0.02) and OPRM1 rs1799971 (G allele, β = 23.19, 95% CI: 3.27-43.11, p = 0.02); KCNJ6 rs2211843 and high pain in African American subjects (T allele, OR 2.08, 95% CI: 1.17-3.71, p = 0.01) and in congruent European Caucasian pain phenotypes; and COMT rs740603 for high pain in European Caucasian subjects (A allele, OR: 0.69, 95% CI: 0.48-0.99, p = 0.046). With age, body mass index, and physical status as covariates, simple top SNP candidate gene models could explain theoretical maximums of 24.2% (European Caucasian) and 14.6% (African American) of morphine dose variances.
Collapse
|
7
|
Davis MP, McPherson ML, Mehta Z, Behm B, Fernandez C. What Parenteral Opioids to Use in Face of Shortages of Morphine, Hydromorphone, and Fentanyl. Am J Hosp Palliat Care 2018; 35:1118-1122. [PMID: 29649890 DOI: 10.1177/1049909118771374] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Parenteral potent opioid availability is becoming an issue in acute pain management. Two opioids, nalbuphine and buprenorphine, are available which can be substituted for hydromorphone, fentanyl, and morphine. There are advantages and disadvantages in using these 2 opioids which are discussed, and potential dosing strategies are outlined.
Collapse
Affiliation(s)
- Mellar P Davis
- 1 Department of Palliative Care, Geisinger Medical Center, Danville, PA, USA
| | - Mary Lynn McPherson
- 2 Advanced Post-Graduate Education in Palliative Care, Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Zankhana Mehta
- 1 Department of Palliative Care, Geisinger Medical Center, Danville, PA, USA
| | - Bertrand Behm
- 1 Department of Palliative Care, Geisinger Medical Center, Danville, PA, USA
| | - Carlos Fernandez
- 1 Department of Palliative Care, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
8
|
Analysis of natural product regulation of opioid receptors in the treatment of human disease. Pharmacol Ther 2018; 184:51-80. [DOI: 10.1016/j.pharmthera.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Kononenko O, Bazov I, Watanabe H, Gerashchenko G, Dyachok O, Verbeek DS, Alkass K, Druid H, Andersson M, Mulder J, Svenningsen ÅF, Rajkowska G, Stockmeier CA, Krishtal O, Yakovleva T, Bakalkin G. Opioid precursor protein isoform is targeted to the cell nuclei in the human brain. Biochim Biophys Acta Gen Subj 2016; 1861:246-255. [PMID: 27838394 DOI: 10.1016/j.bbagen.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain. METHODS Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus. RESULTS Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging. CONCLUSIONS AND GENERAL SIGNIFICANCE High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.
Collapse
Affiliation(s)
- Olga Kononenko
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden; State Key Lab for Molecular Biology, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden.
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Ganna Gerashchenko
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden; Department of Functional Genomics, Institute Molecular Biology, Kiev 03680, Ukraine
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, 751 23, Sweden
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 30001, Netherlands
| | - Kanar Alkass
- Department of Forensic Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Henrik Druid
- Department of Forensic Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institute, Stockholm 171 77, Sweden
| | - Åsa Fex Svenningsen
- Institute of Molecular Medicine-Neurobiology Research, University of Southern Denmark, Odense 5000, Denmark
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 2500, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 2500, USA
| | - Oleg Krishtal
- State Key Lab for Molecular Biology, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Tatiana Yakovleva
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
10
|
Thanos PK, Zhuo J, Robison L, Kim R, Ananth M, Choai I, Grunseich A, Grissom NM, George R, Delis F, Reyes TM. Suboptimal maternal diets alter mu opioid receptor and dopamine type 1 receptor binding but exert no effect on dopamine transporters in the offspring brain. Int J Dev Neurosci 2016; 64:21-28. [PMID: 27666382 DOI: 10.1016/j.ijdevneu.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
Birthweight is a marker for suboptimal fetal growth and development in utero. Offspring can be born large for gestational age (LGA), which is linked to maternal obesity or excessive gestational weight gain, as well as small for gestational age (SGA), arising from nutrient or calorie deficiency, placental dysfunction, or other maternal conditions (hypertension, infection). In humans, LGA and SGA babies are at an increased risk for certain neurodevelopmental disorders, including Attention Deficit/Hyperactivity Disorder, schizophrenia, and social and mood disorders. Using mouse models of LGA (maternal high fat (HF) diet) and SGA (maternal low protein (LP) diet) offspring, our lab has previously shown that these offspring display alterations in the expression of mesocorticolimbic genes that regulate dopamine and opioid function, thus indicating that these brain regions and neurotransmitter systems are vulnerable to gestational insults. Interestingly, these two maternal diets affected dopamine and opioid systems in somewhat opposing directions (e.g., LP offspring are generally hyperdopaminergic with reduced opioid expression, and the reverse is found for the HF offspring). These data largely involved evaluation at the transcriptional level, so the present experiment was designed to extend these analyses through an assessment of receptor binding. In this study, control, SGA and LGA offspring were generated from dams fed control, low protein or high fat diet, respectively, throughout pregnancy and lactation. At weaning, mice were placed on the control diet and sacrificed at 12 weeks of age. In vitro autoradiography was used to measure mu-opioid receptor (MOR), dopamine type 1 receptor (D1R), and dopamine transporter (DAT) binding level in mesolimbic brain regions. Results showed that the LP offspring (males and females) had significantly higher MOR and D1R binding than the control animals in the regions associated with reward. In HF offspring there were no differences in MOR binding, and limited increases in D1R binding, seen only in females in the nucleus accumbens core and the dorsomedial caudate/putamen. DAT binding revealed no differences in either models. In conclusion, LP but not HF offspring show significantly elevated MOR and D1R binding in the brain thus affecting DA and opioid signaling. These findings advance the current understanding of how suboptimal gestational diets can adversely impact neurodevelopment and increase the risk for disorders such as ADHD, obesity and addiction.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Research Institute on Addictions, University at Buffalo, 14203, USA.
