1
|
Cooper AN, Malmgren L, Hawkes FM, Farrell IW, Hien DFDS, Hopkins RJ, Lefèvre T, Stevenson PC. Identifying mosquito plant hosts from ingested nectar secondary metabolites. Sci Rep 2025; 15:6488. [PMID: 39987345 PMCID: PMC11846922 DOI: 10.1038/s41598-025-88933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
Establishing how plants contribute food and refuge to insects can be challenging for small species that are difficult to observe in their natural habitat, such as disease vectoring mosquitoes. Currently indirect methods of plant-host identification rely on DNA sequencing of ingested plant material but are often unsuccessful for small insects that feed primarily on plant sugars or have little contact with plant cells. Here we developed an innovative approach to determine species-specific phytophagy by detecting taxon-specific plant secondary metabolites (PSMs) in nectar. Two mosquito species were exposed to three PSMs, each present in the nectar of a known plant host, firstly from dosed sucrose solutions and secondly from flowers. Both experiments yielded high rates of PSM detection in mosquitoes using liquid chromatography-mass spectrometry (LC-MS). PSMs were consistently detected in mosquitoes up to 8 h post-ingestion. In experiments consisting of two or three plant species, multiple PSMs from different host plants could be detected. These positive results demonstrate that PSMs could be useful indicators of insect plant-hosts selection in the wild. With expanded knowledge of nectar-based PSMs across a landscape, improved knowledge of plant-host relationships could be achieved where direct observations in their natural habitat are lacking. Increasing understanding of vector insect ecology will have an important role in tackling vector-borne disease.
Collapse
Affiliation(s)
- Amanda N Cooper
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK.
| | - Louise Malmgren
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Frances M Hawkes
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Iain W Farrell
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK
| | - Domonbabele F D S Hien
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International Maladies à Vecteurs en Afrique de l'Ouest (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Richard J Hopkins
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Thierry Lefèvre
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Philip C Stevenson
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
2
|
Tushar T, Pham TB, Parker K, Crepeau M, Lanzaro GC, James AA, Carballar-Lejarazú R. Cas9/guide RNA-based gene-drive dynamics following introduction and introgression into diverse anopheline mosquito genetic backgrounds. BMC Genomics 2024; 25:1078. [PMID: 39533215 PMCID: PMC11558816 DOI: 10.1186/s12864-024-10977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Novel technologies are needed to combat anopheline vectors of malaria parasites as the reductions in worldwide disease incidence has stalled in recent years. Gene drive-based approaches utilizing Cas9/guide RNA (gRNA) systems are being developed to suppress anopheline populations or modify them by increasing their refractoriness to the parasites. These systems rely on the successful cleavage of a chromosomal DNA target site followed by homology-directed repair (HDR) in germline cells to bias inheritance of the drive system. An optimal drive system should be highly efficient for HDR-mediated gene conversion with minimal error rates. A gene-drive system, AgNosCd-1, with these attributes has been developed in the Anopheles gambiae G3 strain and serves as a framework for further development of population modification strains. To validate AgNosCd-1 as a versatile platform, it must perform well in a variety of genetic backgrounds. RESULTS We introduced or introgressed AgNosCd-1 into different genetic backgrounds, three in geographically-diverse Anopheles gambiae strains, and one each in an An. coluzzii and An. arabiensis strain. The overall drive inheritance, determined by presence of a dominant marker gene in the F2 hybrids, far exceeded Mendelian inheritance ratios in all genetic backgrounds that produced viable progeny. Haldane's rule was confirmed for AgNosCd-1 introgression into the An. arabiensis Dongola strain and sterility of the F1 hybrid males prevented production of F2 hybrid offspring. Back-crosses of F1 hybrid females were not performed to keep the experimental design consistent across all the genetic backgrounds and to avoid maternally-generated mutant alleles that might confound the drive dynamics. DNA sequencing of the target site in F1 and F2 mosquitoes with exceptional phenotypes revealed drive system-generated mutations resulting from non-homologous end joining events (NHEJ), which formed at rates similar to AgNosCd-1 in the G3 genetic background and were generated via the same maternal-effect mechanism. CONCLUSIONS These findings support the conclusion that the AgNosCd-1 drive system is robust and has high drive inheritance and gene conversion efficiency accompanied by low NHEJ mutation rates in diverse An. gambiae s.l. laboratory strains.
Collapse
Affiliation(s)
- Taylor Tushar
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Kiona Parker
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
| |
Collapse
|
3
|
dos Santos F, Xu M, Bravo de Guenni L, Lourenço-de-Oliveira R, Rubio-Palis Y. Characterization of larval habitats of Anopheles (Nyssorhynchus) darlingi and associated species in malaria areas in western Brazilian Amazon. Mem Inst Oswaldo Cruz 2024; 119:e240116. [PMID: 39383404 PMCID: PMC11458182 DOI: 10.1590/0074-02760240116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Anopheles darlingi is the most efficient vector of malaria parasites in the Neotropics. Nevertheless, the specificities of its larval habitats are still poorly known. OBJECTIVES Characterize permanent larval habitats, and population dynamics of An. darlingi and other potential vectors in relation to climate, physicochemical variables, insect fauna and malaria cases. METHODS A 14-month longitudinal study was conducted in Porto Velho, Rondônia, western Brazilian Amazon. Monthly, 21 permanent water bodies were sampled. Immature anophelines and associated fauna were collected, physicochemical characteristics, and climate variables were recorded and analyzed. FINDINGS Five types of habitats were identified: lagoon, stream, stream combined with lagoon, stream combined with dam, and fishpond. A total of 60,927 anophelines were collected. The most abundant species in all habitats were Anopheles braziliensis and An. darlingi. The highest density was found in the lagoon, while streams had the highest species richness. Abundance was higher during the transition period wet-dry season. There was a lag of respectively four and five months between the peak of rainfall and the Madeira River level and the highest abundance of An. darlingi larvae, which were positively correlated with habitats partially shaded, pH close to neutrality, increase dissolved oxygen and sulphates. MAIN CONCLUSIONS The present study provides data on key factors defining permanent larval habitats for the surveillance of An. darlingi and other potential vectors as well as a log-linear Negative Binomial model based on immature mosquito abundance and climate variables to predict the increase in the number of malaria cases.
Collapse
|
4
|
Amaral PST, Garcia KKS, Suárez-Mutis MC, Coelho RR, Galardo AK, Murta F, Moresco GG, Siqueira AM, Gurgel-Gonçalves R. Malaria in areas under mining activity in the Amazon: A review. Rev Soc Bras Med Trop 2024; 57:e002002024. [PMID: 38922216 PMCID: PMC11210384 DOI: 10.1590/0037-8682-0551-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/09/2024] [Indexed: 06/27/2024] Open
Abstract
Deforestation and high human mobility due to mining activities have been key to the increase in malaria cases in the Americas. Here, we review the epidemiological and control aspects of malaria in the Amazon mining areas. Epidemiological evidence shows: 1) a positive correlation between illegal mining activity and malaria incidence, mostly in the Amazon region; 2) most Brazilian miners are males aged 15-29 years who move between states and even countries; 3) miners do not fear the disease and rely on medical care, diagnosis, and medication when they become ill; 4) illegal mining has emerged as the most reported anthropogenic activity within indigenous lands and is identified as a major cause of malaria outbreaks among indigenous people in the Amazon; and 5) because mining is largely illegal, most areas are not covered by any healthcare facilities or activities, leading to little assistance in the diagnosis and treatment of malaria. Our review identified five strategies for reducing the malaria incidence in areas with mining activities: 1) reviewing legislation to control deforestation and mining expansion, particularly in indigenous lands; 2) strengthening malaria surveillance by expanding the network of community health agents to support rapid diagnosis and treatment; 3) reinforcing vector control strategies, such as the use of insecticide-treated nets; 4) integrating deforestation alerts into the national malaria control program; and 5) implementing multi-sectoral activities and providing prompt assistance to indigenous populations. With this roadmap, we can expect a decrease in malaria incidence in the Amazonian mining areas in the future.
Collapse
Affiliation(s)
- Pablo Sebastian Tavares Amaral
- Universidade de Brasília, Faculdade de Medicina, Programa de Pós-graduação em Medicina Tropical, Brasília, DF, Brasil
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, DF, Brasil
| | - Klauss Kleydmann Sabino Garcia
- Universidade de Brasília, Faculdade de Medicina, Programa de Pós-graduação em Medicina Tropical, Brasília, DF, Brasil
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, DF, Brasil
- Universidade de Brasília, Faculdade de Ciências da Saúde, Brasília, DF, Brasil
| | | | - Ronan Rocha Coelho
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, DF, Brasil
| | - Allan Kardec Galardo
- Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapá, AP, Brasil
| | - Felipe Murta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Departamento de Ensino e Pesquisa, Manaus, AM, Brasil
| | - Gilberto Gilmar Moresco
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, DF, Brasil
- Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-graduação em Saúde Coletiva, Brasília, DF, Brasil
| | - André Machado Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Gurgel-Gonçalves
- Universidade de Brasília, Faculdade de Medicina, Laboratório de Parasitologia Médica e Biologia Vetores, Brasília, DF, Brasil
| |
Collapse
|
5
|
Kearney EA, Amratia P, Kang SY, Agius PA, Alene KA, O’Flaherty K, Oo WH, Cutts JC, Htike W, Da Silva Goncalves D, Razook Z, Barry AE, Drew D, Thi A, Aung KZ, Thu HK, Thein MM, Zaw NN, Htay WYM, Soe AP, Beeson JG, Simpson JA, Gething PW, Cameron E, Fowkes FJI. Geospatial joint modeling of vector and parasite serology to microstratify malaria transmission. Proc Natl Acad Sci U S A 2024; 121:e2320898121. [PMID: 38833464 PMCID: PMC11181033 DOI: 10.1073/pnas.2320898121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
The World Health Organization identifies a strong surveillance system for malaria and its mosquito vector as an essential pillar of the malaria elimination agenda. Anopheles salivary antibodies are emerging biomarkers of exposure to mosquito bites that potentially overcome sensitivity and logistical constraints of traditional entomological surveys. Using samples collected by a village health volunteer network in 104 villages in Southeast Myanmar during routine surveillance, the present study employs a Bayesian geostatistical modeling framework, incorporating climatic and environmental variables together with Anopheles salivary antigen serology, to generate spatially continuous predictive maps of Anopheles biting exposure. Our maps quantify fine-scale spatial and temporal heterogeneity in Anopheles salivary antibody seroprevalence (ranging from 9 to 99%) that serves as a proxy of exposure to Anopheles bites and advances current static maps of only Anopheles occurrence. We also developed an innovative framework to perform surveillance of malaria transmission. By incorporating antibodies against the vector and the transmissible form of malaria (sporozoite) in a joint Bayesian geostatistical model, we predict several foci of ongoing transmission. In our study, we demonstrate that antibodies specific for Anopheles salivary and sporozoite antigens are a logistically feasible metric with which to quantify and characterize heterogeneity in exposure to vector bites and malaria transmission. These approaches could readily be scaled up into existing village health volunteer surveillance networks to identify foci of residual malaria transmission, which could be targeted with supplementary interventions to accelerate progress toward elimination.
