1
|
Zhang M, Kang N, Yu X, Zhang X, Duan Q, Ma X, Zhao Q, Wang Z, Wang X, Liu Y, Zhang Y, Zhu C, Gao R, Min X, Li C, Jin J, Cao Q, Liu R, Bai X, Yang H, Zhao L, Liu J, Chen H, Zhang Y, Liu W, Zheng W. TNF inhibitors target a mevalonate metabolite/TRPM2/calcium signaling axis in neutrophils to dampen vasculitis in Behçet's disease. Nat Commun 2024; 15:9261. [PMID: 39461948 PMCID: PMC11513106 DOI: 10.1038/s41467-024-53528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
TNF inhibitors have been used to treat autoimmune and autoinflammatory diseases. Here we report an unexpected mechanism underlying the therapeutic effects of TNF inhibitors in Behçet's disease (BD), an autoimmune inflammatory disorder. Using serum metabolomics and peripheral immunocyte transcriptomics, we find that polymorphonuclear neutrophil (PMN) from patients with BD (BD-PMN) has dysregulated mevalonate pathway and subsequently increased farnesyl pyrophosphate (FPP) levels. Mechanistically, FPP induces TRPM2-calcium signaling for neutrophil extracellular trap (NET) and proinflammatory cytokine productions, leading to vascular endothelial inflammation and damage. TNF, but not IL-1β, IL-6, IL-18, or IFN-γ, upregulates TRPM2 expression on BD-PMN, while TNF inhibitors have opposite effects. Results from mice with PMN-specific FPP synthetase or TRPM2 deficiency show reduced experimental vasculitis. Meanwhile, analyses of public datasets correlate increased TRPM2 expressions with the clinical benefits of TNF inhibitors. Our results thus implicate FPP-TRPM2-TNF/NETs feedback loops for inflammation aggravation, and novel insights for TNF inhibitor therapies on BD.
Collapse
Affiliation(s)
- Menghao Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xin Yu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Xiaoyang Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Qinghui Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xianqiang Ma
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Qiancheng Zhao
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Zhimian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Xiao'ou Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Yeling Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Yuxiao Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Can Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ruiyu Gao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xin Min
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Cuifeng Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jin Jin
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qian Cao
- Department of gastroenterology & Inflammatory bowel disease Center, Sir Run Run Shaw hospital, school of medicine, Zhejiang University, Hangzhou, China
| | - Rongbei Liu
- Department of gastroenterology & Inflammatory bowel disease Center, Sir Run Run Shaw hospital, school of medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Jinjing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Tsinghua Changgung Hospital, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, The Ministry of Education Key Laboratory, Beijing, China.
| |
Collapse
|
2
|
Chen J, Rao H, Zheng X. Identification of novel targets associated with cholesterol metabolism in nonalcoholic fatty liver disease: a comprehensive study using Mendelian randomization combined with transcriptome analysis. Front Genet 2024; 15:1464865. [PMID: 39359475 PMCID: PMC11445148 DOI: 10.3389/fgene.2024.1464865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Background There is limited research on cholesterol metabolism-related genes (CM-RGs) in non-alcoholic fatty liver disease (NAFLD), despite hypercholesterolemia being a recognized risk factor. The role of CM-RGs in NAFLD remains unclear. Methods The differentially expressed genes (DEGs) between NAFLD and control were acquired by differential expression analysis. The differentially expressed genes associated with cholesterol metabolism (DE-CM-RGs) were identified and functional enrichment analyses were performed. Protein-protein interaction network analysis and a two-sample Mendelian randomization study were utilized for identifying hub genes. Nomogram model, competing endogenous RNA and messenger RNA-drug networks were established. In addition, immunoinfiltration analysis was performed. Results We identified four hub genes (MVK, HMGCS1, TM7SF2, and FDPS) linked to NAFLD risk. MVK and TM7SF2 were protective factors, HMGCS1 and FDPS were risk factors for NAFLD. The area under the curve values of nomograms in GSE135251 and GSE126848 were 0.79 and 0.848, respectively. The gene set enrichment analysis indicated that hub genes participated in calcium signaling pathways and biosynthesis of unsaturated fatty acids. NAFLD patients showed increased CD56dim NK cells and Th17. Tretinoin, alendronate, zoledronic acid, and quercetin are potential target agents in NAFLD. Conclusion Our study has linked cholesterol metabolism genes (MVK, HMGCS1, TM7SF2, and FDPS) to NAFLD, providing a promising diagnostic framework, identifying treatment targets, and offering novel perspectives into its mechanisms.
Collapse
Affiliation(s)
- Juan Chen
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Huajing Rao
- Emergency Internal Medicine, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoling Zheng
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Li C, Chen X, Tang X, Zeng H, Zhou J. Tocilizumab effectively reduces flares of hyperimmunoglobulin D syndrome in children: Three cases in China. Mol Genet Metab Rep 2024; 40:101105. [PMID: 38983106 PMCID: PMC11231588 DOI: 10.1016/j.ymgmr.2024.101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Hyperimmunoglobulin D syndrome (HIDS) is a rare but severe autoinflammatory disease with a poor prognosis if not diagnosed and treated early. Here, we report three cases of HIDS in children with typical clinical manifestations and a clear genetic diagnosis. Patient 1 experienced recurrent fever flares with a maculo-papular skin rash. Patient 2 presented with periodic fever, cholestasis, lymphadenopathy, aphthous stomatitis, arthralgia, and abdominal pain and underwent surgery for intestinal obstruction. Patient 3, a sibling of patient 2, presented with periodic fever and underwent a surgical procedure for intussusception. All three patients were administered interleukin (IL)-6 receptor antagonist (tocilizumab). The results showed that tocilizumab effectively reduced inflammatory flares. Early diagnosis and tocilizumab treatment are effective at improving the prognosis of HIDS patients.
Collapse
Affiliation(s)
- Chenxi Li
- School of Pediatrics, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiangyuan Chen
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Xilong Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huasong Zeng
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Juan Zhou
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| |
Collapse
|
4
|
Berner J, van de Wetering C, Jimenez Heredia R, Rashkova C, Ferdinandusse S, Koster J, Weiss JG, Frohne A, Giuliani S, Waterham HR, Castanon I, Brunner J, Boztug K. Phosphomevalonate kinase deficiency expands the genetic spectrum of systemic autoinflammatory diseases. J Allergy Clin Immunol 2023; 152:1025-1031.e2. [PMID: 37364720 PMCID: PMC10549927 DOI: 10.1016/j.jaci.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND In the isoprenoid biosynthesis pathway, mevalonate is phosphorylated in 2 subsequent enzyme steps by MVK and PMVK to generate mevalonate pyrophosphate that is further metabolized to produce sterol and nonsterol isoprenoids. Biallelic pathogenic variants in MVK result in the autoinflammatory metabolic disorder MVK deficiency. So far, however, no patients with proven PMVK deficiency due to biallelic pathogenic variants in PMVK have been reported. OBJECTIVES This study reports the first patient with functionally confirmed PMVK deficiency, including the clinical, biochemical, and immunological consequences of a homozygous missense variant in PMVK. METHODS The investigators performed whole-exome sequencing and functional studies in cells from a patient who, on clinical and immunological evaluation, was suspected of an autoinflammatory disease. RESULTS The investigators identified a homozygous PMVK p.Val131Ala (NM_006556.4: c.392T>C) missense variant in the index patient. Pathogenicity was supported by genetic algorithms and modeling analysis and confirmed in patient cells that revealed markedly reduced PMVK enzyme activity due to a virtually complete absence of PMVK protein. Clinically, the patient showed various similarities as well as distinct features compared to patients with MVK deficiency and responded well to therapeutic IL-1 inhibition. CONCLUSIONS This study reported the first patient with proven PMVK deficiency due to a homozygous missense variant in PMVK, leading to an autoinflammatory disease. PMVK deficiency expands the genetic spectrum of systemic autoinflammatory diseases, characterized by recurrent fevers, arthritis, and cytopenia and thus should be included in the differential diagnosis and genetic testing for systemic autoinflammatory diseases.
Collapse
Affiliation(s)
- Jakob Berner
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Dermatology, Venereology and Allergology, Klinik Landstraße, Vienna, Austria
| | - Cheryl van de Wetering
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez Heredia
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Christina Rashkova
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Sacha Ferdinandusse
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Janet Koster
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Johannes G Weiss
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria; Institute of Developmental Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Frohne
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sarah Giuliani
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Hans R Waterham
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Irinka Castanon
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Jürgen Brunner
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria; Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
de Moraes MPM, do Nascimento RRNR, Abrantes FF, Pedroso JL, Perazzio SF, Barsottini OGP. What General Neurologists Should Know about Autoinflammatory Syndromes? Brain Sci 2023; 13:1351. [PMID: 37759952 PMCID: PMC10526530 DOI: 10.3390/brainsci13091351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Autoinflammatory disorders encompass a wide range of conditions with systemic and neurological symptoms, which can be acquired or inherited. These diseases are characterized by an abnormal response of the innate immune system, leading to an excessive inflammatory reaction. On the other hand, autoimmune diseases result from dysregulation of the adaptive immune response. Disease flares are characterized by systemic inflammation affecting the skin, muscles, joints, serosa, and eyes, accompanied by unexplained fever and elevated acute phase reactants. Autoinflammatory syndromes can present with various neurological manifestations, such as aseptic meningitis, meningoencephalitis, sensorineural hearing loss, and others. Early recognition of these manifestations by general neurologists can have a significant impact on the prognosis of patients. Timely and targeted therapy can prevent long-term disability by reducing chronic inflammation. This review provides an overview of recently reported neuroinflammatory phenotypes, with a specific focus on genetic factors, clinical manifestations, and treatment options. General neurologists should have a good understanding of these important diseases.
Collapse
Affiliation(s)
| | | | - Fabiano Ferreira Abrantes
- Department of Neurology, Universidade Federal de São Paulo, São Paulo 04039-002, Brazil; (M.P.M.d.M.); (F.F.A.); (J.L.P.)
| | - José Luiz Pedroso
- Department of Neurology, Universidade Federal de São Paulo, São Paulo 04039-002, Brazil; (M.P.M.d.M.); (F.F.A.); (J.L.P.)
| | - Sandro Félix Perazzio
- Departament of Rheumatology, Universidade Federal de São Paulo, São Paulo 04039-050, Brazil; (R.R.N.R.d.N.); (S.F.P.)
| | | |
Collapse
|
6
|
Irwin M, Tanawattanacharoen VK, Turner A, Son MBF, Hale RC, Platt CD, Putra J, Schmidt BAR, Wasserman MG. A case of neonatal sweet syndrome associated with mevalonate kinase deficiency. Pediatr Rheumatol Online J 2023; 21:101. [PMID: 37700301 PMCID: PMC10496215 DOI: 10.1186/s12969-023-00887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Sweet syndrome (SS), also known as acute febrile neutrophilic dermatosis, is an immunologic syndrome characterized by widespread neutrophilic infiltration. Histiocytoid Sweet syndrome (H-SS) is a histopathologic variant of SS. While SS most commonly occurs in adults, this case report discusses an infant patient who presented with H-SS. CASE PRESENTATION Through a multidisciplinary approach, this patient was also found to have very early onset inflammatory bowel disease (VEO-IBD) and Mevalonate kinase-associated disease (MKAD). While prior case studies have characterized an association between VEO-IBD and MKAD, there is no literature describing the association of all three diagnoses this case: H-SS, VEO-IBD and MKAD. Initiation of canakinumab in this patient resulted in successful control of the disease. CONCLUSIONS This case highlights the importance of a multidisciplinary approach to rare diagnoses, and collaboration during cases with significant diagnostic uncertainty.