| | - Jianmin Zhuo
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Research Institute on Addictions, University at Buffalo, 14203, USA
| | - Lisa Robison
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Research Institute on Addictions, University at Buffalo, 14203, USA
| | - Ronald Kim
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Research Institute on Addictions, University at Buffalo, 14203, USA
| | - Mala Ananth
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Research Institute on Addictions, University at Buffalo, 14203, USA
| | - Ilon Choai
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Research Institute on Addictions, University at Buffalo, 14203, USA
| | - Adam Grunseich
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Research Institute on Addictions, University at Buffalo, 14203, USA
| | - Nicola M Grissom
- Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Robert George
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Foteini Delis
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Research Institute on Addictions, University at Buffalo, 14203, USA
| | - Teresa M Reyes
- Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati, Cincinnati, OH 45237, USA
| |
Collapse
|
11
|
Regan PM, Langford TD, Khalili K. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis. J Cell Physiol 2016; 231:976-85. [PMID: 26529364 PMCID: PMC4728022 DOI: 10.1002/jcp.25237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
Abstract
Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology.
Collapse
Affiliation(s)
- Patrick M. Regan
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - T. Dianne Langford
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Gretton SK, Droney J. Splice variation of the mu-opioid receptor and its effect on the action of opioids. Br J Pain 2015; 8:133-8. [PMID: 26516547 DOI: 10.1177/2049463714547115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An individual's response to opioids is influenced by a complex combination of genetic, molecular and phenotypic factors.Intra- and inter-individual variations in response to mu opioids have led to the suggestion that mu-opioid receptor subtypes exist.Scientists have now proven that mu-opioid receptor subtypes exist and that they occur through a mechanism promoting protein diversity, called alternative splicing.The ability of mu opioids to differentially activate splice variants may explain some of the clinical differences observed between mu opioids.This article examines how differential activation of splice variants by mu opioids occurs through alternative mu-opioid receptor binding, through differential receptor activation, and as a result of the distinct distribution of variants located regionally and at the cellular level.
Collapse
|
13
|
Zhang YF, Xu QX, Liao LD, Xu XE, Wu JY, Wu ZY, Shen JH, Li EM, Xu LY. Association of mu-opioid receptor expression with lymph node metastasis in esophageal squamous cell carcinoma. Dis Esophagus 2015; 28:196-203. [PMID: 24428760 DOI: 10.1111/dote.12165] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mu-opioid receptor (MOR), a membrane-bound G protein-coupled receptor, is the main target for opioids in the nervous system. MOR1 has been found in several types of cancer cells and reported to be involved in tumor progression and metastasis. However, the expression and clinical significance of MOR1 in esophageal squamous cell carcinoma (ESCC) remain unclear. In our study, the expression of MOR1 was confirmed in ESCC cell lines (KYSE180, KYSE150, and EC109) by Western blot. MOR1 was also detected on tissue microarrays of ESCC samples in 239 cases using immunohistochemical staining. We found that MOR1 was mainly located in the cytoplasm and occasionally occurred in the membrane or nucleus of ESCC cells. Moreover, results indicated that MOR1 expression in the cytoplasm was associated with lymph node metastasis (R = 0.164, P = 0.008, Kendall's tau-b-test). No more associations were found between MOR1 expression status and other clinical parameters. However, no statistical significant differences were found between MOR1 expression in the cytoplasm, nucleus/membrane, and the overall survival of ESCC patients (P = 0.848; P = 0.167; P = 0.428, respectively, log-rank test). Our results suggest that the cytoplasmic MOR1 may be a high-risk factor for lymph node metastasis of ESCC patients. We also hypothesize that MOR1 agonists used in ESCC patients should be prudent, and opioid receptor antagonists may be novel therapeutic drugs for ESCC patients.