Collapse
Affiliation(s)
- Ellen A. Kearney
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Punam Amratia
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
| | - Su Yun Kang
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
| | - Paul A. Agius
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC3010, Australia
- Biostatistics Unit, Faculty of Health, Deakin University, Melbourne, VIC3125, Australia
| | - Kefyalew Addis Alene
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
- Faculty of Health Sciences, Curtin University, Perth, WA6102, Australia
| | | | - Win Han Oo
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Julia C. Cutts
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Department of Medicine at the Doherty Institute, The University of Melbourne, Melbourne, VIC3000, Australia
| | - Win Htike
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | | | - Zahra Razook
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Institute for Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC3216, Australia
| | - Alyssa E. Barry
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Institute for Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC3216, Australia
| | - Damien Drew
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
| | - Aung Thi
- Department of Public Health, Myanmar Ministry of Health and Sports, Nay Pyi Taw15011, Myanmar
| | - Kyaw Zayar Aung
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Htin Kyaw Thu
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Myat Mon Thein
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Nyi Nyi Zaw
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Wai Yan Min Htay
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - Aung Paing Soe
- Health Security and Malaria Program, Burnet Institute Myanmar, Yangon11201, Myanmar
| | - James G. Beeson
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Department of Infectious Diseases, The University of Melbourne, Melbourne, VIC3000, Australia
- Department of Microbiology, Monash University, Melbourne, VIC3800, Australia
- Central Clinical School, Monash University, Melbourne, VIC3004, Australia
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Peter W. Gething
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
- Faculty of Health Sciences, Curtin University, Perth, WA6102, Australia
| | - Ewan Cameron
- Malaria Atlas Project, Telethon Kids Institute, Perth, WA6009, Australia
- Faculty of Health Sciences, Curtin University, Perth, WA6102, Australia
| | - Freya J. I. Fowkes
- Disease Elimination Program, Burnet Institute, Melbourne, VIC3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC3010, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC3004, Australia
| |
Collapse
|
6
|
Msellemu D, Tanner M, Yadav R, Moore SJ. Occupational exposure to malaria, leishmaniasis and arbovirus vectors in endemic regions: A systematic review. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100185. [PMID: 39027087 PMCID: PMC11252614 DOI: 10.1016/j.crpvbd.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024]
Abstract
Vector-borne diseases, including dengue, leishmaniasis and malaria, may be more common among individuals whose occupations or behaviours bring them into frequent contact with these disease vectors outside of their homes. A systematic review was conducted to ascertain at-risk occupations and situations that put individuals at increased risk of exposure to these disease vectors in endemic regions and identify the most suitable interventions for each exposure. The review was conducted in accordance with PRISMA guidelines on articles published between 1945 and October 2021, searched in 16 online databases. The primary outcome was incidence or prevalence of dengue, leishmaniasis or malaria. The review excluded ecological and qualitative studies, abstracts only, letters, commentaries, reviews, and studies of laboratory-acquired infections. Studies were appraised, data extracted, and a descriptive analysis conducted. Bite interventions for each risk group were assessed. A total of 1170 articles were screened and 99 included. Malaria, leishmaniasis and dengue were presented in 47, 41 and 24 articles, respectively; some articles presented multiple conditions. The most represented populations were soldiers, 38% (43 of 112 studies); refugees and travellers, 15% (17) each; migrant workers, 12.5% (14); miners, 9% (10); farmers, 5% (6); rubber tappers and missionaries, 1.8% (2) each; and forest workers, 0.9% (1). Risk of exposure was categorised into round-the-clock or specific times of day/night dependent on occupation. Exposure to these vectors presents a critical and understudied concern for outdoor workers and mobile populations. When devising interventions to provide round-the-clock vector bite protection, two populations are considered. First, mobile populations, characterized by their high mobility, may find potential benefits in insecticide-treated clothing, though more research and optimization are essential. Treated clothing offers personal vector protection and holds promise for economically disadvantaged individuals, especially when enabling them to self-treat their clothing to repel vectors. Secondly, semi-permanent and permanent settlement populations can receive a combination of interventions that offer both personal and community protection, including spatial repellents, suitable for extended stays. Existing research is heavily biased towards tourism and the military, diverting attention and resources from vulnerable populations where these interventions are most required like refugee populations as well as those residing in sub-Saharan Africa.
Collapse
Affiliation(s)
- Daniel Msellemu
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Rajpal Yadav
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
- Academy of Public Health Entomology, Udaipur, 313 002, India
| | - Sarah J. Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Arusha, Tanzania
| |
Collapse
|
7
|
Ayo D, Onyige I, Okoth J, Musasizi E, Oruni A, Ramjith J, Arinaitwe E, Rek JC, Drakeley C, Staedke SG, Donnelly MJ, Bousema T, Conrad M, Blanken SL. Susceptibility of Anopheles gambiae to Natural Plasmodium falciparum Infection: A Comparison between the Well-Established Anopheles gambiae s.s Line and a Newly Established Ugandan Anopheles gambiae s.s. Line. Am J Trop Med Hyg 2024; 110:209-213. [PMID: 38150729 PMCID: PMC10859803 DOI: 10.4269/ajtmh.23-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/23/2023] [Indexed: 12/29/2023] Open
Abstract
Much of our understanding of malaria transmission comes from mosquito feeding assays using Anopheles mosquitoes from colonies that are well adapted to membrane feeding. This raises the question whether results from colony mosquitoes lead to overestimates of outcomes in wild Anopheles mosquitoes. We successfully established an Anopheles colony using progeny of wild Anopheles gambiae s.s. mosquitoes (Busia mosquitoes) and directly compared their susceptibility to infection with Plasmodium falciparum with the widely used An. gambiae s.s. mosquitoes (Kisumu mosquitoes) using gametocyte-infected Ugandan donor blood. The proportion of infectious feeds did not differ between Busia (71.8%, 23/32) and Kisumu (68.8%, 22/32, P = 1.00) mosquitoes. When correcting for random effects of donor blood, we observed a 23% higher proportion of infected Busia mosquitoes than infected Kisumu mosquitoes (RR, 1.23; 95% CI, 1.10-1.38, P < 0.001). This study suggests that feeding assays with Kisumu mosquitoes do not overestimate outcomes in wild An. gambiae s.s. mosquitoes, the mosquito species most relevant to malaria transmission in Uganda.
Collapse
Affiliation(s)
- Daniel Ayo
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Ismail Onyige
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Joseph Okoth
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Eric Musasizi
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jordache Ramjith
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - John C. Rek
- Infectious Diseases Research Collaboration, Nagongera Hospital, Tororo, Uganda
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah G. Staedke
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen
| | - Melissa Conrad
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California
| | - Sara Lynn Blanken
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen
| |
Collapse
|
8
|
Wilke ABB, Vasquez C, Medina J, Unlu I, Beier JC, Ajelli M. Presence and abundance of malaria vector species in Miami-Dade County, Florida. Malar J 2024; 23:24. [PMID: 38238772 PMCID: PMC10797977 DOI: 10.1186/s12936-024-04847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Malaria outbreaks have sporadically occurred in the United States, with Anopheles quadrimaculatus serving as the primary vector in the eastern region. Anopheles crucians, while considered a competent vector, has not been directly implicated in human transmission. Considering the locally acquired Plasmodium vivax cases in Sarasota County, Florida (7 confirmed cases), Cameron County, Texas (one confirmed case), and Maryland (one confirmed case) in the summer of 2023. The hypothesis of this study is that major cities in the United States harbour sufficient natural populations of Anopheles species vectors of malaria, that overlap with human populations that could support local transmission to humans. The objective of this study is to profile the most abundant Anopheles vector species in Miami-Dade County, Florida-An. crucians and An. quadrimaculatus. METHODS This study was based on high-resolution mosquito surveillance data from 2020 to 2022 in Miami-Dade County, Florida. Variations on the relative abundance of An. crucians and An. quadrimaculatus was assessed by dividing the total number of mosquitoes collected by each individual trap in 2022 by the number of mosquitoes collected by the same trap in 2020. In order to identify influential traps, the linear distance in meters between all traps in the surveillance system from 2020 to 2022 was calculated and used to create a 4 km buffer radius around each trap in the surveillance system. RESULTS A total of 36,589 An. crucians and 9943 An. quadrimaculatus were collected during this study by the surveillance system, consisting of 322 CO2-based traps. The findings reveal a highly heterogeneous spatiotemporal distribution of An. crucians and An. quadrimaculatus in Miami-Dade County, highlighting the presence of highly conducive environments in transition zones between natural/rural and urban areas. Anopheles quadrimaculatus, and to a lesser extent An. crucians, pose a considerable risk of malaria transmission during an outbreak, given their high abundance and proximity to humans. CONCLUSIONS Understanding the factors driving the proliferation, population dynamics, and spatial distribution of Anopheles vector species is vital for implementing effective mosquito control and reducing the risk of malaria outbreaks in the United States.
Collapse
Affiliation(s)
- André B B Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | | | - Johana Medina
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - Isik Unlu
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| |
Collapse
|
9
|
Hadebe MT, Malgwi SA, Okpeku M. Revolutionizing Malaria Vector Control: The Importance of Accurate Species Identification through Enhanced Molecular Capacity. Microorganisms 2023; 12:82. [PMID: 38257909 PMCID: PMC10818655 DOI: 10.3390/microorganisms12010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Many factors, such as the resistance to pesticides and a lack of knowledge of the morphology and molecular structure of malaria vectors, have made it more challenging to eradicate malaria in numerous malaria-endemic areas of the globe. The primary goal of this review is to discuss malaria vector control methods and the significance of identifying species in vector control initiatives. This was accomplished by reviewing methods of molecular identification of malaria vectors and genetic marker classification in relation to their use for species identification. Due to its specificity and consistency, molecular identification is preferred over morphological identification of malaria vectors. Enhanced molecular capacity for species identification will improve mosquito characterization, leading to accurate control strategies/treatment targeting specific mosquito species, and thus will contribute to malaria eradication. It is crucial for disease epidemiology and surveillance to accurately identify the Plasmodium spp. that are causing malaria in patients. The capacity for disease surveillance will be significantly increased by the development of more accurate, precise, automated, and high-throughput diagnostic techniques. In conclusion, although morphological identification is quick and achievable at a reduced cost, molecular identification is preferred for specificity and sensitivity. To achieve the targeted malaria elimination goal, proper identification of vectors using accurate techniques for effective control measures should be prioritized.
Collapse
Affiliation(s)
| | | | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| |
Collapse
|
10
|
Finda MF, Juma EO, Kahamba NF, Mthawanji RS, Sambo M, Emidi B, Wiener S, O'Brochta D, Santos M, James S, Okumu FO. Perspectives of African stakeholders on gene drives for malaria control and elimination: a multi-country survey. Malar J 2023; 22:384. [PMID: 38129897 PMCID: PMC10740233 DOI: 10.1186/s12936-023-04787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Gene drive modified mosquitoes (GDMMs) have the potential to address Africa's persistent malaria problem, but are still in early stages of development and testing. Continuous engagement of African stakeholders is crucial for successful evaluation and implementation of these technologies. The aim of this multi-country study was, therefore, to explore the insights and recommendations of key stakeholders across Africa on the potential of GDMMs for malaria control and elimination in the continent. METHODS A concurrent mixed-methods study design was used, involving a structured survey administered to 180 stakeholders in 25 countries in sub-Saharan Africa, followed by 18 in-depth discussions with selected groups and individuals. Stakeholders were drawn from academia, research and regulatory institutions, government ministries of health and environment, media and advocacy groups. Thematic content analysis was used to identify key topics from the in-depth discussions, and descriptive analysis was done to summarize information from the survey data. RESULTS Despite high levels of awareness of GDMMs among the stakeholders (76.7%), there was a relatively low-level of understanding of their key attributes and potential for malaria control (28.3%). When more information about GDMMs was provided to the stakeholders, they readily discussed their insights and concerns, and offered several recommendations to ensure successful research and implementation of the technology. These included: (i) increasing relevant technical expertise within Africa, (ii) generating local evidence on safety, applicability, and effectiveness of GDMMs, and (iii) developing country-specific regulations for safe and effective governance of GDMMs. A majority of the respondents (92.9%) stated that they would support field trials or implementation of GDMMs in their respective countries. This study also identified significant misconceptions regarding the phase of GDMM testing in Africa, as several participants incorrectly asserted that GDMMs were already present in Africa, either within laboratories or released into the field. CONCLUSION Incorporating views and recommendations of African stakeholders in the ongoing research and development of GDMMs is crucial for instilling stakeholder confidence on their potential application. These findings will enable improved planning for GDMMs in Africa as well as improved target product profiles for the technologies to maximize their potential for solving Africa's enduring malaria challenge.
Collapse
Affiliation(s)
- Marceline F Finda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Elijah O Juma
- Pan-African Mosquito Control Association (PAMCA), Off Mbagathi Road, PO Box 44455-00100, Nairobi, Kenya
| | - Najat F Kahamba
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
| | - Rhosheen S Mthawanji
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre 3, PO Box 30096, Chichiri, Malawi
| | - Maganga Sambo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
| | - Basiliana Emidi
- National Institute for Medical Research, PO Box 1462, Mwanza, Tanzania
| | - Susan Wiener
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - David O'Brochta
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Michael Santos
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Stephanie James
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G128QQ, UK
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 1 Smuts Avenue, Braamofontein, 2000, South Africa
| |
Collapse
|
11
|
Fletcher IK, Gibb R, Lowe R, Jones KE. Differing taxonomic responses of mosquito vectors to anthropogenic land-use change in Latin America and the Caribbean. PLoS Negl Trop Dis 2023; 17:e0011450. [PMID: 37450491 PMCID: PMC10348580 DOI: 10.1371/journal.pntd.0011450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Anthropogenic land-use change, such as deforestation and urban development, can affect the emergence and re-emergence of mosquito-borne diseases, e.g., dengue and malaria, by creating more favourable vector habitats. There has been a limited assessment of how mosquito vectors respond to land-use changes, including differential species responses, and the dynamic nature of these responses. Improved understanding could help design effective disease control strategies. We compiled an extensive dataset of 10,244 Aedes and Anopheles mosquito abundance records across multiple land-use types at 632 sites in Latin America and the Caribbean. Using a Bayesian mixed effects modelling framework to account for between-study differences, we compared spatial differences in the abundance and species richness of mosquitoes across multiple land-use types, including agricultural and urban areas. Overall, we found that mosquito responses to anthropogenic land-use change were highly inconsistent, with pronounced responses observed at the genus- and species levels. There were strong declines in Aedes (-26%) and Anopheles (-35%) species richness in urban areas, however certain species such as Aedes aegypti, thrived in response to anthropogenic disturbance. When abundance records were coupled with remotely sensed forest loss data, we detected a strong positive response of dominant and secondary malaria vectors to recent deforestation. This highlights the importance of the temporal dynamics of land-use change in driving disease risk and the value of large synthetic datasets for understanding changing disease risk with environmental change.