Collapse
Affiliation(s)
- Margaret Irwin
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| | - Veeraya K Tanawattanacharoen
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Amy Turner
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Mary Beth F Son
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- Division of Rheumatology, Boston Children's Hospital, Boston, MA, USA
| | - Rebecca C Hale
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Craig D Platt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Juan Putra
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | | | - Mollie G Wasserman
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
- Division of Hospital Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
de Boer L, Cambi A, Verhagen LM, de Haas P, van Karnebeek CDM, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic diseases. XII. Immunological defects. Mol Genet Metab 2023; 139:107582. [PMID: 37087816 PMCID: PMC10182388 DOI: 10.1016/j.ymgme.2023.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Immunological problems are increasingly acknowledged manifestations in many inherited metabolic diseases (IMDs), ranging from exaggerated inflammation, autoimmunity and abnormal cell counts to recurrent microbial infections. A subgroup of IMDs, the congenital disorders of glycosylation (CDG), includes CDG types that are even classified as primary immunodeficiencies. Here, we reviewed the list of metabolic disorders reported to be associated with various immunological defects and identified 171 IMDs accompanied by immunological manifestations. Most IMDs are accompanied by immune dysfunctions of which immunodeficiency and infections, innate immune defects, and autoimmunity are the most common abnormalities reported in 144/171 (84%), 44/171 (26%) and 33/171 (19%) of IMDs with immune system involvement, respectively, followed by autoinflammation 17/171 (10%). This article belongs to a series aiming at creating and maintaining a comprehensive list of clinical and metabolic differential diagnoses according to organ system involvement.
Collapse
Affiliation(s)
- Lonneke de Boer
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands.
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lilly M Verhagen
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands; Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paola de Haas
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zurich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
8
|
Massaro MG, Caldarelli M, Franza L, Candelli M, Gasbarrini A, Gambassi G, Cianci R, Rigante D. Current Evidence on Vaccinations in Pediatric and Adult Patients with Systemic Autoinflammatory Diseases. Vaccines (Basel) 2023; 11:vaccines11010151. [PMID: 36679996 PMCID: PMC9860706 DOI: 10.3390/vaccines11010151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are defined by recurrent febrile attacks associated with protean manifestations involving joints, the gastrointestinal tract, skin, and the central nervous system, combined with elevated inflammatory markers, and are caused by a dysregulation of the innate immune system. From a clinical standpoint, the most known SAIDs are familial Mediterranean fever (FMF); cryopyrin-associated periodic syndrome (CAPS); mevalonate kinase deficiency (MKD); and periodic fever, aphthosis, pharyngitis, and adenitis (PFAPA) syndrome. Current guidelines recommend the regular sequential administration of vaccines for all individuals with SAIDs. However, these patients have a much lower vaccination coverage rates in 'real-world' epidemiological studies than the general population. The main purpose of this review was to evaluate the scientific evidence available on both the efficacy and safety of vaccines in patients with SAIDs. From this analysis, neither serious adverse effects nor poorer antibody responses have been observed after vaccination in patients with SAIDs on treatment with biologic agents. More specifically, no new-onset immune-mediated complications have been observed following immunizations. Post-vaccination acute flares were significantly less frequent in FMF patients treated with colchicine alone than in those treated with both colchicine and canakinumab. Conversely, a decreased risk of SARS-CoV-2 infection has been proved for patients with FMF after vaccination with the mRNA-based BNT162b2 vaccine. Canakinumab did not appear to affect the ability to produce antibodies against non-live vaccines in patients with CAPS, especially if administered with a time lag from the vaccination. On the other hand, our analysis has shown that immunization against Streptococcus pneumoniae, specifically with the pneumococcal polysaccharide vaccine, was associated with a higher incidence of adverse reactions in CAPS patients. In addition, disease flares might be elicited by vaccinations in children with MKD, though no adverse events have been noted despite concurrent treatment with either anakinra or canakinumab. PFAPA patients seem to be less responsive to measles, mumps, and rubella-vaccine, but have shown higher antibody response than healthy controls following vaccination against hepatitis A. In consideration of the clinical frailty of both children and adults with SAIDs, all vaccinations remain 'highly' recommended in this category of patients despite the paucity of data available.
Collapse
Affiliation(s)
- Maria Grazia Massaro
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Laura Franza
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence:
| | - Donato Rigante
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Beignon AS, Galeotti C, Menager MM, Schvartz A. Trained immunity as a possible newcomer in autoinflammatory and autoimmune diseases pathophysiology. Front Med (Lausanne) 2023; 9:1085339. [PMID: 36743677 PMCID: PMC9896524 DOI: 10.3389/fmed.2022.1085339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Autoimmune disorders have been well characterized over the years and many pathways-but not all of them-have been found to explain their pathophysiology. Autoinflammatory disorders, on the other hand, are still hiding most of their molecular and cellular mechanisms. During the past few years, a newcomer has challenged the idea that only adaptive immunity could display memory response. Trained immunity is defined by innate immune responses that are faster and stronger to a second stimulus than to the first one, being the same or not. In response to the trained immunity inducer, and through metabolic and epigenetic changes of hematopoietic stem and progenitor cells in the bone marrow that are transmitted to their cellular progeny (peripheral trained immunity), or directly of tissue-resident cells (local innate immunity), innate cells responsiveness and functions upon stimulation are improved in the long-term. Innate immunity can be beneficial, but it could also be detrimental when maladaptive. Here, we discuss how trained immunity could contribute to the physiopathology of autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Anne-Sophie Beignon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Mickael M. Menager
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Adrien Schvartz
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France,*Correspondence: Adrien Schvartz,
| |
Collapse
|
10
|
Rodolfi S, Nasone I, Folci M, Selmi C, Brunetta E. Autoinflammatory manifestations in adult patients. Clin Exp Immunol 2022; 210:295-308. [PMID: 36334040 PMCID: PMC9985169 DOI: 10.1093/cei/uxac098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022] Open
Abstract
Autoinflammatory diseases represent a family of immune-mediated conditions characterized by the unchecked activation of innate immunity. These conditions share common clinical features such as recurrent fever, inflammatory arthritis, and elevation of acute phase reactants, in the absence of an identified infectious etiology, generally without detectable serum autoantibodies, with variable response to glucocorticoids and in some cases colchicine, which represented the mainstay of treatment until cytokine blockade therapies became available. The first autoinflammatory diseases to be described were monogenic disorders caused by missense mutations in inflammasome components and were recognized predominantly during childhood or early adulthood. However, the progress of genetic analyses and a more detailed immunological phenotyping capacity led to the discovery a wide spectrum of diseases, often becoming manifest or being diagnosed in the adult population. The beneficial role of targeting hyperinflammation via interleukin 1 in complex non-immune-mediated diseases is a field of growing clinical interest. We provide an overview of the autoinflammatory diseases of interest to physicians treating adult patients and to analyze the contribution of hyperinflammation in non-immune-mediated diseases; the result is intended to provide a roadmap to orient scientists and clinicians in this broad area.
Collapse
Affiliation(s)
- Stefano Rodolfi
- Rheumatology and Clinical Immunology IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Irene Nasone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Emergency Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Folci
- Nephrology and Internal Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlo Selmi
- Correspondence: Carlo Selmi, Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS and Humanitas University, Via Manzoni 56, Rozzano, 20089, Milan, Italy.
| | | |
Collapse
|
11
|
Munoz MA, Skinner OP, Masle-Farquhar E, Jurczyluk J, Xiao Y, Fletcher EK, Kristianto E, Hodson MP, O'Donoghue SI, Kaur S, Brink R, Zahra DG, Deenick EK, Perry KA, Robertson AA, Mehr S, Hissaria P, Mulders-Manders CM, Simon A, Rogers MJ. Increased core body temperature exacerbates defective protein prenylation in mouse models of mevalonate kinase deficiency. J Clin Invest 2022; 132:160929. [PMID: 36189795 PMCID: PMC9525117 DOI: 10.1172/jci160929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is characterized by recurrent fevers and flares of systemic inflammation, caused by biallelic loss-of-function mutations in MVK. The underlying disease mechanisms and triggers of inflammatory flares are poorly understood because of the lack of in vivo models. We describe genetically modified mice bearing the hypomorphic mutation p.Val377Ile (the commonest variant in patients with MKD) and amorphic, frameshift mutations in Mvk. Compound heterozygous mice recapitulated the characteristic biochemical phenotype of MKD, with increased plasma mevalonic acid and clear buildup of unprenylated GTPases in PBMCs, splenocytes, and bone marrow. The inflammatory response to LPS was enhanced in compound heterozygous mice and treatment with the NLRP3 inflammasome inhibitor MCC950 prevented the elevation of circulating IL-1β, thus identifying a potential inflammasome target for future therapeutic approaches. Furthermore, lines of mice with a range of deficiencies in mevalonate kinase and abnormal prenylation mirrored the genotype-phenotype relationship in human MKD. Importantly, these mice allowed the determination of a threshold level of residual enzyme activity, below which protein prenylation is impaired. Elevated temperature dramatically but reversibly exacerbated the deficit in the mevalonate pathway and the defective prenylation in vitro and in vivo, highlighting increased body temperature as a likely trigger of inflammatory flares.
Collapse
Affiliation(s)
- Marcia A Munoz
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Oliver P Skinner
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Etienne Masle-Farquhar
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Julie Jurczyluk
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ya Xiao
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Emma K Fletcher
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Esther Kristianto
- Victor Chang Cardiac Innovation Centre, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Mark P Hodson
- School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Seán I O'Donoghue
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Robert Brink
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - David G Zahra
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristen A Perry
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Sam Mehr
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Pravin Hissaria
- Royal Adelaide Hospital, SA Pathology and University of Adelaide, Adelaide, South Australia, Australia
| | - Catharina M Mulders-Manders
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anna Simon
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Michael J Rogers
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Reji M, Thapa R. Cyclic Fevers in Adult Diagnosed As Hyperimmunoglobulin D Syndrome. Cureus 2022; 14:e23878. [PMID: 35530832 PMCID: PMC9074909 DOI: 10.7759/cureus.23878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Hyper immunoglobulin D Syndrome (HIDS) is a rare autosomal recessive disease often presents during infancy. The disease is caused by an abnormal gene that codes for mevalonate kinase (MVK). This results in recurrent fever episodes and gastrointestinal discomfort (including diarrhea, joint pain, and oral sores). High fever is the most common symptom, occurring every few weeks to months. Patients may also have other findings, including lymphadenopathy and arthralgia. In this report, we discuss a rare diagnosis of HIDS is an adult and discuss our case in the context of existing literature. Given the nonspecific symptoms and the fact that it is often diagnosed in childhood, HIDS can be a challenging but essential diagnosis in adults with persistent, cyclical fevers.