Collapse
Affiliation(s)
- Y-F Zhang
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Akbarali HI, Inkisar A, Dewey WL. Site and mechanism of morphine tolerance in the gastrointestinal tract. Neurogastroenterol Motil 2014; 26:1361-7. [PMID: 25257923 PMCID: PMC4423201 DOI: 10.1111/nmo.12443] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/24/2014] [Indexed: 12/23/2022]
Abstract
Opioid-induced constipation is a major clinical problem. The effects of morphine, and other narcotics, on the gastrointestinal tract persist over long-term use thus limiting the clinical benefit of these excellent pain relievers. The effects of opioids in the gut, including morphine, are largely mediated by the μ-opioid receptors at the soma and nerve terminals of enteric neurons. Recent studies demonstrate that regional differences exist in both acute and chronic morphine along the gastrointestinal tract. While tolerance develops to the analgesic effects and upper gastrointestinal motility upon repeated morphine administration, tolerance does not develop in the colon with chronic opioids resulting in persistent constipation. Here, we review the mechanisms by which tolerance develops in the small but not the large intestine. The regional differences lie in the signaling and regulation of the μ-opioid receptor in the various segments of the gastrointestinal tract. The differential role of β-arrestin2 in tolerance development between central and enteric neurons defines the potential for therapeutic approaches in developing ligands with analgesic properties and minimal constipating effects.
Collapse
Affiliation(s)
- H. I. Akbarali
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA
| | - A. Inkisar
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA
| | - W. L. Dewey
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
15
|
Wieskopf JS, Pan YX, Marcovitz J, Tuttle AH, Majumdar S, Pidakala J, Pasternak GW, Mogil JS. Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene. Pain 2014; 155:2063-70. [PMID: 25093831 PMCID: PMC4372857 DOI: 10.1016/j.pain.2014.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/02/2014] [Accepted: 07/18/2014] [Indexed: 12/15/2022]
Abstract
μ-Opioids remain vastly important for the treatment of pain, and would represent ideal analgesics if their analgesic effects could be separated from their many side effects. A recently synthesized compound, iodobenzoylnaltrexamide (IBNtxA), acting at 6-transmembrane (6-TM) splice variants of the μ-opioid receptor gene, was shown to have potent analgesic actions against acute, thermal pain accompanied by a vastly improved side-effect profile compared to 7-TM-acting drugs such as morphine. Whether such analgesia can be seen in longer-lasting and nonthermal algesiometric assays is not known. The current study demonstrates potent and efficacious IBNtxA inhibition of a wide variety of assays, including inflammatory and neuropathic hypersensitivity and spontaneous pain. We further demonstrate the dependence of such analgesia on 6-TM μ-opioid receptor variants using isobolographic analysis and the testing of Oprm1 (the μ-opioid receptor gene) exon 11 null mutant mice. Finally, the effect of nerve damage (spared nerve injury) and inflammatory injury (complete Freund's adjuvant) on expression of μ-opioid receptor variant genes in pain-relevant central nervous system loci was examined, revealing a downregulation of the mMOR-1D splice variant in the dorsal root ganglion after spared nerve injury. These findings are supportive of the potential value of 6-TM-acting drugs as novel analgesics.
Collapse
Affiliation(s)
- Jeffrey S Wieskopf
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Ying-Xian Pan
- Department of Neurology and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jaclyn Marcovitz
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Alexander H Tuttle
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Susruta Majumdar
- Department of Neurology and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - John Pidakala
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jeffrey S Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Grinnell SG, Majumdar S, Narayan A, Le Rouzic V, Ansonoff M, Pintar JE, Pasternak GW. Pharmacologic characterization in the rat of a potent analgesic lacking respiratory depression, IBNtxA. J Pharmacol Exp Ther 2014; 350:710-8. [PMID: 24970924 DOI: 10.1124/jpet.114.213199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IBNtxA (3'-iodobenzoyl-6β-naltrexamide) is a potent analgesic in mice lacking many traditional opioid side effects. In mice, it displays no respiratory depression, does not produce physical dependence with chronic administration, and shows no cross-tolerance to morphine. It has limited effects on gastrointestinal transit and shows no reward behavior. Biochemical studies indicate its actions are mediated through a set of μ-opioid receptor clone MOR-1 splice variants associated with exon 11 that lack exon 1 and contain only six transmembrane domains. Like the mouse and human, rats express exon 11-associated splice variants that also contain only six transmembrane domains, raising the question of whether IBNtxA would have a similar pharmacologic profile in rats. When given systemically, IBNtxA is a potent analgesic in rats, with an ED50 value of 0.89 mg/kg s.c., approximately 4-fold more potent than morphine. It shows no analgesic cross-tolerance in morphine-pelleted rats. IBNtxA displays no respiratory depression as measured by blood oxygen saturation. In contrast, oximetry shows that an equianalgesic dose of morphine lowers blood oxygen saturation values by 30%. IBNtxA binding is present in a number of brain regions, with the thalamus standing out with very high levels and the cerebellum with low levels. As in mice, IBNtxA is a potent analgesic in rats with a favorable pharmacologic profile and reduced side effects.
