1
|
Dwużnik-Szarek D, Beliniak A, Malaszewicz W, Krauze-Gryz D, Gryz J, Jasińska KD, Wężyk D, Bajer A. Pathogens detected in ticks (Ixodes ricinus) feeding on red squirrels (Sciurus vulgaris) from city parks in Warsaw. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:677-699. [PMID: 39249583 PMCID: PMC11464548 DOI: 10.1007/s10493-024-00955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
The European red squirrel (Sciurus vulgaris) is a common host for Ixodes ricinus ticks in urban and rural habitats, however, studies on ticks and tick-borne pathogens (TBPs) of squirrels have not been conducted in Poland yet. Thus, the aims of the current study were to assess and compare the prevalence and abundance of ticks on red squirrels trapped at two sites in the Warsaw area (in an urban forest reserve and an urban park) and using molecular tools, to assess the genetic diversity of three pathogens (Borrelia burgdorferi sensu lato, Rickettsia and Babesia spp.) in I. ricinus ticks collected from squirrels. For the detection of Rickettsia spp. a 750 bp long fragment of the citrate synthase gltA gene was amplified; for B. burgdorferi s.l. 132f/905r and 220f/824r primers were used to amplify the bacterial flaB gene fragments (774 and 605 bp, respectively) and for Babesia spp., a 550 bpfragment of 18S rRNA gene was amplified. In total, 91 red squirrels were examined for ticks. There were differences in tick prevalence and mean abundance of infestation in squirrels from the urban forest reserve and urban park. Three species of B. burgdorferi s.l., Rickettsia spp., and Babesia microti were detected in ticks removed from the squirrels. Our results broaden knowledge of S. vulgaris as an important host for immature I. ricinus stages and support the hypothesis that red squirrels act as a reservoir of B. burgdorferi. Moreover, we conclude that red squirrels may also play a role in facilitating the circulation of other pathogens causing serious risk of tick-borne diseases in natural and urban areas.
Collapse
Affiliation(s)
- Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Agata Beliniak
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wiktoria Malaszewicz
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Dagny Krauze-Gryz
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Jakub Gryz
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, Raszyn, 05-090, Poland
| | - Karolina D Jasińska
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Dagmara Wężyk
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
2
|
Huitink M, de Rooij M, Montarsi F, Salvati MV, Obber F, Da Rold G, Sgubin S, Mazzotta E, di Martino G, Mazzucato M, Salata C, Vonesch N, Tomao P, Mughini-Gras L. Habitat Suitability of Ixodes ricinus Ticks Carrying Pathogens in North-East Italy. Pathogens 2024; 13:836. [PMID: 39452708 PMCID: PMC11510671 DOI: 10.3390/pathogens13100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Ixodes ricinus ticks are ubiquitous in Europe, including in North-East Italy. These ticks are important vectors of several zoonotic pathogens of public health relevance. In this study, the habitat suitability range of I. ricinus ticks infected with zoonotic pathogens was predicted in North-East Italy, and relevant spatial predictors were identified. In 2015-2021, ticks were collected at 26 sampling sites in the study area. The collected ticks were screened for the presence of pathogens using PCR assays. For Borrelia, Rickettsia and Anaplasma/Ehrlichia species, data allowed for ecological niche modelling using Maxent. Environmental determinants potentially related to tick habitat suitability were used as model inputs. Predicted suitable habitat distributions revealed hotspots of the probability of pathogen presence in I. ricinus ticks mainly in the central and upper parts of the study area. Key environmental predictors were temperature, rainfall and altitude, and vegetation index for specific pathogens (Rickettsia and Anaplasma/Ehrlichia species). Increased risk of exposure to tick-borne pathogens upon tick bites in the predicted hotspot areas can, therefore, be expected. This provides useful information for public health risk managers in this and other similar regions.
Collapse
Affiliation(s)
- Maartje Huitink
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CL Utrecht, The Netherlands; (M.H.); (M.d.R.)
| | - Myrna de Rooij
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CL Utrecht, The Netherlands; (M.H.); (M.d.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Maria Vittoria Salvati
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, 35121 Padua, Italy; (M.V.S.); (C.S.)
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Graziana Da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Sofia Sgubin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Elisa Mazzotta
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Guido di Martino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, 35121 Padua, Italy; (M.V.S.); (C.S.)
| | - Nicoletta Vonesch
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, 00078 Monte Porzio Catone, Italy; (N.V.); (P.T.)
| | - Paola Tomao
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, 00078 Monte Porzio Catone, Italy; (N.V.); (P.T.)
| | - Lapo Mughini-Gras
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CL Utrecht, The Netherlands; (M.H.); (M.d.R.)
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
3
|
Ciebiera O, Grochowalska R, Łopińska A, Zduniak P, Strzała T, Jerzak L. Ticks and spirochetes of the genus Borrelia in urban areas of Central-Western Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:421-437. [PMID: 38940943 PMCID: PMC11269503 DOI: 10.1007/s10493-024-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Due to the extensive use of green urban areas as recreation places, city residents are exposed to tick-borne pathogens. The objectives of our study were (i) to determine the occurrence of ticks in urban green areas, focussing on areas used by humans such as parks, schools and kindergartens, and urban forests, and (ii) to assess the prevalence of Borrelia infections in ticks in Zielona Góra, a medium-sized city in western Poland. A total of 161 ticks representing the two species Ixodes ricinus (34 males, 51 females, 30 nymphs) and Dermacentor reticulatus (20 males, 26 females) were collected from 29 of 72 (40.3%) study sites. In total, 26.1% of the ticks (85.7% of I. ricinus and 14.3% of D. reticulatus) yielded DNA of Borrelia. The difference in the infection rate between I. ricinus and D. reticulatus was significant. Among infected ticks, the most frequent spirochete species were B. lusitaniae (50.0%) and B. afzelii (26.2%), followed by B. spielmanii (9.5%), B. valaisiana (7.1%), B. burgdorferi sensu stricto, (4.8%) and B. miyamotoi (2.4%). No co-infections were found. We did not observe a correlation in the occurrence of Borrelia spirochetes in ticks found in individual study sites that differed in terms of habitat type and height of vegetation. Our findings demonstrate that the Borrelia transmission cycles are active within urban habitats, pointing the need for monitoring of tick-borne pathogens in public green areas. They could serve as guidelines for authorities for the proper management of urban green spaces in a way that may limit tick populations and the potential health risks posed by tick-borne pathogens.
Collapse
Affiliation(s)
- Olaf Ciebiera
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland.
| | - Renata Grochowalska
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| | - Andżelina Łopińska
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| | - Piotr Zduniak
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, 51-631, Poland
| | - Leszek Jerzak
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| |
Collapse
|
4
|
Giesen C, Cifo D, Gomez-Barroso D, Estévez-Reboredo RM, Figuerola J, Herrador Z. The Role of Environmental Factors in Lyme Disease Transmission in the European Union: A Systematic Review. Trop Med Infect Dis 2024; 9:113. [PMID: 38787046 PMCID: PMC11125681 DOI: 10.3390/tropicalmed9050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Lyme disease (LD) is an emergent vector-borne disease caused by Borrelia spp. and transmitted through infected ticks, mainly Ixodes spp. Our objective was to determine meteorological and environmental factors associated with LD transmission in Europe and the effect of climate change on LD. MATERIALS AND METHODS A systematic review following the PRISMA guidelines was performed. We selected studies on LD transmission in the European Union (EU) and the European Economic Area (EEA) published between 2000 and 2022. The protocol was registered in the PROSPERO database. RESULTS We included 81 studies. The impact of environmental, meteorological or climate change factors on tick vectors was studied in 65 papers (80%), and the impact on human LD cases was studied in 16 papers (19%), whereas animal hosts were only addressed in one study (1%). A significant positive relationship was observed between temperature and precipitation and the epidemiology of LD, although contrasting results were found among studies. Other positive factors were humidity and the expansion of anthropized habitats. CONCLUSIONS The epidemiology of LD seems to be related to climatic factors that are changing globally due to ongoing climate change. Unfortunately, the complete zoonotic cycle was not systematically analyzed. It is important to adopt a One Health approach to understand LD epidemiology.
Collapse
Affiliation(s)
- Christine Giesen
- Centro de Salud Internacional Madrid Salud, Ayuntamiento de Madrid, 28006 Madrid, Spain;
| | - Daniel Cifo
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Diana Gomez-Barroso
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| | - Rosa M. Estévez-Reboredo
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
| | - Jordi Figuerola
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Zaida Herrador
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| |
Collapse
|
5
|
Blažeková V, Stanko M, Sprong H, Kohl R, Zubriková D, Vargová L, Bona M, Miklisová D, Víchová B. Ixodiphagus hookeri (Hymenoptera: Encyrtidae) and Tick-Borne Pathogens in Ticks with Sympatric Occurrence (and Different Activities) in the Slovak Karst National Park (Slovakia), Central Europe. Pathogens 2024; 13:385. [PMID: 38787237 PMCID: PMC11123704 DOI: 10.3390/pathogens13050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Ticks are involved in the transmission a plethora of pathogens. To effectively control ticks and mitigate the risks associated with tick-borne diseases, it is important to implement tick control measures. These may include the use of acaricides as well as the development and implementation of an alternative, environmentally friendly tick management program that include practices such as habitat modification or establishing biological control. Ixodiphagus hookeri Howard is a tick-specific parasitoid wasp that predates on several species of ixodid ticks and could contribute to the control of the tick population. This work aimed to detect the presence of parasitoid wasps in ticks (Ixodidae) using genetic approaches. Several tick species of the genera Ixodes, Haemaphysalis, and Dermacentor, with a sympatric occurrence in the Slovak Karst National Park in southeastern Slovakia, were screened for the presence of wasps of the genus Ixodiphagus. The DNA of the parasitoids was detected in four tick species from three genera. This work presents the first molecular detection of parasitoids in two Dermacentor tick species, as well as the first molecular identification of Ixodiphagus wasps in Ixodes ricinus and Haemaphysalis concinna ticks from the Karst area. In the given area, it was observed that I. ricinus and H. concinna ticks are hyper-parasitized by wasps. Moreover, it was observed that wasps here can parasitize several tick species, some of which are of less significance for human and animal health (as they transmit fewer pathogens).