Collapse
Affiliation(s)
- Isabel K. Fletcher
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Rory Gibb
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Kate E. Jones
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| |
Collapse
|
12
|
Yurchenko AA, Naumenko AN, Artemov GN, Karagodin DA, Hodge JM, Velichevskaya AI, Kokhanenko AA, Bondarenko SM, Abai MR, Kamali M, Gordeev MI, Moskaev AV, Caputo B, Aghayan SA, Baricheva EM, Stegniy VN, Sharakhova MV, Sharakhov IV. Phylogenomics revealed migration routes and adaptive radiation timing of Holarctic malaria mosquito species of the Maculipennis Group. BMC Biol 2023; 21:63. [PMID: 37032389 PMCID: PMC10084679 DOI: 10.1186/s12915-023-01538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/08/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Phylogenetic analyses of closely related species of mosquitoes are important for better understanding the evolution of traits contributing to transmission of vector-borne diseases. Six out of 41 dominant malaria vectors of the genus Anopheles in the world belong to the Maculipennis Group, which is subdivided into two Nearctic subgroups (Freeborni and Quadrimaculatus) and one Palearctic (Maculipennis) subgroup. Although previous studies considered the Nearctic subgroups as ancestral, details about their relationship with the Palearctic subgroup, and their migration times and routes from North America to Eurasia remain controversial. The Palearctic species An. beklemishevi is currently included in the Nearctic Quadrimaculatus subgroup adding to the uncertainties in mosquito systematics. RESULTS To reconstruct historic relationships in the Maculipennis Group, we conducted a phylogenomic analysis of 11 Palearctic and 2 Nearctic species based on sequences of 1271 orthologous genes. The analysis indicated that the Palearctic species An. beklemishevi clusters together with other Eurasian species and represents a basal lineage among them. Also, An. beklemishevi is related more closely to An. freeborni, which inhabits the Western United States, rather than to An. quadrimaculatus, a species from the Eastern United States. The time-calibrated tree suggests a migration of mosquitoes in the Maculipennis Group from North America to Eurasia about 20-25 million years ago through the Bering Land Bridge. A Hybridcheck analysis demonstrated highly significant signatures of introgression events between allopatric species An. labranchiae and An. beklemishevi. The analysis also identified ancestral introgression events between An. sacharovi and its Nearctic relative An. freeborni despite their current geographic isolation. The reconstructed phylogeny suggests that vector competence and the ability to enter complete diapause during winter evolved independently in different lineages of the Maculipennis Group. CONCLUSIONS Our phylogenomic analyses reveal migration routes and adaptive radiation timing of Holarctic malaria vectors and strongly support the inclusion of An. beklemishevi into the Maculipennis Subgroup. Detailed knowledge of the evolutionary history of the Maculipennis Subgroup provides a framework for examining the genomic changes related to ecological adaptation and susceptibility to human pathogens. These genomic variations may inform researchers about similar changes in the future providing insights into the patterns of disease transmission in Eurasia.
Collapse
Affiliation(s)
- Andrey A Yurchenko
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Kurchatov Genomics Center, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia
- Current Address: INSERM U981, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Anastasia N Naumenko
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Gleb N Artemov
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Dmitry A Karagodin
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - James M Hodge
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alena I Velichevskaya
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Alina A Kokhanenko
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Semen M Bondarenko
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Mohammad R Abai
- Department of Medical Entomology and Vector Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kamali
- Department of Medical Entomology and Parasitology, Tarbiat Modares University, Tehran, Iran
| | - Mikhail I Gordeev
- Department of General Biology and Ecology, State University of Education, Mytishchi, Russia
| | - Anton V Moskaev
- Department of General Biology and Ecology, State University of Education, Mytishchi, Russia
| | - Beniamino Caputo
- Dipartimento Di Sanità Pubblica E Malattie Infettive, Università Sapienza, Rome, Italy
| | - Sargis A Aghayan
- Scientific Center of Zoology and Hydroecology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Department of Zoology, Yerevan State University, Yerevan, Armenia
| | - Elina M Baricheva
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Vladimir N Stegniy
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Maria V Sharakhova
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia.
| | - Igor V Sharakhov
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
13
|
Wong ML, Zulzahrin Z, Vythilingam I, Lau YL, Sam IC, Fong MY, Lee WC. Perspectives of vector management in the control and elimination of vector-borne zoonoses. Front Microbiol 2023; 14:1135977. [PMID: 37025644 PMCID: PMC10070879 DOI: 10.3389/fmicb.2023.1135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The complex transmission profiles of vector-borne zoonoses (VZB) and vector-borne infections with animal reservoirs (VBIAR) complicate efforts to break the transmission circuit of these infections. To control and eliminate VZB and VBIAR, insecticide application may not be conducted easily in all circumstances, particularly for infections with sylvatic transmission cycle. As a result, alternative approaches have been considered in the vector management against these infections. In this review, we highlighted differences among the environmental, chemical, and biological control approaches in vector management, from the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining to the available control approaches were discussed to better understand the prospects of integrating these vector control approaches to synergistically break the transmission of VZB and VBIAR in humans, in line with the integrated vector management (IVM) developed by the World Health Organization (WHO) since 2004.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zulhisham Zulzahrin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
14
|
Terradas G, Novelo M, Metz H, Brustolin M, Rasgon JL. Anopheles albimanus is a Potential Alphavirus Vector in the Americas. Am J Trop Med Hyg 2023; 108:412-423. [PMID: 36535260 PMCID: PMC9896319 DOI: 10.4269/ajtmh.22-0417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 12/23/2022] Open
Abstract
Despite its ecological flexibility and geographical co-occurrence with human pathogens, little is known about the ability of Anopheles albimanus to transmit arboviruses. To address this gap, we challenged An. albimanus females with four alphaviruses and one flavivirus and monitored the progression of infections. We found this species is an efficient vector of the alphaviruses Mayaro virus, O'nyong-nyong virus, and Sindbis virus, although the latter two do not currently exist in its habitat range. An. albimanus was able to become infected with Chikungunya virus, but virus dissemination was rare (indicating the presence of a midgut escape barrier), and no mosquito transmitted. Mayaro virus rapidly established disseminated infections in An. albimanus females and was detected in the saliva of a substantial proportion of infected mosquitoes. Consistent with previous work in other anophelines, we find that An. albimanus is refractory to infection with flaviviruses, a phenotype that did not depend on midgut-specific barriers. Our work demonstrates that An. albimanus may be a vector of neglected emerging human pathogens and adds to recent evidence that anophelines are competent vectors for diverse arboviruses.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Hillery Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Marco Brustolin
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
15
|
Malaria vector feeding, peak biting time and resting place preference behaviors in line with Indoor based intervention tools and its implication: scenario from selected sentinel sites of Ethiopia. Heliyon 2022; 8:e12178. [PMID: 36578426 PMCID: PMC9791363 DOI: 10.1016/j.heliyon.2022.e12178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/27/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
In Ethiopia, malaria incidence has significantly reduced in the past decade through the combined use of conventional vector control approaches and treatment using antimalarial drugs. However, the sustainability of this achievement is threatened by the shift in biting and resting behaviors and emergence of insecticide resistance by the primary malaria vector. Therefore, continuous monitoring of the behaviour of malaria mosquitoes in different sentinel sites is crucial to design effective prevention and control methods in the local context. Entomological investigations were conducted in three sentinel sites for five consecutive months during the major malaria transmission season. The species composition, population dynamics, biting and resting behaviours of malaria vectors were determined using center for disease control and prevention (CDC) light trap, human landing catch (HLC), pyrethrum spray catch (PSC) and Pitfall shelter collection (PFS). Accordingly, 10 households for CDC, 10 households for PSC, 10 households for PFS and 5 households for HLC from each site were randomly enrolled for mosquito collection. A total of 8,297 anopheline mosquitoes were collected from the three sites, out of which 4,525 (54.5 %) were An. gambiae, s.l. 2,028 (24.4 %) were An. pharoensis, 160 (1.9 %) were An. funestus and the rest 1,584 (19 %) were other anophelines (An. coustani, An. cinerus and An. tenebrosus). No significant variation (P = 0.476) was observed between indoor (25.2/trap-night and outdoor collections (20.1/trap-night). Six hundred seventy six (43.3%) of An. gambiae s.l. (primary vector) were collected between 18:00 and 22:00 h. Biting activity declined between 00:00 and 02:00 h. The national malaria control program should pay close attention to the shifting behavior of vector mosquitoes as the observed outdoor feeding tendency of the vector population could pose challenges to the indoor intervention tools IRS and LLINs.
Collapse
|
16
|
Plasmodium cynomolgi in humans: current knowledge and future directions of an emerging zoonotic malaria parasite. Infection 2022; 51:623-640. [PMID: 36401673 PMCID: PMC9676733 DOI: 10.1007/s15010-022-01952-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Plasmodium cynomolgi (Pcy), a simian malaria parasite, is a recent perfect example of emerging zoonotic transfer in human. This review summarizes the current knowledge on the epidemiology of natural Pcy infections in humans, mosquitoes and monkeys, along with its biological, clinical and drug sensitivity patterns. Knowledge gaps and further studies on Pcy in humans are also discussed. This parasite currently seems to be geographically limited in South-East Asia (SEA) with a global prevalence in human ranging from 0 to 1.4%. The Pcy infections were reported in local SEA populations and European travelers, and range from asymptomatic carriage to mild/moderate attacks with no evidence of pathognomonic clinical and laboratory patterns but with Pcy strain-shaped clinical differences. Geographical distribution and competence of suitable mosquito vectors and non-primate hosts, globalization, climate change, and increased intrusion of humans into the habitat of monkeys are key determinants to emergence of Pcy parasites in humans, along with its expansion outside SEA. Sensitization/information campaigns coupled with training and assessment sessions of microscopists and clinicians on Pcy are greatly needed to improve data on the epidemiology and management of human Pcy infection. There is a need for development of sensitive and specific molecular tools for individual diagnosis and epidemiological studies. The development of safe and efficient anti-hypnozoite drugs is the main therapeutic challenge for controlling human relapsing malaria parasites. Experience gained from P. knowlesi malaria, development of integrated measures and strategies—ideally with components related to human, monkeys, mosquito vectors, and environment—could be very helpful to prevent emergence of Pcy malaria in humans through disruption of transmission chain from monkeys to humans and ultimately contain its expansion in SEA and potential outbreaks in a context of malaria elimination.
Collapse
|
17
|
Kinga H, Kengne-Ouafo JA, King SA, Egyirifa RK, Aboagye-Antwi F, Akorli J. Water Physicochemical Parameters and Microbial Composition Distinguish Anopheles and Culex Mosquito Breeding Sites: Potential as Ecological Markers for Larval Source Surveillance. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1817-1826. [PMID: 35920087 DOI: 10.1093/jme/tjac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 05/19/2023]
Abstract
The presence of mosquitoes in an area is dependent on the availability of suitable breeding sites that are influenced by several environmental factors. Identification of breeding habitats for vector surveillance and larval source management is key to disease control programs. We investigated water quality parameters and microbial composition in selected mosquito breeding sites in urban Accra, Ghana and associated these with abundance of Anopheles (Diptera: Culicidae) and Culex (Diptera: Culicidae) larvae. Physicochemical parameters and microbial composition explained up to 72% variance among the breeding sites and separated Anopheles and Culex habitats (P < 0.05). Anopheles and Culex abundances were commonly influenced by water temperature, pH, nitrate, and total hardness with contrasting impacts on the two mosquito species. In addition, total dissolved solids, biochemical oxygen demand, and alkalinity uniquely influenced Anopheles abundance, while total suspended solids, phosphate, sulphate, ammonium, and salinity were significant determinants for Culex. The correlation of these multiple parameters with the occurrence of each mosquito species was high (R2 = 0.99, P < 0.0001). Bacterial content assessment of the breeding ponds revealed that the most abundant bacterial phyla were Patescibacteria, Cyanobacteria, and Proteobacteria, constituting >70% of the total bacterial richness. The oligotrophic Patescibacteria was strongly associated with Anopheles suggestive of the mosquito's adaptation to environments with less nutrients, while predominance of Cyanobacteria, indicative of rich nutritional source was associated with Culex larval ponds. We propose further evaluation of these significant abiotic and biotic parameters in field identification of larval sources and how knowledge of these can be harnessed effectively to reduce conducive breeding sites for mosquitoes.
