1
|
Patarrão RS, Meneses MJ, Ghadieh HE, Herrera L, Duarte S, Ribeiro RT, Raposo JF, Schmitt V, Singer BB, Gastaldelli A, Penha-Gonçalves C, Najjar SM, Macedo MP. Insights into circulating CEACAM1 in insulin clearance and disease progression: Evidence from the Portuguese PREVADIAB2 study. Eur J Clin Invest 2024; 54 Suppl 2:e14344. [PMID: 39674875 DOI: 10.1111/eci.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Type 2 diabetes (T2DM) and obesity are characterized by altered insulin metabolism and action. Reduced hepatic insulin clearance is increasingly recognized as a key contributor to hyperinsulinemia and insulin resistance. CEACAM1 promotes hepatic insulin clearance, and its loss in hepatocytes is associated with reduced insulin clearance in mice and men. This study examines whether CEACAM1 circulating levels reflect compromised insulin metabolism and resistance in the PREVADIAB2 cohort. METHODS A total of 1019 individuals from the PREVADIAB2 cohort were evaluated for diabetes by 75 g-OGTT and classified according to WHO 2019 criteria. CEACAM1 circulating levels were measured by ELISA, and insulin metabolism parameters were calculated. Hierarchical clustering of insulin metabolic indices and CEACAM1 levels was performed. Statistical significance was assessed using Kruskal-Wallis and Wilcoxon-Mann-Whitney tests. RESULTS BMI, insulin resistance (HOMA-IR), and hepatic steatosis progressively increased with disease severity. Insulin secretion rose and its clearance declined in parallel to circulating CEACAM1 levels in prediabetes and T2DM, indicating compensatory hyperinsulinemia. Hierarchical metabolic clustering identified four clusters with distinct patterns and further showed that insulin clearance positively correlated with circulating CEACAM1, especially in individuals with normoglycemia, lower obesity and hepatic steatosis. This suggests that circulating CEACAM1 can reflect the status of hepatic insulin clearance. CONCLUSIONS This study demonstrates a progressive increase in insulin resistance and hyperinsulinemia in parallel to elevated BMI and hepatic steatosis prevalence, accompanied by declining circulating CEACAM1 levels. Cluster analysis further linked reduced insulin clearance to lower circulating CEACAM1 levels, suggesting its potential usefulness as a biomarker for metabolic disease progression.
Collapse
Affiliation(s)
- Rita S Patarrão
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Maria João Meneses
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Balamand, Al-Koura, Lebanon
| | - Laura Herrera
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
| | - Sérgio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rogério T Ribeiro
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
| | - João F Raposo
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- Portuguese Society of Diabetology, Lisbon, Portugal
| | - Verena Schmitt
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Amalia Gastaldelli
- National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
| | | | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - M Paula Macedo
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
| |
Collapse
|
2
|
Aldroubi BG, Najjar JA, Youssef TS, Rizk CE, Abuamreh BA, Aramouni K, Ghadieh HE, Najjar SM. Cell-specific regulation of insulin action and hepatic fibrosis by CEACAM1. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4:34. [PMID: 39640841 PMCID: PMC11619085 DOI: 10.20517/mtod.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has reached an epidemic rise worldwide. The disease is a constellation of a broad range of metabolic and histopathologic abnormalities. It begins with hepatic steatosis and progresses to metabolic dysfunction-associated steatohepatitis (MASH), including hepatic fibrosis, apoptosis, and cell injury. Despite ample research effort, the pathogenesis of the disease has not been fully delineated. Whereas insulin resistance is implicated in the early stages of the disease, its role in hepatic fibrosis remains controversial. We have focused our studies on the role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in hepatocytes and endothelial cells in the metabolic and histopathological dysregulation in MASH. Patients with MASH exhibit lower hepatic CEACAM1 with a progressive decline in hepatocytes and endothelial cells as the fibrosis stage advances. In mice, conditional deletion of CEACAM1 in hepatocytes impairs insulin clearance to cause hyperinsulinemia-driven insulin resistance with steatohepatitis and hepatic fibrosis even when mice are fed a regular chow diet. In contrast, its conditional deletion in endothelial cells causes inflammation-driven hepatic fibrosis without adversely affecting metabolism (mice remain insulin-sensitive and do not develop hepatic steatosis). Thus, this review provides in vivo evidence that supports or discards the role of insulin resistance in liver injury and hepatic fibrosis.
Collapse
Affiliation(s)
- Basel G. Aldroubi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Tya S. Youssef
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Carl E. Rizk
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Basil A.M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Karl Aramouni
- Department of Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 43614, USA
| |
Collapse
|
3
|
Smith K, Taylor GS, Peeters W, Walker M, Perazzolo S, Atabaki-Pasdar N, Bowden Davies KA, Karpe F, Hodson L, Stevenson EJ, West DJ. Elevations in plasma glucagon are associated with reduced insulin clearance after ingestion of a mixed-macronutrient meal in people with and without type 2 diabetes. Diabetologia 2024; 67:2555-2567. [PMID: 39138690 PMCID: PMC11519192 DOI: 10.1007/s00125-024-06249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024]
Abstract
AIMS/HYPOTHESIS The temporal suppression of insulin clearance after glucose ingestion is a key determinant of glucose tolerance for people without type 2 diabetes. Whether similar adaptations are observed after the ingestion of a mixed-macronutrient meal is unclear. METHODS In a secondary analysis of data derived from two randomised, controlled trials, we studied the temporal responses of insulin clearance after the ingestion of a standardised breakfast meal consisting of cereal and milk in lean normoglycaemic individuals (n=12; Lean-NGT), normoglycaemic individuals with central obesity (n=11; Obese-NGT) and in people with type 2 diabetes (n=19). Pre-hepatic insulin secretion rates were determined by the deconvolution of C-peptide, and insulin clearance was calculated using a single-pool model. Insulin sensitivity was measured by an oral minimal model. RESULTS There were divergent time course changes in insulin clearance between groups. In the Lean-NGT group, there was an immediate post-meal increase in insulin clearance compared with pre-meal values (p<0.05), whereas insulin clearance remained stable at baseline values in Obese-NGT or declined slightly in the type 2 diabetes group (p<0.05). The mean AUC for insulin clearance during the test was ~40% lower in the Obese-NGT (1.3 ± 0.4 l min-1 m-2) and type 2 diabetes (1.4 ± 0.7 l min-1 m-2) groups compared with Lean-NGT (1.9 ± 0.5 l min-1 m-2; p<0.01), with no difference between the Obese-NGT and type 2 diabetes groups. HOMA-IR and glucagon AUC emerged as predictors of insulin clearance AUC, independent of BMI, age or insulin sensitivity (adjusted R2=0.670). Individuals with increased glucagon AUC had a 40% reduction in insulin clearance AUC (~ -0.75 l min-1 m-2; p<0.001). CONCLUSIONS/INTERPRETATION The ingestion of a mixed-macronutrient meal augments differing temporal profiles in insulin clearance among individuals without type 2 diabetes, which is associated with HOMA-IR and the secretion of glucagon. Further research investigating the role of hepatic glucagon signalling in postprandial insulin kinetics is warranted. TRIAL REGISTRATION ISRCTN17563146 and ISRCTN95281775.
Collapse
Affiliation(s)
- Kieran Smith
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK.
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Guy S Taylor
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter Peeters
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simone Perazzolo
- Nanomath LLC, Spokane, WA, USA
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Naeimeh Atabaki-Pasdar
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital Trust, Oxford, UK
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Malmö, Sweden
| | - Kelly A Bowden Davies
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital Trust, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital Trust, Oxford, UK
| | - Emma J Stevenson
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel J West
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Zhang K. CEACAM1: Shielding the liver against fibrosis. Eur J Clin Invest 2024; 54:e14182. [PMID: 38424027 PMCID: PMC11250924 DOI: 10.1111/eci.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Kezhong Zhang
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
5
|
Lee WH, Najjar SM, Kahn CR, Hinds TD. Hepatic insulin receptor: new views on the mechanisms of liver disease. Metabolism 2023; 145:155607. [PMID: 37271372 PMCID: PMC10330768 DOI: 10.1016/j.metabol.2023.155607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Over 65 % of people with obesity display the metabolic-associated fatty liver disease (MAFLD), which can manifest as steatohepatitis, fibrosis, cirrhosis, or liver cancer. The development and progression of MAFLD involve hepatic insulin resistance and reduced insulin clearance. This review discusses the relationships between altered insulin signaling, hepatic insulin resistance, and reduced insulin clearance in the development of MAFLD and how this provides the impetus for exploring the use of insulin sensitizers to curb this disease. The review also explores the role of the insulin receptor in hepatocytes and hepatic stellate cells and how it signals in metabolic and end-stage liver diseases. Finally, we discuss new research findings that indicate that advanced hepatic diseases may be an insulin-sensitive state in the liver and deliberate whether insulin sensitizers should be used to manage late-stage liver diseases.