Collapse
Affiliation(s)
- Veronika Blažeková
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 040 81 Košice, Slovakia
| | - Michal Stanko
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
- Institute of Zoology Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (H.S.); (R.K.)
| | - Robert Kohl
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (H.S.); (R.K.)
| | - Dana Zubriková
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| | - Lucia Vargová
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Dana Miklisová
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| | - Bronislava Víchová
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| |
Collapse
|
6
|
Liberska J, Michalik JF, Olechnowicz J, Dabert M. Co-Occurrence of Borrelia burgdorferi Sensu Lato and Babesia spp. DNA in Ixodes ricinus Ticks Collected from Vegetation and Pets in the City of Poznań, Poland. Pathogens 2024; 13:307. [PMID: 38668262 PMCID: PMC11054194 DOI: 10.3390/pathogens13040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Here, we described the prevalence of Borrelia burgdorferi s.l. and Babesia species found in mono- and double infections among Ixodes ricinus ticks occurring in urban areas of the city of Poznań, Poland. We tested 1029 host-seeking ticks and 1268 engorged ticks removed from pet animals. Borrelia afzelii and B. garinii prevailed both in ticks from vegetation (3.7% and 3.7%, respectively) and from pets (3.7% and 0.6%, respectively). Babesia canis and Ba. microti were the most prevalent in host-seeking (2.6% and 1.4%, respectively) and feeding ticks (2.8% and 2.2%, respectively). Babesia microti sequences proved to be identical to the human pathogenic Ba. microti genotype "Jena/Germany". Sequences of the rarest piroplasm Ba. venatorum (0.7%) were identical with those isolated from European patients. About 1.0% of tested ticks yielded dual infections; in host-seeking ticks, Ba. canis prevailed in co-infections with B. afzelii and B. garinii, whereas Ba. microti and B. afzelii dominated in double-infected feeding ticks. Dual infections, even with a low prevalence, pose a challenge for differential diagnosis in patients with acute febrile disease after a tick bite. The finding of Ba. canis in both tick groups suggests that I. ricinus could be involved in the circulation of this piroplasm.
Collapse
Affiliation(s)
- Justyna Liberska
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (J.O.); (M.D.)
| | - Jerzy Franciszek Michalik
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Julia Olechnowicz
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (J.O.); (M.D.)
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (J.O.); (M.D.)
| |
Collapse
|
7
|
Celina SS, Černý J, Samy AM. Mapping the potential distribution of the principal vector of Crimean-Congo haemorrhagic fever virus Hyalomma marginatum in the Old World. PLoS Negl Trop Dis 2023; 17:e0010855. [PMID: 38011221 PMCID: PMC10703407 DOI: 10.1371/journal.pntd.0010855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is the most widely distributed tick-borne viral disease in humans and is caused by the Crimean-Congo haemorrhagic fever virus (CCHFV). The virus has a broader distribution, expanding from western China and South Asia to the Middle East, southeast Europe, and Africa. The historical known distribution of the CCHFV vector Hyalomma marginatum in Europe includes most of the Mediterranean and the Balkan countries, Ukraine, and southern Russia. Further expansion of its potential distribution may have occurred in and out of the Mediterranean region. This study updated the distributional map of the principal vector of CCHFV, H. marginatum, in the Old World using an ecological niche modeling approach based on occurrence records from the Global Biodiversity Information Facility (GBIF) and a set of covariates. The model predicted higher suitability of H. marginatum occurrences in diverse regions of Africa and Asia. Furthermore, the model estimated the environmental suitability of H. marginatum across Europe. On a continental scale, the model anticipated a widespread potential distribution encompassing the southern, western, central, and eastern parts of Europe, reaching as far north as the southern regions of Scandinavian countries. The distribution of H. marginatum also covered countries across Central Europe where the species is not autochthonous. All models were statistically robust and performed better than random expectations (p < 0.001). Based on the model results, climatic conditions could hamper the successful overwintering of H. marginatum and their survival as adults in many regions of the Old World. Regular updates of the models are still required to continually assess the areas at risk using up-to-date occurrence and climatic data in present-day and future conditions.
Collapse
Affiliation(s)
- Seyma S. Celina
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
| | - Jiří Černý
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
| | - Abdallah M. Samy
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
- Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Kazimírová M, Mahríková L, Hamšíková Z, Stanko M, Golovchenko M, Rudenko N. Spatial and Temporal Variability in Prevalence Rates of Members of the Borrelia burgdorferi Species Complex in Ixodes ricinus Ticks in Urban, Agricultural and Sylvatic Habitats in Slovakia. Microorganisms 2023; 11:1666. [PMID: 37512839 PMCID: PMC10383148 DOI: 10.3390/microorganisms11071666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Lyme borreliosis (LB) is the most prevalent tick-borne human infection in Europe, with increasing incidence during the latest decades. Abundant populations of Ixodes ricinus, the main vector of the causative agent, spirochetes from the Borrelia burgdorferi sensu lato (Bbsl) complex, have been observed in urban and suburban areas of Europe, in general, and Slovakia, particularly. Understanding the spread of infectious diseases is crucial for implementing effective control measures. Global changes affect contact rates of humans and animals with Borrelia-infected ticks and increase the risk of contracting LB. The aim of this study was to investigate spatial and temporal variation in prevalence of Bbsl and diversity of its species in questing I. ricinus from three sites representing urban/suburban, natural and agricultural habitat types in Slovakia. Ixodes ricinus nymphs and adults were collected by dragging the vegetation in green areas of Bratislava town (urban/suburban habitat), in the Small Carpathians Mountains (natural habitat) (south-western Slovakia) and in an agricultural habitat at Rozhanovce in eastern Slovakia. Borrelia presence in ticks was detected by PCR and Bbsl species were identified by restriction fragment length polymorphism (RFLP). Borrelia burgdorferi s.l. species in coinfected ticks were identified by reverse line blot. Significant spatial and temporal variability in prevalence of infected ticks was revealed in the explored habitats. The lowest total prevalence was detected in the urban/suburban habitat, whereas higher prevalence was found in the natural and agricultural habitat. Six Bbsl species were detected by RFLP in each habitat type -B. burgdorferi sensu stricto (s.s.), B. afzelii, B. garinii, B. valaisiana, B. lusitaniae and B. spielmanii. Coinfections accounted for 3% of the total infections, whereby B. kurtenbachii was identified by RLB and sequencing in mixed infection with B. burgdorferi s.s, B. garinii and B. valaisiana. This finding represents the first record of B. kurtenbachii in questing I. ricinus in Slovakia and Europe. Variations in the proportion of Bbsl species were found between nymphs and adults, between years and between habitat types. Spatial variations in prevalence patterns and proportion of Bbsl species were also confirmed between locations within a relatively short distance in the urban habitat. Habitat-related and spatial variations in Borrelia prevalence and distribution of Bbsl species are probably associated with the local environmental conditions and vertebrate host spectrum. Due to the presence of Borrelia species pathogenic to humans, all explored sites can be ranked as areas with high epidemiological risk.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Michal Stanko
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
9
|
Lyme Borreliosis in Dogs: Background, Epidemiology, Diagnostics, Treatment and Prevention. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
Lyme borreliosis (LB) is a multisystemic tick-borne disease that can affect many organs and have various clinical manifestations in dogs. We attempted to summarise various aspects of Lyme disease: i. e., pathogenesis, epidemiology, benefits and risks of diagnostic approaches, treatment options, and prevention in dogs. Several diagnostic bottlenecks for LB in dogs and humans are compared. Because the occurrence of LB in both humans and dogs is closely related, monitoring its prevalence in dogs as sentinel animals is an excellent aid in assessing the risk of Lyme disease in a given geographic area. Although clinical symptoms in humans help clinicians diagnose LB, they are ineffective in dogs because canines rarely exhibit LB symptoms. Despite significant differences in sensitivity and specificity, sero-logical two-step detection of antibodies against Borrelia spp. (ELISA and Western blot) is the most commonly used method in humans and dogs. The limitations of the assay highlight the need for further research to develop new clinical markers and more accurate diagnostic tests. Due to the lack of a specific all-encompassing LB test, a definitive diagnosis of LB remains a difficult and time-consuming process in human and veterinary medicine. Understanding the disease prevalence and diagnostics, as well as preventing its spread with effective and timely treatment, are fundamental principles of good disease management.