Collapse
Affiliation(s)
- Harriet Kinga
- African Regional Postgraduate Program in Insect Science, University of Ghana, Legon, Ghana
| | - Jonas A Kengne-Ouafo
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Medical Entomology Department, Centre of Research in Infectious Diseases (CRID), Yaounde, Cameroon
| | - Sandra A King
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Richardson K Egyirifa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Fred Aboagye-Antwi
- African Regional Postgraduate Program in Insect Science, University of Ghana, Legon, Ghana
- Department of Animal Biology and Conservation Sciences, University of Ghana, Legon, Ghana
| | - Jewelna Akorli
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
18
|
Puchot N, Lecoq MT, Carinci R, Duchemin JB, Gendrin M, Bourgouin C. Establishment of a colony of Anopheles darlingi from French Guiana for vector competence studies on malaria transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.949300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anopheles darlingi is a major vector of both Plasmodium falciparum and Plasmodium vivax in South and Central America including French Guiana. However, the vector competence and physiology of this mosquito species have been scarcely studied due to difficulties in rearing it in the laboratory. Here, we report the successful establishment of a robust colony, from a mosquito collection in French Guiana. We describe our mosquito colonization procedure with relevant information on environmental conditions, mating ability, larval development, and survival, recorded over the first six critical generations. Experimental infection showed that our An. darlingi colony has a moderate permissiveness to in vitro produced gametocytes of the P. falciparum NF54 strain originating from Africa. This colony, which has reached its 21st generation, will allow further characterization of An. darlingi life-history traits and of Plasmodium–mosquito interactions with South American malaria parasites.
Collapse
|
19
|
Henderson C, Brustolin M, Hegde S, Dayama G, Lau N, Hughes GL, Bergey C, Rasgon JL. Transcriptomic and small RNA response to Mayaro virus infection in Anopheles stephensi mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010507. [PMID: 35763539 PMCID: PMC9273063 DOI: 10.1371/journal.pntd.0010507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/11/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Mayaro virus (MAYV) is an arboviral pathogen in the genus Alphavirus that is circulating in South America with potential to spread to naïve regions. MAYV is also one of the few viruses with the ability to be transmitted by mosquitoes in the genus Anopheles, as well as the typical arboviral transmitting mosquitoes in the genus Aedes. Few studies have investigated the infection response of Anopheles mosquitoes. In this study we detail the transcriptomic and small RNA responses of An. stephensi to infection with MAYV via infectious bloodmeal at 2, 7, and 14 days post infection (dpi). 487 unique transcripts were significantly regulated, 78 putative novel miRNAs were identified, and an siRNA response is observed targeting the MAYV genome. Gene ontology analysis of transcripts regulated at each timepoint shows a number of proteases regulated at 2 and 7 dpi, potentially representative of Toll or melanization pathway activation, and repression of pathways related to autophagy and apoptosis at 14 dpi. These findings provide a basic understanding of the infection response of An. stephensi to MAYV and help to identify host factors which might be useful to target to inhibit viral replication in Anopheles mosquitoes. Mayaro virus (MAYV) is a mosquito-borne Alphavirus responsible for outbreaks in South America and the Caribbean. In this study we infected Anopheles stephensi with MAYV and sequenced mRNA and small RNA to understand how MAYV infection impacts gene transcription and the expression of small RNAs in the mosquito vector. Genes involved with innate immunity and signaling pathways related to cell death are regulated in response to MAYV infection of An. stephensi, we also discovered novel miRNAs and describe the expression patterns of miRNAs, siRNAs, and piRNAs following bloodmeal ingestion. These results suggest that MAYV does induce a molecular response to infection in its mosquito vector species.
Collapse
Affiliation(s)
- Cory Henderson
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Marco Brustolin
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gargi Dayama
- School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Nelson Lau
- School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christina Bergey
- Department of Genetics, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Escobar D, Archaga O, Reyes A, Palma A, Larson RT, Vásquez GM, Fontecha G. A Follow-Up to the Geographical Distribution of Anopheles Species in Malaria-Endemic and Non-Endemic Areas of Honduras. INSECTS 2022; 13:insects13060548. [PMID: 35735885 PMCID: PMC9225189 DOI: 10.3390/insects13060548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Malaria is a tropical disease caused by parasites of the genus Plasmodium. The parasite is transmitted to humans through the bite of the female mosquito Anopheles. Honduras is close to the goal of eliminating malaria, but the region called La Moskitia continues to concentrate almost all of the country’s malaria cases. One of the key factors in achieving malaria elimination is a thorough understanding of the mosquito vectors that transmit the disease. There are few studies related to malaria vectors in Honduras. This study aims to contribute to knowing which are the species of vector mosquitoes, mainly in the Department of Gracias a Dios and in other departments in which cases of malaria occur, in addition to describing molecularly for the first time the anophelines of the Bay Islands. The most abundant species found here were Anopheles albimanus, but seven other species were also identified, some of which may contribute to parasite transmission. Abstract Anopheles species are the vectors of malaria, one of the diseases with the greatest impact on the health of the inhabitants of the tropics. Due to their epidemiological relevance and biological complexity, monitoring of anopheline populations in current and former malaria-endemic areas is critical for malaria risk assessment. Recent efforts have described the anopheline species present in the main malaria foci in Honduras. This study updates and expands knowledge about Anopheles species composition, geographical distribution, and genetic diversity in the continental territory of Honduras as in the Bay Islands. Outdoor insect collections were carried out at 25 sites in eight municipalities in five departments of Honduras between 2018 and 2021. Specimens were identified using taxonomic keys. Partial COI gene sequences were used for molecular species identification and phylogenetic analyses. In addition, detection of Plasmodium DNA was carried out in 255 female mosquitoes. Overall, 288 Anopheles mosquitoes were collected from 8 municipalities. Eight species were morphologically identified. Anopheles albimanus was the most abundant and widely distributed species (79.5%). A subset of 175 partial COI gene sequences from 8 species was obtained. Taxonomic identifications were confirmed via sequence analysis. Anopheles albimanus and An. apicimacula showed the highest haplotype diversity and nucleotide variation, respectively. Phylogenetic clustering was found for An. argyritarsis and An. neomaculipalpus when compared with mosquitoes from other Neotropical countries. Plasmodium DNA was not detected in any of the mosquitoes tested. This report builds upon recent records of the distribution and diversity of Anopheles species in malaria-endemic and non-endemic areas of Honduras. New COI sequences are reported for three anopheline species. This is also the first report of COI sequences of An. albimanus collected on the island of Roatán with apparent gene flow relative to mainland populations.
Collapse
Affiliation(s)
- Denis Escobar
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (O.A.)
| | - Osman Archaga
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (O.A.)
| | - Allan Reyes
- Unidad de Entomología, Región Sanitaria de Gracias a Dios, Secretaría de Salud de Honduras, Puerto Lempira, Gracias a Dios 33101, Honduras;
| | - Adalid Palma
- Vysnova Partners, Inc., Landover, MD 20785, USA;
| | - Ryan T. Larson
- Department of Entomology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Bellavista 07006, Peru; (R.T.L.); (G.M.V.)
| | - Gissella M. Vásquez
- Department of Entomology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Bellavista 07006, Peru; (R.T.L.); (G.M.V.)
| | - Gustavo Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (O.A.)
- Correspondence: ; Tel.: +504-33935443
| |
Collapse
|
21
|
Recurrent Plasmodium vivax Cases of Both Short and Long Latency Increased with Transmission Intensity and Were Distributed Year-Round in the Most Affected Municipalities of the RACCN, Nicaragua, 2013-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106195. [PMID: 35627730 PMCID: PMC9142003 DOI: 10.3390/ijerph19106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
The characteristics of P. vivax recurrent episodes were examined using a centralized secondary source of malaria records in Nicaragua and in the two most affected municipalities in the RACCN. The study of 36,787 malaria cases due to P. vivax or P. falciparum revealed that, nationwide, 3624 patients had at least one recurrent infection. This was achieved by matching names, gender, age, community/municipality, ethnicity, etc. P. vivax was responsible for 88% of recurrent infections of 25-450 days of latency (51.9% were women and 48.1% were men), and these were assumed to be relapse episodes. Of them, 88.2% and 4.4% occurred in the municipalities of Puerto Cabezas and Rosita, respectively. The proportion of P. vivax patients having presumed relapse episodes rose with elevated transmission rates in both municipalities, reaching 7% in Rosita (2017) and 14.5% in Puerto Cabezas (2018). In both areas, relapse episodes were evident over time and were characterized by the production of a continuous stippling pattern with a slope evolving from one transmission peak to the next. During the dry season, short-latency relapse episodes were more robust, while long-latency ones increased just before the P. vivax transmission season began, with a high proportion of long-latency relapses during this period. The abundance of recurrent P. vivax infections, the wide range of relapse latency lengths, and temporal distribution tended to favor year-round transmission. It is necessary to evaluate compliance with and the effectiveness of primaquine treatment and contemplate the use of an alternative drug, among other actions.
Collapse
|
22
|
Vezenegho SB, Issaly J, Carinci R, Gaborit P, Girod R, Dusfour I, Briolant S. Discrimination of 15 Amazonian Anopheline Mosquito Species by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1060-1064. [PMID: 35139212 DOI: 10.1093/jme/tjac008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Precise identification of anopheline species is paramount for incrimination of malaria vectors and implementation of a sustainable control program. Anopheline mosquitoes are routinely identified morphologically, a technique that is time-consuming, needs high level of expertise, and prone to misidentifications especially when considering Amazonian species. The aim of this study was therefore to develop a DNA-based identification technique to supplement traditional morphological identification methods for the discrimination of anopheline mosquitoes collected in French Guiana. The internal transcribed spacer 2 (ITS2) region of ribosomal DNA (rDNA) for anopheline species was amplified by polymerase chain reaction (PCR), and digested with AluI/MspI restriction enzymes. PCR-restriction fragments length polymorphism (RFLP) assay was compared to sequencing of the ITS2 region for validation. Fifteen Anopheles species have shown distinct PCR-RFLP profiles. A concordance of 100% was obtained when identification by PCR-RFLP was compared to sequencing of ITS2. A high throughput, fast, and cost-effective PCR-RFLP assay has been developed for unambiguous discrimination of fifteen anopheline mosquito species from French Guiana including primary and suspected secondary malaria vectors.
Collapse
Affiliation(s)
- S B Vezenegho
- Medical Entomology Unit, Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306 Cayenne Cedex, French Guiana
| | - J Issaly
- Medical Entomology Unit, Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306 Cayenne Cedex, French Guiana
| | - R Carinci
- Medical Entomology Unit, Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306 Cayenne Cedex, French Guiana
| | - P Gaborit
- Medical Entomology Unit, Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306 Cayenne Cedex, French Guiana
| | - R Girod
- Medical Entomology Unit, Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306 Cayenne Cedex, French Guiana
| | - Isabelle Dusfour
- Medical Entomology Unit, Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP 6010, 97306 Cayenne Cedex, French Guiana
- MIVEGEC, UMR IRD 224-CNRS 5290, Université de Montpellier, 911 Av. Agropolis, 34394 Montpellier, France
- Département de Santé Globale, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - S Briolant
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 Bd Jean Moulin, 13005 Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA) , 19-21 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
23
|
Ferreira MU, Corder RM, Johansen IC, Kattenberg JH, Moreno M, Rosas-Aguirre A, Ladeia-Andrade S, Conn JE, Llanos-Cuentas A, Gamboa D, Rosanas-Urgell A, Vinetz JM. Relative contribution of low-density and asymptomatic infections to Plasmodium vivax transmission in the Amazon: pooled analysis of individual participant data from population-based cross-sectional surveys. LANCET REGIONAL HEALTH. AMERICAS 2022; 9:100169. [PMID: 35663000 PMCID: PMC9161731 DOI: 10.1016/j.lana.2021.100169] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Low-density and asymptomatic Plasmodium vivax infections remain largely undetected and untreated and may contribute significantly to malaria transmission in the Amazon. Methods We analysed individual participant data from population-based surveys that measured P vivax prevalence by microscopy and polymerase chain reaction (PCR) between 2002 and 2015 and modelled the relationship between parasite density and infectiousness to vectors using membrane feeding assay data. We estimated the proportion of sub-patent (i.e., missed by microscopy) and asymptomatic P vivax infections and examined how parasite density relates to clinical manifestations and mosquito infection in Amazonian settings. Findings We pooled 24,986 observations from six sites in Brazil and Peru. P vivax was detected in 6·8% and 2·1% of them by PCR and microscopy, respectively. 58·5% to 92·6% of P vivax infections were asymptomatic and 61·2% to 96·3% were sub-patent across study sites. P vivax density thresholds associated with clinical symptoms were one order of magnitude higher in children than in adults. We estimate that sub-patent parasite carriers are minimally infectious and contribute 12·7% to 24·9% of the community-wide P vivax transmission, while asymptomatic carriers are the source of 28·2% to 79·2% of mosquito infections. Interpretation Asymptomatic P vivax carriers constitute a vast infectious reservoir that, if targeted by malaria elimination strategies, could substantially reduce malaria transmission in the Amazon. Infected children may remain asymptomatic despite high parasite densities that elicit clinical manifestations in adults. Funding US National Institutes of Health, Fundação de Amparo à Pesquisa do Estado de São Paulo, and Belgium Development Cooperation.