Collapse
|
13
|
The genetics behind inflammasome regulation. Mol Immunol 2022; 145:27-42. [PMID: 35278849 DOI: 10.1016/j.molimm.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022]
Abstract
The inflammasome is a cytosolic multiproteic complex that promotes proinflammatory events through the release of the cytokines IL-1β and IL-18, and in some context by the induction of a lytic cell death called pyroptosis, in response to damage, infections, or changes in the homeostasis. Due to the powerful inflammatory effect, there are several regulatory mechanisms that are essential to modulate or limit the activation of the inflammasome. When these mechanisms fail, the deregulation of the complex leads or contributes to the development of a plethora of diseases characterized by constitutive and/or chronic inflammation, such as autoinflammatory, autoimmune, cardiovascular, neurodegenerative, and metabolic diseases, cancer, or even severe complications of infectious diseases. Either environmental or genetic factors may affect the threshold and/or the level of inflammasome activation, such as hyperglycemia, hyperuricemia, auto-antibodies, unfolded proteins and fibrils, or individual genetic variants in genes coding for inflammasome receptors or effector molecules, and also in regulators. While the genetics of inflammasome itself has been elsewhere characterized and also recently reviewed by our group, less is known about how genetic variants in regulatory molecules could affect inflammatory diseases. Therefore in this work, we selected a group of known or possible regulators of the inflammasome, and through the review of genetic association studies we tried to depict the contribution of these regulators in the development of multifactorial diseases.
Collapse
|
14
|
Cho SH, Tóth K, Kim D, Vo PH, Lin CH, Handakumbura PP, Ubach AR, Evans S, Paša-Tolić L, Stacey G. Activation of the plant mevalonate pathway by extracellular ATP. Nat Commun 2022; 13:450. [PMID: 35064110 PMCID: PMC8783019 DOI: 10.1038/s41467-022-28150-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
The mevalonate pathway plays a critical role in multiple cellular processes in both animals and plants. In plants, the products of this pathway impact growth and development, as well as the response to environmental stress. A forward genetic screen of Arabidopsis thaliana using Ca2+-imaging identified mevalonate kinase (MVK) as a critical component of plant purinergic signaling. MVK interacts directly with the plant extracellular ATP (eATP) receptor P2K1 and is phosphorylated by P2K1 in response to eATP. Mutation of P2K1-mediated phosphorylation sites in MVK eliminates the ATP-induced cytoplasmic calcium response, MVK enzymatic activity, and suppresses pathogen defense. The data demonstrate that the plasma membrane associated P2K1 directly impacts plant cellular metabolism by phosphorylation of MVK, a key enzyme in the mevalonate pathway. The results underline the importance of purinergic signaling in plants and the ability of eATP to influence the activity of a key metabolite pathway with global effects on plant metabolism. Products of the mevalonate pathway support plant development. Here the authors show that the extracellular ATP receptor P2K1 phosphorylates mevalonate kinase and this affects the mevalonate pathway.
Collapse
|
15
|
Borst C, Symmank D, Drach M, Weninger W. Cutaneous signs and mechanisms of inflammasomopathies. Ann Rheum Dis 2022; 81:454-465. [PMID: 35039323 DOI: 10.1136/annrheumdis-2021-220977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
The emerging group of autoinflammatory diseases (AIDs) is caused by a dysregulation of the innate immune system while lacking the typical footprint of adaptive immunity. A prominent subgroup of AIDs are inflammasomopathies, which are characterised by periodic flares of cutaneous signs as well as systemic organ involvement and fever. The range of possible skin lesions is vast, ranging from urticarial, erysipelas-like and pustular rashes to erythematous patches, violaceous plaques and eventual necrosis and ulceration. This review provides a structured overview of the pathogenesis and the clinical picture with a focus on dermatological aspects of inflammasomopathies. Current treatment options for these conditions are also discussed.
Collapse
Affiliation(s)
- Carina Borst
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Dörte Symmank
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Mathias Drach
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
16
|
Kim H, Lee BH, Do HS, Kim GH, Kang S, Koh KN, Im HJ. Case Report: Mevalonic Aciduria Complicated by Acute Myeloid Leukemia After Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:782780. [PMID: 34950147 PMCID: PMC8691729 DOI: 10.3389/fimmu.2021.782780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Mevalonic aciduria (MA) is the most severe clinical subtype of mevalonate kinase deficiency (MKD) caused by an inherited defect in the mevalonate pathway. The treatment of MKD focuses on the suppression of recurrent hyperinflammatory attacks using anti-inflammatory drugs. Recently, allogeneic hematopoietic stem cell transplantation (HCT) was shown to successfully ameliorate autoinflammatory attacks in patients with MKD. Here, we report a case of an infant who showed severe recurrent systemic inflammation and was diagnosed with MA. Although she responded to steroids, her symptoms relapsed after the dose was tapered, and organ deterioration occurred. Therefore, at the age of 11 months, HCT from a matched, unrelated donor was performed for curative treatment. However, at 50 days after transplantation, acute myeloid leukemia was diagnosed, which was chemo-refractory. A second HCT from her haploidentical father was performed to treat the acute myeloid leukemia, but the patient died of sepsis on day 4 after transplantation. This is the first report of malignancy following HCT for MA. Our findings suggest that normalizing the mevalonate pathway after HCT in patients with MKD impacts patients differently depending on the clinical spectrum and severity of disease.
Collapse
Affiliation(s)
- Hyery Kim
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sunghan Kang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung-Nam Koh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ho Joon Im
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Omoyinmi E, Rowczenio D, Sebire N, Brogan PA, Eleftheriou D. Vasculitis in a patient with mevalonate kinase deficiency (MKD): a case report. Pediatr Rheumatol Online J 2021; 19:161. [PMID: 34809655 PMCID: PMC8607720 DOI: 10.1186/s12969-021-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mevalonate kinase deficiency (MKD) is a rare autoinflammatory condition caused by biallelic loss-of-function (LOF) mutations in mevalonate kinase (MVK) gene encoding the enzyme mevalonate kinase. Patients with MKD display a variety of non-specific clinical manifestations, which can lead to diagnostic delay. We report the case of a child presenting with vasculitis that was found by genetic testing to be caused by MKD, and now add this autoinflammatory disease to the ever-expanding list of causes of monogenic vasculitides. CASE PRESENTATION A 2-year-old male presented with an acute 7-day history of high-grade fever, abdominal pain, diarrhoea, rectal bleeding and extensive purpuric and necrotic lesions, predominantly affecting the lower limbs. He had been suffering from recurrent episodes of fever from early in infancy, associated with maculopapular/petechial rashes triggered by intercurrent infection, and after vaccines. Extensive infection screen was negative. Skin biopsy revealed small vessel vasculitis. Visceral digital subtraction arteriography was normal. With a diagnosis of severe idiopathic cutaneous vasculitis, he was treated with corticosteroids and mycophenolate mofetil. Despite that his acute phase reactants remained elevated, fever persisted and the vasculitic lesions progressed. Next-generation sequencing revealed compound heterozygous mutation in MVK c.928G > A (p.V310M) and c.1129G > A (p.V377I) while reduced mevalonate enzyme activity was confirmed suggesting a diagnosis of MKD as a cause of the severe vasculitis. Prompt targeted treatment with IL-1 blockade was initiated preventing escalation to more toxic vasculitis therapies and reducing unnecessary exposure to cytotoxic treatment. CONCLUSIONS Our report highlights the broad clinical phenotype of MKD that includes severe cutaneous vasculitis and emphasizes the need to consider early genetic screening for young children presenting with vasculitis to exclude a monogenic vasculitis which may be amenable to targeted treatment.
Collapse
Affiliation(s)
- Ebun Omoyinmi
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.
- National Amyloidosis Centre, UCL Medical School, London, UK.
| | | | - Neil Sebire
- Department of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Paul A Brogan
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, London, UK
| |
Collapse
|
18
|
Koç Yekedüz M, Doğulu N, Öncül Ü, Köse E, Ceylaner S, Eminoğlu FT. An Atypical Presentation of Mevalonate Kinase Deficiency in Response to Colchicine Treatment. Mol Syndromol 2021; 13:146-151. [DOI: 10.1159/000518825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is a periodic fever syndrome. Nonsteroidal anti-inflammatory drugs, corticosteroids, and anakinra are the most common treatments. However, colchicine is considered insufficient in disease control. In this case report, we present an 8-month-old infant with an atypical presentation of MKD. She had recurrent fever episodes, diarrhea, and lethargy. Elevated mevalonic acid was not detected in the urine. However, the genetic investigation showed a novel pathogenic heterozygous c.925G>C (p.Gly309Arg) variant and a heterozygous c.1129G>A (p.Val377Ile) mutation in the <i>MVK</i> gene. The patient was treated with colchicine for 8 months. During treatment, no further fever episode had been observed. It should be kept in mind that mevalonic acid excretion may not be present in the urine with mild MKD. Colchicine may be a reasonable option in mild MKD patients for a longer duration of treatment due to favorable adverse event profiles.
Collapse
|
19
|
Bader-Meunier B, Martins AL, Charbit-Henrion F, Meinzer U, Belot A, Cuisset L, Faye A, Georgin-Lavialle S, Quartier P, Remy-Piccolo V, Ruemmele F, Uettwiller F, Viala J, Cerf Bensussan N, Berrebi D, Melki I. Mevalonate Kinase Deficiency: A Cause of Severe Very-Early-Onset Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1853-1857. [PMID: 34525209 DOI: 10.1093/ibd/izab139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Mevalonate kinase deficiency should be considered in patients with severe very-early-onset inflammatory bowel disease (IBD), especially in patients with a history of recurrent or chronic fever, peritoneal adhesions, and atypical IBD pathology. Anti-interleukin-1 therapy may be efficacious in these patients with monogenic very-early-onset IBD.