Collapse
Affiliation(s)
- Steven G Grinnell
- Department of Neurology (S.M., G.W.P.) and Molecular Pharmacology and Chemistry Program (V.L.R., G.W.P.), Memorial Sloan-Kettering Cancer Center, New York, New York; Neuroscience (S.G.G., A.N., G.W.P.) and Pharmacology (G.W.P.) Graduate Programs, Weill Cornell Graduate School of Medical Sciences, New York, New York; and Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey (M.A., J.E.P.)
| | - Susruta Majumdar
- Department of Neurology (S.M., G.W.P.) and Molecular Pharmacology and Chemistry Program (V.L.R., G.W.P.), Memorial Sloan-Kettering Cancer Center, New York, New York; Neuroscience (S.G.G., A.N., G.W.P.) and Pharmacology (G.W.P.) Graduate Programs, Weill Cornell Graduate School of Medical Sciences, New York, New York; and Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey (M.A., J.E.P.)
| | - Ankita Narayan
- Department of Neurology (S.M., G.W.P.) and Molecular Pharmacology and Chemistry Program (V.L.R., G.W.P.), Memorial Sloan-Kettering Cancer Center, New York, New York; Neuroscience (S.G.G., A.N., G.W.P.) and Pharmacology (G.W.P.) Graduate Programs, Weill Cornell Graduate School of Medical Sciences, New York, New York; and Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey (M.A., J.E.P.)
| | - Valerie Le Rouzic
- Department of Neurology (S.M., G.W.P.) and Molecular Pharmacology and Chemistry Program (V.L.R., G.W.P.), Memorial Sloan-Kettering Cancer Center, New York, New York; Neuroscience (S.G.G., A.N., G.W.P.) and Pharmacology (G.W.P.) Graduate Programs, Weill Cornell Graduate School of Medical Sciences, New York, New York; and Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey (M.A., J.E.P.)
| | - Michael Ansonoff
- Department of Neurology (S.M., G.W.P.) and Molecular Pharmacology and Chemistry Program (V.L.R., G.W.P.), Memorial Sloan-Kettering Cancer Center, New York, New York; Neuroscience (S.G.G., A.N., G.W.P.) and Pharmacology (G.W.P.) Graduate Programs, Weill Cornell Graduate School of Medical Sciences, New York, New York; and Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey (M.A., J.E.P.)
| | - John E Pintar
- Department of Neurology (S.M., G.W.P.) and Molecular Pharmacology and Chemistry Program (V.L.R., G.W.P.), Memorial Sloan-Kettering Cancer Center, New York, New York; Neuroscience (S.G.G., A.N., G.W.P.) and Pharmacology (G.W.P.) Graduate Programs, Weill Cornell Graduate School of Medical Sciences, New York, New York; and Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey (M.A., J.E.P.)
| | - Gavril W Pasternak
- Department of Neurology (S.M., G.W.P.) and Molecular Pharmacology and Chemistry Program (V.L.R., G.W.P.), Memorial Sloan-Kettering Cancer Center, New York, New York; Neuroscience (S.G.G., A.N., G.W.P.) and Pharmacology (G.W.P.) Graduate Programs, Weill Cornell Graduate School of Medical Sciences, New York, New York; and Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey (M.A., J.E.P.)