Collapse
Affiliation(s)
- Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor C. Johansen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Marta Moreno
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Angel Rosas-Aguirre
- Institute of Health and Society, Université catholique de Louvain, Brussels, Belgium
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, USA
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Bertola M, Mazzucato M, Pombi M, Montarsi F. Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000-2021). Parasit Vectors 2022; 15:88. [PMID: 35292106 PMCID: PMC8922938 DOI: 10.1186/s13071-022-05204-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the eradication of malaria across most European countries in the 1960s and 1970s, the anopheline vectors are still present. Most of the malaria cases that have been reported in Europe up to the present time have been infections acquired in endemic areas by travelers. However, the possibility of acquiring malaria by locally infected mosquitoes has been poorly investigated in Europe, despite autochthonous malaria cases having been occasionally reported in several European countries. Here we present an update on the occurrence of potential malaria vector species in Europe. Adopting a systematic review approach, we selected 288 papers published between 2000 and 2021 for inclusion in the review based on retrieval of accurate information on the following Anopheles species: An. atroparvus, An. hyrcanus sensu lato (s.l.), An. labranchiae, An. maculipennis sensu stricto (s.s.), An. messeae/daciae, An. sacharovi, An. superpictus and An. plumbeus. The distribution of these potential vector species across Europe is critically reviewed in relation to areas of major presence and principal bionomic features, including vector competence to Plasmodium. Additional information, such as geographical details, sampling approaches and species identification methods, are also reported. We compare the information on each species extracted from the most recent studies to comparable information reported from studies published in the early 2000s, with particular reference to the role of each species in malaria transmission before eradication. The picture that emerges from this review is that potential vector species are still widespread in Europe, with the largest diversity in the Mediterranean area, Italy in particular. Despite information on their vectorial capacity being fragmentary, the information retrieved suggests a re-definition of the relative importance of potential vector species, indicating An. hyrcanus s.l., An. labranchiae, An. plumbeus and An. sacharovi as potential vectors of higher importance, while An. messeae/daciae and An. maculipennis s.s. can be considered to be moderately important species. In contrast, An. atroparvus and An. superpictus should be considered as vectors of lower importance, particularly in relation to their low anthropophily. The presence of gaps in current knowledge of vectorial systems in Europe becomes evident in this review, not only in terms of vector competence but also in the definition of sampling approaches, highlighting the need for further research to adopt the appropriate surveillance system for each species.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
25
|
Rhodes CG, Loaiza JR, Romero LM, Gutiérrez Alvarado JM, Delgado G, Rojas Salas O, Ramírez Rojas M, Aguilar-Avendaño C, Maynes E, Valerín Cordero JA, Soto Mora A, Rigg CA, Zardkoohi A, Prado M, Friberg MD, Bergmann LR, Marín Rodríguez R, Hamer GL, Chaves LF. Anopheles albimanus (Diptera: Culicidae) Ensemble Distribution Modeling: Applications for Malaria Elimination. INSECTS 2022; 13:221. [PMID: 35323519 PMCID: PMC8955261 DOI: 10.3390/insects13030221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022]
Abstract
In the absence of entomological information, tools for predicting Anopheles spp. presence can help evaluate the entomological risk of malaria transmission. Here, we illustrate how species distribution models (SDM) could quantify potential dominant vector species presence in malaria elimination settings. We fitted a 250 m resolution ensemble SDM for Anopheles albimanus Wiedemann. The ensemble SDM included predictions based on seven different algorithms, 110 occurrence records and 70 model projections. SDM covariates included nine environmental variables that were selected based on their importance from an original set of 28 layers that included remotely and spatially interpolated locally measured variables for the land surface of Costa Rica. Goodness of fit for the ensemble SDM was very high, with a minimum AUC of 0.79. We used the resulting ensemble SDM to evaluate differences in habitat suitability (HS) between commercial plantations and surrounding landscapes, finding a higher HS in pineapple and oil palm plantations, suggestive of An. albimanus presence, than in surrounding landscapes. The ensemble SDM suggested a low HS for An. albimanus at the presumed epicenter of malaria transmission during 2018-2019 in Costa Rica, yet this vector was likely present at the two main towns also affected by the epidemic. Our results illustrate how ensemble SDMs in malaria elimination settings can provide information that could help to improve vector surveillance and control.
Collapse
Affiliation(s)
- Charlotte G. Rhodes
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (C.G.R.); (G.L.H.)
| | - Jose R. Loaiza
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad de Panama Apartado Postal 0816-02593, Panama;
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Ciudad de Panama Apartado Postal 0816-02593, Panama
| | - Luis Mario Romero
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia Apartado Postal 304-3000, Costa Rica;
| | - José Manuel Gutiérrez Alvarado
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (J.M.G.A.); (G.D.); (C.A.-A.); (R.M.R.)
| | - Gabriela Delgado
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (J.M.G.A.); (G.D.); (C.A.-A.); (R.M.R.)
| | - Obdulio Rojas Salas
- Programa Nacional de Manejo Integrado de Vectores, Región Huetar Norte, Ministerio de Salud, Muelle de San Carlos, San Carlos, Alajuela Código 21006, Costa Rica;
| | - Melissa Ramírez Rojas
- Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (M.R.R.); (A.Z.)
| | - Carlos Aguilar-Avendaño
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (J.M.G.A.); (G.D.); (C.A.-A.); (R.M.R.)
| | - Ezequías Maynes
- Programa Nacional de Manejo Integrado de Vectores, Región Huetar Caribe, Ministerio de Salud, Sixaola, Talamanca, Limon Código 70402, Costa Rica;
| | - José A. Valerín Cordero
- Coordinación Regional, Programa Nacional de Manejo Integrado de Vectores, Región Pacífico Central, Ministerio de Salud, Puntarenas, Puntarenas Código 60101, Costa Rica;
| | - Alonso Soto Mora
- Coordinación Regional, Programa Nacional de Manejo Integrado de Vectores, Región Brunca, Ministerio de Salud, San Isidro del General, Pérez Zeledón, San Jose Código 11901, Costa Rica;
| | - Chystrie A. Rigg
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panama Apartado Postal 0816-02593, Panama;
| | - Aryana Zardkoohi
- Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (M.R.R.); (A.Z.)
| | - Monica Prado
- Unidad de Investigación en Plasmodium, Centro de Investigación en Enfermedades Tropicales (CIET), Facultad de Microbiología, Universidad de Costa Rica, San Pedro, San Jose Apartado Postal 11501-2060, Costa Rica;
| | - Mariel D. Friberg
- Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD 20740, USA;
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Luke R. Bergmann
- Department of Geography, University of British Columbia, Vancouver, BC V6T 1Z2, Canada;
| | - Rodrigo Marín Rodríguez
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (J.M.G.A.); (G.D.); (C.A.-A.); (R.M.R.)
- Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (M.R.R.); (A.Z.)
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (C.G.R.); (G.L.H.)
| | - Luis Fernando Chaves
- Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (M.R.R.); (A.Z.)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panama Apartado Postal 0816-02593, Panama;
| |
Collapse
|
26
|
de Almeida NCV, Louzada J, Neves MSAS, Carvalho TM, Castro-Alves J, Silva-do-Nascimento TF, Escalante AA, Oliveira-Ferreira J. Larval habitats, species composition and distribution of malaria vectors in regions with autochthonous and imported malaria in Roraima state, Brazil. Malar J 2022; 21:13. [PMID: 35027049 PMCID: PMC8759267 DOI: 10.1186/s12936-021-04033-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Malaria control requires local action. Assessing the vector diversity and abundance provides information on the local malariogenic potential or risk of transmission. This study aimed to determine the Anopheles species composition, habitats, seasonal occurrence, and distribution in areas with autochthonous and imported malaria cases in Roraima State. Methods A longitudinal study was conducted from January 2017 to October 2018, sampling larvae and adult mosquitoes in three municipalities of Roraima State: Boa Vista, Pacaraima and São João da Baliza. These areas have different risks of malaria importation. Four to six mosquito larval habitats were selected for larval sampling at each municipality, along with two additional sites for adult mosquito collection. All larval habitats were surveyed every two months using a standardized larval sampling methodology and MosqTent for adult mosquitoes. Results A total of 544 Anopheles larvae and 1488 adult mosquitoes were collected from the three municipalities studied. Although the species abundance differed between municipalities, the larvae of Anopheles albitarsis s.l., Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were collected from all larval habitats studied while Anopheles darlingi were collected only from Boa Vista and São João da Baliza. Adults of 11 species of the genus Anopheles were collected, and the predominant species in Boa Vista was An. albitarsis (88.2%) followed by An. darlingi (6.9%), while in São João da Baliza, An. darlingi (85.6%) was the most predominant species followed by An. albitarsis s.l. (9.2%). In contrast, the most abundant species in Pacaraima was Anopheles braziliensis (62%), followed by Anopheles peryassui (18%). Overall, the majority of anophelines exhibited greater extradomicile than peridomicile-biting preference. Anopheles darlingi was the only species found indoors. Variability in biting times was observed among species and municipalities. Conclusion This study revealed the composition of anopheline species and habitats in Boa Vista, Pacaraima and São João da Baliza. The species sampled differed in their behaviour with only An. darlingi being found indoors. Anopheles darlingi appeared to be the most important vector in São João da Baliza, an area of autochthonous malaria, and An. albitarsis s.l. and An. braziliensis in areas of low transmission, although there were increasing reports of imported malaria. Understanding the diversity of vector species and their ecology is essential for designing effective vector control strategies for these municipalities. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04033-1.
Collapse
Affiliation(s)
| | - Jaime Louzada
- Universidade Federal de Roraima, Boa Vista, Roraima, Brasil
| | | | - Thiago M Carvalho
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Júlio Castro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | | | - Ananias A Escalante
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - Joseli Oliveira-Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil.
| |
Collapse
|
27
|
Kearney EA, Agius PA, Chaumeau V, Cutts JC, Simpson JA, Fowkes FJI. Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling. eLife 2021; 10:e73080. [PMID: 34939933 PMCID: PMC8860437 DOI: 10.7554/elife.73080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. Methods A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures. Results From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95% CI: 1.10-1.37; p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class. Conclusions Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers is important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. Funding Australian National Health and Medical Research Council, Wellcome Trust.
Collapse
Affiliation(s)
- Ellen A Kearney
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Paul A Agius
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Julia C Cutts
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Department of Medicine at the Doherty Institute, The University of MelbourneMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Freya JI Fowkes
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| |
Collapse
|
28
|
Marques R, Krüger RF, Cunha SK, Silveira AS, Alves DM, Rodrigues GD, Peterson AT, Jiménez-García D. Climate change impacts on Anopheles (K.) cruzii in urban areas of Atlantic Forest of Brazil: Challenges for malaria diseases. Acta Trop 2021; 224:106123. [PMID: 34480869 DOI: 10.1016/j.actatropica.2021.106123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
Around 27% of South Americans live in central and southern Brazil. Of 19,400 human malaria cases in Brazil in 2018, some were from the southern and southeastern states. High abundance of malaria vectors is generally positively associated with malaria incidence. Expanding geographic distributions of Anopheles vector mosquito species (e.g. A. cruzii) in the face of climate change processes would increase risk of such malaria transmission; such risk is of particular concern in regions that hold human population concentrations near present limits of vector species' geographic distributions. We modeled effects of likely climate changes on the distribution of A. cruzii, evaluating two scenarios of future greenhouse gas emissions for 2050, as simulated in 21 general circulation models and two greenhouse gas scenarios (RCP 4.5 and RCP 8.5) for 2050. We tested 1305 candidate models, and chose among them based on statistical significance, predictive performance, and complexity. The models closely approximated the known geographic distribution of the species under current conditions. Under scenarios of future climate change, we noted increases in suitable area for the mosquito vector species in São Paulo and Rio de Janeiro states, including areas close to 30 densely populated cities. Under RCP 8.5, our models anticipate areal increases of >75% for this important malaria vector in the vicinity of 20 large Brazilian cities. We developed models that anticipate increased suitability for the mosquito species; around 50% of Brazilians reside in these areas, and ∼89% of foreign tourists visit coastal areas in this region. Under climate change thereefore, the risk and vulnerability of human populations to malaria transmission appears bound to increase.