Collapse
Affiliation(s)
- Brigitte Bader-Meunier
- Department of Paediatric Immunology, Hematology, and Rheumatology, Groupe Hospitalier Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Centre for Rheumatic, Autoimmune and Systemic Diseases in Children, Assistance Publique-Hôpitaux de Paris, and Imagine Foundation, Paris, France
| | - Andreia Luís Martins
- Pediatric Department, Professor Doutor Fernando Fonseca Hospital, Amadora, Portugal
| | - Fabienne Charbit-Henrion
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Groupe Hospitalier Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université de Paris, Paris, France.,Laboratory of Intestinal Immunity, Imagine Institute, Paris, France
| | - Ulrich Meinzer
- Université de Paris, Paris, France.,Department of General Paediatric, Infectious Diseases and Internal Medicine, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Reference Centre for Rheumatic, Autoimmune and Systemic Diseases in Children, Assistance Publique-Hôpitaux de Paris, Paris, France.,Center for Research on Inflammation, Paris, France.,Biology and Genetics of Bacterial Cell Wall Unit, Pasteur Institute, Paris, France
| | - Alexandre Belot
- Department of Pediatric Nephrology, Rheumatology and Dermatology and Reference Centre for Rheumatic, Autoimmune and Systemic Diseases in Children, Hôpital Femme Mère Enfant, Bron, Lyon,France
| | - Laurence Cuisset
- Department of Molecular Genetics, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Albert Faye
- Université de Paris, Paris, France.,Department of General Paediatric, Infectious Diseases and Internal Medicine, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Reference Centre for Rheumatic, Autoimmune and Systemic Diseases in Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Georgin-Lavialle
- Sorbonne University, Paris, France.,Department of Internal Medicine, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; National Reference Center of Autoinflammatory Disease and AA Amyloidosis.,Laboratoire Inserm, Paris, France
| | - Pierre Quartier
- Department of Paediatric Immunology, Hematology, and Rheumatology, Groupe Hospitalier Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Centre for Rheumatic, Autoimmune and Systemic Diseases in Children, Assistance Publique-Hôpitaux de Paris, and Imagine Foundation, Paris, France.,Université de Paris, Paris, France
| | | | - Frank Ruemmele
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Groupe Hospitalier Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université de Paris, Paris, France
| | - Florence Uettwiller
- Paediatric Rheumatology Unit, Centre Hospitalier Universitaire de Clocheville, Tours, France
| | - Jérôme Viala
- Université de Paris, Paris, France.,Department of Paediatric Gastro-enterology and Nutrition, Hôpital Universitaire Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR1149, Paris, France
| | - Nadine Cerf Bensussan
- Université de Paris, Paris, France.,Laboratory of Intestinal Immunity, Imagine Institute, Paris, France.,INSERM UMR1149, Paris, France
| | - Dominique Berrebi
- Université de Paris, Paris, France.,Department of Paediatric Pathology, Hôpital Robert-Debré, Hôpital Universitaire Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France.,Paris University, Paris, France
| | - Isabelle Melki
- Department of Paediatric Immunology, Hematology, and Rheumatology, Groupe Hospitalier Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Centre for Rheumatic, Autoimmune and Systemic Diseases in Children, Assistance Publique-Hôpitaux de Paris, and Imagine Foundation, Paris, France.,Department of General Paediatric, Infectious Diseases and Internal Medicine, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Reference Centre for Rheumatic, Autoimmune and Systemic Diseases in Children, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
| |
Collapse
|
20
|
Brennenstuhl H, Nashawi M, Schröter J, Baronio F, Beedgen L, Gleich F, Jeltsch K, von Landenberg C, Martini S, Simon A, Thiel C, Tsiakas K, Opladen T, Kölker S, Hoffmann GF, Haas D. Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria. J Inherit Metab Dis 2021; 44:1272-1287. [PMID: 34145613 DOI: 10.1002/jimd.12412] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
Mevalonic aciduria (MVA) and hyperimmunoglobulinemia D syndrome (MKD/HIDS) are disorders of cholesterol biosynthesis caused by variants in the MVK gene and characterized by increased urinary excretion of mevalonic acid. So far, 30 MVA patients have been reported, suffering from recurrent febrile crises and neurologic impairment. Here, we present an in-depth analysis of the phenotypic spectrum of MVA and provide an in-silico pathogenicity model analysis of MVK missense variants. The phenotypic spectrum of 11 MVA patients (age range 0-51 years) registered in the Unified European Registry for Inherited Metabolic Disorders database was systematically analyzed using terms of the Human Phenotype Ontology. Biochemical, radiological as well as genetic characteristics were investigated. Six of eleven patients have reached adulthood and four have reached adolescence. One of the adolescent patients died at the age of 16 years and one patient died shortly after birth. Symptoms started within the first year of life, including episodic fever, developmental delay, ataxia, and ocular involvement. We also describe a case with absence of symptoms despite massive excretion of mevalonic acid. Pathogenic variants causing MVA cluster within highly conserved regions, which are involved in mevalonate and ATP binding. The phenotype of adult and adolescent MVA patients is more heterogeneous than previously assumed. Outcome varies from an asymptomatic course to early death. MVK variants cluster in functionally important and highly conserved protein domains and show high concordance regarding their expected pathogenicity.
Collapse
Affiliation(s)
- Heiko Brennenstuhl
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mohammed Nashawi
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Federico Baronio
- Paediatric Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Lars Beedgen
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Silvia Martini
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Anna Simon
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation (REIA), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Thiel
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Opladen
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Dorothea Haas
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Leyens J, Bender TTA, Mücke M, Stieber C, Kravchenko D, Dernbach C, Seidel MF. The combined prevalence of classified rare rheumatic diseases is almost double that of ankylosing spondylitis. Orphanet J Rare Dis 2021; 16:326. [PMID: 34294115 PMCID: PMC8296612 DOI: 10.1186/s13023-021-01945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rare diseases (RDs) affect less than 5/10,000 people in Europe and fewer than 200,000 individuals in the United States. In rheumatology, RDs are heterogeneous and lack systemic classification. Clinical courses involve a variety of diverse symptoms, and patients may be misdiagnosed and not receive appropriate treatment. The objective of this study was to identify and classify some of the most important RDs in rheumatology. We also attempted to determine their combined prevalence to more precisely define this area of rheumatology and increase awareness of RDs in healthcare systems. We conducted a comprehensive literature search and analyzed each disease for the specified criteria, such as clinical symptoms, treatment regimens, prognoses, and point prevalences. If no epidemiological data were available, we estimated the prevalence as 1/1,000,000. The total point prevalence for all RDs in rheumatology was estimated as the sum of the individually determined prevalences. RESULTS A total of 76 syndromes and diseases were identified, including vasculitis/vasculopathy (n = 15), arthritis/arthropathy (n = 11), autoinflammatory syndromes (n = 11), myositis (n = 9), bone disorders (n = 11), connective tissue diseases (n = 8), overgrowth syndromes (n = 3), and others (n = 8). Out of the 76 diseases, 61 (80%) are classified as chronic, with a remitting-relapsing course in 27 cases (35%) upon adequate treatment. Another 34 (45%) diseases were predominantly progressive and difficult to control. Corticosteroids are a therapeutic option in 49 (64%) syndromes. Mortality is variable and could not be determined precisely. Epidemiological studies and prevalence data were available for 33 syndromes and diseases. For an additional eight diseases, only incidence data were accessible. The summed prevalence of all RDs was 28.8/10,000. CONCLUSIONS RDs in rheumatology are frequently chronic, progressive, and present variable symptoms. Treatment options are often restricted to corticosteroids, presumably because of the scarcity of randomized controlled trials. The estimated combined prevalence is significant and almost double that of ankylosing spondylitis (18/10,000). Thus, healthcare systems should assign RDs similar importance as any other common disease in rheumatology.
Collapse
Affiliation(s)
- Judith Leyens
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Neonatology and Pediatric Care, Children's University Hospital, Bonn, Germany
| | - Tim Th A Bender
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Institute of Human Genetics, University Hospital, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
| | - Christiane Stieber
- Institute of General Practice and Family Medicine, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dmitrij Kravchenko
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Radiology, University Hospital, Bonn, Germany
| | - Christian Dernbach
- Division of Medical Psychology and Department of Psychiatry, University Hospital, Bonn, Germany
| | - Matthias F Seidel
- Department of Rheumatology, Spitalzentrum-Centre hospitalier, Biel-Bienne, Switzerland.
| |
Collapse
|
22
|
Gene Expression Analysis of Mevalonate Kinase Deficiency Affected Children Identifies Molecular Signatures Related to Hematopoiesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031170. [PMID: 33525735 PMCID: PMC7908123 DOI: 10.3390/ijerph18031170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022]
Abstract
Mevalonate kinase deficiency (MKD) is a rare autoinflammatory genetic disorder characterized by recurrent fever attacks and systemic inflammation with potentially severe complications. Although it is recognized that the lack of protein prenylation consequent to mevalonate pathway blockade drives IL1β hypersecretion, and hence autoinflammation, MKD pathogenesis and the molecular mechanisms underlaying most of its clinical manifestations are still largely unknown. In this study, we performed a comprehensive bioinformatic analysis of a microarray dataset of MKD patients, using gene ontology and Ingenuity Pathway Analysis (IPA) tools, in order to identify the most significant differentially expressed genes and infer their predicted relationships into biological processes, pathways, and networks. We found that hematopoiesis linked biological functions and pathways are predominant in the gene ontology of differentially expressed genes in MKD, in line with the observed clinical feature of anemia. We also provided novel information about the molecular mechanisms at the basis of the hematological abnormalities observed, that are linked to the chronic inflammation and to defective prenylation. Considering the broad and unspecific spectrum of MKD clinical manifestations and the difficulty in its diagnosis, a better understanding of MKD molecular bases could be translated to the clinical level to facilitate diagnosis, and improve management and therapy.
Collapse
|
23
|
Park KC, Krywawych S, Richard E, Desviat LR, Swietach P. Cardiac Complications of Propionic and Other Inherited Organic Acidemias. Front Cardiovasc Med 2020; 7:617451. [PMID: 33415129 PMCID: PMC7782273 DOI: 10.3389/fcvm.2020.617451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical observations and experimental studies have determined that systemic acid-base disturbances can profoundly affect the heart. A wealth of information is available on the effects of altered pH on cardiac function but, by comparison, much less is known about the actions of the organic anions that accumulate alongside H+ ions in acidosis. In the blood and other body fluids, these organic chemical species can collectively reach concentrations of several millimolar in severe metabolic acidoses, as in the case of inherited organic acidemias, and exert powerful biological actions on the heart that are not intuitive to predict. Indeed, cardiac pathologies, such as cardiomyopathy and arrhythmia, are frequently reported in organic acidemia patients, but the underlying pathophysiological mechanisms are not well established. Research efforts in the area of organic anion physiology have increased dramatically in recent years, particularly for propionate, which accumulates in propionic acidemia, one of the commonest organic acidemias characterized by a high incidence of cardiac disease. This Review provides a comprehensive historical overview of all known organic acidemias that feature cardiac complications and a state-of-the-art overview of the cardiac sequelae observed in propionic acidemia. The article identifies the most promising candidates for molecular mechanisms that become aberrantly engaged by propionate anions (and its metabolites), and discusses how these may result in cardiac derangements in propionic acidemia. Key clinical and experimental findings are considered in the context of potential therapies in the near future.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Steve Krywawych
- Department of Chemical Pathology, Great Ormond Street Hospital, London, United Kingdom
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pawel Swietach
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Li M, Jin R, Qi Y, Zhou H, Zhu T, Liu L, Gu Y, Luan K, Luo X, Zhang S. Cholesterol partially rescues the inhibition effect of pravastatin on keratinocytes proliferation by regulating cell cycle relative proteins through AKT and ERK pathway. Dermatol Ther 2020; 33:e14305. [PMID: 32926496 DOI: 10.1111/dth.14305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022]
Abstract
Mevalonate pathway plays a key role in skin physiological process in human. Recently, it has been reported that mutation of some genes in the mevalonate pathway cause disseminated superficial actinic porokeratosis (DSAP). But the pathogenesis is still unknown. Pravastatin (PRA), one of HMG-CoA reductase (HMGCR) inhibitors, has been found to inhibit cells proliferation, including keratinocytes (KCs). In this study, we use PRA to block the mevalonate pathway in KCs with or without the down-stream intermediate products replenishment. The results demonstrated that PRA strongly inhibited proliferation of KCs and caused the G0 /G1 arrest. When some down-stream intermediate products were added, only cholesterol (CH) could partially rescue the inhibition effect of PRA on KCs proliferation, but not other products, such as mevalonic acid, farnesyl pyrophosphate or geranylgeranyl pyrophosphate. Mechanistic analysis revealed that PRA down-regulated expression of cyclin B1, but up-regulated cyclin E and p21 expression. And PRA increased the phosphorylation level of Protein Kinase B (AKT) but decreased the phosphorylation level of Extracellular Signal Regulated Kinase (ERK1/2). CH could attenuate the elevated cyclin E and activated AKT induced by PRA. These results indicated that CH could rescue the proliferation inhibition of KCs caused by PRA, which laid a foundation for elucidating the pathogenesis of DSAP clearly.