Collapse
|
10
|
Richtrová E, Míchalová P, Lukavská A, Navrátil J, Kybicová K. Borrelia burgdorferi sensu lato infection in Ixodes ricinus ticks in urban green areas in Prague. Ticks Tick Borne Dis 2022; 13:102053. [PMID: 36279729 DOI: 10.1016/j.ttbdis.2022.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
Ixodes ricinus ticks are considered as the vector of the Borrelia burgdorferi sensu lato complex in urban areas, including city parks and green recreational areas. The aim of the present study was to determine the prevalence of B. burgdorferi s. l. in urban areas in the city of Prague, Czech Republic. In selected public green areas in Prague, a total of 2819 I. ricinus ticks were collected in spring, from April to June, in 2014-2020. Quantitative real time PCR revealed 28.1% of ticks (31% of males, 33.7% of females and 25.8% of nymphs) to be positive for B. burgdorferi s. l. The prevalence varied significantly (p˂0.01) between collection sites, with the highest numbers of infected ticks found in the central city areas. The places serving people for recreational and sport activities in urban areas are characterized by a lower diversity of reservoir hosts, provide opportunity for exposure to Borrelia infected ticks, and pose a higher infection risk. We have detected seven Borrelia species in ticks: B. garinii, B. afzelii, B. bavariensis, B. burgdorferi sensu stricto, B. valaisiana, B. spielmanii, and B. finlandensis. Most positive ticks were infected by B. garinii (35%) and B. afzelii (36.9%). Our results show that the Borrelia transmission cycle occurs within urban biotops and highlight the need for surveillance of tick-borne pathogens in public green areas.
Collapse
Affiliation(s)
- E Richtrová
- National Institute of Public Health, Šrobárova 49/48, Prague 100 00, Czech Republic.
| | - P Míchalová
- National Institute of Public Health, Šrobárova 49/48, Prague 100 00, Czech Republic
| | - A Lukavská
- National Institute of Public Health, Šrobárova 49/48, Prague 100 00, Czech Republic
| | - J Navrátil
- National Institute of Public Health, Šrobárova 49/48, Prague 100 00, Czech Republic
| | - K Kybicová
- National Institute of Public Health, Šrobárova 49/48, Prague 100 00, Czech Republic
| |
Collapse
|
11
|
Prevalence of Tick-Borne Pathogens in Questing Ixodes ricinus and Dermacentor reticulatus Ticks Collected from Recreational Areas in Northeastern Poland with Analysis of Environmental Factors. Pathogens 2022; 11:pathogens11040468. [PMID: 35456142 PMCID: PMC9024821 DOI: 10.3390/pathogens11040468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ticks, such as Ixodes ricinus and Dermacentor reticulatus, act as vectors for multiple pathogens posing a threat to both human and animal health. As the process of urbanization is progressing, those arachnids are being more commonly encountered in urban surroundings. In total, 1112 I. ricinus (n = 842) and D. reticulatus (n = 270) ticks were collected from several sites, including recreational urban parks, located in Augustów and Białystok, Poland. Afterwards, the specimens were examined for the presence of Borrelia spp., Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., and Coxiella burnetii using the PCR method. Overall obtained infection rate reached 22.4% (249/1112). In total, 26.7% (225/842) of I. ricinus was infected, namely with Borrelia spp. (25.2%; 212/842), Babesia spp. (2.0%; 17/842), and A. phagocytophilum (1.2%; 10/842). Among D. reticulatus ticks, 8.9% (24/270) were infected, specifically with Babesia spp. (7.0%; 19/270), A. phagocytophilum (1.1%; 3/270), and Borrelia burgdorferi s.l. (0.7%; 2/270). No specimen tested positively for Rickettsia spp., Bartonella spp., or Coxiella burnetii. Co-infections were detected in 14 specimens. Results obtained in this study confirm that I. ricinus and D. reticulatus ticks found within the study sites of northeastern Poland are infected with at least three pathogens. Evaluation of the prevalence of pathogens in ticks collected from urban environments provides valuable information, especially in light of the growing number of tick-borne infections in humans and domesticated animals.
Collapse
|
12
|
Hansford KM, Wheeler BW, Tschirren B, Medlock JM. Questing Ixodes ricinus ticks and Borrelia spp. in urban green space across Europe: A review. Zoonoses Public Health 2022; 69:153-166. [PMID: 35122422 PMCID: PMC9487987 DOI: 10.1111/zph.12913] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
For more than three decades, it has been recognized that Ixodes ricinus ticks occur in urban green space in Europe and that they harbour multiple pathogens linked to both human and animal diseases. Urban green space use for health and well‐being, climate mitigation or biodiversity goals is promoted, often without consideration for the potential impact on tick encounters or tick‐borne disease outcomes. This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp. infections in ticks in urban green space in 24 European countries. It presents data on several risk indicators for Lyme borreliosis and highlights key research gaps and recommendations for future studies. Across Europe, mean density of I. ricinus in urban green space was 6.9 (range; 0.1–28.8) per 100 m2 and mean Borrelia prevalence was 17.3% (range; 3.1%–38.1%). Similar density estimates were obtained for nymphs, which had a Borrelia prevalence of 14.2% (range; 0.5%–86.7%). Few studies provided data on both questing nymph density and Borrelia prevalence, but those that did found an average of 1.7 (range; 0–5.6) Borrelia‐infected nymphs per 100 m2 of urban green space. Although a wide range of genospecies were reported, Borrelia afzelii was the most common in most parts of Europe, except for England where B. garinii was more common. The emerging pathogen Borrelia miyamotoi was also found in several countries, but with a much lower prevalence (1.5%). Our review highlights that I. ricinus and tick‐borne Borrelia pathogens are found in a wide range of urban green space habitats and across several seasons. The impact of human exposure to I. ricinus and subsequent Lyme borreliosis incidence in urban green space has not been quantified. There is also a need to standardize sampling protocols to generate better baseline data for the density of ticks and Borrelia prevalence in urban areas.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | - Benedict W Wheeler
- European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | | | - Jolyon M Medlock
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK.,Health Protection Research Unit in Emerging & Zoonotic Infections, Public Health England, Porton Down, UK
| |
Collapse
|
13
|
Boyer PH, Barthel C, Mohseni-Zadeh M, Talagrand-Reboul E, Frickert M, Jaulhac B, Boulanger N. Impact of Different Anthropogenic Environments on Ticks and Tick-Associated Pathogens in Alsace, a French Region Highly Endemic for Tick-Borne Diseases. Microorganisms 2022; 10:microorganisms10020245. [PMID: 35208700 PMCID: PMC8877010 DOI: 10.3390/microorganisms10020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Ticks and tick-borne diseases have spread over the last decades. In parallel, the incidence in humans, accidental hosts for most of these zoonotic diseases, has increased. This epidemiological intensification can be associated with anthropogenic alterations of forest ecosystems and animal biodiversity, but also with socioeconomic changes. Their proliferation is largely due to human-induced effects on the factors that favor the circulation of these infectious agents. We selected different types of anthropogenic environments in Alsace, a region endemic for tick-borne diseases in France, to better understand the impact of human interventions on tick populations and tick-borne disease incidence. Ticks were collected in one golf course, three urban parks, one mid-mountain forest, and one alluvial forest that is currently part of a protected natural area. Ixodes ricinus was found primarily in humid vegetation, which is favorable for tick survival, such as grounds populated with trees and covered with leaf litter. We also observed that reforestation and high animal biodiversity in a protected area such as the alluvial forest led to a greater number of ticks, including both Ixodes ricinus and Dermacentor reticulatus, as well as to a higher prevalence of pathogens such as Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Borrelia miyamotoi, and Rickettsia raoulti.
Collapse
Affiliation(s)
- Pierre H. Boyer
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
| | - Cathy Barthel
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
| | - Mahsa Mohseni-Zadeh
- Hôpitaux Civils de Colmar, Service de Maladies Infectieuses, 39 Avenue de la Liberté, 68000 Colmar, France;
| | - Emilie Talagrand-Reboul
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
| | - Mathieu Frickert
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
| | - Benoit Jaulhac
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
- French National Reference Center for Borrelia, Centre Hospitalier Régional Universitaire, 67000 Strasbourg, France
| | - Nathalie Boulanger
- UR7290: Virulence Bactérienne Précoce: Groupe Borrelia, Institut de Bactériologie, FMTS, University of Strasbourg, 67000 Strasbourg, France; (P.H.B.); (C.B.); (E.T.-R.); (M.F.); (B.J.)