Collapse
Affiliation(s)
- Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
Muturi HT, Ghadieh HE, Abdolahipour R, Stankus HL, Belew GD, Liu JK, Jahromi MS, Lee AD, Singer BB, Angeli-Pahim I, Sehrawat TS, Malhi H, Verhulst S, van Grunsven LA, Zarrinpar A, Duarte S, Najjar SM. Loss of CEACAM1 in endothelial cells causes hepatic fibrosis. Metabolism 2023; 144:155562. [PMID: 37088122 PMCID: PMC10330196 DOI: 10.1016/j.metabol.2023.155562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVES Hepatocytic CEACAM1 plays a critical role in NASH pathogenesis, as bolstered by the development of insulin resistance, visceral obesity, steatohepatitis and fibrosis in mice with global Ceacam1 (Cc1) deletion. In contrast, VECadCre+Cc1fl/fl mice with endothelial loss of Cc1 manifested insulin sensitivity with no visceral obesity despite elevated NF-κB signaling and increased systemic inflammation. We herein investigated whether VECadCre+Cc1fl/fl male mice develop hepatic fibrosis and whether this is mediated by increased production of endothelin1 (ET1), a transcriptional NF-κB target. METHODS VECadCre+Et1.Cc1fl/fl mice with combined endothelial loss of Cc1/Et1 genes were generated. Histological and immunohistochemical analyses were conducted on their livers and on liver tissue biopsies from adult patients undergoing bariatric surgery or from patients with NASH diagnosis receiving liver transplant. RESULTS Hepatic fibrosis and inflammatory infiltration developed in VECadCre+Cc1fl/fl liver parenchyma. This was preceded by increased ET1 production and reversed with combined endothelial loss of Et1. Conditioned media from VECadCre+Cc1fl/fl, but not VECadCre+Et1.Cc1fl/fl primary liver endothelial cells activated wild-type hepatic stellate cells; a process inhibited by bosentan, an ETAR/ETBR dual antagonist. Consistently, immunohistochemical analysis of liver biopsies from patients with NASH showed a decline in endothelial CEACAM1 in parallel with increased plasma endothelin1 levels and progression of hepatic fibrosis stage. CONCLUSIONS The data demonstrated that endothelial CEACAM1 plays a key role in preventing hepatic fibrogenesis by reducing autocrine endothelin1 production.
Collapse
Affiliation(s)
- Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Balamand, Al-Koura, Lebanon
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hannah L Stankus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Getachew Debas Belew
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - James K Liu
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Abraham D Lee
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Isabella Angeli-Pahim
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
7
|
Abstract
Insulin action is impaired in type 2 diabetes. The functions of the hormone are an integrated product of insulin secretion from pancreatic β-cells and insulin clearance by receptor-mediated endocytosis and degradation, mostly in liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues. Substantial evidence indicates that genetic or acquired abnormalities of insulin secretion or action predispose to type 2 diabetes. In recent years, along with the discovery of the molecular foundation of receptor-mediated insulin clearance, such as through the membrane glycoprotein CEACAM1, a consensus has begun to emerge that reduction of insulin clearance contributes to the disease process. In this review, we consider the evidence suggesting a pathogenic role for reduced insulin clearance in insulin resistance, obesity, hepatic steatosis, and type 2 diabetes.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA;
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| |
Collapse
|
8
|
Sleeve Gastrectomy-Induced Weight Loss Increases Insulin Clearance in Obese Mice. Int J Mol Sci 2023; 24:ijms24021729. [PMID: 36675244 PMCID: PMC9861800 DOI: 10.3390/ijms24021729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/18/2023] Open
Abstract
Sleeve gastrectomy (SG) successfully recovers metabolic homeostasis in obese humans and rodents while also resulting in the normalization of insulin sensitivity and insulinemia. Reduced insulin levels have been attributed to lower insulin secretion and increased insulin clearance in individuals submitted to SG. Insulin degradation mainly occurs in the liver in a process controlled, at least in part, by the insulin-degrading enzyme (IDE). However, research has yet to explore whether liver IDE expression or activity is altered after SG surgery. In this study, C57BL/6 mice were fed a chow (CTL) or high-fat diet (HFD) for 10 weeks. Afterward, the HFD mice were randomly assigned to two groups: sham-surgical (HFD-SHAM) and SG-surgical (HFD-SG). Here, we confirmed that SG improves glucose-insulin homeostasis in obese mice. Additionally, SG reduced insulinemia by reducing insulin secretion, assessed by the analysis of plasmatic C-peptide content, and increasing insulin clearance, which was evaluated through the calculation of the plasmatic C-peptide:insulin ratio. Although no changes in hepatic IDE activity were observed, IDE expression was higher in the liver of HFD-SG compared with HFD-SHAM mice. These results indicate that SG may be helpful to counteract obesity-induced hyperinsulinemia by increasing insulin clearance, likely through enhanced liver IDE expression.
Collapse
|
9
|
Liu D, Wu C, Wang J, Zhang L, Sun Z, Chen S, Ding Y, Wang W. Transfer RNA-derived fragment 5'tRF-Gly promotes the development of hepatocellular carcinoma by direct targeting of carcinoembryonic antigen-related cell adhesion molecule 1. Cancer Sci 2022; 113:3476-3488. [PMID: 35879647 PMCID: PMC9530880 DOI: 10.1111/cas.15505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Transfer RNA-derived fragments are a group of small noncoding single-stranded RNA that play essential roles in multiple diseases. However, their biological functions in carcinogenesis are not well understood. In this study, 5'tRF-Gly was found to have significantly high expression in hepatocellular carcinoma (HCC), and the upregulation of 5'tRF-Gly was positively correlated with tumor size and tumor metastasis. Overexpression of 5'tRF-Gly induced increased growth rate and metastasis in HCC cells in vitro and in nude mice, while knockdown showed the opposite effect. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) was confirmed to be a direct target of 5'tRF-Gly in HCC. In addition, the cytological effect of CEACAM1 knockdown proved to be similar to the overexpression of 5'tRF-Gly. Moreover, attenuation of CEACAM1 expression rescued the 5'tRF-Gly-mediated promoting effects on HCC cells. These data show that 5'tRF-Gly is a new tumor-promoting factor and could be a potential diagnostic biomarker or new therapeutic target for HCC.
Collapse
Affiliation(s)
- Dekai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouChina
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouChina
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang UniversityHangzhouChina
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Chengdong Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouChina
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouChina
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang UniversityHangzhouChina
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jingjie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouChina
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouChina
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang UniversityHangzhouChina
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Lufei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouChina
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouChina
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang UniversityHangzhouChina
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouChina
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouChina
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang UniversityHangzhouChina
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Shihong Chen
- Department of Clinical MedicineWenzhou Medical CollegeWenzhouChina
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouChina
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouChina
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang UniversityHangzhouChina
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouChina
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouChina
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang UniversityHangzhouChina
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
10
|
Najjar SM, Abdolahipour R, Ghadieh HE, Jahromi MS, Najjar JA, Abuamreh BAM, Zaidi S, Kumarasamy S, Muturi HT. Regulation of Insulin Clearance by Non-Esterified Fatty Acids. Biomedicines 2022; 10:biomedicines10081899. [PMID: 36009446 PMCID: PMC9405499 DOI: 10.3390/biomedicines10081899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin stores lipid in adipocytes and prevents lipolysis and the release of non-esterified fatty acids (NEFA). Excessive release of NEFA during sustained energy supply and increase in abdominal adiposity trigger systemic insulin resistance, including in the liver, a major site of insulin clearance. This causes a reduction in insulin clearance as a compensatory mechanism to insulin resistance in obesity. On the other hand, reduced insulin clearance in the liver can cause chronic hyperinsulinemia, followed by downregulation of insulin receptor and insulin resistance. Delineating the cause–effect relationship between reduced insulin clearance and insulin resistance has been complicated by the fact that insulin action and clearance are mechanistically linked to insulin binding to its receptors. This review discusses how NEFA mobilization contributes to the reciprocal relationship between insulin resistance and reduced hepatic insulin clearance, and how this may be implicated in the pathogenesis of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2376; Fax: +1-740-593-2320
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Balamand P.O. Box 100, Lebanon
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Internal Medicine, College of Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Basil A. M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sobia Zaidi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
11
|
Ghiasi S, Bashiri J, Pourrazi H, Jadidi RP. The effect of high-intensity interval training and CoQ10 administration on hepatic CEACAM1 and PDGFA proteins in diet-induced obese rats. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Koh HCE, Cao C, Mittendorfer B. Insulin Clearance in Obesity and Type 2 Diabetes. Int J Mol Sci 2022; 23:596. [PMID: 35054781 PMCID: PMC8776220 DOI: 10.3390/ijms23020596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Plasma insulin clearance is an important determinant of plasma insulin concentration. In this review, we provide an overview of the factors that regulate insulin removal from plasma and discuss the interrelationships among plasma insulin clearance, excess adiposity, insulin sensitivity, and type 2 diabetes (T2D). We conclude with the perspective that the commonly observed lower insulin clearance rate in people with obesity, compared with lean people, is not a compensatory response to insulin resistance but occurs because insulin sensitivity and insulin clearance are mechanistically, directly linked. Furthermore, insulin clearance decreases postprandially because of the marked increase in insulin delivery to tissues that clear insulin. The commonly observed high postprandial insulin clearance in people with obesity and T2D likely results from the relatively low insulin secretion rate, not an impaired adaptation of tissues that clear insulin.