Collapse
Affiliation(s)
- Mingcong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Rui Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yinliang Qi
- General Department of Hyperbaric Oxygen, Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tingting Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yanan Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Kang Luan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xin Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
25
|
Spectrum of clinical features and genetic variants in mevalonate kinase (MVK) gene of South Indian families suffering from Hyperimmunoglobulin D Syndrome. PLoS One 2020; 15:e0237999. [PMID: 32822427 PMCID: PMC7442240 DOI: 10.1371/journal.pone.0237999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022] Open
Abstract
Hyper-IgD syndrome (HIDS, OMIM #260920) is a rare autosomal recessive autoinflammatory disorder caused by pathogenic variants in the mevalonate kinase (MVK) gene. HIDS has an incidence of 1:50,000 to 1:5,000, and is thought to be prevalent mainly in northern Europe. Here, we report a case series of HIDS from India, which includes ten patients from six families who presented with a wide spectrum of clinical features such as recurrent fever, oral ulcers, rash, arthritis, recurrent diarrhea, hepatosplenomegaly, and high immunoglobulin levels. Using whole exome sequencing (WES) and/or Sanger capillary sequencing, we identified five distinct genetic variants in the MVK gene from nine patients belonging to six families. The variants were classified as pathogenic or likely pathogenic as per the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines for annotation of sequence variants. Over 70% of patients in the present study had two recurrent mutations in MVK gene i.e. a nonsynonymous variant p.V377I, popularly known as the ‘Dutch mutation’, along with a splicing variant c.226+2delT in a compound heterozygous form. Identity by descent analysis in two patients with the recurrent variants identified a 6.7 MB long haplotype suggesting a founder effect in the South Indian population. Our analysis suggests that a limited number of variants account for the majority of the patients with HIDS in South India. This has implications in clinical diagnosis, as well as in the development of cost-effective approaches for genetic diagnosis and screening. To our best knowledge, this is the first and most comprehensive case series of clinically and genetically characterized patients with HIDS from India.
Collapse
|
26
|
Klinische Symptomatik autoinflammatorischer Erkrankungen. Hautarzt 2020; 71:342-358. [DOI: 10.1007/s00105-020-04582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Navallas M, Inarejos Clemente EJ, Iglesias E, Rebollo-Polo M, Zaki FM, Navarro OM. Autoinflammatory diseases in childhood, part 1: monogenic syndromes. Pediatr Radiol 2020; 50:415-430. [PMID: 32065272 DOI: 10.1007/s00247-019-04536-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
Autoinflammatory diseases constitute a family of disorders defined by aberrant stimulation of inflammatory pathways without involving antigen-directed autoimmunity. They may be divided into monogenic and polygenic types. Monogenic autoinflammatory syndromes are those with identified genetic mutations, such as familial Mediterranean fever, tumor necrosis factor receptor-associated periodic fever syndrome (TRAPS), mevalonate kinase deficiency or hyperimmunoglobulin D syndrome, cryopyrin-associated periodic fever syndromes (CAPS), pyogenic arthritis pyoderma gangrenosum and acne (PAPA) syndrome, interleukin-10 and interleukin-10 receptor deficiencies, adenosine deaminase 2 deficiency and pediatric sarcoidosis. Those without an identified genetic mutation are known as polygenic and include systemic-onset juvenile idiopathic arthritis, idiopathic recurrent acute pericarditis, Behçet syndrome, chronic recurrent multifocal osteomyelitis and inflammatory bowel disease among others. Autoinflammatory disorders are defined by repeating episodes or persistent fever, rash, serositis, lymphadenopathy, arthritis and increased acute phase reactants, and thus may mimic infections clinically. Most monogenic autoinflammatory syndromes present in childhood. However, because of their infrequency, diverse and nonspecific presentation, and the relatively new genetic recognition, diagnosis is usually delayed. In this article, which is Part 1 of a two-part series, the authors update monogenic autoinflammatory diseases in children with special emphasis on imaging features that may help establish the correct diagnosis.
Collapse
Affiliation(s)
- María Navallas
- Department of Radiology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2. 08950 Esplugues de Llobregat, Barcelona, Spain. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.
| | - Emilio J Inarejos Clemente
- Department of Radiology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2. 08950 Esplugues de Llobregat, Barcelona, Spain
| | | | - Mónica Rebollo-Polo
- Department of Radiology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2. 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Faizah Mohd Zaki
- Department of Radiology, UKM Medical Center, Kuala Lumpur, Malaysia
| | - Oscar M Navarro
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
28
|
Szymanski AM, Dávila Saldaña B, Ferreira CR, Loechelt B, Jung L. Mevalonic aciduria: Does stem cell transplant fully cure disease? Pediatr Transplant 2020; 24:e13604. [PMID: 31651069 DOI: 10.1111/petr.13604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 04/30/2019] [Accepted: 09/25/2019] [Indexed: 01/16/2023]
Abstract
MA is a rare, autosomal recessive disorder characterized by episodes of inflammation and periodic fevers. In its most severe form, it can result in facial dysmorphism, growth inhibition, ataxia, liver dysfunction, intellectual disability, and at times can be fatal. A number of case reports exist stating that SCT is curative in these patients. We present the case of a patient diagnosed with MA at birth, who underwent SCT at the age of 14 months with intent to cure. She achieved complete engraftment and urine mevalonate became undetectable. However, 18 months following transplant, she developed frequent episodes of fevers, rashes, arthritis, and a rising urinary mevalonate. She was subsequently diagnosed with relapse. She now requires treatment with steroids and canakinumab to manage her disease. This case is the first report of disease relapse following transplant for MA. It runs contrary to prior reports that SCT is fully curative of MA and suggests that transplant may instead provide a means of decreasing disease severity without entirely eradicating the condition.
Collapse
Affiliation(s)
- Ann Marie Szymanski
- Division of Pediatric Rheumatology, Children's National Health System, Washington, DC, USA
| | - Blachy Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, USA
| | - Carlos R Ferreira
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC, USA
| | - Brett Loechelt
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, USA
| | - Lawrence Jung
- Division of Pediatric Rheumatology, Children's National Health System, Washington, DC, USA
| |
Collapse
|
29
|
Alippe Y, Mbalaviele G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin Immunopathol 2019; 41:607-618. [PMID: 31520179 PMCID: PMC6814643 DOI: 10.1007/s00281-019-00753-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
The inflammasomes are intracellular protein complexes that are assembled in response to a variety of perturbations including infections and injuries. Failure of the inflammasomes to rapidly clear the insults or restore tissue homeostasis can result in chronic inflammation. Recurring inflammation is also provoked by mutations that cause the constitutive assembly of the components of these protein platforms. Evidence suggests that chronic inflammation is a shared mechanism in bone loss associated with aging, dysregulated metabolism, autoinflammatory, and autoimmune diseases. Mechanistically, inflammatory mediators promote bone resorption while suppressing bone formation, an imbalance which over time leads to bone loss and increased fracture risk. Thus, while acute inflammation is important for the maintenance of bone integrity, its chronic state damages this tissue. In this review, we discuss the role of the inflammasomes in inflammation-induced osteolysis.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Satekge TM, Kiabilua O, Terblanche AJ, Bida M, Pillay TS. Mevalonate kinase deficiency masked by cytomegalovirus infection and obscure liver disease. Clin Chim Acta 2019; 498:122-125. [PMID: 31430439 DOI: 10.1016/j.cca.2019.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chronic liver disease with conjugated hyperbilirubinaemia and failure to thrive can have multifactorial aetiologies. Investigations can be complex and difficult especially when obscured by a viral infection affecting liver function. METHODS A 5 month old male infant was referred for investigation of chronic liver disease and a history of jaundice with multiple febrile episodes. Liver function tests were performed followed by a liver biopsy and microbiological workup for infectious disease. In addition, urine analysis of organic acids was also performed. RESULTS There was marked conjugated hyperbilirubinaemia with markedly elevated hepatocellular enzymes and normal ductal enzymes. Proteinuria and near normal renal function suggested early renal impairment. There was also leukocytosis and bicytopenia. An extensive bacteriological investigation including TB workup was negative. CMV infection was confirmed by viral load and antibody reactivity. There was prolonged PT and PTT and high INR. The liver biopsy showed giant cell transformation of hepatocytes with mild cholestasis, portal and peri-cellular fibrosis with alpha-1-antitrypsin positive granules in the hepatocyte cytoplasm suggesting alpha-1-antitrypsin deficiency. Urine organic acids revealed significantly elevated mevalonolactone. CONCLUSIONS We confirmed the genetic diagnosis of mevalonic aciduria caused by MVK deficiency which had been masked by liver disease and the possible misdiagnosis of alpha-1-antitrypsin deficiency.