- French National Reference Center for Borrelia, Centre Hospitalier Régional Universitaire, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3-69-55-14-49
| |
Collapse
|
14
|
Urban woodland habitat is important for tick presence and density in a city in England. Ticks Tick Borne Dis 2021; 13:101857. [PMID: 34763308 DOI: 10.1016/j.ttbdis.2021.101857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Urban green spaces provide an opportunity for contact between members of the public and ticks infected with pathogens. Understanding tick distribution within these areas and the drivers for increased tick density or Borrelia infection are important from a risk management perspective. This study aimed to generate data on tick presence, nymph density and Borrelia infection across a range of urban green space habitats, in order to identify those that may potentially present a higher risk of Lyme borreliosis to members of the public. Several sites were visited across the English city of Bath during 2015 and 2016. Tick presence was confirmed in all habitats surveyed, with increased likelihood in woodland and woodland edge. Highest nymph densities were also reported in these habitats, along with grassland during one of the sampling years. Adult ticks were more likely to be infected compared to nymphs, and the highest densities of infected nymphs were associated with woodland edge habitat. In addition to Lyme borreliosis causing Borrelia genospecies, Borrelia miyamotoi was also detected at several sites. This study adds to the growing evidence that urban green space habitats present a public health risk from tick bites, and this has implications for many policy areas including health and wellbeing, climate adaptation and urban green space planning.
Collapse
|
15
|
Impact of climate factors on the seasonal activity of ticks and temporal dynamics of tick-borne pathogens in an area with a large tick species diversity in Slovakia, Central Europe. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00902-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Stanko M, Derdáková M, Špitalská E, Kazimírová M. Ticks and their epidemiological role in Slovakia: from the past till present. Biologia (Bratisl) 2021; 77:1575-1610. [PMID: 34548672 PMCID: PMC8446484 DOI: 10.1007/s11756-021-00845-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 01/26/2023]
Abstract
In Slovakia, 22 tick species have been found to occur to date. Among them, Ixodes ricinus, Dermacentor reticulatus, D. marginatus and marginally Haemaphysalis concinna, H. inermis and H. punctata have been identified as the species of public health relevance. Ticks in Slovakia were found to harbour and transmit zoonotic and/or potentially zoonotic agents such as tick-borne encephalitis virus (TBEV), spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex, the relapsing fever sprirochaete Borrelia miyamotoi, bacteria belonging to the orders Rickettsiales (Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis), Legionellales (Coxiella burnetii), and Thiotrichales (Francisella tularensis), and Babesia spp. parasites (order Piroplasmida). Ixodes ricinus is the principal vector of the largest variety of microorganisms including viruses, bacteria and piroplasms. TBEV, B. burgdorferi s.l., rickettsiae of the spotted fever group, C. burnetii and F. tularensis have been found to cause serious diseases in humans, whereas B. miyamotoi, A. phagocytophilum, N. mikurensis, Babesia microti, and B. venatorum pose lower or potential risk to humans. Distribution of TBEV has a focal character. During the last few decades, new tick-borne encephalitis (TBE) foci and their spread to new areas have been registered and TBE incidence rates have increased. Moreover, Slovakia reports the highest rates of alimentary TBE infections among the European countries. Lyme borreliosis (LB) spirochaetes are spread throughout the distribution range of I. ricinus. Incidence rates of LB have shown a slightly increasing trend since 2010. Only a few sporadic cases of human rickettsiosis, anaplasmosis and babesiosis have been confirmed thus far in Slovakia. The latest large outbreaks of Q fever and tularaemia were recorded in 1993 and 1967, respectively. Since then, a few human cases of Q fever have been reported almost each year. Changes in the epidemiological characteristics and clinical forms of tularaemia have been observed during the last few decades. Global changes and development of modern molecular tools led to the discovery and identification of emerging or new tick-borne microorganisms and symbionts with unknown zoonotic potential. In this review, we provide a historical overview of research on ticks and tick-borne pathogens in Slovakia with the most important milestones and recent findings, and outline future directions in the investigation of ticks as ectoparasites and vectors of zoonotic agents and in the study of tick-borne diseases.
Collapse
Affiliation(s)
- Michal Stanko
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Markéta Derdáková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Eva Špitalská
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| |
Collapse
|
17
|
Wild Small Mammals and Ticks in Zoos-Reservoir of Agents with Zoonotic Potential? Pathogens 2021; 10:pathogens10060777. [PMID: 34205547 PMCID: PMC8235793 DOI: 10.3390/pathogens10060777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Wild small mammals and ticks play an important role in maintaining and spreading zoonoses in nature, as well as in captive animals. The aim of this study was to monitor selected agents with zoonotic potential in their reservoirs and vectors in a zoo, and to draw attention to the risk of possible contact with these pathogens. In total, 117 wild small mammals (rodents) and 166 ticks were collected in the area of Brno Zoo. Antibodies to the bacteria Coxiella burnetii, Francisella tularensis, and Borrelia burgdorferi s.l. were detected by a modified enzyme-linked immunosorbent assay in 19% (19/99), 4% (4/99), and 15% (15/99) of rodents, respectively. Antibodies to Leptospira spp. bacteria were detected by the microscopic agglutination test in 6% (4/63) of rodents. Coinfection (antibodies to more than two agents) were proved in 14.5% (15/97) of animals. The prevalence of C. burnetii statistically differed according to the years of trapping (p = 0.0241). The DNAs of B. burgdorferi s.l., Rickettsia sp., and Anaplasma phagocytophilum were detected by PCR in 16%, 6%, and 1% of ticks, respectively, without coinfection and without effect of life stage and sex of ticks on positivity. Sequencing showed homology with R. helvetica and A. phagocytophilum in four and one positive samples, respectively. The results of our study show that wild small mammals and ticks in a zoo could serve as reservoirs and vectors of infectious agents with zoonotic potential and thus present a risk of infection to zoo animals and also to keepers and visitors to a zoo.
Collapse
|
18
|
Kovryha N, Tsyhankova A, Zelenuchina O, Mashchak O, Terekhov R, Rogovskyy AS. Prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum in Ixodid Ticks from Southeastern Ukraine. Vector Borne Zoonotic Dis 2021; 21:242-246. [PMID: 33475465 PMCID: PMC7997714 DOI: 10.1089/vbz.2020.2716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives: Tick-borne diseases have emerged as an increasing medical problem in the world. Being the most prevalent ixodid ticks in Europe, Ixodes ricinus and Dermacentor reticulatus are responsible for transmission of numerous zoonotic pathogens (e.g., human granulocytic anaplasmosis and Lyme borreliosis). Despite their public health significance, studies on the prevalence of tick-borne agents are scare for Eastern Europe. The objective of this study was to examine the prevalence of Anaplasma phagocytophilum, Ehrlichia chaffeensis, and Borrelia burgdorferi sensu lato (B. burgdorferi s. l.) in ixodid ticks from Southeastern Ukraine. Methods: Over a 5-year period (2014-2018), 358 questing and 389 engorged ixodid ticks were collected from Southeastern Ukraine (Zaporizhzhya region). The ticks were identified as Dermacentor marginatus, D. reticulatus, I. ricinus, and Rhipicephalus rossicus. Nucleic acid samples extracted from tick pools were subjected to RT-PCR analyses for A. phagocytophilum, E. chaffeensis, and B. burgdorferi s. l. Results: The examined ixodid ticks tested negative for the aforementioned pathogens with the exception of I. ricinus ticks. For questing I. ricinus ticks, minimum infection rates of A. phagocytophilum and B. burgdorferi s. l. were, respectively, 4.2-7.7% and 8.6-12.7%. Conclusions: These findings will be valuable for medical and veterinary practitioners when risks associated with tick-borne diseases are assessed for southeastern regions of Ukraine.
Collapse
Affiliation(s)
- Nadia Kovryha
- The Zaporizhzhya Oblast Laboratory Center, the Ministry of Health of Ukraine, Zaporizhzhya, Ukraine
| | - Ala Tsyhankova
- The Zaporizhzhya Oblast Laboratory Center, the Ministry of Health of Ukraine, Zaporizhzhya, Ukraine
| | - Olena Zelenuchina
- The Zaporizhzhya Oblast Laboratory Center, the Ministry of Health of Ukraine, Zaporizhzhya, Ukraine
| | - Olexandr Mashchak
- The Zaporizhzhya Oblast Laboratory Center, the Ministry of Health of Ukraine, Zaporizhzhya, Ukraine
| | - Roman Terekhov
- The Zaporizhzhya Oblast Laboratory Center, the Ministry of Health of Ukraine, Zaporizhzhya, Ukraine
| | - Artem S Rogovskyy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
19
|
Pathogenic microorganisms in ticks removed from Slovakian residents over the years 2008-2018. Ticks Tick Borne Dis 2020; 12:101626. [PMID: 33385938 DOI: 10.1016/j.ttbdis.2020.101626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
A total of 750 ticks feeding on humans were collected during the years 2008-2018. The majority of ticks (94.8 %) came from Slovakia, with 3.5 % from the Czech Republic, 0.9 % from Austria, and 0.3 % from Hungary. Travellers from Ukraine, Croatia, France, and Cuba also brought one tick from each of these countries. The majority of the analysed ticks were identified as Ixodes ricinus (94.3 %). Dermacentor reticulatus (0.93 %), Haemaphysalis concinna (0.1 %), Haemaphysalis sp. (0.1 %), Ixodes arboricola (0.1 %), and Rhipicephalus sp. (0.1 %) were also encountered. The most frequently found stage of I. ricinus was the nymph (69.9 %) followed by adult females (20.4 %) and larvae (8.3 %). Ticks were predominantly found on children younger than 10 years (46.3 %) and adults between 30-39 years (21.4 %). In children younger than 10 years, the ticks were usually found on the head, while in other age categories, the ticks were predominantly attached to legs. Ticks were further individually analysed for the presence of Rickettsia spp., Coxiella burnetii, Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Neoehrlichia mikurensis, Bartonella spp. and Babesia spp. The overall prevalences of tick-borne bacteria assessed in I. ricinus ticks acquired in Slovakia were: rickettsiae 25.0 % (95 % CI: 21.7-28.2), B. burgdorferi s.l. 20.5 % (95 % CI: 17.4-23.5), A. phagocytophilum 13.5 % (95 % CI: 10.9-16.0), Babesia spp. 5.2 % (95 % CI: 3.5-6.9), C. burnetii 3.0 % (95 % CI: 1.5-4.6), and N. mikurensis 4.4 % (95 % CI: 2.0-6.8). Pathogenic species Rickettsia raoultii, Rickettsia helvetica, Rickettsia monacensis, A. phagocytophilum, Borrelia garinii, Borrelia afzelii, Borrelia valaisiana, Babesia microti, and Babesia divergens were identified in D. reticulatus and I. ricinus ticks.