Collapse
Affiliation(s)
| | | | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8031-14-0002, St. Louis, MO 63110, USA; (H.-C.E.K.); (C.C.)
| |
Collapse
|
13
|
Helal RA, Russo L, Ghadieh HE, Muturi HT, Asalla S, Lee AD, Gatto-Weis C, Najjar SM. Regulation of hepatic fibrosis by carcinoembryonic antigen-related cell adhesion molecule 1. Metabolism 2021; 121:154801. [PMID: 34058224 PMCID: PMC8286970 DOI: 10.1016/j.metabol.2021.154801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE NAFLD is a complex disease marked by cellular abnormalities leading to NASH. NAFLD patients manifest low hepatic levels of CEACAM1, a promoter of insulin clearance. Consistently, Cc1-/- null mice displayed spontaneous hyperinsulinemia/insulin resistance and steatohepatitis. Liver-specific reconstitution of Ceacam1 reversed these metabolic anomalies in 8-month-old Cc1-/-xliver+ mice fed a regular chow diet. The current study examined whether it would also reverse progressive hepatic fibrosis in mice fed a high-fat (HF) diet. METHODS 3-Month-old mice were fed a high-fat diet for 3-5 months, and metabolic and histopathological analysis were conducted to evaluate their NASH phenotype. RESULTS Reconstituting CEACAM1 to Cc1-/- livers curbed diet-induced liver dysfunction and NASH, including macrovesicular steatosis, lobular inflammation, apoptosis, oxidative stress, and chicken-wire bridging fibrosis. Persistence of hepatic fibrosis in HF-fed Cc1-/- treated with nicotinic acid demonstrated a limited role for lipolysis and adipokine release in hepatic fibrosis caused by Ceacam1 deletion. CONCLUSIONS Restored metabolic and histopathological phenotype of HF-fed Cc1-/-xliver+xliver+ assigned a critical role for hepatic CEACAM1 in preventing NAFLD/NASH including progressive hepatic fibrosis.
Collapse
Affiliation(s)
- Raghd Abu Helal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Suman Asalla
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Abraham D Lee
- Department of Rehabilitation Sciences, College of Health Sciences, The University of Toledo, Toledo, OH, USA
| | - Cara Gatto-Weis
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
14
|
Abstract
Aging is characterized by a progressive loss of physiological function leading to increase in the vulnerability to death. This deterioration process occurs in all living organisms and is the primary risk factor for pathological conditions including obesity, type 2 diabetes mellitus, Alzheimer's disease and cardiovascular diseases. Most of the age-related diseases have been associated with impairment of action of an important hormone, namely insulin. It is well-known that this hormone is a critical mediator of metabolism, growth, proliferation and differentiation. Insulin action depends on two processes that determine its circulating levels, insulin secretion and clearance, and insulin sensitivity in its target tissues. Aging has deleterious effects on these three mechanisms, impairing insulin action, thereby increasing the risk for diseases and death. Thus, improving insulin action may be an important strategy to have a healthier and longer life.
Collapse
|
15
|
The Role of Hepatic Fat Accumulation in Glucose and Insulin Homeostasis-Dysregulation by the Liver. J Clin Med 2021; 10:jcm10030390. [PMID: 33498493 PMCID: PMC7864173 DOI: 10.3390/jcm10030390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Accumulation of hepatic triacylglycerol (TG) is associated with obesity and metabolic syndrome, which are important pathogenic factors in the development of type 2 diabetes. In this narrative review, we summarize the effects of hepatic TG accumulation on hepatic glucose and insulin metabolism and the underlying molecular regulation in order to highlight the importance of hepatic TG accumulation for whole-body glucose metabolism. We find that liver fat accumulation is closely linked to impaired insulin-mediated suppression of hepatic glucose production and reduced hepatic insulin clearance. The resulting systemic hyperinsulinemia has a major impact on whole-body glucose metabolism and may be an important pathogenic step in the development of type 2 diabetes.
Collapse
|
16
|
Ghadieh HE, Abu Helal R, Muturi HT, Issa DD, Russo L, Abdallah SL, Najjar JA, Benencia F, Vazquez G, Li W, Najjar SM. Loss of Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Links Nonalcoholic Steatohepatitis to Atherosclerosis. Hepatol Commun 2020; 4:1591-1609. [PMID: 33163831 PMCID: PMC7603529 DOI: 10.1002/hep4.1590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) commonly develop atherosclerosis through a mechanism that is not well delineated. These diseases are associated with steatosis, inflammation, oxidative stress, and fibrosis. The role of insulin resistance in their pathogenesis remains controversial. Albumin (Alb)Cre+Cc1flox(fl)/fl mice with the liver‐specific null deletion of the carcinoembryonic antigen‐related cell adhesion molecule 1 (Ceacam1; alias Cc1) gene display hyperinsulinemia resulting from impaired insulin clearance followed by hepatic insulin resistance, elevated de novo lipogenesis, and ultimately visceral obesity and systemic insulin resistance. We therefore tested whether this mutation causes NAFLD/NASH and atherosclerosis. To this end, mice were propagated on a low‐density lipoprotein receptor (Ldlr)−/− background and at 4 months of age were fed a high‐cholesterol diet for 2 months. We then assessed the biochemical and histopathologic changes in liver and aortae. Ldlr−/−AlbCre+Cc1fl/fl mice developed chronic hyperinsulinemia with proatherogenic hypercholesterolemia, a robust proinflammatory state associated with visceral obesity, elevated oxidative stress (reduced NO production), and an increase in plasma and tissue endothelin‐1 levels. In parallel, they developed NASH (steatohepatitis, apoptosis, and fibrosis) and atherosclerotic plaque lesions. Mechanistically, hyperinsulinemia caused down‐regulation of the insulin receptor followed by inactivation of the insulin receptor substrate 1–protein kinase B–endothelial NO synthase pathway in aortae, lowering the NO level. This also limited CEACAM1 phosphorylation and its sequestration of Shc‐transforming protein (Shc), activating the Shc–mitogen‐activated protein kinase–nuclear factor kappa B pathway and stimulating endothelin‐1 production. Thus, in the presence of proatherogenic dyslipidemia, hyperinsulinemia and hepatic insulin resistance driven by liver‐specific deletion of Ceacam1 caused metabolic and vascular alterations reminiscent of NASH and atherosclerosis. Conclusion: Altered CEACAM1‐dependent hepatic insulin clearance pathways constitute a molecular link between NASH and atherosclerosis.