Collapse
Affiliation(s)
- Tumelo M Satekge
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service (NHLS) Tshwane Academic Division, Pretoria, South Africa
| | - Olivia Kiabilua
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service (NHLS) Tshwane Academic Division, Pretoria, South Africa
| | - Alta J Terblanche
- Department of Paediatrics, University of Pretoria and Steve Biko Academic Hospital, South Africa
| | - Meshack Bida
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Pretoria and NHLS Tshwane Academic Division, Pretoria, South Africa
| | - Tahir S Pillay
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service (NHLS) Tshwane Academic Division, Pretoria, South Africa; Division of Chemical Pathology, University of Cape Town, South Africa.
| |
Collapse
|
31
|
Pietrasanta C, Minoia F, Torreggiani S, Ronchi A, Gattorno M, Volpi S, Ceccherini I, Mosca F, Filocamo G, Pugni L. When neonatal inflammation does not mean infection: an early-onset mevalonate kinase deficiency with interstitial lung disease. Clin Immunol 2019; 205:25-28. [DOI: 10.1016/j.clim.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/30/2022]
|
32
|
Coppola T, Becken B, Van Mater H, McDonald MT, Panayotti GM. A case report of mevalonate kinase deficiency in a 14-month-old female with fevers and lower extremity weakness. BMC Pediatr 2019; 19:245. [PMID: 31325964 PMCID: PMC6642485 DOI: 10.1186/s12887-019-1617-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background This case follows a 14-month-old female, who despite multiple presentations to several physicians, continued to have recurrent febrile episodes with gross motor delay. Her case revealed an often missed diagnosis of Mevalonate Kinase Deficiency, that now has an FDA approved treatment that both reduces recurrence and produces remission. Case presentation A 14-month-old female with a history of gross motor delay, frequent Upper Respiratory Tract infections, and otitis media presented to an urgent care for inconsolability and refusal to bear weight on her right leg. She had recently been treated with amoxicillin for acute otitis media and had developed a diffuse maculopapular rash, without any associated respiratory or gastrointestinal distress that persisted beyond cessation of the antibiotics. The patient presented multiple times to an urgent care over the subsequent week for fussiness, fever, anorexia, lymphadenopathy, with labs concerning for worsening anemia and elevated inflammatory markers. Subsequently, the patient was admitted to the hospital for suspected osteomyelitis versus oncologic process. X-Ray imaging of the patient’s lower extremities showed osseous abnormalities inconsistent with infection. A metabolic work-up showed elevated urine mevalonic acid, and follow-up genetic testing was positive for mutations in both copies of her mevalonate kinase gene. This led to the diagnosis of MKD. Conclusions Often, episodic presentations require multiple perspectives to reveal the underlying cause. This case illustrates how apparent simple febrile episodes has the potential for more complexity upon further evaluation.
Collapse
Affiliation(s)
- Tiziana Coppola
- Duke Children's Primary Care, 4020 North Roxboro Street, Durham, NC, 27704, USA.
| | - Bradford Becken
- Duke Children's Primary Care, 4020 North Roxboro Street, Durham, NC, 27704, USA
| | - Heather Van Mater
- Duke Children's Primary Care, 4020 North Roxboro Street, Durham, NC, 27704, USA
| | | | | |
Collapse
|
33
|
Carapito R, Carapito C, Morlon A, Paul N, Vaca Jacome AS, Alsaleh G, Rolli V, Tahar O, Aouadi I, Rompais M, Delalande F, Pichot A, Georgel P, Messer L, Sibilia J, Cianferani S, Van Dorsselaer A, Bahram S. Multi-OMICS analyses unveil STAT1 as a potential modifier gene in mevalonate kinase deficiency. Ann Rheum Dis 2018; 77:1675-1687. [PMID: 30030262 PMCID: PMC6225799 DOI: 10.1136/annrheumdis-2018-213524] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 06/30/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The objective of the present study was to explain why two siblings carrying both the same homozygous pathogenic mutation for the autoinflammatory disease hyper IgD syndrome, show opposite phenotypes, that is, the first being asymptomatic, the second presenting all classical characteristics of the disease. METHODS Where single omics (mainly exome) analysis fails to identify culprit genes/mutations in human complex diseases, multiomics analyses may provide solutions, although this has been seldom used in a clinical setting. Here we combine exome, transcriptome and proteome analyses to decipher at a molecular level, the phenotypic differences between the two siblings. RESULTS This multiomics approach led to the identification of a single gene-STAT1-which harboured a rare missense variant and showed a significant overexpression of both mRNA and protein in the symptomatic versus the asymptomatic sister. This variant was shown to be of gain of function nature, involved in an increased activation of the Janus kinase/signal transducer and activator of transcription signalling (JAK/STAT) pathway, known to play a critical role in inflammatory diseases and for which specific biotherapies presently exist. Pathway analyses based on information from differentially expressed transcripts and proteins confirmed the central role of STAT1 in the proposed regulatory network leading to an increased inflammatory phenotype in the symptomatic sibling. CONCLUSIONS This study demonstrates the power of a multiomics approach to uncover potential clinically actionable targets for a personalised therapy. In more general terms, we provide a proteogenomics analysis pipeline that takes advantage of subject-specific genomic and transcriptomic information to improve protein identification and hence advance individualised medicine.
Collapse
Affiliation(s)
- Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Franco-Japanese Nextgen HLA laboratory, Laboratoire International Associé (LIA) INSERM, Nagano, Japan
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Christine Carapito
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Aurore Morlon
- Molecular Immunology Unit, BIOMICA SAS, Strasbourg, France
| | - Nicodème Paul
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Franco-Japanese Nextgen HLA laboratory, Laboratoire International Associé (LIA) INSERM, Nagano, Japan
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Alvaro Sebastian Vaca Jacome
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Ghada Alsaleh
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Véronique Rolli
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Franco-Japanese Nextgen HLA laboratory, Laboratoire International Associé (LIA) INSERM, Nagano, Japan
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Ouria Tahar
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Franco-Japanese Nextgen HLA laboratory, Laboratoire International Associé (LIA) INSERM, Nagano, Japan
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Ismail Aouadi
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Franco-Japanese Nextgen HLA laboratory, Laboratoire International Associé (LIA) INSERM, Nagano, Japan
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Magali Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Franco-Japanese Nextgen HLA laboratory, Laboratoire International Associé (LIA) INSERM, Nagano, Japan
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Philippe Georgel
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Franco-Japanese Nextgen HLA laboratory, Laboratoire International Associé (LIA) INSERM, Nagano, Japan
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Laurent Messer
- Service de Rhumatologie, Hôpitaux Civils de Colmar, Colmar, France
| | - Jean Sibilia
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Service de Rhumatologie, Centre National de Référence pour les Maladies Autoimmunes Systémiques Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sarah Cianferani
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Alain Van Dorsselaer
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Franco-Japanese Nextgen HLA laboratory, Laboratoire International Associé (LIA) INSERM, Nagano, Japan
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
34
|
Tocilizumab for the Treatment of Mevalonate Kinase Deficiency. Case Rep Pediatr 2018; 2018:3514645. [PMID: 30225156 PMCID: PMC6129367 DOI: 10.1155/2018/3514645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is a severe autoinflammatory disease caused by recessive mutations in MVK resulting in reduced function of the enzyme mevalonate kinase, involved in the cholesterol/isoprenoid pathway. MKD presents with periodic episodes of severe systemic inflammation, poor quality of life, and life-threatening sequelae if inadequately treated. We report the case of a 12-year-old girl with MKD and severe autoinflammation that was resistant to IL-1 and TNF-α blockade. In view of this, she commenced intravenous tocilizumab (8 mg/kg every 2 weeks), a humanised monoclonal antibody targeting the IL-6 receptor (IL-6R) that binds to membrane and soluble IL-6R, inhibiting IL-6-mediated signaling. She reported immediate cessation of fever and marked improvement in her energy levels following the first infusion; after the fifth dose, she was in complete clinical and serological remission, now sustained for 24 months. This is one of the first reported cases of a child with MKD treated successfully with tocilizumab and adds to the very limited experience of this treatment for MKD. IL-6 blockade could therefore be an important addition to the armamentarium for the treatment of this rare monogenic autoinflammatory disease.
Collapse
|
35
|
|
36
|
Neuronal Dysfunction Associated with Cholesterol Deregulation. Int J Mol Sci 2018; 19:ijms19051523. [PMID: 29783748 PMCID: PMC5983599 DOI: 10.3390/ijms19051523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/20/2023] Open
Abstract
Cholesterol metabolism is crucial for cells and, in particular, its biosynthesis in the central nervous system occurs in situ, and its deregulation involves morphological changes that cause functional variations and trigger programmed cell death. The pathogenesis of rare diseases, such as Mevalonate Kinase Deficiency or Smith–Lemli–Opitz Syndrome, arises due to enzymatic defects in the cholesterol metabolic pathways, resulting in a shortage of downstream products. The most severe clinical manifestations of these diseases appear as neurological defects. Expanding the knowledge of this biological mechanism will be useful for identifying potential targets and preventing neuronal damage. Several studies have demonstrated that deregulation of the cholesterol pathway induces mitochondrial dysfunction as the result of respiratory chain damage. We set out to determine whether mitochondrial damage may be prevented by using protective mitochondria-targeted compounds, such as MitoQ, in a neuronal cell line treated with a statin to induce a biochemical block of the cholesterol pathway. Evidence from the literature suggests that mitochondria play a crucial role in the apoptotic mechanism secondary to blocking the cholesterol pathway. Our study shows that MitoQ, administered as a preventive agent, could counteract the cell damage induced by statins in the early stages, but its protective role fades over time.
Collapse
|
37
|
Gratton R, Tricarico PM, Celsi F, Crovella S. Prolonged treatment with mevalonolactone induces oxidative stress response with reactive oxygen species production, mitochondrial depolarization and inflammation in human glioblastoma U-87 MG cells. Neurochem Int 2018; 120:233-237. [PMID: 29753116 DOI: 10.1016/j.neuint.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 11/29/2022]
Abstract
Mevalonate pathway impairment has been observed in diverse diseases, including Mevalonate Kinase Deficiency (MKD). MKD is a hereditary auto-inflammatory disorder, due to mutations at mevalonate kinase gene (MVK), encoding mevalonate kinase (MK) enzyme. To date, the most accredited MKD pathogenic hypothesis suggests that the typical MKD phenotypes might be due to a decreased isoprenoid production rather than to the excess and accumulation of mevalonic acid, as initially supported. Nevertheless, recent studies provide clear evidences that accumulating metabolites might be involved in MKD pathophysiology by exerting a toxic effect. Our work aims at describing the effects of accumulating mevalonolactone, mostly produced by a dehydration reaction due to mevalonic acid accumulation, using an in vitro cellular model mimicking the glial component of the central nervous system (human glioblastoma U-87 MG cells). In order to mimic its progressive increase, occurring during the disease, U-87 MG cells have been treated repeatedly with growing doses of mevalonolactone, followed by the assessment of oxidative stress response (evaluated by measuring SOD2 and HemeOX expression levels), ROS production, mitochondrial damage and inflammatory response (evaluated by measuring IL1B expression levels). Our results suggest that protracted treatments with mevalonolactone induce oxidative stress with augmented ROS production and mitochondrial damage accompanied by membrane depolarization. Furthermore, an increment in IL1B expression has been observed, thus correlating the accumulation of the metabolite with the development of a neuroinflammatory response. Our experimental work suggests to reconsider the presence of a possible synergy between the two major MKD pathogenic hypotheses in attempt of unravelling the different pathogenic pathways responsible for the disease.
Collapse
Affiliation(s)
- Rossella Gratton
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Paola Maura Tricarico
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy; University of Trieste, Trieste, Italy.