Collapse
|
20
|
Mathews-Martin L, Namèche M, Vourc'h G, Gasser S, Lebert I, Poux V, Barry S, Bord S, Jachacz J, Chalvet-Monfray K, Bourdoiseau G, Pamies S, Sepúlveda D, Chambon-Rouvier S, René-Martellet M. Questing tick abundance in urban and peri-urban parks in the French city of Lyon. Parasit Vectors 2020; 13:576. [PMID: 33183354 PMCID: PMC7659073 DOI: 10.1186/s13071-020-04451-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022] Open
Abstract
Background In Europe, ticks are responsible for the transmission of several pathogens of medical importance, including bacteria of the Borrelia burgdorferi (s.l.) complex, the agents of Lyme borreliosis. In France, the Auvergne Rhône-Alpes region is considered a hot spot for human tick-borne pathogen infections, with an estimated annual rate of 156 cases of Lyme borreliosis per 100,000 inhabitants. Although several studies have assessed the abundance of ticks in rural areas, little consideration has been given thus far to urban green spaces in France. Methods This study aimed to estimate tick abundance in three parks, two urban (U1, U2) and one peri-urban (PU), in and around the city of Lyon (France). A forest in a rural area was used as a control (C). Tick sampling campaigns were performed in each site in April, May, June, July, and October 2019 using the dragging method. One hundred transects of 10 m2 each were randomly chosen in each park in places frequented by humans. The sampling sessions were carried out under semi-controlled abiotic conditions. Ticks were stored in 70% ethanol and identified to species and developmental stage under a light microscope using morphological keys. Results A total of seven ticks (nymphs and adults) were collected in the two urban parks (six in U1 and one in U2), while 499 ticks were sampled in the peri-urban park. Of the 506 ticks collected, 504 were identified as Ixodes ricinus, one as Dermacentor marginatus, and one as Ixodes frontalis. In the peri-urban park, ticks were mainly collected under the forest cover and at forest edges. Tick density under forest cover was 7.1 times higher in the control site than in the peri-urban park throughout the survey period. Conclusions This study confirmed the presence of ticks in all of the parks surveyed, although their occurrence in the urban parks was very rare compared to the peri-urban park and the control site. These results should serve as a basis for the implementation of preventive measures.![]()
Collapse
Affiliation(s)
- Laure Mathews-Martin
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France
| | - Manon Namèche
- Direction - Écologie Urbaine de la Ville de Lyon, Lyon, France
| | - Gwenaël Vourc'h
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France
| | - Sabrina Gasser
- INRAE, Communication et médias, Service d'appui à la recherche, Site de Theix, Université Clermont Auvergne, 63122, Saint-Genès-Champanelle, France
| | - Isabelle Lebert
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France
| | - Valérie Poux
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France
| | - Séverine Barry
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France
| | - Séverine Bord
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France.,AgroParisTech, INRAE, UMR MIA-Paris, Université Paris-Saclay, 75005, Paris, France
| | - Jeremy Jachacz
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France
| | - Karine Chalvet-Monfray
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France.,INRAE, VetAgro Sup, UMR EPIA, Université de Lyon, 69280, Marcy l'Etoile, France
| | - Gilles Bourdoiseau
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France.,INRAE, VetAgro Sup, UMR EPIA, Université de Lyon, 69280, Marcy l'Etoile, France
| | - Sophie Pamies
- Direction - Écologie Urbaine de la Ville de Lyon, Lyon, France
| | - Diana Sepúlveda
- Direction - Écologie Urbaine de la Ville de Lyon, Lyon, France
| | | | - Magalie René-Martellet
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint-Genès Champanelle, France. .,INRAE, VetAgro Sup, UMR EPIA, Université de Lyon, 69280, Marcy l'Etoile, France.
| |
Collapse
|
21
|
Levytska VA, Mushinsky AB, Zubrikova D, Blanarova L, Długosz E, Vichova B, Slivinska KA, Gajewski Z, Gizinski S, Liu S, Zhou L, Rogovskyy AS. Detection of pathogens in ixodid ticks collected from animals and vegetation in five regions of Ukraine. Ticks Tick Borne Dis 2020; 12:101586. [PMID: 33059172 DOI: 10.1016/j.ttbdis.2020.101586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
The distribution and prevalence of zoonotic pathogens infecting ixodid ticks in Western Europe have been extensively examined. However, data on ticks and tick-borne pathogens in Eastern Europe, particularly Ukraine are scarce. The objective of the current study was, therefore, to investigate the prevalence of Anaplasma phagocytophilum, Anaplasmataceae, Rickettsia spp., Babesia spp., Bartonella spp., and Borrelia burgdorferi sensu lato in engorged and questing ixodid ticks collected from five administrative regions (oblasts) of Ukraine, namely Chernivtsi, Khmelnytskyi, Kyiv, Ternopil, and Vinnytsia. The ticks were collected from both wild and domestic animals and from vegetation. Of 524 ixodid ticks collected, 3, 99, and 422 ticks were identified as Ixodes hexagonus, Ixodes ricinus, and Dermacentor reticulatus, respectively. DNA samples individually extracted from 168 questing and 354 engorged adult ticks were subjected to pathogen-specific PCR analyses. The mean prevalence in I. ricinus and D. reticulatus were, respectively: 10 % (10/97) and 3 % (12/422) for A. phagocytophilum; 69 % (67/97) and 52 % (220/422) for members of the Anaplasmataceae family; 25 % (24/97) and 28 % (117/422) for Rickettsia spp.; 3 % (3/97) and 1 % (6/422) for Babesia spp.; and 9 % (9/97) and 5 % (20/422) for Bartonella spp. Overall, between the five cities, there was no significant difference in the prevalence of any of the pathogens for the respective ticks (p > 0.05). The prevalence of B. burgdorferi s. l. in the questing and engorged I. ricinus varied from 0 to 27 % and 14-44%, respectively, with no statistical significance identified between the five cities (p > 0.05). In addition to reporting the updated data for Kyiv and Ternopil, this study is the first to provide the prevalences of the tick-borne pathogens for Chernivtsi, Khmelnytskyi, and Vinnytsia. This investigation is also the first to detect Neoehrlichia mikurensis in ixodid ticks from Ukraine. These new data will be useful for medical and veterinary practitioners as well as public health officials when diagnosing infections and when implementing measures to combat tick-borne diseases in Ukraine.
Collapse
Affiliation(s)
- Viktoriya A Levytska
- Department of Infection and Invasive Diseases, Faculty of Veterinary Medicine and Technology in Animal Husbandry, State Agrarian and Engineering University in Podilya, Kamyanets-Podilskyi, 32300, Ukraine.
| | - Andriy B Mushinsky
- Department of Infection and Invasive Diseases, Faculty of Veterinary Medicine and Technology in Animal Husbandry, State Agrarian and Engineering University in Podilya, Kamyanets-Podilskyi, 32300, Ukraine
| | - Dana Zubrikova
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovakia
| | - Lucia Blanarova
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovakia
| | - Ewa Długosz
- Department of Preclinical Sciences, Warsaw University of Life Sciences (SGGW), 02-787, Warsaw, Poland
| | - Bronislava Vichova
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovakia
| | - Kateryna A Slivinska
- I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, 01030, Ukraine
| | - Zdzislaw Gajewski
- Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences (SGGW), 02-787, Warsaw, Poland
| | - Slawomir Gizinski
- Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences (SGGW), 02-787, Warsaw, Poland
| | - Shuling Liu
- Department of Statistics, Texas A&M University, College Station, TX 77845, USA
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX 77845, USA
| | - Artem S Rogovskyy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
22
|
Vogelgesang JR, Walter M, Kahl O, Rubel F, Brugger K. Long-term monitoring of the seasonal density of questing ixodid ticks in Vienna (Austria): setup and first results. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:409-420. [PMID: 32556948 PMCID: PMC7359148 DOI: 10.1007/s10493-020-00511-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 05/13/2023]
Abstract
The first long-term monitoring to document both activity and density of questing ixodid ticks in Vienna, Austria, is introduced. It was started in 2017 and is planned to run over decades. Such long-term monitorings are needed to quantify possible effects of climate change or to develop tick density forecast models. The monthly questing tick density at three sites has been observed by using a standardized sampling method by dragging an area of [Formula: see text] at each occasion. Popular recreational areas were chosen as study sites. These are the Prater public park, the wooded Kahlenberg, and a wildlife garden in Klosterneuburg. First results show a 3-year time series of nymphs and adults of the Ixodes ricinus species complex and Haemaphysalis concinna for the period 2017-2019. Whereas questing nymphs of the I. ricinus species complex were collected from February to November, H. concinna nymphs were only dragged from May to October. The peak of nymphal activity of the I. ricinus species complex was in May, that of H. concinna in August. In addition, a brief overview is given about ticks and tick-borne pathogens occurring in urban and suburban areas of Vienna.