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Biomedical Sciences Ohio University Athens OH USA
| | - Raghd Abu Helal
- Department of Biomedical Sciences Ohio University Athens OH USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Biomedical Sciences Ohio University Athens OH USA
| | - Daniella D Issa
- Department of Biomedical Sciences Ohio University Athens OH USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - Simon L Abdallah
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - John A Najjar
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - Fabian Benencia
- Department of Biomedical Sciences Ohio University Athens OH USA
| | - Guillermo Vazquez
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - Wei Li
- Department of Biomedical Sciences Marshall University Joan C. Edwards School of Medicine Huntington WV USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Biomedical Sciences Ohio University Athens OH USA.,Diabetes Institute Heritage College of Osteopathic Medicine Ohio University Athens OH USA
| |
Collapse
|
17
|
Wu Y, Yang Z, Zhu L, Su Q, Qin L. Association of circulating CEACAM1 levels and insulin sensitivity in gestational diabetes mellitus. BMC Endocr Disord 2020; 20:66. [PMID: 32414367 PMCID: PMC7227292 DOI: 10.1186/s12902-020-00550-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of this study was to estimate the levels of circulating carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in subjects with gestational diabetes mellitus (GDM) and investigate the relationships between CEACAM1 and GDM. METHODS Circulating CEACAM1 levels were measured by ELISA kit in 70 women with GDM and 70 normal glucose tolerance (NGT) pregnant women. Blood samples were collected to detect fasting plasma glucose (FPG), fasting insulin (FINS) and glycosylated hemoglobin (HbA1c) levels in all participants. Insulin sensitivity index (ISOGTT) was calculated to assess insulin sensitivity. Correlation analysis was performed between serum CEACAM1 levels and other parameters. RESULTS Circulating CEACAM1 levels were higher in the GDM group than that in the NGT pregnant group, however, the difference showed no statistical significance (1889.82 ± 616.14 vs 1758.92 ± 433.15 pg/ml, p > 0.05). In GDM group, CEACAM1 was positively correlated with ISOGTT (R = 0.39, P = 0.001), while negatively with 1 h post-meal plasma insulin level (1hPINS) (R = -0.32, P = 0.008), 2 h post-meal plasma insulin level (2hPINS) (R = -0.33, P = 0.006) and area under curve of insulin (AUCI) (R = -0.36, P = 0.002) when adjusting for maternal age and gestational age. CONCLUSIONS The present study showed that circulating CEACAM1 levels did not differ in both GDM and NGT groups. However, we found a significant positively correlation between CEACAM1 and insulin sensitivity in the GDM group.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lingfei Zhu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, China
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Bergman RN, Piccinini F, Kabir M, Kolka CM, Ader M. Hypothesis: Role of Reduced Hepatic Insulin Clearance in the Pathogenesis of Type 2 Diabetes. Diabetes 2019; 68:1709-1716. [PMID: 31431441 PMCID: PMC6702636 DOI: 10.2337/db19-0098] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022]
Abstract
There is wide variance among individuals in the fraction of insulin cleared by the liver (20% to 80%). Hepatic insulin clearance is 67% lower in African Americans than European Americans. Clearance is also lower in African American children 7-13 years of age. Lower hepatic insulin clearance will result in peripheral hyperinsulinemia: this exacerbates insulin resistance, which stresses the β-cells, possibly resulting in their ultimate failure and onset of type 2 diabetes. We hypothesize that lower insulin clearance can be a primary cause of type 2 diabetes in at-risk individuals.
Collapse
Affiliation(s)
- Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Francesca Piccinini
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Morvarid Kabir
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Cathryn M Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Marilyn Ader
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
19
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
20
|
Sainz J, Prieto C, Crespo-Facorro B. Sex differences in gene expression related to antipsychotic induced weight gain. PLoS One 2019; 14:e0215477. [PMID: 30986260 PMCID: PMC6464344 DOI: 10.1371/journal.pone.0215477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Antipsychotics are crucial for the treatment of schizophrenia and contribute to weight gain in psychosis, particularly during early phases. Antipsychotic Induced Weight Gain (AIWG) might contribute to reduce the quality of life, drug compliance and to increase mortality. To characterize sex differences of gene expression related to AIWG, we sequenced total mRNA from blood samples of schizophrenia patients, before and after 3 months of antipsychotic-treatment. We analyzed schizophrenia patients according to their sex (38 males and 39 females) and their BMI increase after medication, characterizing the differential gene expression before and after medication. Individuals in each group were categorized in patients who gain weight and those whose do not gain weight. The “weight gain” groups included patients with an increase of body mass index (BMI) > 1.0 points (27 males and 23 females with a median BMI increase of 2.68 and 2.32 respectively). The “no weight gain” groups included patients with a change of BMI between < 1.0 and > -1.0 points (11 males and 16 females with a median BMI increase of 0.21 and 0.16 respectively). The males had 331 genes with significant differential expression in the weight gain group and 24 genes in the no weight gain group. The females had 119 genes with significant differential expression in the weight gain group and 75 genes in the no weight gain group. Both weight gain groups were significantly enriched with “obesity” genes (Fisher; p = 1.1E-09 and p = 0.0001 respectively), according to the Gene Reference into Function (GeneRIF) database.In conclusion, we characterized genes with differential expression associated to AIWG that are specific to males, to females and common to both sexes. These genes are good candidates to depict the biological processes involved in AIWG and provide additional evidence of the genetic links between weight gain and the immune system.
Collapse
Affiliation(s)
- Jesus Sainz
- Spanish National Research Council (CSIC), Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Santander, Spain
- * E-mail: (JS); (BC-F)
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca (USAL), Salamanca, Spain
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
- University Hospital Virgen del Rocio, University of Sevilla, Seville, Spain
- * E-mail: (JS); (BC-F)
| |
Collapse
|
21
|
Piccinini F, Polidori DC, Gower BA, Fernandez JR, Bergman RN. Dissection of hepatic versus extra-hepatic insulin clearance: Ethnic differences in childhood. Diabetes Obes Metab 2018; 20:2869-2875. [PMID: 30019375 PMCID: PMC6482814 DOI: 10.1111/dom.13471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/19/2023]
Abstract
AIMS Adult African American (AA) women have one third of the hepatic insulin clearance of European American (EA) women. This lower hepatic (but not extra-hepatic) insulin clearance in AA individuals is associated with higher plasma insulin concentrations. This study aims to understand whether impairment of hepatic insulin clearance is seen in AA individuals since childhood, possibly suggesting that genetic/epigenetic factors, rather than lifestyle only, contribute to this. MATERIALS AND METHODS A total of 203 children (105 male and 98 female (55 AA, 88 EA and 60 Hispanic American [HA]; ages, 7-13 years; mean BMI, 19 kg/m2 )) underwent the frequently applied intravenous glucose tolerance test (FSIGT) at the University of Alabama at Birmingham, General Clinical Research Center and Department of Nutrition Sciences. Glucose, insulin and C-peptide levels were measured and hepatic and extra-hepatic insulin clearances were calculated using mathematical modelling. RESULTS Fractional hepatic insulin extraction (FEL ) was lower in AA than in EA children (mean (SD), 19% (20%) vs 33% (20%); P = 0.0007). Adjusting for age, Tanner stage and body fat, FEL was lower in AA than in EA children (P = 0.0012), and there was a slight sex-related difference (FEL, 24% (10%) vs 29% (10%) in boys vs girls; P = 0.04). Extra-hepatic insulin clearance did not differ with ethnicity (27 (12), 21 (12) and 24 (28) mL/kg/min for AA, HA and EA children, respectively; P > 0.05). CONCLUSIONS At a young age, FEL is lower in AAs than in EAs, which does not rule out genetic/epigenetic factors. These differences are related to hyperinsulinaemia and, over time, could possibly contribute to metabolic disorders in AA individuals.
Collapse
Affiliation(s)
- Francesca Piccinini
- Cedars-Sinai Medical Center, Diabetes and Obesity Research Institute, Los Angeles, California
| | | | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jose R Fernandez
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard N Bergman
- Cedars-Sinai Medical Center, Diabetes and Obesity Research Institute, Los Angeles, California
| |
Collapse
|
22
|
Bojsen-Møller KN, Lundsgaard AM, Madsbad S, Kiens B, Holst JJ. Hepatic Insulin Clearance in Regulation of Systemic Insulin Concentrations-Role of Carbohydrate and Energy Availability. Diabetes 2018; 67:2129-2136. [PMID: 30348819 DOI: 10.2337/db18-0539] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022]
Abstract
Hyperinsulinemia is the hallmark of insulin resistance in obesity, and the relative importance of insulin clearance, insulin resistance, and insulin hypersecretion has been widely debated. On the basis of recent experimental evidence, we summarize existing evidence to suggest hepatic insulin clearance as a major and immediate regulator of systemic insulin concentrations responding within days to altered dietary energy and, in particular, carbohydrate intake. Hepatic insulin clearance seems to be closely associated with opposite alterations in hepatic lipid content and glucose production, providing a potential mechanistic link to hepatic insulin sensitivity. The molecular regulation of insulin clearance in the liver is likely to involve changes in insulin binding and receptor internalization in response to the dietary alterations, the molecular mechanisms of which await further research.