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Sergio Crovella
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy; University of Trieste, Trieste, Italy.
| |
Collapse
|
38
|
Mezzavilla M, Moura RR, Celsi F, Tricarico PM, Crovella S. MMAB, a novel candidate gene to be screened in the molecular diagnosis of Mevalonate Kinase Deficiency. Rheumatol Int 2017; 38:121-127. [PMID: 29234874 DOI: 10.1007/s00296-017-3890-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022]
Abstract
Mevalonate kinase deficiency (MKD) is an autosomal recessive inflammatory disease. Mutations in MVK gene are associated with MKD with modest genotype-phenotype correlation. In spite of recent guidelines indicating specific MVK mutations for the more severe form or the milder one, little is known about MVK variability within and between populations. The aim of this work is to provide supplementary information about MVK variability useful in the molecular diagnosis of MKD, as well as to unravel the presence of novel genes potentially involved as involved in the clinical heterogeneity of MKD phenotype. We used a population-based approach, coupled with Combined Annotation-Dependent Depletion (CADD) score, to analyze the level of genetic variability for common and putatively deleterious MVK variants. We also performed Exome screening with the Illumina Human Exome Bead Chip on 21 MKD patients to double-check our in silico findings. Haplotype block detection in different populations revealed the existence of two blocks in MVK; interestingly, the first haploblock comprises the promoter region shared with MMAB gene. Analyses of MMAB and MVK genetic variants in 21 MKD patients strengthen our observations showing a novel scenario in which the same mutations commonly associated with MKD are found coupled with different combination of MMAB rs7134594 SNP was already described as associated with HDL cholesterol level and present in the haploblock promoter region. The rs7134594 SNP is reported as an eQTL for MVK and MMAB. Hypothesizing the presence of genetic variants modulating the complex phenotypic spectrum of MKD, we suggest that future directions in screening for MKD pathogenic variants should focus both MMAB and MVK genes.
Collapse
Affiliation(s)
- Massimo Mezzavilla
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
- IRCCS Burlo Garofolo, Trieste, Italy
| | | | | | | | - Sergio Crovella
- IRCCS Burlo Garofolo, Trieste, Italy.
- University of Trieste, Trieste, Italy.
| |
Collapse
|
39
|
Jin R, Luo X, Luan K, Liu L, Sun LD, Yang S, Zhang SQ, Zhang XJ. Disorder of the mevalonate pathway inhibits calcium-induced differentiation of keratinocytes. Mol Med Rep 2017; 16:4811-4816. [PMID: 28765912 DOI: 10.3892/mmr.2017.7128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Mutation of genes encoding the enzymes of the mevalonate pathway cause a variety of diseases, including skin disorders. Mutation of four genes in this pathway, including mevalonate kinase, phosphomevalonate kinase, mevalonate diphosphate decarboxylase and farnesyl diphosphate synthase, have demonstrated to be responsible for porokeratosis (PK). However, the pathogenesis of PK remains unclear. In the present study, specific enzyme inhibitors of the mevalonate pathway, including pravastatin (PRA), alendronate (ALD), farnesyl transferase inhibitor (FTI‑277) and geranylgeranyl transferase inhibitor (GGTI‑298), were used to investigate the effect on differentiation of keratinocytes (KCs). Western blotting demonstrated that PRA, ALD, FTI‑277 or GGTI‑298 alone, or in combination, inhibited the expression level of calcium‑induced differentiation maker involucrin (INV) in KCs. ALD and PRA induced greater inhibition of INV compared with FTI‑277 and GGTI‑298 treatment. These inhibitors additionally influenced the expression levels of keratin1. Mechanistic studies revealed that treatment of cells with inhibitors decreased the expression levels of p53 and Notch1, and regulated activation of the mitogen activated protein kinase and phosphoinositide‑3‑kinase/protein kinase B signaling pathways. The results of the present study suggested that regulation of the mevalonate pathway may be necessary for differentiation of KCs, and the pathogenesis of disseminated superficial actinic PK.
Collapse
Affiliation(s)
- Rui Jin
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xin Luo
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kang Luan
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Li Liu
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Liang-Dan Sun
- Department of Dermatology, Institute of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Sen Yang
- Department of Dermatology, Institute of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Sheng-Quan Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xue-Jun Zhang
- Department of Dermatology, Institute of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
40
|
Jáčová J, Gardlo A, Friedecký D, Adam T, Dimandja JMD. Sample-independent approach to normalize two-dimensional data for orthogonality evaluation using whole separation space scaling. J Chromatogr A 2017; 1511:1-8. [DOI: 10.1016/j.chroma.2017.06.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023]
|
41
|
Baker PJ, De Nardo D, Moghaddas F, Tran LS, Bachem A, Nguyen T, Hayman T, Tye H, Vince JE, Bedoui S, Ferrero RL, Masters SL. Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiol Rev 2017; 97:1165-1209. [DOI: 10.1152/physrev.00026.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Cell surface innate immune receptors can directly detect a variety of extracellular pathogens to which cytoplasmic innate immune sensors are rarely exposed. Instead, within the cytoplasm, the environment is rife with cellular machinery and signaling pathways that are indirectly perturbed by pathogenic microbes to activate intracellular sensors, such as pyrin, NLRP1, NLRP3, or NLRC4. Therefore, subtle changes in key intracellular processes such as phosphorylation, ubiquitination, and other pathways leading to posttranslational protein modification are key determinants of innate immune recognition in the cytoplasm. This concept is critical to establish the “guard hypothesis” whereby otherwise homeostatic pathways that keep innate immune sensors at bay are released in response to alterations in their posttranslational modification status. Originally identified in plants, evidence that a similar guardlike mechanism exists in humans has recently been identified, whereby a mutation that prevents phosphorylation of the innate immune sensor pyrin triggers a dominantly inherited autoinflammatory disease. It is also noteworthy that even when a cytoplasmic innate immune sensor has a direct ligand, such as bacterial peptidoglycan (NOD1 or NOD2), RNA (RIG-I or MDA5), or DNA (cGAS or IFI16), it can still be influenced by posttranslational modification to dramatically alter its response. Therefore, due to their existence in the cytoplasmic milieu, posttranslational modification is a key determinant of intracellular innate immune receptor functionality.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Le Son Tran
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Annabell Bachem
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Tan Nguyen
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Thomas Hayman
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Hazel Tye
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - James E. Vince
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Sammy Bedoui
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Richard L. Ferrero
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
42
|
Marcuzzi A, Piscianz E, Vecchi Brumatti L, Tommasini A. Mevalonate kinase deficiency: therapeutic targets, treatments, and outcomes. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1328308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Annalisa Marcuzzi
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Elisa Piscianz
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Liza Vecchi Brumatti
- Scientific Direction, Institute for Maternal and Child Health – IRCCS ‘Burlo Garofolo,’ Trieste, Italy
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS ‘Burlo Garofolo’, Trieste, Italy
| |
Collapse
|
43
|
Fenini G, Contassot E, French LE. Potential of IL-1, IL-18 and Inflammasome Inhibition for the Treatment of Inflammatory Skin Diseases. Front Pharmacol 2017; 8:278. [PMID: 28588486 PMCID: PMC5438978 DOI: 10.3389/fphar.2017.00278] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
In 2002, intracellular protein complexes known as the inflammasomes were discovered and were shown to have a crucial role in the sensing of intracellular pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). Activation of the inflammasomes results in the processing and subsequent secretion of the pro-inflammatory cytokines IL-1β and IL-18. Several autoinflammatory disorders such as cryopyrin-associated periodic syndromes and Familial Mediterranean Fever have been associated with mutations of genes encoding inflammasome components. Moreover, the importance of IL-1 has been reported for an increasing number of autoinflammatory skin diseases including but not limited to deficiency of IL-1 receptor antagonist, mevalonate kinase deficiency and PAPA syndrome. Recent findings have revealed that excessive IL-1 release induced by harmful stimuli likely contributes to the pathogenesis of common dermatological diseases such as acne vulgaris or seborrheic dermatitis. A key pathogenic feature of these diseases is IL-1β-induced neutrophil recruitment to the skin. IL-1β blockade may therefore represent a promising therapeutic approach. Several case reports and clinical trials have demonstrated the efficacy of IL-1 inhibition in the treatment of these skin disorders. Next to the recombinant IL-1 receptor antagonist (IL-1Ra) Anakinra and the soluble decoy Rilonacept, the anti-IL-1α monoclonal antibody MABp1 and anti-IL-1β Canakinumab but also Gevokizumab, LY2189102 and P2D7KK, offer valid alternatives to target IL-1. Although less thoroughly investigated, an involvement of IL-18 in the development of cutaneous inflammatory disorders is also suspected. The present review describes the role of IL-1 in diseases with skin involvement and gives an overview of the relevant studies discussing the therapeutic potential of modulating the secretion and activity of IL-1 and IL-18 in such diseases.