Collapse
Affiliation(s)
- Janna R Vogelgesang
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Melanie Walter
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Olaf Kahl
- tick-radar GmbH, 10555, Berlin, Germany
| | - Franz Rubel
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Katharina Brugger
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
23
|
Hauck D, Springer A, Chitimia-Dobler L, Strube C. Two-year monitoring of tick abundance and influencing factors in an urban area (city of Hanover, Germany). Ticks Tick Borne Dis 2020; 11:101464. [PMID: 32723659 DOI: 10.1016/j.ttbdis.2020.101464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
Ticks may transmit a variety of human and animal pathogens. Prevalence of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in ticks has been monitored in the city of Hanover, Germany, since 2005. However, to determine the infection risk for humans and animals, not only pathogen prevalence, but also tick abundance and seasonality need to be taken into account. Therefore, the aim of this study was to investigate tick abundance at ten different collection sites in the city of Hanover, Germany. Collection of questing ticks was performed by the flagging method in the first and second half of each month during the tick season (April-October) in 2017 and 2018. At each 200 m² collection site, one of four 50 m² fields was sampled per visit on a rotational basis, resulting in 100 m² sampled per month. In addition, data on weather conditions, near-ground temperature, relative humidity and vegetation composition were noted at each collection event. In 2017, a total of 1770 ticks were collected, while 1866 ticks were collected in 2018. Ixodes ricinus was the most prevalent species (97.0 % of all ticks, 98.0 % of nymphs, 91.6 % of adults) followed by I. inopinatus (2.3 % of all ticks, 1.1 % of nymphs, 8.0 % of adults), I. frontalis (0.6 % of all ticks, 0.6 % of nymphs, 0.3 % of adults) and I. hexagonus (0.03 % of all ticks, 0.03 % of nymphs, 0.0 % of adults). Using generalized linear mixed modeling, density of I. ricinus and I. inopinatus in 2017 was significantly higher than in 2018. Regarding different landscape types, ticks were significantly more abundant in mixed forests than in parks, with more than 50 ticks/100 m² on average in both years. In urban parks, average tick density amounted to 15 ticks/100 m² in 2017 and 11 ticks/100 m² in 2018 and in broad-leaved forests average tick density was 13 and 18 ticks/100 m² in 2017 and 2018, respectively. Tick density showed a marked peak in June 2017 and in May 2018 at most sites, whereas a less pronounced peak was recognizable in September. Tick density varied considerably between collection sites. However, no statistically significant effect of (micro-)climatic variables, including near-ground temperature, relative humidity and saturation deficit, was found. Thus, further factors, such as the abundance of wildlife hosts, need to be considered in future studies to explain the differences between collection sites.
Collapse
Affiliation(s)
- Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | | | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
24
|
Grochowska A, Milewski R, Pancewicz S, Dunaj J, Czupryna P, Milewska AJ, Róg-Makal M, Grygorczuk S, Moniuszko-Malinowska A. Comparison of tick-borne pathogen prevalence in Ixodes ricinus ticks collected in urban areas of Europe. Sci Rep 2020; 10:6975. [PMID: 32332817 PMCID: PMC7181685 DOI: 10.1038/s41598-020-63883-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
Tick-borne diseases are a major threat to human and animal health. An increasing number of natural habitats have been transformed into urban areas by human activity; hence, the number of reported tick bites in urban and suburban areas has risen. This retrospective analysis evaluated 53 scientific reports concerning infections of Ixodes ricinus ticks collected from urban and suburban areas of Europe between 1991 and 2017. The results indicate significant differences in many variables, including a higher number of Anaplasma phagocytophilum infections in Eastern Europe than in Western Europe. The opposite result was observed for Candidatus Neoehrlichia mikurensis infections. A comparison of climate zones revealed that Borrelia burgdorferi s.l. infections have the greatest median incidence rate in subtropical climate zones. No statistical significance was found when comparing other tick-borne pathogens (TBPs), such as Borrelia miyamotoi, Rickettsia spp., Babesia spp., Bartonella spp., Ehrlichia spp., Coxiella burnetii and Francisella tularensis. The analysis also showed significant differences in the overall prevalence of TBPs according to average temperatures and rainfall across Europe. This retrospective study contributes to the knowledge on the occurrence and prevalence of TBPs in urbanized areas of Europe and their dependence on the habitats and geographical distributions of ticks. Due to the increased risk of tick bites, it is of great importance to investigate infections in ticks from urban and suburban areas.
Collapse
Affiliation(s)
- Anna Grochowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland.
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Anna Justyna Milewska
- Department of Statistics and Medical Informatics, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland
| | - Magdalena Róg-Makal
- Department of Invasive Cardiology, Medical University of Białystok, M. Skłodowskiej-Curie 24 A, 15-276, Białystok, Poland
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
25
|
Candidatus Neoehrlichia mikurensis is widespread in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis 2020; 11:101371. [PMID: 32057703 DOI: 10.1016/j.ttbdis.2020.101371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 11/21/2022]
Abstract
Candidatus Neoehrlichia mikurensis, the causative agent of tick-borne "neoehrlichiosis" has recently been reported in humans, mammals and ticks in Europe. The aim of this study was to map the distribution of this bacterium in questing ticks in the Czech Republic. A total of 13,325 Ixodes ricinus including 445 larvae, 5270 nymphs and 7610 adults were collected from vegetation by flagging in 140 Czech towns and villages from every region of the Czech Republic. The ticks were pooled into 2665 groups of 5 individuals respecting life stage or sex and tested for the presence of Ca. Neoehrlichia mikurensis by conventional PCR targeting of the groEL gene. The bacterium was detected in 533/2665 pools and 125/140 areas screened, showing an overall estimated prevalence of 4.4 % in ticks of all life stages. Phylogenetic analysis revealed only small genetic diversity among the strains found. Two pools of questing larvae tested positive, suggesting transovarial transmission. According to this study, Ca. Neoehrlichia mikurensis is another tick-borne pathogen widespread in I. ricinus ticks in the Czech Republic.
Collapse
|
26
|
Matei IA, Estrada-Peña A, Cutler SJ, Vayssier-Taussat M, Varela-Castro L, Potkonjak A, Zeller H, Mihalca AD. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit Vectors 2019; 12:599. [PMID: 31864403 PMCID: PMC6925858 DOI: 10.1186/s13071-019-3852-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/13/2019] [Indexed: 11/11/2022] Open
Abstract
Anaplasma phagocytophilum is the agent of tick-borne fever, equine, canine and human granulocytic anaplasmosis. The common route of A. phagocytophilum transmission is through a tick bite, the main vector in Europe being Ixodes ricinus. Despite the apparently ubiquitous presence of the pathogen A. phagocytophilum in ticks and various wild and domestic animals from Europe, up to date published clinical cases of human granulocytic anaplasmosis (HGA) remain rare compared to the worldwide status. It is unclear if this reflects the epidemiological dynamics of the human infection in Europe or if the disease is underdiagnosed or underreported. Epidemiologic studies in Europe have suggested an increased occupational risk of infection for forestry workers, hunters, veterinarians, and farmers with a tick-bite history and living in endemic areas. Although the overall genetic diversity of A. phagocytophilum in Europe is higher than in the USA, the strains responsible for the human infections are related on both continents. However, the study of the genetic variability and assessment of the difference of pathogenicity and infectivity between strains to various hosts has been insufficiently explored to date. Most of the European HGA cases presented as a mild infection, common clinical signs being pyrexia, headache, myalgia and arthralgia. The diagnosis of HGA in the USA was recommended to be based on clinical signs and the patient’s history and later confirmed using specialized laboratory tests. However, in Europe since the majority of cases are presenting as mild infection, laboratory tests may be performed before the treatment in order to avoid antibiotic overuse. The drug of choice for HGA is doxycycline and because of potential for serious complication the treatment should be instituted on clinical suspicion alone.