Collapse
Affiliation(s)
- Kirstine N Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Horst AK, Najjar SM, Wagener C, Tiegs G. CEACAM1 in Liver Injury, Metabolic and Immune Regulation. Int J Mol Sci 2018; 19:ijms19103110. [PMID: 30314283 PMCID: PMC6213298 DOI: 10.3390/ijms19103110] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein that is expressed on epithelial, endothelial and immune cells. CEACAM1 is a differentiation antigen involved in the maintenance of epithelial polarity that is induced during hepatocyte differentiation and liver regeneration. CEACAM1 regulates insulin sensitivity by promoting hepatic insulin clearance, and controls liver tolerance and mucosal immunity. Obese insulin-resistant humans with non-alcoholic fatty liver disease manifest loss of hepatic CEACAM1. In mice, deletion or functional inactivation of CEACAM1 impairs insulin clearance and compromises metabolic homeostasis which initiates the development of obesity and hepatic steatosis and fibrosis with other features of non-alcoholic steatohepatitis, and adipogenesis in white adipose depot. This is followed by inflammation and endothelial and cardiovascular dysfunctions. In obstructive and inflammatory liver diseases, soluble CEACAM1 is shed into human bile where it can serve as an indicator of liver disease. On immune cells, CEACAM1 acts as an immune checkpoint regulator, and deletion of Ceacam1 gene in mice causes exacerbation of inflammation and hyperactivation of myeloid cells and lymphocytes. Hence, hepatic CEACAM1 resides at the central hub of immune and metabolic homeostasis in both humans and mice. This review focuses on the regulatory role of CEACAM1 in liver and biliary tract architecture in health and disease, and on its metabolic role and function as an immune checkpoint regulator of hepatic inflammation.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
- The Diabetes Institute, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
| | - Christoph Wagener
- University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
24
|
Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol 2018; 217:2273-2289. [PMID: 29622564 PMCID: PMC6028526 DOI: 10.1083/jcb.201802095] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
Insulin is the paramount anabolic hormone, promoting carbon energy deposition in the body. Its synthesis, quality control, delivery, and action are exquisitely regulated by highly orchestrated intracellular mechanisms in different organs or "stations" of its bodily journey. In this Beyond the Cell review, we focus on these five stages of the journey of insulin through the body and the captivating cell biology that underlies the interaction of insulin with each organ. We first analyze insulin's biosynthesis in and export from the β-cells of the pancreas. Next, we focus on its first pass and partial clearance in the liver with its temporality and periodicity linked to secretion. Continuing the journey, we briefly describe insulin's action on the blood vasculature and its still-debated mechanisms of exit from the capillary beds. Once in the parenchymal interstitium of muscle and adipose tissue, insulin promotes glucose uptake into myofibers and adipocytes, and we elaborate on the intricate signaling and vesicle traffic mechanisms that underlie this fundamental function. Finally, we touch upon the renal degradation of insulin to end its action. Cellular discernment of insulin's availability and action should prove critical to understanding its pivotal physiological functions and how their failure leads to diabetes.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Ghadieh HE, Muturi HT, Najjar SM. Exenatide Prevents Diet-induced Hepatocellular Injury in A CEACAM1-Dependent Mechanism. JOURNAL OF DIABETES AND TREATMENT 2017; 2017:10.29011/2574.7568.000033. [PMID: 29431170 PMCID: PMC5806705 DOI: 10.29011/2574.7568.000033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1) promotes insulin sensitivity by inducing insulin clearance and reducing de novo lipogenesis in the liver. Consistently, Cc1-/- mice with null deletion of Ceacam1 gene exhibit hyperinsulinemia and insulin resistance, in addition to steatohepatitis. They also exhibit early pericellular fibrosis. Redelivering Ceacam1 to the liver reverses the altered metabolism and histopathology of Cc1-/- mice. Exenatide, a long-acting glucagon-like peptide-1 receptor agonist, induces Ceacam1 transcription and consequently, reverses impaired insulin clearance and insulin resistance caused by high-fat intake. Additionally, it reverses fat accumulation in the liver. The current studies show that exenatide also restored the activities of alanine transaminase and aspartate aminotransferase, and reversed the inflammatory and oxidative stress response to high-fat diet in wild-type, but not in Cc1-/- mice. Exenatide also prevented diet-induced activation of the TGFβ/Smad2/Smad3 pro-fibrogenic pathways, and normalized the mRNA levels of pro-fibrogenic genes in wild-type, but not in Cc1-/- mice. Together, the data demonstrate that exenatide prevented diet-induced pro-fibrogenesis and hepatocellular injury in a CEACAM1-dependent mechanism.
Collapse
Affiliation(s)
- Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
26
|
Vulcan A, Manjer J, Ohlsson B. High blood glucose levels are associated with higher risk of colon cancer in men: a cohort study. BMC Cancer 2017; 17:842. [PMID: 29233100 PMCID: PMC5727949 DOI: 10.1186/s12885-017-3874-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Background High levels of blood glucose are thought to be associated with colorectal cancer (CRC) and hyperinsulinemia, an interstage in the development of CRC. The purpose of this study was to examine associations between incident CRC and blood glucose; plasma insulin; and the homeostasis model assessment for insulin resistance (HOMA2-IR), respectively, and to determine whether these associations were dependent on sex and cancer site. Methods The Malmö Diet and Cancer cardiovascular cohort comprises 6103 individuals. During 81,781 person-years of follow-up, 145 cases of CRC were identified. The hazard ratio of measured blood glucose and plasma insulin and calculated HOMA2-IR were estimated with Cox proportional hazard regression. Results An association was found between high levels of blood glucose and risk of CRC (HR: 1.72 for the highest compared with the lowest quartile; 95% CI: 1.05, 2.84; ptrend = 0.044), and colon cancer (HR: 1.70 for the highest compared with the lowest quartile; 95% CI: 0.87, 3.33; ptrend = 0.032). In men, an association was found between blood glucose and CRC (HR: 2.80 for the highest compared with the lowest quartile; 95% CI: 1.37, 5.70; ptrend = 0.001), and colon cancer (HR: 4.48 for the highest compared with the lowest quartile; 95% CI: 1.27, 15.84; ptrend = 0.007), but this was not found in women. No associations between plasma insulin, or HOMA2-IR, and CRC, were found. Conclusion High levels of blood glucose in men are associated with risk of colon cancer. The findings contribute to facilitating to identify those most in need of prevention and screening.
Collapse
Affiliation(s)
- Alexandra Vulcan
- Lund University, Skåne University Hospital, Department of Clinical Sciences, Division of Internal Medicine, Jan Waldenströms gata 14, 205 02, Malmö, Sweden.
| | - Jonas Manjer
- Lund University, Skåne University Hospital, Department of Clinical Sciences, Division of Surgery, Inga Marie Nilssons gata 47, 205 02, Malmö, Sweden
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences, Division of Internal Medicine, Jan Waldenströms gata 15, 205 02, Malmö, Sweden
| |
Collapse
|
27
|
Russo L, Muturi HT, Ghadieh HE, Ghanem SS, Bowman TA, Noh HL, Dagdeviren S, Dogbey GY, Kim JK, Heinrich G, Najjar SM. Liver-specific reconstitution of CEACAM1 reverses the metabolic abnormalities caused by its global deletion in male mice. Diabetologia 2017; 60:2463-2474. [PMID: 28913658 PMCID: PMC5788286 DOI: 10.1007/s00125-017-4432-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Mice with global null mutation (Cc1 -/-) or with liver-specific inactivation (L-SACC1) of Cc1 (also known as Ceacam1) gene display hyperinsulinaemia resulting from impaired insulin clearance, insulin resistance, steatohepatitis and obesity. Because increased lipolysis contributes to the metabolic phenotype caused by transgenic inactivation of CEACAM1 in the liver, we aimed to further investigate the primary role of hepatic CEACAM1-dependent insulin clearance in insulin and lipid homeostasis. To this end, we examined whether transgenic reconstitution of CEACAM1 in the liver of global Cc1 -/- mutant mice reverses their abnormal metabolic phenotype. METHODS Insulin response was assessed by hyperinsulinaemic-euglycaemic clamp analysis and energy balance was analysed by indirect calorimetry. Mice were overnight-fasted and refed for 7 h to assess fatty acid synthase activity in the liver and the hypothalamus in response to insulin release during refeeding. RESULTS Liver-based rescuing of CEACAM1 restored insulin clearance, plasma insulin level, insulin sensitivity and steatohepatitis caused by global deletion of Cc1. It also reversed the gain in body weight and total fat mass observed with Cc1 deletion, in parallel to normalising energy balance. Mechanistically, reversal of hyperphagia appeared to result from reducing fatty acid synthase activity and restoring insulin signalling in the hypothalamus. CONCLUSIONS/INTERPRETATION Despite the potential confounding effects of deleting Cc1 from extrahepatic tissues, liver-based rescuing of CEACAM1 resulted in full normalisation of the metabolic phenotype, underscoring the key role that CEACAM1-dependent hepatic insulin clearance pathways play in regulating systemic insulin sensitivity, lipid homeostasis and energy balance.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A Bowman
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hye Lim Noh
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sezin Dagdeviren
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Godwin Y Dogbey
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Jason K Kim
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA.