| |
Collapse
|
17
|
Laux-Biehlmann A, Chung H, Mouheiche J, Vérièpe J, Delalande F, Lamshöft M, Welters ID, Soldevila S, Bazin H, Lamarque L, Van Dorsselaer A, Poisbeau P, Schneider F, Goumon Y, Garnero P. Endogenous morphine-6-glucuronide (M6G) is present in the plasma of patients: validation of a specific anti-M6G antibody for clinical and basic research. Biofactors 2014; 40:113-20. [PMID: 23861301 DOI: 10.1002/biof.1107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/03/2013] [Indexed: 11/10/2022]
Abstract
Endogenous morphine and its derivatives (morphine-6-glucuronide [M6G]; morphine-3-glucuronide [M3G]) are formed by mammalian cells from dopamine. Changes in the concentrations of endogenous morphine have been demonstrated in several pathologies (sepsis, Parkinson's disease, etc.), and they might be relevant as pathological markers. While endogenous morphine levels are detectable using enzyme-linked immunosorbant assay (ELISA), mass spectrometry (MS) analysis was, so far, the only approach to detect and quantify M6G. This study describes the preparation of a specific anti-M6G rabbit polyclonal antibody and its validation. The specificity of this antibody was assessed against 30 morphine-related compounds. Then, a M6G-specific ELISA-assay was tested to quantify M6G in the plasma of healthy donors, morphine-treated, and critically ill patients. The antibody raised against M6G displays a strong affinity for M6G, codeine-6-glucuronide, and morphine-3-6-glucuronide, whereas only weak cross-reactivities were observed for the other compounds. Both M6G-ELISA and LC-MS/MS approaches revealed the absence of M6G in the plasma of healthy donors (controls, n = 8). In all positive donors treated with morphine-patch (n = 5), M6G was detected using both M6G-ELISA and LC-MS/MS analysis. Finally, in a study on critically ill patients with circulating endogenous morphine (n = 26), LC-MS/MS analysis revealed that 73% of the positive-patients (19 of 26), corresponding to high M6G-levels in M6G-ELISA, contained M6G. In conclusion, we show that endogenous M6G can be found at higher levels than morphine in the blood of morphine-naive patients. With respect to the interest of measuring endogenous M6G in pathologies, we provide evidences that our ELISA procedure represents a powerful tool as it can easily and specifically detect endogenous M6G levels.
Collapse
Affiliation(s)
- Alexis Laux-Biehlmann
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pasternak GW. Opioids and their receptors: Are we there yet? Neuropharmacology 2014; 76 Pt B:198-203. [PMID: 23624289 PMCID: PMC4216569 DOI: 10.1016/j.neuropharm.2013.03.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/02/2013] [Accepted: 03/26/2013] [Indexed: 01/06/2023]
Abstract
Opioids have an important place in pharmacology. While their clinical use as analgesics is fundamental in medicine, their use is constrained by their side-effects and abuse potential. Pharmacologists have sought analgesics lacking side-effects and the abuse liability of the current agents. The identification of the opioid receptors in 1973 marked the beginning of our understanding of the molecular mechanisms of these agents. The isolation of the opioid peptides quickly followed, along with the classification of three families of opioid receptors. Clinicians have long been aware of subtle differences among the mu opioids that were not easily reconciled with a single receptor and selective antagonists implied two subdivisions of mu receptors. However, the cloning of the mu opioid receptor MOR-1 has led to the realization of the extensive complexity of the mu opioid receptor gene and its vast array of splice variants. Many of these splice variants are truncated and do not conform to the structure of traditional G-protein coupled receptors. Yet, evidence now shows that they are quite important and may prove valuable targets in the development of potent analgesics lacking the undesirable properties of current opioids. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Molecular Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| |
Collapse
|
19
|
Piwowar M, Banach M, Konieczny L, Roterman I. Structural role of exon-coded fragment of polypeptide chains in selected enzymes. J Theor Biol 2013; 337:15-23. [PMID: 23896319 DOI: 10.1016/j.jtbi.2013.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/12/2013] [Accepted: 07/17/2013] [Indexed: 11/27/2022]
Abstract
This paper discusses the structural role of fragments encoded by individual exons in proteins. Selected enzymes (hydrolases, transferases, ligases) reveal the presence of at least one exon fragment whose contribution to the protein's hydrophobic core is in line with theoretical expectations. This phenomenon is confirmed by quantitative analysis of the hydrophobicity density distribution in protein molecules. Results are compared with a 3D Gaussian function, treated as an "idealized" distribution of hydrophobicity density, with the highest values observed near the center of the molecule and near-zero values on its surface. At least one accordant exon fragment has been identified in each of the proteins subjected to analysis. On the basis of these results the authors propose that accordant exons are responsible for tertiary structural stabilization of proteins by ensuring the generation of a stable hydrophobic core.