Collapse
Affiliation(s)
- Ioana A Matei
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Sally J Cutler
- School of Health, Sport & Bioscience, University of East London, London, UK.
| | - Muriel Vayssier-Taussat
- Department of Animal Health, French National Institute for Agricultural Research, Maisons-Alfort, France
| | - Lucía Varela-Castro
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.,Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Bizkaia Science and Technology Park, Derio, Bizkaia, Spain
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Herve Zeller
- Emerging and Vector-borne Diseases Programme, European Centre for Disease Prevention and Control, Solna, Sweden
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Lejal E, Marsot M, Chalvet-Monfray K, Cosson JF, Moutailler S, Vayssier-Taussat M, Pollet T. A three-years assessment of Ixodes ricinus-borne pathogens in a French peri-urban forest. Parasit Vectors 2019; 12:551. [PMID: 31752997 PMCID: PMC6873405 DOI: 10.1186/s13071-019-3799-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/10/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Ixodes ricinus is the predominant tick species in Europe and the primary pathogen vector for both humans and animals. These ticks are frequently involved in the transmission of Borrelia burgdorferi (sensu lato), the causative agents of Lyme borreliosis. While much more is known about I. ricinus tick-borne pathogen composition, information about temporal tick-borne pathogen patterns remain scarce. These data are crucial for predicting seasonal/annual patterns which could improve understanding and prevent tick-borne diseases. METHODS We examined tick-borne pathogen (TBP) dynamics in I. ricinus collected monthly in a peri-urban forest over three consecutive years. In total, 998 nymphs were screened for 31 pathogenic species using high-throughput microfluidic real-time PCR. RESULTS We detected DNA from Anaplasma phagocytophilum (5.3%), Rickettsia helvetica (4.5%), Borrelia burgdorferi (s.l.) (3.7%), Borrelia miyamotoi (1.2%), Babesia venatorum (1.5%) and Rickettsia felis (0.1%). Among all analysed ticks, 15.9% were infected by at least one of these microorganisms, and 1.3% were co-infected. Co-infections with B. afzeli/B. garinii and B. garinii/B. spielmanii were significantly over-represented. Moreover, significant variations in seasonal and/or inter-annual prevalence were observed for several pathogens (R. helvetica, B. burgdorferi (s.l.), B. miyamotoi and A. phagocytophilum). CONCLUSIONS Analysing TBP prevalence in monthly sampled tick over three years allowed us to assess seasonal and inter-annual fluctuations of the prevalence of TBPs known to circulate in the sampled area, but also to detect less common species. All these data emphasize that sporadic tick samplings are not sufficient to determine TBP prevalence and that regular monitoring is necessary.
Collapse
Affiliation(s)
- Emilie Lejal
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Maud Marsot
- Laboratory for Animal Health, Epidemiology Unit, ANSES, University Paris Est, Maisons-Alfort, France
| | - Karine Chalvet-Monfray
- UMR EPIA, VetAgro Sup, INRA, Université de Lyon, Université Clermont Auvergne, 63122 Saint-Genès-Champanelle, France
| | - Jean-François Cosson
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | - Thomas Pollet
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
28
|
Heylen D, Lasters R, Adriaensen F, Fonville M, Sprong H, Matthysen E. Ticks and tick-borne diseases in the city: Role of landscape connectivity and green space characteristics in a metropolitan area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:941-949. [PMID: 30921726 DOI: 10.1016/j.scitotenv.2019.03.235] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 05/25/2023]
Abstract
Green spaces in the city are important for human wellbeing, but are also zones in which humans can become infected with zoonotic diseases. Therefore, there is a need to understand how infection risk is related to green space characteristics, wildlife communities and connectivity with rural areas hosting reservoir populations of hosts. Our hypothesis is that wildlife hosts in urban green spaces, and thereby the prevalence of questing ticks and their Lyme disease causing pathogens (Borrelia burgdorferi s.l.), can be partly predicted based on green space characteristics as well as measures of connectivity to known source areas. We sampled ticks in twenty-two green spaces during Spring (2014 and 2016) and Autumn 2016, located along an urbanization gradient in Antwerp (Belgium). More than 18,000 m2 was sampled, with tick densities ranging from 0 to 386 individuals/100 m2. We estimated connectivity using the least-cost algorithm as either the cost distance to the nearest green space, or to a known population of roe deer (Capreolus capreolus), known to be an important tick propagation host. Both connectivity measures turned out to be correlated, reflecting a gradient in green space isolation from the periphery to the urban center. In 87% of plots where ticks were trapped, at least one Borrelia-infected tick was found. The overall Borrelia-prevalence in nymphs was 17.8%, in adults 32.6%. Density of infected ticks decreased with urbanization and increased with connectivity. Nymphs in larger green spaces were more likely to be infected. While density and infection prevalence for adults increased with the amount of neighboring agricultural land, the larval density and nymphal infection prevalence decreased. Interestingly, the proportion of Borrelia genospecies associated with birds or mammals was comparable in rural and (sub)urban areas (bird/mammal: 0.38), suggesting that even in small green spaces Borrelia infections can persist in local host populations.
Collapse
Affiliation(s)
- D Heylen
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States of America.
| | - R Lasters
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - F Adriaensen
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - M Fonville
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - H Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - E Matthysen
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
29
|
Buczek A, Bartosik K, Buczek W, Buczek AM, Kuczyński P. The effect of sublethal concentrations of deltamethrin and alphacypermethrin on the fecundity and development of Ixodes ricinus (Acari: Ixodidae) eggs and larvae. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:203-221. [PMID: 31144076 DOI: 10.1007/s10493-019-00381-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Two pyrethroids, deltamethrin (D) and alphacypermethrin (AC), have been used as commercial products for tick control worldwide. However, the effects of sublethal doses of these compounds on various tick species and their developmental stages have not been fully explored yet, although such knowledge could contribute to a more effective application of both pyrethroids and simultaneous reduction of their costs and undesirable side effects, including the harmful impact on other organisms and environmental contamination. This study investigates the effect of sublethal concentrations of D and AC applied to engorged females on the fecundity, development of eggs and larvae, and the number of offspring in the Ixodes ricinus (L.) tick, which is the most important vector of tick-borne diseases of humans in Europe. After detachment from rabbit's skin, fully engorged I. ricinus females were treated with 20 μl of pyrethroid solutions at five concentrations from 0.01562 to 0.25% and kept at 28 °C and 75% relative humidity. The impact of the pyrethroids on maturation and development of eggs as well as development of larvae was assessed based on parameters of the preoviposition and oviposition periods and the course of embryogenesis and egg hatch. The investigations have shown that both tested acaricides reduce the reproductive rate in I. ricinus females by inhibition of egg development and disturb embryonic development and larval hatch. Females did not lay eggs at concentrations higher than 0.0625% AC and 0.125% D. The lower concentrations of both pyrethroids disturbed or inhibited the embryogenesis and egg hatch in I. ricinus.
Collapse
Affiliation(s)
- Alicja Buczek
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080, Lublin, Poland.
| | - Katarzyna Bartosik
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080, Lublin, Poland
| | - Weronika Buczek
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080, Lublin, Poland
| | - Alicja M Buczek
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080, Lublin, Poland
| | - Paweł Kuczyński
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St., 20-080, Lublin, Poland
- Chair and Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Jaczewskiego 8 St, 20-090, Lublin, Poland
| |
Collapse
|
30
|
Klemola T, Sormunen JJ, Mojzer J, Mäkelä S, Vesterinen EJ. High tick abundance and diversity of tick-borne pathogens in a Finnish city. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00854-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Galfsky D, Król N, Pfeffer M, Obiegala A. Long-term trends of tick-borne pathogens in regard to small mammal and tick populations from Saxony, Germany. Parasit Vectors 2019; 12:131. [PMID: 30909955 PMCID: PMC6434846 DOI: 10.1186/s13071-019-3382-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rodents are important in the life-cycle of ticks as hosts for immature developmental stages. Both rodents and ticks are of public health interest as they are reservoirs and vectors for different tick-borne pathogens (TBP). The aim of this study was to reassess the prevalence of TBP in previously studied areas of the city of Leipzig (Saxony, Germany). METHODS In the years 2015-2017 rodents and ticks were collected in parks and forest areas in Saxony. DNA was extracted from the rodents, attached and questing ticks. Samples were screened for the presence of Anaplasma phagocytophilum, Babesia spp., Borrelia burgdorferi (s.l.), "Candidatus Neoehrlichia mikurensis" (CNM), Bartonella spp., Hepatozoon spp. and Rickettsia spp. using PCR methods. Rodent, attached nymph and questing tick (nymph and adult) samples were tested individually, while attached larvae were further processed in pools. RESULTS A total of 165 rodents (Apodemus agrarius, n = 1; A. flavicollis, n = 59; Arvicola terrestris, n = 1; Myodes glareolus, n = 104), 1256 attached ticks (Ixodes ricinus, n = 1164; Dermacentor reticulatus, n = 92) and 577 questing ticks (I. ricinus, n = 547; D. reticulatus, n = 30) were collected. The prevalence levels in rodents were 78.2% for Bartonella spp., 58.2% for CNM, 49.1% for B. burgdorferi (s.l.) 29.1% for Rickettsia spp. and 24.2% for Hepatozoon spp. The minimal infection rates (MIR) in attached larvae ticks were 39.8% for Rickettsia spp., 32.7% for Bartonella spp., 7.1% for CNM and 8.8% for B. burgdorferi (s.l.) and the prevalence rates in attached nymphs were 33.7% for Bartonella spp., 52.9% for Rickettsia spp., 13.5% for CNM and 11.3% for B. burgdorferi (s.l.) Both rodents and attached ticks were negative for Babesia spp. The prevalence in questing ticks was 18.2% for Rickettsia spp., 7.3% for CNM, 6.4% for B. burgdorferi (s.l.) and 1.4% for Babesia spp. All tested samples were Anaplasma-negative. Sequencing revealed the occurrence of 14 identified species. CONCLUSIONS This research is the first evaluation of the prevalence for Hepatozoon spp. in rodents from Germany. In comparison to earlier studies, detected pathogens species remained the same; however, the prevalence for particular pathogens differed.