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
28
|
Ghadieh HE, Muturi HT, Russo L, Marino CC, Ghanem SS, Khuder SS, Hanna JC, Jash S, Puri V, Heinrich G, Gatto-Weis C, Lee KY, Najjar SM. Exenatide induces carcinoembryonic antigen-related cell adhesion molecule 1 expression to prevent hepatic steatosis. Hepatol Commun 2017; 2:35-47. [PMID: 29404511 PMCID: PMC5776867 DOI: 10.1002/hep4.1117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
Exenatide, a glucagon-like peptide-1 receptor agonist, induces insulin secretion. Its role in insulin clearance has not been adequately examined. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance to maintain insulin sensitivity. Feeding C57BL/6J mice a high-fat diet down-regulates hepatic Ceacam1 transcription to cause hyperinsulinemia, insulin resistance, and hepatic steatosis, as in Ceacam1 null mice (Cc1-/- ). Thus, we tested whether exenatide regulates Ceacam1 expression in high-fat diet-fed mice and whether this contributes to its insulin sensitizing effect. Exenatide (100 nM) induced the transcriptional activity of wild-type Ceacam1 promoter but not the constructs harboring block mutations of peroxisome proliferator-activated receptor response element and retinoid X receptor alpha, individually or collectively, in HepG2 human hepatoma cells. Chromatin immunoprecipitation analysis demonstrated binding of peroxisome proliferator-activated receptor gamma to Ceacam1 promoter in response to rosiglitazone and exenatide. Consistently, exenatide induced Ceacam1 messenger RNA expression within 12 hours in the absence but not in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9-39. Exenatide (20 ng/g body weight once daily intraperitoneal injection in the last 30 days of feeding) restored hepatic Ceacam1 expression and insulin clearance to curb diet-induced metabolic abnormalities and steatohepatitis in wild-type but not Cc1-/- mice fed a high-fat diet for 2 months. Conclusion: Exenatide promotes insulin clearance in parallel with insulin secretion to prevent chronic hyperinsulinemia and the resulting hepatic steatosis, and this contributes to its insulin sensitizing effect. Our data further highlight the relevance of physiologic insulin metabolism in maintaining insulin sensitivity and normal lipid metabolism. (Hepatology Communications 2018;2:35-47).
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Christopher C Marino
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Saja S Khuder
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Julie C Hanna
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Sukanta Jash
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH.,Diabetes Institute, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH.,Diabetes Institute, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH.,Department of Pathology, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH.,Diabetes Institute, Heritage College of Osteopathic Medicine Ohio University Athens OH
| |
Collapse
|
29
|
Dankner M, Gray-Owen SD, Huang YH, Blumberg RS, Beauchemin N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 2017; 6:e1328336. [PMID: 28811966 PMCID: PMC5543821 DOI: 10.1080/2162402x.2017.1328336] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease. This review outlines CEACAM1's role as a therapeutic target for cancer treatment in light of these properties.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Heinrich G, Muturi HT, Rezaei K, Al-Share QY, DeAngelis AM, Bowman TA, Ghadieh HE, Ghanem SS, Zhang D, Garofalo RS, Yin L, Najjar SM. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity. Front Endocrinol (Lausanne) 2017; 8:54. [PMID: 28396653 PMCID: PMC5366977 DOI: 10.3389/fendo.2017.00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Anthony M. DeAngelis
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
31
|
Heinrich G, Ghadieh HE, Ghanem SS, Muturi HT, Rezaei K, Al-Share QY, Bowman TA, Zhang D, Garofalo RS, Yin L, Najjar SM. Loss of Hepatic CEACAM1: A Unifying Mechanism Linking Insulin Resistance to Obesity and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2017; 8:8. [PMID: 28184213 PMCID: PMC5266688 DOI: 10.3389/fendo.2017.00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, in particular in the context of its relationship to insulin resistance and visceral obesity. Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in mice has resolved some of the related questions. CEACAM1 promotes insulin clearance by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links NAFLD to insulin resistance and obesity.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
32
|
Russo L, Ghadieh HE, Ghanem SS, Al-Share QY, Smiley ZN, Gatto-Weis C, Esakov EL, McInerney MF, Heinrich G, Tong X, Yin L, Najjar SM. Role for hepatic CEACAM1 in regulating fatty acid metabolism along the adipocyte-hepatocyte axis. J Lipid Res 2016; 57:2163-2175. [PMID: 27777319 DOI: 10.1194/jlr.m072066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/17/2016] [Indexed: 12/15/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance and mediating suppression of fatty acid synthase activity. Feeding C57BL/6J male mice with a high-fat (HF) diet for 3-4 weeks triggered a >60% decrease in hepatic CEACAM1 levels to subsequently impair insulin clearance and cause systemic insulin resistance and hepatic steatosis. This study aimed at investigating whether lipolysis drives reduction in hepatic CEACAM1 and whether this constitutes a key mechanism leading to diet-induced metabolic abnormalities. Blocking lipolysis with a daily intraperitoneal injection of nicotinic acid in the last two days of a 30-day HF feeding regimen demonstrated that white adipose tissue (WAT)-derived fatty acids repressed hepatic CEACAM1-dependent regulation of insulin and lipid metabolism in 3-month-old male C57BL/6J mice. Adenoviral-mediated CEACAM1 redelivery countered the adverse metabolic effect of the HF diet on insulin resistance, hepatic steatosis, visceral obesity, and energy expenditure. It also reversed the effect of HF diet on inflammation and fibrosis in WAT and liver. This assigns a causative role for lipolysis-driven decrease in hepatic CEACAM1 level and its regulation of insulin and lipid metabolism in sustaining systemic insulin resistance, hepatic steatosis, and other abnormalities associated with excessive energy supply.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Qusai Y Al-Share
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Zachary N Smiley
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Emily L Esakov
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Marcia F McInerney
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614 .,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| |
Collapse
|
33
|
Vogt JA, Domzig C, Wabitsch M, Denzer C. Prehepatic secretion and disposal of insulin in obese adolescents as estimated by three-hour, eight-sample oral glucose tolerance tests. Am J Physiol Endocrinol Metab 2016; 311:E82-94. [PMID: 27143555 DOI: 10.1152/ajpendo.00455.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/25/2016] [Indexed: 01/10/2023]
Abstract
The body compensates for early-stage insulin resistance by increasing insulin secretion. A reliable and easy-to-use mathematical assessment of insulin secretion and disposal could be a valuable tool for identifying patients at risk for the development of type 2 diabetes. Because the pathophysiology of insulin resistance is incompletely understood, assessing insulin metabolism with minimal assumptions regarding its metabolic regulation is a major challenge. To assess insulin secretion and indexes of insulin disposal, our marginalized and regularized absorption approach (MRA) was applied to a sparse sampling oral glucose tolerance test (OGTT) protocol measuring the insulin and C-peptide concentrations. Identifiability and potential bias of metabolic parameters were estimated from published data with dense sampling. The MRA was applied to OGTT data from 135 obese adolescents to demonstrate its clinical applicability. Individual prehepatic basal and dynamic insulin secretion and clearance levels were determined with a precision and accuracy greater than 10% of the nominal value. The intersubject variability in these parameters was approximately four times higher than the intrasubject variability, and there was a strong negative correlation between prehepatic secretion and plasma clearance of insulin. MRA-based analysis provides reliable estimates of insulin secretion and clearance, thereby enabling detailed glucose homeostasis characterization based on restricted datasets that are obtainable during routine patient care.