Collapse
Affiliation(s)
- Monika Piwowar
- Department of Bioinformatics and Telemedicine, Medical College-Jagiellonian University, Lazarza 16, 31-530 Krakow, Poland
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College-Jagiellonian University, Lazarza 16, 31-530 Krakow, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College-Jagiellonian University, Kopernika 7, 31-034 Krakow, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College-Jagiellonian University, Lazarza 16, 31-530 Krakow, Poland.
| |
Collapse
|
20
|
Basic and modern concepts on cholinergic receptor: A review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2013. [DOI: 10.1016/s2222-1808(13)60094-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
22
|
Xu J, Xu M, Brown T, Rossi GC, Hurd YL, Inturrisi CE, Pasternak GW, Pan YX. Stabilization of the μ-opioid receptor by truncated single transmembrane splice variants through a chaperone-like action. J Biol Chem 2013; 288:21211-21227. [PMID: 23760268 DOI: 10.1074/jbc.m113.458687] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The μ-opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, as illustrated by the identification of an array of splice variants generated by both 5' and 3' alternative splicing. The current study reports the identification of another set of splice variants conserved across species that are generated through exon skipping or insertion that encodes proteins containing only a single transmembrane (TM) domain. Using a Tet-Off system, we demonstrated that the truncated single TM variants can dimerize with the full-length 7-TM μ-opioid receptor (MOR-1) in the endoplasmic reticulum, leading to increased expression of MOR-1 at the protein level by a chaperone-like function that minimizes endoplasmic reticulum-associated degradation. In vivo antisense studies suggested that the single TM variants play an important role in morphine analgesia, presumably through modulation of receptor expression levels. Our studies suggest the functional roles of truncated receptors in other G protein-coupled receptor families.
Collapse
Affiliation(s)
- Jin Xu
- From the Department of Neurology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Ming Xu
- From the Department of Neurology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Taylor Brown
- From the Department of Neurology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Grace C Rossi
- the Department of Psychology, CW Post College, Long Island University, Brookville, New York 11568
| | - Yasmin L Hurd
- the Department of Psychiatry and Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Charles E Inturrisi
- the Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Gavril W Pasternak
- From the Department of Neurology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065,; the Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065.
| | - Ying-Xian Pan
- From the Department of Neurology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065,.
| |
Collapse
|
23
|
Ferrini F, Trang T, Mattioli TAM, Laffray S, Del’Guidice T, Lorenzo LE, Castonguay A, Doyon N, Zhang W, Godin AG, Mohr D, Beggs S, Vandal K, Beaulieu JM, Cahill C, Salter MW, De Koninck Y. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl⁻ homeostasis. Nat Neurosci 2013; 16:183-92. [PMID: 23292683 PMCID: PMC4974077 DOI: 10.1038/nn.3295] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023]
Abstract
A major unresolved issue in treating pain is the paradoxical hyperalgesia produced by the gold-standard analgesic morphine and other opiates. We found that hyperalgesia-inducing treatment with morphine resulted in downregulation of the K(+)-Cl(-) co-transporter KCC2, impairing Cl(-) homeostasis in rat spinal lamina l neurons. Restoring the anion equilibrium potential reversed the morphine-induced hyperalgesia without affecting tolerance. The hyperalgesia was also reversed by ablating spinal microglia. Morphine hyperalgesia, but not tolerance, required μ opioid receptor-dependent expression of P2X4 receptors (P2X4Rs) in microglia and μ-independent gating of the release of brain-derived neurotrophic factor (BDNF) by P2X4Rs. Blocking BDNF-TrkB signaling preserved Cl(-) homeostasis and reversed the hyperalgesia. Gene-targeted mice in which Bdnf was deleted from microglia did not develop hyperalgesia to morphine. However, neither morphine antinociception nor tolerance was affected in these mice. Our findings dissociate morphine-induced hyperalgesia from tolerance and suggest the microglia-to-neuron P2X4-BDNF-KCC2 pathway as a therapeutic target for preventing hyperalgesia without affecting morphine analgesia.
Collapse
Affiliation(s)
- Francesco Ferrini
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Turin, Italy
| | - Tuan Trang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Departments of Comparative Biology & Experimental Medicine, and Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Theresa-Alexandra M. Mattioli
- Departments of Comparative Biology & Experimental Medicine, and Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sophie Laffray
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Thomas Del’Guidice
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Louis-Etienne Lorenzo
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Annie Castonguay
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Nicolas Doyon
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Wenbo Zhang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Antoine G. Godin
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
| | - Daniela Mohr
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Simon Beggs
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Karen Vandal
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
| | - Jean-Martin Beaulieu
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Catherine Cahill
- Department of Pharmacology & Toxicology, Queen’s University, Kingston, Ontario, Canada
| | - Michael W. Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Yves De Koninck
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| |
Collapse
|
24
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
25
|
Majumdar S, Subrath J, Le Rouzic V, Polikar L, Burgman M, Nagakura K, Ocampo J, Haselton N, Pasternak AR, Grinnell S, Pan YX, Pasternak GW. Synthesis and evaluation of aryl-naloxamide opiate analgesics targeting truncated exon 11-associated μ opioid receptor (MOR-1) splice variants. J Med Chem 2012; 55:6352-62. [PMID: 22734622 DOI: 10.1021/jm300305c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Iodobenzoylnaltrexamide 1 (IBNtxA) is a potent analgesic acting through a novel receptor target that lack many side-effects of traditional opiates composed, in part, of exon 11-associated truncated six transmembrane domain MOR-1 (6TM/E11) splice variants. To better understand the SAR of this drug target, a number of 4,5-epoxymorphinan analogues were synthesized. Results show the importance of a free 3-phenolic group, a phenyl ring at the 6 position, an iodine at the 3'or 4' position of the phenyl ring, and an N-allyl or c-propylmethyl group to maintain high 6TM/E11 affinity and activity. 3-Iodobenzoylnaloxamide 15 (IBNalA) with a N-allyl group displayed lower δ opioid receptor affinity than its naltrexamine analogue, was 10-fold more potent an analgesic than morphine, elicited no respiratory depression or physical dependence, and only limited inhibition of gastrointestinal transit. Thus, the aryl-naloxamide scaffold can generate a potent analgesic acting through the 6TM/E11 sites with advantageous side-effect profile and greater selectivity.