Collapse
|
29
|
Bourke BP, Justi SA, Caicedo-Quiroga L, Pecor DB, Wilkerson RC, Linton YM. Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data. Parasit Vectors 2021; 14:589. [PMID: 34838107 PMCID: PMC8627034 DOI: 10.1186/s13071-021-05090-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector incrimination, control, and management, and for modelling future responses to climate change, deforestation, and human population expansion. This study attempts to further explore species diversity and evolutionary history in the Albitarsis Complex by undertaking a characterization and phylogenetic analysis of the mitogenome of all 10 putative taxa in the Albitarsis Complex. METHODS Mitogenome assembly and annotation allowed for feature comparison among Albitarsis Complex and Anopheles species. Selection analysis was conducted across all 13 protein-coding genes. Maximum likelihood and Bayesian inference methods were used to construct gene and species trees, respectively. Bayesian methods were also used to jointly estimate species delimitation and species trees. RESULTS Gene composition and order were conserved across species within the complex. Unique signatures of positive selection were detected in two species-Anopheles janconnae and An. albitarsis G-which may have played a role in the recent and rapid diversification of the complex. The COI gene phylogeny does not fully recover the mitogenome phylogeny, and a multispecies coalescent-based phylogeny shows that considerable uncertainty exists through much of the mitogenome species tree. The origin of divergence in the complex dates to the Pliocene/Pleistocene boundary, and divergence within the distinct northern South American clade is estimated at approximately 1 million years ago. Neither the phylogenetic trees nor the delimitation approach rejected the 10-species hypothesis, although the analyses could not exclude the possibility that four putative species with scant a priori support (An. albitarsis G, An. albitarsis H, An. albitarsis I, and An. albitarsis J), represent population-level, rather than species-level, splits. CONCLUSION The lack of resolution in much of the species tree and the limitations of the delimitation analysis warrant future studies on the complex using genome-wide data and the inclusion of additional specimens, particularly from two putative species, An. albitarsis I and An. albitarsis J.
Collapse
Affiliation(s)
- Brian P Bourke
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA.
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA.
| | - Silvia A Justi
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - Laura Caicedo-Quiroga
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - David B Pecor
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - Richard C Wilkerson
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| |
Collapse
|
30
|
Niang A, Sawadogo SP, Millogo AA, Akpodiete NO, Dabiré RK, Tripet F, Diabaté A. Entomological baseline data collection and power analyses in preparation of a mosquito swarm-killing intervention in south-western Burkina Faso. Malar J 2021; 20:346. [PMID: 34425839 PMCID: PMC8381508 DOI: 10.1186/s12936-021-03877-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Background Insecticides are currently the main tools used to reduce the transmission of malaria; therefore, the development of resistance to insecticides in malaria vectors is of major concern for malaria control. The resistance level to pyrethroids is particularly high in the Western region of Burkina Faso and may affect the efficacy of insecticidal bed nets and indoor residual spraying. Adult mosquito swarming and other nocturnal behaviours exhibit spatial and temporal patterns that suggest potential vulnerability to targeted space spraying with effective insecticides. Indeed, targeted space-spraying against adult mosquito swarms has been used to crash mosquito populations and disrupt malaria transmission. Methods Prior to impact assessment of swarm killing, a baseline data collection was conducted from June to November 2016 in 10 villages divided into two areas in western Burkina Faso. The data considered both ecological and demographic characteristics to monitor the key entomological parameters. Results The mean number of swarms observed was 35 per village, ranging from 25 to 70 swarms according to the village. Female density in both areas varied significantly as a function of the village and the period of collection. The human biting rate was significantly affected by the period of collection and depended upon whether the collection was carried out indoors or outdoors. Averages of parity rate were high in both areas for all periods of collection, ranging from 60 to 90%. These values ranged from 80 to 100% for inseminated females. Sporozoite rates ranged between 1.6 and 7.2% depending upon the village. The molecular identification of resting and swarming mosquitoes showed the presence of the three major malaria vectors in Burkina Faso, but in different proportions for each village. Conclusions The distribution of the potential swarm markers and swarms in villages suggested that swarms are clustered across space, making intervention easier. Power simulations showed that the direct sampling of swarms provides the highest statistical power, thereby reducing the number of villages needed for a trial. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03877-x.
Collapse
Affiliation(s)
- Abdoulaye Niang
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.
| | - Simon P Sawadogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoul A Millogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institut des Sciences des Sociétés (INSS), Ouagadougou, Burkina Faso
| | - Nwamaka O Akpodiete
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
31
|
van de Straat B, Russell TL, Staunton KM, Sinka ME, Burkot TR. A global assessment of surveillance methods for dominant malaria vectors. Sci Rep 2021; 11:15337. [PMID: 34321525 PMCID: PMC8319300 DOI: 10.1038/s41598-021-94656-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022] Open
Abstract
The epidemiology of human malaria differs considerably between and within geographic regions due, in part, to variability in mosquito species behaviours. Recently, the WHO emphasised stratifying interventions using local surveillance data to reduce malaria. The usefulness of vector surveillance is entirely dependent on the biases inherent in the sampling methods deployed to monitor mosquito populations. To understand and interpret mosquito surveillance data, the frequency of use of malaria vector collection methods was analysed from a georeferenced vector dataset (> 10,000 data records), extracted from 875 manuscripts across Africa, the Americas and the Asia-Pacific region. Commonly deployed mosquito collection methods tend to target anticipated vector behaviours in a region to maximise sample size (and by default, ignoring other behaviours). Mosquito collection methods targeting both host-seeking and resting behaviours were seldomly deployed concurrently at the same site. A balanced sampling design using multiple methods would improve the understanding of the range of vector behaviours, leading to improved surveillance and more effective vector control.
Collapse
Affiliation(s)
- Bram van de Straat
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Tanya L. Russell
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Kyran M. Staunton
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Marianne E. Sinka
- grid.4991.50000 0004 1936 8948Department of Zoology, University of Oxford, Oxford, UK
| | - Thomas R. Burkot
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
32
|
Mapping socioeconomic inequalities in malaria in Sub-Sahara African countries. Sci Rep 2021; 11:15121. [PMID: 34302015 PMCID: PMC8302762 DOI: 10.1038/s41598-021-94601-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Despite reductions in malaria incidence and mortality across Sub-Saharan (SSA) countries, malaria control and elimination efforts are currently facing multiple global challenges such as climate and land use change, invasive vectors, and disruptions in healthcare delivery. Although relationships between malaria risks and socioeconomic factors have been widely demonstrated, the strengths and variability of these associations have not been quantified across SSA. In this study, we used data from population-based malaria indicator surveys in SSA countries to assess spatial trends in relative and absolute socioeconomic inequalities, analyzed as social (mothers’ highest educational level—MHEL) and economic (wealth index—WI) inequalities in malaria prevalence. To capture spatial variations in socioeconomic (represented by both WI and MHEL) inequalities in malaria, we calculated both the Slope Index of Inequality (SII) and Relative Index of Inequality (RII) in each administrative region. We also conducted cluster analyses based on Local Indicator of Spatial Association (LISA) to consider the spatial auto-correlation in SII and RII across regions and countries. A total of 47,404 participants in 1874 Primary Sampling Units (PSU) were analyzed across the 13 SSA countries. Our multi-country assessment provides estimations of strong socioeconomic inequalities between and within SSA countries. Such within- and between- countries inequalities varied greatly according to the socioeconomic metric and the scale used. Countries located in Eastern Africa showed a higher median Slope Index of Inequality (SII) and Relative Index of Inequality (RII) in malaria prevalence relative to WI in comparison to countries in other locations across SSA. Pockets of high SII in malaria prevalence in relation to WI and MHEL were observed in the East part of Africa. This study was able to map this wide range of malaria inequality metrics at a very local scale and highlighted the spatial clustering patterns of pockets of high and low malaria inequality values.
Collapse
|
33
|
Sialovirome of Brazilian tropical anophelines. Virus Res 2021; 302:198494. [PMID: 34174341 DOI: 10.1016/j.virusres.2021.198494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022]
Abstract
Anophelinae is a widely dispersed Culicidae subfamily that may carry a unique virome. Here we herein report the set of viruses found in 323 salivary glands of 16 anopheline species sampled at Upper Pantanal, Chapada dos Guimarães National Park and Coxipó river basin, South Central Mato Grosso, Brazil, pooled (n = 11) and subjected to high throughput sequencing. Metagenomics revealed the presence of nine viral sequences belonging to novel viruses from seven viral families: Purunga is a putative novel orbivirus sharing 74% and 65% aa identity, respectively, with the VP1 and VP3 segments of Changuinola serogroup, Jaracatiá flavivirus shares 60% amino-acid (aa) identity with Aedes flavivirus. Coxipó dielmovirus and Chapada dielmovirus shared 51% and 39% aa identity with Merida virus. Coloiado-orthomyxo like virus is 57.1-64.8% identical at aa level to Aedes albonnulatus orthomyxo-like virus. Mujica picorna-like virus shares 49% aa identity with Flen picorna-like virus and Chiquitos virus is 50% similar to Ista virus, both from Picornavirales order. Cerrado partiti-like-virus shares 75-86% aa identity with Atrato partiti-like virus 2. We also found the S and L segments of Anopheles triannulatus orthophasmavirus (92% identity) in Anopheles lutzi from Chapada dos Guimarães. The identification of these putative novel viruses underscore the wide dispersion of viruses in culicid hosts contributing to extensions on mosquito virome descriptions.
Collapse
|
34
|
Zúñiga MA, Rubio-Palis Y, Brochero H. Updating the bionomy and geographical distribution of Anopheles (Nyssorhynchus) albitarsis F: A vector of malaria parasites in northern South America. PLoS One 2021; 16:e0253230. [PMID: 34138918 PMCID: PMC8211218 DOI: 10.1371/journal.pone.0253230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Anopheles albitarsis F is a putative species belonging to the Albitarsis Complex, recognized by rDNA, mtDNA, partial white gene, and microsatellites sequences. It has been reported from the island of Trinidad, Venezuela and Colombia, and incriminated as a vector of malaria parasites in the latter. This study examined mitochondrially encoded cytochrome c oxidase I (MT-CO1) sequences of An. albitarsis F from malaria-endemic areas in Colombia and Venezuela to understand its relations with other members of the Complex, revised and update the geographical distribution and bionomics of An. albitarsis F and explore hypotheses to explain its phylogenetic relationships and geographical expansion. Forty-five MT-CO1 sequences obtained in this study were analyzed to estimate genetic diversity and possible evolutionary relationships. Sequences generated 37 haplotypes clustered in a group where the genetic divergence of Venezuelan populations did not exceed 1.6% with respect to Colombian samples. Anopheles albitarsis F (π = 0.013) represented the most recent cluster located closer to An. albitarsis I (π = 0.009). Barcode gap was detected according to Albitarsis Complex lineages previously reported (threshold 0.014–0.021). Anopheles albitarsis F has a wide distribution in northern South America and might play an important role in the transmission dynamics of malaria due to its high expansion capacity. Future studies are required to establish the southern distribution of An. albitarsis F in Venezuela, and its occurrence in Guyana and Ecuador.
Collapse
Affiliation(s)
- Miguel A. Zúñiga
- Escuela de Microbiología, Facultad de Ciencias, Departamento Francisco Morazán, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Yasmin Rubio-Palis
- Departamento Clínico Integral, Facultad de Ciencias de la Salud, sede Aragua, Universidad de Carabobo, Maracay, Estado Aragua, Venezuela
- Centro de Estudios de Enfermedades Endémicas y Salud Ambiental (CEEESA), Servicio Autónomo Instituto de Altos Estudios “Dr. Arnoldo Gabaldon”, Maracay, Estado Aragua, Venezuela
- * E-mail:
| | - Helena Brochero
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Bogotá, Universidad Nacional de Colombia, Bogotá, Distrito Capital, Colombia
| |
Collapse
|
35
|
Dietary and Plasmodium challenge effects on the cuticular hydrocarbon profile of Anopheles albimanus. Sci Rep 2021; 11:11258. [PMID: 34045618 PMCID: PMC8159922 DOI: 10.1038/s41598-021-90673-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
The cuticular hydrocarbon (CHC) profile reflects the insects' physiological states. These include age, sex, reproductive stage, and gravidity. Environmental factors such as diet, relative humidity or exposure to insecticides also affect the CHC composition in mosquitoes. In this work, the CHC profile was analyzed in two Anopheles albimanus phenotypes with different degrees of susceptibility to Plasmodium, the susceptible-White and resistant-Brown phenotypes, in response to the two dietary regimes of mosquitoes: a carbon-rich diet (sugar) and a protein-rich diet (blood) alone or containing Plasmodium ookinetes. The CHCs were analyzed by gas chromatography coupled to mass spectrometry or flame ionization detection, identifying 19 CHCs with chain lengths ranging from 20 to 37 carbons. Qualitative and quantitative changes in CHCs composition were dependent on diet, a parasite challenge, and, to a lesser extent, the phenotype. Blood-feeding caused up to a 40% reduction in the total CHC content compared to sugar-feeding. If blood contained ookinetes, further changes in the CHC profile were observed depending on the Plasmodium susceptibility of the phenotypes. Higher infection prevalence caused greater changes in the CHC profile. These dietary and infection-associated modifications in the CHCs could have multiple effects on mosquito fitness, impacts on disease transmission, and tolerance to insecticides.