Collapse
Affiliation(s)
- Josef A Vogt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany; and
| | - Christian Domzig
- Division of Pediatric Endocrinology and Diabetes, Interdisciplinary Obesity Unit, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Interdisciplinary Obesity Unit, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Denzer
- Division of Pediatric Endocrinology and Diabetes, Interdisciplinary Obesity Unit, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
34
|
Li C, Culver SA, Quadri S, Ledford KL, Al-Share QY, Ghadieh HE, Najjar SM, Siragy HM. High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion. Am J Physiol Endocrinol Metab 2015; 309:E802-10. [PMID: 26374765 PMCID: PMC4628940 DOI: 10.1152/ajpendo.00158.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS). In the current study, we tested the hypothesis that high-fat diet enhances the expression of RAS components. Three-month-old wild-type (Cc1(+/+)) and Cc1(-/-) mice were fed either a regular or a high-fat diet for 8 wk. At baseline under regular feeding conditions, Cc1(-/-) mice exhibited higher blood pressure, urine albumin-to-creatinine ratio (UACR), and renal expression of angiotensinogen, renin/prorenin, angiotensin-converting enzyme, (pro)renin receptor, angiotensin subtype AT1 receptor, angiotensin II, and elevated PI3K phosphorylation, as detected by p85α (Tyr(508)) immunostaining, inflammatory response, and the expression of collagen I and collagen III. In Cc1(+/+) mice, high-fat diet increased blood pressure, UACR, the expression of angiotensin-converting enzyme and angiotensin II, PI3K phosphorylation, inflammatory response, and the expression of collagen I and collagen III. In Cc1(-/-) mice, high-fat intake further amplified these parameters. Immunohistochemical staining showed increased p-PI3K p85α (Tyr(508)) expression in renal glomeruli, proximal, distal, and collecting tubules of Cc1(-/-) mice fed a high-fat diet. Together, this demonstrates that high-fat diet amplifies the permissive effect of Ceacam1 deletion on renal expression of all RAS components, PI3K phosphorylation, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| | - Silas A Culver
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| | - Syed Quadri
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| | - Kelly L Ledford
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Qusai Y Al-Share
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sonia M Najjar
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
35
|
Lester SG, Russo L, Ghanem SS, Khuder SS, DeAngelis AM, Esakov EL, Bowman TA, Heinrich G, Al-Share QY, McInerney MF, Philbrick WM, Najjar SM. Hepatic CEACAM1 Over-Expression Protects Against Diet-Induced Fibrosis and Inflammation in White Adipose Tissue. Front Endocrinol (Lausanne) 2015; 6:116. [PMID: 26284027 PMCID: PMC4522571 DOI: 10.3389/fendo.2015.00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/13/2015] [Indexed: 01/14/2023] Open
Abstract
CEACAM1 promotes insulin extraction, an event that occurs mainly in liver. Phenocopying global Ceacam1 null mice (Cc1(-/-) ), C57/BL6J mice fed a high-fat (HF) diet exhibited reduced hepatic CEACAM1 levels and impaired insulin clearance, followed by hyperinsulinemia, insulin resistance, and visceral obesity. Conversely, forced liver-specific expression of CEACAM1 protected insulin sensitivity and energy expenditure, and limited gain in total fat mass by HF diet in L-CC1 mice. Because CEACAM1 protein is barely detectable in white adipose tissue (WAT), we herein investigated whether hepatic CEACAM1-dependent insulin clearance pathways regulate adipose tissue biology in response to dietary fat. While HF diet caused a similar body weight gain in L-CC1, this effect was delayed and less intense relative to wild-type (WT) mice. Histological examination revealed less expansion of adipocytes in L-CC1 than WT by HF intake. Immunofluorescence analysis demonstrated a more limited recruitment of crown-like structures, and qRT-PCR analysis showed no significant rise in TNFα mRNA levels in response to HF intake in L-CC1 than WT mice. Unlike WT, HF diet did not activate TGF-β in WAT of L-CC1 mice, as assessed by Western analysis of Smad2/3 phosphorylation. Consistently, HF diet caused relatively less collagen deposition in L-CC1 than WT mice, as shown by Trichrome staining. Coupled with reduced lipid redistribution from liver to visceral fat, lower inflammation and fibrosis could contribute to protected energy expenditure against HF diet in L-CC1 mice. The data underscore the important role of hepatic insulin clearance in the regulation of adipose tissue inflammation and fibrosis.
Collapse
Affiliation(s)
- Sumona G. Lester
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Saja S. Khuder
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Anthony M. DeAngelis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Emily L. Esakov
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Marcia F. McInerney
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - William M. Philbrick
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
36
|
Al-Share QY, DeAngelis AM, Lester SG, Bowman TA, Ramakrishnan SK, Abdallah SL, Russo L, Patel PR, Kaw MK, Raphael CK, Kim AJ, Heinrich G, Lee AD, Kim JK, Kulkarni RN, Philbrick WM, Najjar SM. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance. Diabetes 2015; 64:2780-90. [PMID: 25972571 PMCID: PMC4512217 DOI: 10.2337/db14-1772] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/16/2015] [Indexed: 12/18/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance.
Collapse
Affiliation(s)
- Qusai Y Al-Share
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Anthony M DeAngelis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Sumona Ghosh Lester
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Thomas A Bowman
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Sadeesh K Ramakrishnan
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Simon L Abdallah
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Payal R Patel
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Meenakshi K Kaw
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Christian K Raphael
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Andrea Jung Kim
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Rehabilitation Sciences, College of Health Sciences, The University of Toledo, Toledo, OH
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Rehabilitation Sciences, College of Health Sciences, The University of Toledo, Toledo, OH
| | - Abraham D Lee
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Rehabilitation Sciences, College of Health Sciences, The University of Toledo, Toledo, OH
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Rohit N Kulkarni
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - William M Philbrick
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| |
Collapse
|
37
|
Exogenous carcinoembryonic antigen-related cell adhesion molecule 1 suppresses 2,4,6-trinitrobenzene sulfonic acid-induced ulcerative colitis in mice. J Surg Res 2015; 195:113-20. [DOI: 10.1016/j.jss.2015.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/30/2014] [Accepted: 01/15/2015] [Indexed: 01/29/2023]
|
38
|
Guénard F, Lamontagne M, Bossé Y, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC. Influences of gestational obesity on associations between genotypes and gene expression levels in offspring following maternal gastrointestinal bypass surgery for obesity. PLoS One 2015; 10:e0117011. [PMID: 25603303 PMCID: PMC4300091 DOI: 10.1371/journal.pone.0117011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/17/2014] [Indexed: 12/17/2022] Open
Abstract
METHODS Whole-genome genotyping and gene expression analyses in blood of 22 BMS and 23 AMS offspring from 19 mothers were conducted using Illumina HumanOmni-5-Quad and HumanHT-12 v4 Expression BeadChips, respectively. Using PLINK we analyzed interactions between offspring gene variations and maternal surgical status on offspring gene expression levels. Altered biological functions and pathways were identified and visualized using DAVID and Ingenuity Pathway Analysis. RESULTS Significant interactions (p ≤ 1.22 x 10(-12)) were found for 525 among the 16,060 expressed transcripts: 1.9% of tested SNPs were involved. Gene function and pathway analysis demonstrated enrichment of transcription and of cellular metabolism functions and overrepresentation of cellular stress and signaling, immune response, inflammation, growth, proliferation and development pathways. CONCLUSION We suggest that impaired maternal gestational metabolic fitness interacts with offspring gene variations modulating gene expression levels, providing potential mechanisms explaining improved cardiometabolic risk profiles of AMS offspring related to ameliorated maternal lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF) and Department of Food Science and Nutrition, Laval University, Quebec, Canada
- Endocrinology and Nephrology, CHU de Quebec Research Center, Quebec, Canada
| | | | - Yohan Bossé
- Quebec Heart and Lung Institute, Quebec, Canada
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Yves Deshaies
- Quebec Heart and Lung Institute, Quebec, Canada
- Department of Medicine, Laval University, Quebec, Canada
| | - Katherine Cianflone
- Quebec Heart and Lung Institute, Quebec, Canada
- Department of Medicine, Laval University, Quebec, Canada
| | - John G. Kral
- Department of Surgery, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Picard Marceau
- Quebec Heart and Lung Institute, Quebec, Canada
- Department of Surgery, Laval University, Quebec, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF) and Department of Food Science and Nutrition, Laval University, Quebec, Canada
- Endocrinology and Nephrology, CHU de Quebec Research Center, Quebec, Canada
- * E-mail:
| |
Collapse
|
39
|
Yin S, Bai H, Jing D. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients: a systemic review and meta-analysis. Diagn Pathol 2014; 9:91. [PMID: 24885616 PMCID: PMC4107999 DOI: 10.1186/1746-1596-9-91] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Insulin is widely used in patients with type 2 diabetes mellitus (T2DM). More attention was focused on its higher risk of colorectal cancer (CRC). This meta-analysis examined the relationship between levels of insulin use and the risk of CRC. METHODS A meta-analysis using data from 12 published epidemiologic studies (7 case-control, and 5 cohort studies) published before Jan. 2014 was done to examine the association between insulin use and CRC. Random effects analyses were done to calculate relative risk (RR) and 95% confidence intervals (CI). Heterogeneity among studies was measured by the χ2 and I2 statistic. RESULTS Overall, the risk of CRC was significantly associated with insulin use to a random-effects model (RR, 1.69; 95% CI, 1.25 -2.27). When subgroup analyses were conducted according to the study types, no associations were detected in cohort group (RR, 1.25; 95% CI, 0.95-1.65; I2, 75.7%); however significant association was detected in case-control group (RR, 2.15; 95% CI, 1.41-3.26; I2, 89.1%). CONCLUSIONS A significant harmful effect of insulin, observed mainly among case-control studies, may result from study design differences and amount of included studies. Although these results suggest a harmful effect of insulin use for CRC risk, additional large studies are warranted to support these preliminary evidences. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2194715731194123.