Collapse
Affiliation(s)
- Susruta Majumdar
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Brailoiu GC, Deliu E, Hooper R, Dun NJ, Undieh AS, Adler MW, Benamar K, Brailoiu E. Agonist-selective effects of opioid receptor ligands on cytosolic calcium concentration in rat striatal neurons. Drug Alcohol Depend 2012; 123:277-81. [PMID: 22196236 PMCID: PMC3321394 DOI: 10.1016/j.drugalcdep.2011.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/12/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Buprenorphine is an opioid receptor ligand whose mechanism of action is incompletely understood. METHODS Using Ca(2+) imaging, we assessed the effects of buprenorphine, β-endorphin, and morphine on cytosolic Ca(2+) concentration [Ca(2+)](i), in rat striatal neurons. RESULTS Buprenorphine (0.01-1 μM) increased [Ca(2+)](i) in a dose-dependent manner in a subpopulation of rat striatal neurons. The effect of buprenorphine was largely reduced by naloxone, a non-selective opioid receptor antagonist, but not by μ, κ, δ or NOP-selective antagonists. β-Endorphin (0.1 μM) increased [Ca(2+)](i) with a lower amplitude and slower time course than buprenorphine. Similar to buprenorphine, the effect of β-endorphin was markedly decreased by naloxone, but not by opioid-selective antagonists. Morphine (0.1-10 μM), did not affect [Ca(2+)](i) in striatal neurons. CONCLUSIONS Our results suggest that buprenorphine and β-endorphin act on a distinct type/subtype of plasmalemmal opioid receptors or activate intracellular opioid-like receptor(s) in rat striatal neurons.
Collapse
Affiliation(s)
- G. Cristina Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Elena Deliu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Robert Hooper
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Nae J. Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Ashiwel S. Undieh
- Laboratory of Integrative Neuropharmacology, Department of Pharmaceutical Sciences, Thomas Jefferson University School of Pharmacy, Philadelphia, PA 19107
| | - Martin W. Adler
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Khalid Benamar
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, 19140
- Correspondence to: Khalid Benamar () or Eugen Brailoiu ()
| | - Eugen Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140
- Correspondence to: Khalid Benamar () or Eugen Brailoiu ()
| |
Collapse
|
27
|
Yamada Y, Muraki A, Oie M, Kanegawa N, Oda A, Sawashi Y, Kaneko K, Yoshikawa M, Goto T, Takahashi N, Kawada T, Ohinata K. Soymorphin-5, a soy-derived μ-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKAy mice. Am J Physiol Endocrinol Metab 2012; 302:E433-40. [PMID: 22127231 DOI: 10.1152/ajpendo.00161.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Soymorphin-5 (YPFVV) derived from soybean β-conglycinin β-subunit is a μ-opioid agonist peptide having anxiolytic-like activity. Here, we show that soymorphin-5 improves glucose and lipid metabolism after long-term oral administration to KKAy mice, a type 2 diabetes model animal. Soymorphin-5 inhibited hyperglycemia without an increase in plasma insulin levels in KKAy mice. Soymorphin-5 also decreased plasma and liver triglyceride (TG) levels and liver weight, suggesting that soymorphin-5 improved lipid metabolism. Soymorphin-5 increased plasma adiponectin concentration and liver mRNA expression of AdipoR2, a subtype of adiponectin receptor that is involved in stimulating the peroxisome proliferator-activated receptor (PPAR)α pathway and fatty acid β-oxidation. The expressions of the mRNA of PPARα and its target genes acyl-CoA oxidase, carnitine palmitoyltransferase 1 A, and uncoupling protein-2, in the liver were also increased after oral administration of soymorphin-5. Furthermore, des-Tyr-soymorphin-5 (PFVV) without μ-opioid and anxiolytic-like activities did not decrease blood glucose levels in KKAy mice. These results suggest that μ-opioid peptide soymorphin-5 improves glucose and lipid metabolism via activation of the adiponectin and PPARα system and subsequent increases of β-oxidation and energy expenditure in KKAy mice.