Collapse
|
36
|
Valderrama L, Ayala S, Reyes C, González CR. Modeling the Potential Distribution of the Malaria Vector Anopheles (Ano.) pseudopunctipennis Theobald (Diptera: Culicidae) in Arid Regions of Northern Chile. Front Public Health 2021; 9:611152. [PMID: 34046385 PMCID: PMC8144306 DOI: 10.3389/fpubh.2021.611152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
The extreme north of Chile presents a subtropical climate permissive of the establishment of potential disease vectors. Anopheles (Ano.) pseudopunctipennis is distributed from the south of the United States to the north of Argentina and Chile, and is one of the main vectors of malaria in Latin America. Malaria was eradicated from Chile in 1945. Nevertheless, the vector persists in river ravines of the Arica and Tarapacá regions. The principal effect of climate change in the north of Chile is temperature increase. Precipitation prediction is not accurate for this region because records were erratic during the last century. The objective of this study was to estimate the current and the projected distribution pattern of this species in Chile, given the potential impact due to climate change. We compiled distributional data for An. (Ano.) pseudopunctipennis and constructed species distribution models to predict the spatial distribution of this species using the MaxEnt algorithm with current and RCP 4.5 and 8.5 scenarios, using environmental and topographic layers. Our models estimated that the current expected range of An. (Ano.) pseudopunctipennis extends continuously from Arica to the north of Antofagasta region. Furthermore, the RCP 4.5 and 8.5 projected scenarios suggested that the range of distribution of An. (Ano.) pseudopunctipennis may increase in longitude, latitude, and altitude limits, enhancing the local extension area by 38 and 101%, respectively, and local presence probability (>0.7), from the northern limit in Arica y Parinacota region (18°S) to the northern Antofagasta region (23°S). This study contributes to geographic and ecologic knowledge about this species in Chile, as it represents the first local study of An. (Ano.) pseudopunctipennis. The information generated in this study can be used to inform decision making regarding vector control and surveillance programs of Latin America. These kinds of studies are very relevant to generate human, animal, and environmental health knowledge contributing to the "One Health" concept.
Collapse
Affiliation(s)
- Lara Valderrama
- Laboratorio de Entomología, Subdepartamento de Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile.,Programa de Magíster en Ciencias mención Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Salvador Ayala
- Departamento de Asuntos Científicos, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Carolina Reyes
- Laboratorio de Entomología, Subdepartamento de Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Christian R González
- Programa de Magíster en Ciencias mención Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Facultad de Ciencias Básicas, Santiago, Chile
| |
Collapse
|
37
|
Torres-Cosme R, Rigg C, Santamaría AM, Vásquez V, Victoria C, Ramirez JL, Calzada JE, Cáceres Carrera L. Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién, Panama. PLoS One 2021; 16:e0250059. [PMID: 33939707 PMCID: PMC8092770 DOI: 10.1371/journal.pone.0250059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
Background More than 85% of the malaria cases in Panama occur in poor, rural and indigenous regions like Darien Province. Vector diversity, infection rate and spatial distribution are important entomological parameters of malaria transmission dynamics. Their understanding is crucial for the development of effective disease control strategies. The objective of this study was to determine the composition of Anopheles species, their natural infection rate and their geographic distribution to better understand the malaria transmission dynamics in Darién, Panama. Methods Anophelines mosquitoes were captured during the rainy and dry season of 2016. We selected five communities where adult anophelines were collected using CDC light-traps, and through protective human-baited traps. Detection of natural infection and Plasmodium genotype were detected via nested PCR through the amplification of ssrRNA and the circumsporozoite protein gene (csp), respectively. Results A total of 1,063 mosquitoes were collected mosquitoes were collected for the detection of natural infection with Plasmodium spp. Nine Anophelines species were identified, with the predominant species being: An. (Nys.) darlingi (45.0%) and An. (Nys.) albimanus (42.6%). Natural infection in An. (Nys.) albimanus with P. vivax was detected in one mosquito pool from the community Pueblo Tortuga (0.6%), three from Marraganti (1.7%), two from Bajo Chiquito (1.1%) and three pools from Alto Playona 3 (1.7%). For An. (Nys.) darlingi mosquitoes, we detected seven positive pools from the community Bajo Chiquito (4.0%), two pools from Marraganti (1.1%) and two pools from Alto Playona (1.1%). The P. vivax allelic variant VK210 was detected in infected mosquitoes. Conclusion The results from this study provide new information on the transmission dynamics associated with anophelines vectors in the Darién region. This is the first report of natural P. vivax infection in An. (Nys.) darlingi and its incrimination as a potential malaria vector in this region of Panama. Additional studies are necessary to expand our knowledge and determine crucial parameters in malaria transmission in Darién, which in turn will aid the National Malaria Program in attaining an adequate malaria control strategy towards malaria elimination.
Collapse
Affiliation(s)
- Rolando Torres-Cosme
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Chystrie Rigg
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Ana María Santamaría
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Vanessa Vásquez
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Carlos Victoria
- Departamento de Control de Vectores, Ministerio de Salud (MINSA), Panam, Repblica de Panam
| | - José Luis Ramirez
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - José E. Calzada
- Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
| | - Lorenzo Cáceres Carrera
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, Repblica de Panam
- * E-mail: ,
| |
Collapse
|
38
|
Konopka JK, Task D, Afify A, Raji J, Deibel K, Maguire S, Lawrence R, Potter CJ. Olfaction in Anopheles mosquitoes. Chem Senses 2021; 46:6246230. [PMID: 33885760 DOI: 10.1093/chemse/bjab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Katelynn Deibel
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Sarah Maguire
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Randy Lawrence
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| |
Collapse
|
39
|
de Oliveira TC, Rodrigues PT, Early AM, Duarte AMRC, Buery JC, Bueno MG, Catão-Dias JL, Cerutti C, Rona LDP, Neafsey DE, Ferreira MU. Plasmodium simium: population genomics reveals the origin of a reverse zoonosis. J Infect Dis 2021; 224:1950-1961. [PMID: 33870436 DOI: 10.1093/infdis/jiab214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
The population history of Plasmodium simium, which causes malaria in sylvatic Neotropical monkeys and humans along the Atlantic Coast of Brazil, remains disputed. Genetically diverse P. vivax populations from various sources, including the lineages that founded the species P. simium, are thought to have arrived in the Americas in separate migratory waves. However, here we find a minimal genome-level differentiation between P. simium and present-day New World P. vivax isolates, consistent with their common geographic origin and subsequent divergence on this continent. The meagre genetic diversity in P. simium samples from humans and monkeys implies a recent transfer from humans to non-human primates - a unique example of malaria as a reverse zoonosis of public health significance. Likely genomic signatures of P. simium adaptation to new hosts include the deletion of >40% of a key erythrocyte invasion ligand, PvRBP2a, which may have favored more efficient simian host cell infection.
Collapse
Affiliation(s)
- Thaís C de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ana Maria R C Duarte
- Laboratory of Biochemistry and Molecular Biology, Superintendency for the Control of Endemics (SUCEN), State Secretary of Health, São Paulo, Brazil.,Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Julyana C Buery
- Department of Social Medicine, Center for Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Marina G Bueno
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - José L Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Crispim Cerutti
- Department of Social Medicine, Center for Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Luísa D P Rona
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.,National Council for Scientific and Technological Development, National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Ghassemi-Khademi T, Oshaghi MA, Vatandoost H, Madjdzadeh SM, Gorouhi MA. Utility of Complete Mitochondrial Genomes in Phylogenetic Classification of the Species of Anopheles (Culicidae: Anophelinae). J Arthropod Borne Dis 2021; 15:1-20. [PMID: 34277853 PMCID: PMC8271240 DOI: 10.18502/jad.v15i1.6483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Among the blood-sucking insects, Anopheles mosquitoes have a very special position, because they transmit parasites of the genus Plasmodium, which cause malaria as one of the main vector-borne disease worldwide. The aim of this review study was to evaluate utility of complete mitochondrial genomes in phylogenetic classification of the species of Anopheles. Methods: The complete mitochondrial genome sequences belonging to 28 species of the genus Anopheles (n=32) were downloaded from NCBI. The phylogenetic trees were constructed using the ML, NJ, ME, and Bayesian inference methods. Results: In general, the results of the present survey revealed that the complete mitochondrial genomes act very accurately in recognition of the taxonomic and phylogenetic status of these species and provide a higher level of support than those based on individual or partial mitochondrial genes so that by using them, we can meticulously reconstruct and modify Anopheles classification. Conclusion: Understanding the taxonomic position of Anopheles, can be a very effective step in better planning for controlling these malaria vectors in the world and will improve our knowledge of their evolutionary biology.
Collapse
Affiliation(s)
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Amin Gorouhi
- Department of Vector Biology and Control, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.,Research Center of Tropical and Infectious Diseases Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
41
|
Hodge JM, Yurchenko AA, Karagodin DA, Masri RA, Smith RC, Gordeev MI, Sharakhova MV. The new Internal Transcribed Spacer 2 diagnostic tool clarifies the taxonomic position and geographic distribution of the North American malaria vector Anopheles punctipennis. Malar J 2021; 20:141. [PMID: 33691700 PMCID: PMC7944907 DOI: 10.1186/s12936-021-03676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.
Collapse
Affiliation(s)
- James M Hodge
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Andrey A Yurchenko
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomics Center, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Dmitriy A Karagodin
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Reem A Masri
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Mikhail I Gordeev
- Department of General Biology and Ecology, Moscow Region State University, Moscow, Russia
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. .,Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
42
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
43
|
Dye-Braumuller KC, Kanyangarara M. Malaria in the USA: How Vulnerable Are We to Future Outbreaks? CURRENT TROPICAL MEDICINE REPORTS 2021; 8:43-51. [PMID: 33469475 PMCID: PMC7808401 DOI: 10.1007/s40475-020-00224-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
Abstract
Purpose of Review Malaria poses a threat to nearly half of the world’s population, and recent literature in the USA is lacking regarding understanding risk for local outbreaks. This article aims to review Anopheles mosquito data, vector-borne disease outbreak preparedness, and human travel data from large international gateway cities in an effort to examine risk for localized outbreaks. Recent Findings The majority of vector control organizations are widely unprepared for a vector-borne disease outbreak, and multiple mosquito species capable of transmitting malaria continue to persist throughout the USA. Summary Despite the lack of recent autochthonous cases in the USA, multiple risk factors suggest that local malaria outbreaks in the USA will continue to pose a public health threat due to large numbers of international travelers from endemic areas, multiple Anopheles spp. capable of transmitting the parasite, and unsatisfactory vector-borne disease outbreak preparedness. Climate conditions and recent changes in travel patterns will influence malaria across the globe.
Collapse
Affiliation(s)
- Kyndall C Dye-Braumuller
- Laboratory of Vector-Borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
| | - Mufaro Kanyangarara
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
| |
Collapse
|
44
|
Host feeding patterns of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon. Acta Trop 2021; 213:105751. [PMID: 33166514 DOI: 10.1016/j.actatropica.2020.105751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Nyssorhynchus darlingi (Root) is the dominant malaria vector in the Brazilian Amazon River basin, with additional Anophelinae Grassi species involved in local and regional transmission. Mosquito blood-feeding behavior is an essential component to define the mosquito-human contact rate and shape the transmission cycle of vector-borne diseases. However, there is little information on the host preferences and blood-feeding behavior of Anophelinae vectors in rural Amazonian landscapes. The barrier screen sampling (BSS) method was employed to sample females from 34 peridomestic habitats in 27 rural communities from 11 municipalities in the Brazilian Amazon states of Acre, Amazonas, Pará and Rondônia, from August 2015 to November 2017. Nyssorhynchus darlingi comprised 97.94% of the females collected resting on barrier screens, and DNA sequence comparison detected 9 vertebrate hosts species. The HBI index ranged from 0.03-1.00. Results revealed the plasticity of Ny. darlingi in blood-feeding on a wide range of mainly mammalian hosts. In addition, the identification of blood meal sources using silica-dried females is appropriate for studies of human malaria vectors in remote locations.