Collapse
Affiliation(s)
- Shinan Yin
- Department of Endocrinology, First affiliated hospital of General hospital of PLA, Beijing 100048, China
| | - Hua Bai
- Department of Endocrinology, First affiliated hospital of General hospital of PLA, Beijing 100048, China
| | - Danqing Jing
- Department of Endocrinology, First affiliated hospital of General hospital of PLA, Beijing 100048, China
| |
Collapse
|
40
|
Jiao Y, Mao X, Chang X, Abudureyimu K, Zhang C, Lu J, Wang Y, Nuermaimaiti N, Aisa Y, Gong X, Guan Y. Adenovirus36 infection expresses cellular APMI and Visfatin genes in overweight Uygur individuals. Diagn Pathol 2014; 9:83. [PMID: 24739504 PMCID: PMC3996488 DOI: 10.1186/1746-1596-9-83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/02/2014] [Indexed: 11/23/2022] Open
Abstract
Objective This study is to determine if Adenovirus type 36 (Ad36) infection is related to macrophage infiltration in the obese group and non-obese group and the related molecular mechanisms. Methods Ninety obesity patients and 95 non-obesity Uygur individuals were enrolled in this study. CD68 levels in abdominal subcutaneous and omental adipose tissues were detected by immunohistochemistry. The cytokine expression levels of adiponectin (APMI) and visfatin in serum were measured by enzyme-linked immunosorbent assay. Infection of 3T3-L1 cells with Ad36 was performed. Real-time PCR was performed to determine expression levels of APMI and Visfatin genes in the 3T3-L1 preadipocytes infected with Ad36. Results In the obese individuals infected with Ad36, the expression levels of adiponectin and visfatin in serum was elevated. For the individuals infected with Ad36, the macrophage infiltration (as indicated by CD68 level) in the obese group was also significantly higher than that in the non-obese group (P < 0.05) in both abdominal subcutaneous and omental adipose tissues. The real-time PCR results indicated that APMI mRNA levels and Visfatin mRNA levels in Ad36 infected cells were significantly increased. Conclusions Ad36 infection may be a factor related with macrophage infiltration in adipose tissues of the obese patients. The APMI and Visfatin genes may be involved in the mechanism underlying the effect of Ad36 infection on the obese patients. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1849614638119816
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yaqun Guan
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi 830011, P, R China.
| |
Collapse
|
41
|
CEACAM1 loss links inflammation to insulin resistance in obesity and non-alcoholic steatohepatitis (NASH). Semin Immunopathol 2013; 36:55-71. [PMID: 24258517 DOI: 10.1007/s00281-013-0407-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023]
Abstract
Mounting epidemiological evidence points to an association between metabolic syndrome and non-alcoholic steatohepatitis (NASH), an increasingly recognized new epidemic. NASH pathologies include hepatocellular ballooning, lobular inflammation, hepatocellular injury, apoptosis, and hepatic fibrosis. We will review the relationship between insulin resistance and inflammation in visceral obesity and NASH in an attempt to shed more light on the pathogenesis of these major metabolic diseases. Moreover, we will identify loss of the carcinoembryonic antigen-related cell adhesion molecule 1 as a unifying mechanism linking the immunological and metabolic abnormalities in NASH.
Collapse
|
42
|
Najjar SM, Ledford KJ, Abdallah SL, Paus A, Russo L, Kaw MK, Ramakrishnan SK, Muturi HT, Raphael CK, Lester SG, Heinrich G, Pierre SV, Benndorf R, Kleff V, Jaffa AA, Lévy E, Vazquez G, Goldberg IJ, Beauchemin N, Scalia R, Ergün S. Ceacam1 deletion causes vascular alterations in large vessels. Am J Physiol Endocrinol Metab 2013; 305:E519-29. [PMID: 23800882 PMCID: PMC3891225 DOI: 10.1152/ajpendo.00266.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance and endothelial survival. However, its role in the morphology of macrovessels remains unknown. Mice lacking Ceacam1 (Cc1-/-) exhibit hyperinsulinemia, which causes insulin resistance and fatty liver. With increasing evidence of an association among hyperinsulinemia, fatty liver disease, and atherosclerosis, we investigated whether Cc1-/- exhibited vascular lesions in atherogenic-prone aortae. Histological analysis revealed impaired endothelial integrity with restricted fat deposition and aortic plaque-like lesions in Cc1-/- aortae, likely owing to their limited lipidemia. Immunohistochemical analysis indicated macrophage deposition, and in vitro studies showed increased leukocyte adhesion to aortic wall, mediated in part by elevation in vascular cell adhesion molecule 1 levels. Basal aortic eNOS protein and NO content were reduced, in parallel with reduced Akt/eNOS and Akt/Foxo1 phosphorylation. Ligand-induced vasorelaxation was compromised in aortic rings. Increased NADPH oxidase activity and plasma 8-isoprostane levels revealed oxidative stress and lipid peroxidation in Cc1-/- aortae. siRNA-mediated CEACAM1 knockdown in bovine aortic endothelial cells adversely affected insulin's stimulation of IRS-1/PI 3-kinase/Akt/eNOS activation by increasing IRS-1 binding to SHP2 phosphatase. This demonstrates that CEACAM1 regulates both endothelial cell autonomous and nonautonomous mechanisms involved in vascular morphology and NO production in aortae. Systemic factors such as hyperinsulinemia could contribute to the pathogenesis of these vascular abnormalities. Cc1-/- mice provide a first in vivo demonstration of distinct CEACAM1-dependent hepatic insulin clearance linking hepatic to macrovascular abnormalities.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Aorta, Thoracic/immunology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Carcinoembryonic Antigen/chemistry
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/metabolism
- Cattle
- Cell Adhesion
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Leukocytes/immunology
- Leukocytes/metabolism
- Leukocytes/pathology
- Lipid Peroxidation
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- RNA Interference
- Signal Transduction
- Vascular Cell Adhesion Molecule-1/biosynthesis
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
JI F, JIN LS, ZENG XM, ZHANG XJ, ZHANG YC, SUN YX, GAO LH, HE H, RAO JH, LIU XM, PENG BL. Comparison of gene expression between naturally occurring and diet-induced T2DM in cynomolgus monkeys. Zool Res 2013; 33:79-84. [DOI: 10.3724/sp.j.1141.2012.01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Nault R, Kim S, Zacharewski TR. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague-Dawley rats and C57BL/6 mice. Toxicol Appl Pharmacol 2012; 267:184-91. [PMID: 23238561 DOI: 10.1016/j.taap.2012.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/16/2022]
Abstract
Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague-Dawley rats were gavaged daily with 20μg/kg TCDD for 1, 3 and 5days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7days after a single oral gavage of 30μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change|≥1.5, P1(t)≥0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4×44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|