Collapse
Affiliation(s)
- Gabriele Fenini
- Department of Dermatology, University Hospital ZurichZurich, Switzerland
| | - Emmanuel Contassot
- Department of Dermatology, University Hospital ZurichZurich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital ZurichZurich, Switzerland
| |
Collapse
|
44
|
Cecatto C, Amaral AU, da Silva JC, Wajner A, Godoy KDS, Ribeiro RT, Gonçalves ADM, Vargas CR, Wajner M. Mevalonolactone disrupts mitochondrial functions and induces permeability transition pore opening in rat brain mitochondria: Implications for the pathogenesis of mevalonic aciduria. Neurochem Int 2017; 108:133-145. [PMID: 28284974 DOI: 10.1016/j.neuint.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/07/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Mevalonic aciduria (MVA) is caused by severe deficiency of mevalonic kinase activity leading to tissue accumulation and high urinary excretion of mevalonic acid (MA) and mevalonolactone (ML). Patients usually present severe neurologic symptoms whose pathophysiology is poorly known. Here, we tested the hypothesis that the major accumulating metabolites are toxic by investigating the in vitro effects of MA and ML on important mitochondrial functions in rat brain and liver mitochondria. ML, but not MA, markedly decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and the capacity to retain Ca2+ in the brain, besides inducing mitochondrial swelling. These biochemical alterations were totally prevented by the classical inhibitors of mitochondrial permeability transition (MPT) cyclosporine A and ADP, as well as by ruthenium red in Ca2+-loaded mitochondria, indicating the involvement of MPT and an important role for mitochondrial Ca2+ in these effects. ML also induced lipid peroxidation and markedly inhibited aconitase activity, an enzyme that is highly susceptible to free radical attack, in brain mitochondrial fractions, indicating that lipid and protein oxidative damage may underlie some of ML-induced deleterious effects including MTP induction. In contrast, ML and MA did not compromise oxidative phosphorylation in the brain and all mitochondrial functions evaluated in the liver, evidencing a selective toxicity of ML towards the central nervous system. Our present study provides for the first time evidence that ML impairs essential brain mitochondrial functions with the involvement of MPT pore opening. It is therefore presumed that disturbance of brain mitochondrial homeostasis possibly contributes to the neurologic symptoms in MVA.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Janaína Camacho da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kálita Dos Santos Godoy
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline de Mello Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
45
|
Mukhin NA, Bogdanova MV, Rameev VV, Kozlovskaya LV. Autoinflammatory diseases and kidney involvement. TERAPEVT ARKH 2017; 89:4-20. [DOI: 10.17116/terarkh20178964-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Sun J, Qian Y, Jiang Y, Chen J, Dai J, Jin G, Wang J, Hu Z, Liu S, Shen C, Shen H. Association of KCTD10, MVK, and MMAB polymorphisms with dyslipidemia and coronary heart disease in Han Chinese population. Lipids Health Dis 2016; 15:171. [PMID: 27716295 PMCID: PMC5050677 DOI: 10.1186/s12944-016-0348-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022] Open
Abstract
Background Several genome-wide association studies have discovered novel loci at chromosome 12q24, which includes mevalonate kinase (MVK), methylmalonic aciduria (cobalamin deficiency) cbIB type (MMAB), and potassium channel tetramerization domain-containing 10 (KCTD10), all of which influence HDL-cholesterol concentrations. However, there are few reports on the associations between these polymorphisms and HDL-C concentrations in Chinese population. This study aimed to evaluate the associations between functional polymorphisms in three genes (MVK, MMAB and KCTD10) and HDL-C concentrations, as well as coronary heart disease (CHD) susceptibility in Chinese individuals. Methods We systematically selected and genotyped 18 potentially functional polymorphisms in MVK, MMAB and KCTD10 by using the TaqMan OpenArray Genotyping System in a Chinese population including 399 dyslipidemia cases, 697 CHD cases and 465 controls. Multivariate logistic regression analyses were performed to estimate the relationship between the genotypes and dyslipidemia, CHD risk with adjustment of relevant confounders. Results Among six polymorphisms showing significant associations with dyslipidemia, the minor alleles of rs11066782 in KCTD10, rs11613718 in KCTD10 and rs11067233 in MMAB were significantly associated with a decreased risk of CHD (additive model: OR = 0.71, 95 % CI = 0.53–0.97, P = 0.029 for rs11066782; OR = 0.73, 95 % CI = 0.54–0.99, P = 0.044 for rs11613718 and OR = 0.57, 95 % CI = 0.40–0.80, P = 0.001 for rs11067233). Further combined analysis showed that individuals carrying “3-4” favorable alleles presented a 62 % (OR = 0.38, 95 % CI = 0.21–0.66) decreased risk of CHD compared with those carrying “0–2” favorable alleles. Conclusions These findings suggest that rs11066782 in KCTD10, rs11613718 in KCTD10 and rs11067233 in MMAB may contribute to the susceptibility of CHD by altering plasma HDL-C levels in Han Chinese. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0348-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Sun
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Yun Qian
- Department of Chronic Non-communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yue Jiang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Jiaping Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China.,Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| | - Sijun Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China. .,Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China.
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China.
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian AV., Nanjing, Jiangsu, 211166, China
| |
Collapse
|
47
|
Favier LA, Schulert GS. Mevalonate kinase deficiency: current perspectives. APPLICATION OF CLINICAL GENETICS 2016; 9:101-10. [PMID: 27499643 PMCID: PMC4959763 DOI: 10.2147/tacg.s93933] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mevalonate kinase deficiency (MKD) is a recessively inherited autoinflammatory disorder with a spectrum of manifestations, including the well-defined clinical phenotypes of hyperimmunoglobulinemia D and periodic fever syndrome and mevalonic aciduria. Patients with MKD have recurrent attacks of hyperinflammation associated with fever, abdominal pain, arthralgias, and mucocutaneous lesions, and more severely affected patients also have dysmorphisms and central nervous system anomalies. MKD is caused by mutations in the gene encoding mevalonate kinase, with the degree of residual enzyme activity largely determining disease severity. Mevalonate kinase is essential for the biosynthesis of nonsterol isoprenoids, which mediate protein prenylation. Although the precise pathogenesis of MKD remains unclear, increasing evidence suggests that deficiency in protein prenylation leads to innate immune activation and systemic hyperinflammation. Given the emerging understanding of MKD as an autoinflammatory disorder, recent treatment approaches have largely focused on cytokine-directed biologic therapy. Herein, we review the current genetic and pathologic understanding of MKD, its various clinical phenotypes, and the evolving treatment approach for this multifaceted disorder.
Collapse
Affiliation(s)
- Leslie A Favier
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
48
|
Campbell L, Raheem I, Malemud CJ, Askari AD. The Relationship between NALP3 and Autoinflammatory Syndromes. Int J Mol Sci 2016; 17:ijms17050725. [PMID: 27187378 PMCID: PMC4881547 DOI: 10.3390/ijms17050725] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome, which is required for synthesis of interleukin-1β, has been implicated in the pathogenesis of several autoinflammatory syndromes. This review of the literature summarizes the interconnectedness of NALP3 inflammasome with some of these disorders. Familial Mediterranean fever results from a mutation in the Mediterranean fever (MEFV) gene, which encodes the pyrin protein. Previous study results suggest that pyrin suppresses caspase-1 activation, perhaps by competing for the adaptor protein, termed, pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ACS) which therefore interferes with NALP3 inflammasome activation. The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome is constitutively activated in cryopyrin-associated periodic syndromes due to gain-of-function mutations resulting from point mutations within the neuronal apoptosis inhibitor protein/class 2 transcription factor/heterokaryon incompatibility/telomerase-associated protein-1 (NACHT) domain of the NALP3 protein. Pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome is caused by mutations in the genes encoding proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1). These PSTPIP1 mutants are thought to bind to pyrin causing an increase in the pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ASC) pyroptosome assembly leading to procaspase-1 recruitment and therefore its activation. Hyperimmunoglublinemia D syndrome is caused by mevalonate kinase (MVK) deficiency, which may be affected by protein accumulation that leads to NALP3 inflammasome activation. Tumor necrosis factor receptor-associated periodic syndrome is associated with mutations in the tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A) gene which decreases the level of soluble tumor necrosis factor receptor-1 (TNFR1) leading to neutralization of tumor necrosis factor (TNF)-α. In general, these autoinflammatory disorders have shown a clinical response to interleukin-1 (IL-1) antagonists, suggesting that the NALP3 inflammasome serves a critical role in their pathogenesis.
Collapse
Affiliation(s)
- Lorna Campbell
- Rheumatology Fellows at University Hospitals Case Medical Center, Cleveland, OH 44106-5076, USA.
| | - Irfan Raheem
- Rheumatology Fellows at University Hospitals Case Medical Center, Cleveland, OH 44106-5076, USA.
| | - Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2061 Cornell Road, Cleveland, OH 44106-5076, USA.
| | - Ali D Askari
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2061 Cornell Road, Cleveland, OH 44106-5076, USA.
| |
Collapse
|
49
|
Zhang S. Natural history of mevalonate kinase deficiency: a literature review. Pediatr Rheumatol Online J 2016; 14:30. [PMID: 27142780 PMCID: PMC4855321 DOI: 10.1186/s12969-016-0091-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/27/2016] [Indexed: 01/02/2023] Open
Abstract
Mevalonate kinase deficiency (MKD), a very rare autosomal recessive autoinflammatory disease with multiple organ involvement, presents clinically as hyperimmunoglobulinemia D syndrome (HIDS), a less severe phenotype and more common form, and mevalonic aciduria (MVA), a more severe phenotype and rare form. MKD is characterized by recurrent febrile attacks that are frequently accompanied by lymphadenopathy, gastrointestinal symptoms, arthralgia, myalgia, skin rash, and aphthous ulcers. Patients with MVA also have intrauterine growth retardation, congenital defects (cataracts, shortened limbs, and dysmorphic craniofacial features), neurological disease, and failure to thrive. Mean age at onset of symptoms is within the first year of life. There is a delay by several years between symptom onset and diagnosis, which is in part attributable to the initial misdiagnosis due to the rarity and nonspecific clinical manifestations of disease. The frequency of recurrent febrile attacks is highest in childhood and gradually decreases after adolescence. MKD is associated with rare long-term complications such as type AA amyloidosis, joint contractures, abdominal adhesions, renal angiomyolipoma, and severe pneumococcal infections. Frequent febrile attacks significantly impair several aspects of patients' and caregivers' quality of life, with an adverse impact on patients' daily activities, education, and employment. Lifespan is generally normal for HIDS whereas MVA can be fatal in early childhood.
Collapse
Affiliation(s)
- Shumin Zhang
- Epidemiology, Takeda Development Center Americas, Inc., One Takeda Parkway, Deerfield, IL, 60015, USA.
| |
Collapse
|
50
|
Peciuliene S, Burnyte B, Gudaitiene R, Rusoniene S, Drazdiene N, Liubsys A, Utkus A. Perinatal manifestation of mevalonate kinase deficiency and efficacy of anakinra. Pediatr Rheumatol Online J 2016; 14:19. [PMID: 27012807 PMCID: PMC4807578 DOI: 10.1186/s12969-016-0081-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mevalonate kinase deficiency is a metabolic autoinflammatory syndrome caused by mutations in the MVK gene, mevalonate kinase, the key enzyme in the non-sterol isoprenoid biosynthesis pathway. Two phenotypes of mevalonate kinase deficiency are known based on the level of enzymatic deficiency, mevalonic aciduria and hyperimmunoglobulinemia D syndrome, but a wide spectrum of intermediate phenotypes has been reported. Currently one of the most effective treatments is biological therapy (with interleukin-1 antagonist anakinra or tumour necrosis factor-α inhibitor etanercept). CASE PRESENTATION The patient in this case has a phenotype contributing to a severe disease that caused the symptoms to manifest very early, in the prenatal period. Mevalonate kinase deficiency was suspected on the basis of clinical (hydrops fetalis, hepatosplenomegaly, hypotonia) and laboratory signs (anaemia, intense acute phase reaction, increased urinary excretion of mevalonic acid). Mutation analysis of the MVK gene confirmed the biochemical diagnosis. Treatment with the interleukin-1 antagonist anakinra was started (minimal dose of 1 mg/kg/day) and revealed its efficacy after three days. CONCLUSIONS Our case highlights the need for a very detailed clinical and laboratory assessment in new-borns with any suggestion of autoinflammatory disorders. It is important that patients are diagnosed as early as possible to provide better multidisciplinary follow-up and therapy when needed.
Collapse
Affiliation(s)
- Skaiste Peciuliene
- Neonatology Centre of Vilnius University, Santariškių St. 7, Vilnius, Lithuania.
| | - Birute Burnyte
- Neonatology Centre of Vilnius University, Santariškių St. 7, Vilnius, Lithuania ,Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rymanta Gudaitiene
- Neonatology Centre of Vilnius University, Santariškių St. 7, Vilnius, Lithuania
| | | | - Nijole Drazdiene
- Neonatology Centre of Vilnius University, Santariškių St. 7, Vilnius, Lithuania
| | - Arunas Liubsys
- Neonatology Centre of Vilnius University, Santariškių St. 7, Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|