Collapse
Affiliation(s)
- Yuko Yamada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Barrie ES, Smith RM, Sanford JC, Sadee W. mRNA transcript diversity creates new opportunities for pharmacological intervention. Mol Pharmacol 2012; 81:620-30. [PMID: 22319206 DOI: 10.1124/mol.111.076604] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most protein coding genes generate multiple RNA transcripts through alternative splicing, variable 3' and 5'UTRs, and RNA editing. Although drug design typically targets the main transcript, alternative transcripts can have profound physiological effects, encoding proteins with distinct functions or regulatory properties. Formation of these alternative transcripts is tissue-selective and context-dependent, creating opportunities for more effective and targeted therapies with reduced adverse effects. Moreover, genetic variation can tilt the balance of alternative versus constitutive transcripts or generate aberrant transcripts that contribute to disease risk. In addition, environmental factors and drugs modulate RNA splicing, affording new opportunities for the treatment of splicing disorders. For example, therapies targeting specific mRNA transcripts with splice-site-directed oligonucleotides that correct aberrant splicing are already in clinical trials for genetic disorders such as Duchenne muscular dystrophy. High-throughput sequencing technologies facilitate discovery of novel RNA transcripts and protein isoforms, applications ranging from neuromuscular disorders to cancer. Consideration of a gene's transcript diversity should become an integral part of drug design, development, and therapy.
Collapse
Affiliation(s)
- Elizabeth S Barrie
- Program in Pharmacogenomics, Department of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
29
|
|
30
|
Silva-Moreno A, Gonzalez-Espinosa C, León-Olea M, Cruz SL. Synergistic antinociceptive actions and tolerance development produced by morphine–fentanyl coadministration: Correlation with μ-opioid receptor internalization. Eur J Pharmacol 2012; 674:239-47. [DOI: 10.1016/j.ejphar.2011.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 10/16/2011] [Accepted: 10/27/2011] [Indexed: 12/22/2022]
|
31
|
Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids 2011; 45:9-24. [PMID: 22170499 DOI: 10.1007/s00726-011-1163-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/15/2011] [Indexed: 12/13/2022]
Abstract
Endogenous opioids are synthesized in vivo to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abuser-based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid-mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review, we will discuss the role of opioid receptors and their ligands in mediating immune-suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system, as well as the role of opioids in exacerbation of certain disease states.
Collapse
|
32
|
Song KY, Choi HS, Law PY, Wei LN, Loh HH. Post-transcriptional regulation of mu-opioid receptor: role of the RNA-binding proteins heterogeneous nuclear ribonucleoprotein H1 and F. Cell Mol Life Sci 2011; 69:599-610. [PMID: 21739230 DOI: 10.1007/s00018-011-0761-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/13/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Classical opioids have been historically used for the treatment of pain and are among the most widely used drugs for both acute severe pain and long-term pain. Morphine and endogenous mu-opioid peptides exert their pharmacological actions mainly through the mu-opioid receptor (MOR). However, the expression of opioid receptor (OR) proteins is controlled by extensive transcriptional and post-transcriptional processing. Previously, the 5'-untranslated region (UTR) of the mouse MOR was found to be important for post-transcriptional regulation of the MOR gene in neuronal cells. To identify proteins binding to the 5'-UTR as potential regulators of the mouse MOR gene, affinity column chromatography using 5'-UTR-specific RNA oligonucleotides was performed using neuroblastoma NS20Y cells. Chromatography was followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. We identified two heterogeneous ribonucleoproteins (hnRNPs) that bound to RNA sequences of interest: hnRNP H1 and hnRNP F. Binding of these proteins to the RNA region was M4-region sequence-specific as confirmed by Western-blot analysis and RNA supershift assay. Furthermore, a cotransfection study showed that the presence of hnRNP H1 and F resulted in repressed expression of the mouse MOR. Our data suggest that hnRNP H1 and F can function as repressors of MOR translation dependent on the M4 (-75 to -71 bp upstream of ATG) sequences. We demonstrate for the first time a role of hnRNPs as post-transcriptional repressors in MOR gene regulation.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
33
|
Dietis N, Rowbotham DJ, Lambert DG. Opioid receptor subtypes: fact or artifact? Br J Anaesth 2011; 107:8-18. [PMID: 21613279 DOI: 10.1093/bja/aer115] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | | | | |
Collapse
|