Collapse
|
45
|
Alvarado-Delgado A, Martínez-Barnetche J, Téllez-Sosa J, Rodríguez MH, Gutiérrez-Millán E, Zumaya-Estrada FA, Saldaña-Navor V, Rodríguez MC, Tello-López Á, Lanz-Mendoza H. Prediction of neuropeptide precursors and differential expression of adipokinetic hormone/corazonin-related peptide, hugin and corazonin in the brain of malaria vector Nyssorhynchus albimanus during a Plasmodium berghei infection. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100014. [PMID: 36003598 PMCID: PMC9387463 DOI: 10.1016/j.cris.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/02/2022]
Abstract
We describe precursors that predicted at least sixty neuropeptides in Ny. albimanus. At least 16 precursors are encoded in the Ny. albimanus brain. Myosuppressin neuropeptide precursor was identified in Ny albimanus. acp and hugin transcripts increased in Ny. albimanus brains infected with P. berghei.
Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.
Collapse
|
46
|
Cuba IH, Richoux GR, Norris EJ, Bernier UR, Linthicum KJ, Bloomquist JR. Vapor phase repellency and insecticidal activity of pyridinyl amides against anopheline mosquitoes. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100062. [PMID: 35284890 PMCID: PMC8906123 DOI: 10.1016/j.crpvbd.2021.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022]
Abstract
It is important to identify repellents that can provide reliable protection from arthropod biting and prevent arthropod-borne diseases, such as malaria. In the present study, the spatial repellent activity and toxicity of two novel pyridinyl amides (1 and 2) were evaluated against Anopheles albimanus, Anopheles quadrimaculatus, and Anopheles gambiae. In vapor repellency bioassays, compound 2 was generally more effective than DEET and 2-undecanone, while compound 1 was about as active as these standards. Overall, transfluthrin was the most active compound for inducing anopheline mosquito repellency, knockdown, and lethality. Although they were not the most active repellents, the two experimental amides produced the largest electroantennographic responses in female antennae. They also displayed modest toxicity to anopheline mosquitoes. Significant synergism of repellency was observed for the mixture of a pyrethroid-derived acid and the repellent 2-undecanone against anopheline mosquitoes, similar to that observed previously in Aedes aegypti. Overall, this study provides insight for further synthesis of alternative amide compounds for use as spatial treatments. Two experimental pyridyl amides were synthesized. They were more repellent than DEET, equal to 2-undecanone and less than transfluthrin. They were about as toxic as DEET and 2-undecanone, but less than transfluthrin. Experimental amides performed about the same across all anopheline species.
Collapse
|
47
|
Olapeju B, Adams C, Hunter G, Wilson S, Simpson J, Mitchum L, Davis T, Orkis J, Cox H, Trotman N, Imhoff H, Storey D. Malaria prevention and care seeking among gold miners in Guyana. PLoS One 2020; 15:e0244454. [PMID: 33373407 PMCID: PMC7771697 DOI: 10.1371/journal.pone.0244454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 11/19/2022] Open
Abstract
Despite being a priority population in malaria elimination, there is scant literature on malaria-related behavior among gold miners. This study explores the prevalence and factors influencing malaria prevention, care seeking and treatment behaviors in Guyana gold mining camps. A cross sectional survey was conducted among adult gold miners living in mining camps in the hinterland Regions 1 (Barima-Waini), 7 (Cuyuni-Mazaruni), and 8 (Potaro-Siparuni). Multivariable logistic regressions explored factors associated with miners’ self-report of mosquito net use, prompt care-seeking; self-medication; and testing for malaria. A third of miners used a mosquito net the night preceding the survey and net use was higher among those who believed that net use was the norm in their camp (aOR: 3.11; 95% CI:1.65, 5.88). Less than half (45%) of miners had a fever in the past 12 months, among whom 36% sought care promptly, 48% tested positive for malaria while 54% self-medicated before seeking care. Prompt care-seeking was higher among miners with high malaria knowledge (aOR: 1.44; 95% CI: 1.01, 2.05). Similarly, testing rates increased with secondary education (aOR: 1.71; 95% CI: (1.16, 2.51), high malaria knowledge (aOR: 1.45; 95% CI: 1.02, 2.05), positive beliefs regarding malaria transmission, threat, self-diagnosis, testing and treatment, and, trust in government services (aOR: 1.59; 95% CI (1.12, 2.27) and experience of a prior malaria episode (aOR: 2.62; 95% CI: 1.71, 4.00). Self-medication was lower among male miners (aOR: 0. 52; 95% CI: 0.32, 0.86). Malaria prevention and care seeking behaviors among miners are somewhat low and influenced by mosquito net usage, perceived norms, malaria knowledge and prior episode of confirmed malaria. Study findings have implications for malaria interventions in the hinterland regions of Guyana such as the mass and continuous distribution of insecticide treated nets as well as community case management initiatives using trained malaria testing and treatment volunteers to curb malaria transmission among remote gold mining populations. These include efforts to identify and address gaps in distributing mosquito nets to miners and address miners’ barriers to prompt care seeking, malaria testing and treatment adherence. Targeted social and behavior change messaging is needed on net acquisition, use and care, prompt care-seeking, malaria testing and treatment adherence. Additional efforts to ensure the overall sustainability of the community case management initiative include increased publicity of the community case management initiative among miners, use of incentives to promote retention rates among the community case management volunteer testers and public private partnerships between the Guyana Ministry of Health and relevant mining organizations.
Collapse
Affiliation(s)
- Bolanle Olapeju
- Johns Hopkins Center for Communication Programs, Baltimore, Maryland, United States of America
- * E-mail:
| | - Camille Adams
- Breakthrough ACTION Guyana, Georgetown, Demerara-Mahaica, Guyana
| | - Gabrielle Hunter
- Johns Hopkins Center for Communication Programs, Baltimore, Maryland, United States of America
| | - Sean Wilson
- Breakthrough ACTION Guyana, Georgetown, Demerara-Mahaica, Guyana
| | - Joann Simpson
- Breakthrough ACTION Guyana, Georgetown, Demerara-Mahaica, Guyana
| | - Lyndsey Mitchum
- Johns Hopkins Center for Communication Programs, Baltimore, Maryland, United States of America
| | - TrishAnn Davis
- Johns Hopkins Center for Communication Programs, Baltimore, Maryland, United States of America
| | - Jennifer Orkis
- Johns Hopkins Center for Communication Programs, Baltimore, Maryland, United States of America
| | - Horace Cox
- National Malaria Program, Ministry of Health, Georgetown, Demerara-Mahaica, Guyana
| | - Neil Trotman
- National Malaria Program, Ministry of Health, Georgetown, Demerara-Mahaica, Guyana
| | - Helen Imhoff
- National Malaria Program, Ministry of Health, Georgetown, Demerara-Mahaica, Guyana
| | - Douglas Storey
- Johns Hopkins Center for Communication Programs, Baltimore, Maryland, United States of America
| |
Collapse
|
48
|
de Araújo WS, Vieira TM, de Souza GA, Bezerra IC, Corgosinho PHC, Borges MAZ. Nocturnal Mosquitoes of Pará State in the Brazilian Amazon: Species Composition, Habitat Segregation, and Seasonal Variation. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1913-1919. [PMID: 32484514 DOI: 10.1093/jme/tjaa103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are one of the most important disease vector species in the world. Many species have a high degree of anthropophilia and are often found in human habitations. In the present study, we have inventoried the nocturnal mosquito assemblage in intra-, peri-, and extradomicile environments in four municipalities in Pará, Brazil. At each municipality, a residence was selected and the mosquitoes were sampled using the protected human attraction capture and Shannon trap methods in April (rainy season) and August 2018 (dry season). We have collected a total of 696 mosquito specimens belonging to 8 genera and 17 species. The most abundant species were Mansonia (Mansonoides) titillans (Walker) (366/696, 52.6%), Anopheles (Nyssorhynchus) albitarsis Lynch-Arribálzaga (97/696, 13.9%), and Culex (Culex) quinquefasciatus Say (93/696, 13.4%). Mosquito richness, abundance, and composition did not differ between intra-, peri-, and extradomicile environments suggesting limited habitat segregation among the different species. However, mosquito species richness and mosquito species abundance were significantly higher during the rainy season than during the dry season, suggesting increased mosquito activity during the rainy season. We detected several important vector species of human diseases including Aedes (Stegomyia) aegypti (Linnaeus), Anopheles (Nyssorhynchus) darlingi Root, Haemagogus (Conopostegus) leucocelaenus (Dyar and Shannon), Coquillettidia (Coquillettidia) venezuelensis (Theobald), and Culex (Culex) quinquefasciatus which are the main transmitters of dengue, malaria, yellow fever, mayaro, and oropouche fever, respectively. As inventories of disease-carrying mosquitoes in the region are very scarce, mainly in residential environments, our results suggest high potential for mosquito-borne disease transmission in Pará State.
Collapse
Affiliation(s)
- Walter Santos de Araújo
- Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Minas Gerais, Brazil
| | - Thallyta Maria Vieira
- Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Minas Gerais, Brazil
| | - Guilherme Antunes de Souza
- Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Isaque Clementino Bezerra
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Januária, Minas Gerais, Brazil
| | | | | |
Collapse
|
49
|
de Melo ES, Wallau GL. Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genet 2020; 16:e1008946. [PMID: 33253164 PMCID: PMC7728395 DOI: 10.1371/journal.pgen.1008946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/10/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize basically all eukaryotic species genomes. Due to their complexity, an in-depth TE characterization is only available for a handful of model organisms. In the present study, we performed a de novo and homology-based characterization of TEs in the genomes of 24 mosquito species and investigated their mode of inheritance. More than 40% of the genome of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus is composed of TEs, while it varied substantially among Anopheles species (0.13%-19.55%). Class I TEs are the most abundant among mosquitoes and at least 24 TE superfamilies were found. Interestingly, TEs have been extensively exchanged by horizontal transfer (172 TE families of 16 different superfamilies) among mosquitoes in the last 30 million years. Horizontally transferred TEs represents around 7% of the genome in Aedes species and a small fraction in Anopheles genomes. Most of these horizontally transferred TEs are from the three ubiquitous LTR superfamilies: Gypsy, Bel-Pao and Copia. Searching more than 32,000 genomes, we also uncovered transfers between mosquitoes and two different Phyla-Cnidaria and Nematoda-and two subphyla-Chelicerata and Crustacea, identifying a vector, the worm Wuchereria bancrofti, that enabled the horizontal spread of a Tc1-mariner element among various Anopheles species. These data also allowed us to reconstruct the horizontal transfer network of this TE involving more than 40 species. In summary, our results suggest that TEs are frequently exchanged by horizontal transfers among mosquitoes, influencing mosquito's genome size and variability.
Collapse
Affiliation(s)
- Elverson Soares de Melo
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
50
|
Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, Willis KJ. A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci U S A 2020; 117:24900-24908. [PMID: 32929020 PMCID: PMC7547157 DOI: 10.1073/pnas.2003976117] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In 2012, an unusual outbreak of urban malaria was reported from Djibouti City in the Horn of Africa and increasingly severe outbreaks have been reported annually ever since. Subsequent investigations discovered the presence of an Asian mosquito species; Anopheles stephensi, a species known to thrive in urban environments. Since that first report, An. stephensi has been identified in Ethiopia and Sudan, and this worrying development has prompted the World Health Organization (WHO) to publish a vector alert calling for active mosquito surveillance in the region. Using an up-to-date database of published locational records for An. stephensi across its full range (Asia, Arabian Peninsula, Horn of Africa) and a set of spatial models that identify the environmental conditions that characterize a species' preferred habitat, we provide evidence-based maps predicting the possible locations across Africa where An. stephensi could establish if allowed to spread unchecked. Unsurprisingly, due to this species' close association with man-made habitats, our maps predict a high probability of presence within many urban cities across Africa where our estimates suggest that over 126 million people reside. Our results strongly support the WHO's call for surveillance and targeted vector control and provide a basis for the prioritization of surveillance.
Collapse
Affiliation(s)
- M E Sinka
- Department of Zoology, University of Oxford, Oxford, United Kingdom, OX1 3SZ;
| | - S Pironon
- Biodiversity Informatics and Spatial Analysis Department, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom, TW9 3DS
| | - N C Massey
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom, OX3 7LF
| | - J Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, L3 5QA
| | - J Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, L3 5QA
| | - C L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom, OX3 7LF
| | - K J Willis
- Department of Zoology, University of Oxford, Oxford, United Kingdom, OX1 3SZ
- Biodiversity Informatics and Spatial Analysis Department, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom, TW9 3DS
| |
Collapse
|