Collapse
Affiliation(s)
- Daniel Galfsky
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
32
|
Prevalence of Borrelia Burgdorferi Sensu Lato in Ticks from the Ternopil Region in Ukraine. J Vet Res 2018; 62:275-280. [PMID: 30584604 PMCID: PMC6296004 DOI: 10.2478/jvetres-2018-0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 11/21/2022] Open
Abstract
Introduction Lyme borreliosis/Lyme disease is caused by Borrelia burgdorferi and is one of the most common vector-borne diseases transmitted by ticks. Material and Methods A total of 136 Ixodes ricinus ticks, collected in the Ternopil (Ukraine) region, including 126 adults (70 females and 56 males), and 10 nymphs were examined. The identification of the species and their developmental form was based on morphological characteristics. Results PCR with B5S-Bor and 23S-Bor primers resulted in Borrelia burgdorferi sensu lato DNA amplification among six ticks (4.4%). The detailed analysis based on the DNA sequencing showed the presence of DNA of Borrelia afzelii in four samples; the remaining two represented Borrelia burgdorferi sensu lato complex, although their genospecies were not determined. The research confirmed the dominance of Borrelia afzelii genospecies in the ticks from Ukraine. Conclusion It seems reasonable to undertake similar research in ticks from other regions of Ukraine. Knowledge in this field can be useful for public health and planning the prevention of tick-borne diseases.
Collapse
|
33
|
Víchová B, Bona M, Miterpáková M, Kraljik J, Čabanová V, Nemčíková G, Hurníková Z, Oravec M. Fleas and Ticks of Red Foxes as Vectors of Canine Bacterial and Parasitic Pathogens, in Slovakia, Central Europe. Vector Borne Zoonotic Dis 2018; 18:611-619. [DOI: 10.1089/vbz.2018.2314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bronislava Víchová
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Martin Bona
- Pavol Jozef Šafárik University, Department of Anatomy, Košice, Slovakia
| | - Martina Miterpáková
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Jasna Kraljik
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktória Čabanová
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | | | - Zuzana Hurníková
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | | |
Collapse
|
34
|
Chvostáč M, Špitalská E, Václav R, Vaculová T, Minichová L, Derdáková M. Seasonal Patterns in the Prevalence and Diversity of Tick-Borne Borrelia burgdorferi Sensu Lato, Anaplasma phagocytophilum and Rickettsia spp. in an Urban Temperate Forest in South Western Slovakia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050994. [PMID: 29762516 PMCID: PMC5982033 DOI: 10.3390/ijerph15050994] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022]
Abstract
In Europe, Ixodes ricinus is the most important vector of tick-borne zoonotic bacteria. It transmits spirochaetes from the Borrelia burgdorferi sensu lato complex, Anaplasma phagocytophilum and Rickettsia spp. Although spatial differences in the prevalence of tick-borne pathogens have been intensively studied, seasonal (within-year) fluctuations in the prevalence of these pathogens within sites are often overlooked. We analyzed the occurrence and seasonal dynamics of Ixodes ricinus in an urban forest in Bratislava, Slovakia. Furthemore, we examined temporal trends in the community structure of B. burgdorferi s.l., A. phagocytophilum and Rickettsia spp. in questing and bird-feeding ticks. The total prevalence for B. burgdorferi s.l. in questing I. ricinus was 6.8%, involving six genospecies with the dominance of bird-associated B. garinii and B. valaisiana.A. phagocytophilum, R. helvetica and R. monacensis occurred in 5.9%, 5.0% and 0.2% of questing ticks, respectively. In total, 12.5% and 4.4% of bird-feeding I. ricinus ticks carried B. burgdorferi s.l. and R. helvetica. The total prevalence of B. burgdorferi s.l. in our study site was two times lower than the mean prevalence for Europe. In contrast, A. phagocytophilum prevalence was significantly higher compared to those in other habitats of Slovakia. Our results imply that tick propagation and the transmission, suppression and seasonal dynamics of tick-borne pathogens at the study site were primarily shaped by abundance and temporal population fluctuations in ruminant and bird hosts.
Collapse
Affiliation(s)
- Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Eva Špitalská
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia.
| | - Radovan Václav
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Tatiana Vaculová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Lenka Minichová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia.
| | - Markéta Derdáková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| |
Collapse
|
35
|
Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania. Parasitol Res 2018; 117:1591-1597. [PMID: 29589118 DOI: 10.1007/s00436-018-5848-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/21/2018] [Indexed: 01/14/2023]
Abstract
Romania has a highly diverse tick fauna. Consequently, a high diversity of tick-transmitted pathogens might be a potential threat to humans. However, only a limited number of tick species regularly infest humans, and pathogens present in such species are therefore of particular interest from a medical perspective. In this study, 297 ticks were collected from humans during 2013 and 2014. Ixodes ricinus was the predominant tick species, accounting for 272 specimens or 91.6% of the ticks in the study. Nevertheless, other tick species were also found to infest humans: Dermacentor marginatus constituted 7% of the ticks found on humans (21/297), Haemaphysalis punctata 1% (3/297), and Haemaphysalis concinna 0.3% (1/297). Ticks were tested by PCR for a wide range of tick-borne pathogens. In total, 11.8% of the ticks carried human pathogenic bacteria, while no viral or protozoan pathogens were detected. The most frequently detected pathogen was Rickettsia spp., occurring in 5.4% of the ticks (16/297) and comprising three species: Rickettsia (R.) raoultii, R. monacensis, and R. helvetica. Borrelia s.l. occurred in 3% (9/297) of the ticks. "Candidatus Neoehrlichia mikurensis" occurred in 1.7% (5/297) and Anaplasma phagocytophilum in 1.3% (4/297). Anaplasma bovis was detected in an H. punctata and Borrelia miyamotoi in an I. ricinus. These results point to the need for further studies on the medical importance of tick-borne pathogens in Romania.
Collapse
|
36
|
Rogovskyy A, Batool M, Gillis DC, Holman PJ, Nebogatkin IV, Rogovska YV, Rogovskyy MS. Diversity of Borrelia spirochetes and other zoonotic agents in ticks from Kyiv, Ukraine. Ticks Tick Borne Dis 2018; 9:404-409. [DOI: 10.1016/j.ttbdis.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
37
|
Obiegala A, Silaghi C. Candidatus Neoehrlichia Mikurensis—Recent Insights and Future Perspectives on Clinical Cases, Vectors, and Reservoirs in Europe. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0085-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Millins C, Gilbert L, Medlock J, Hansford K, Thompson DB, Biek R. Effects of conservation management of landscapes and vertebrate communities on Lyme borreliosis risk in the United Kingdom. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0123. [PMID: 28438912 PMCID: PMC5413871 DOI: 10.1098/rstb.2016.0123] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 02/01/2023] Open
Abstract
Landscape change and altered host abundance are major drivers of zoonotic pathogen emergence. Conservation and biodiversity management of landscapes and vertebrate communities can have secondary effects on vector-borne pathogen transmission that are important to assess. Here we review the potential implications of these activities on the risk of Lyme borreliosis in the United Kingdom. Conservation management activities include woodland expansion, management and restoration, deer management, urban greening and the release and culling of non-native species. Available evidence suggests that increasing woodland extent, implementing biodiversity policies that encourage ecotonal habitat and urban greening can increase the risk of Lyme borreliosis by increasing suitable habitat for hosts and the tick vectors. However, this can depend on whether deer population management is carried out as part of these conservation activities. Exclusion fencing or culling deer to low densities can decrease tick abundance and Lyme borreliosis risk. As management actions often constitute large-scale perturbation experiments, these hold great potential to understand underlying drivers of tick and pathogen dynamics. We recommend integrating monitoring of ticks and the risk of tick-borne pathogens with conservation management activities. This would help fill knowledge gaps and the production of best practice guidelines to reduce risks. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’.
Collapse
Affiliation(s)
- Caroline Millins
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK .,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK.,School of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Lucy Gilbert
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Jolyon Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Salisbury, SP4 0JG, UK.,Health Protection Research Unit in Environment and Health, Porton Down, Salisbury SP4 0JG, UK
| | - Kayleigh Hansford
- Medical Entomology Group, Emergency Response Department, Public Health England, Salisbury, SP4 0JG, UK
| | - Des Ba Thompson
- Scottish Natural Heritage, 231 Corstorphine Road, Edinburgh, EH12 7AT, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
39
|
Portillo A, Santibáñez P, Palomar AM, Santibáñez S, Oteo JA. ' Candidatus Neoehrlichia mikurensis' in Europe. New Microbes New Infect 2018; 22:30-36. [PMID: 29556406 PMCID: PMC5857181 DOI: 10.1016/j.nmni.2017.12.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
'Candidatus Neoehrlichia mikurensis' is an uncultured emerging bacterium that is provisionally included in the family Anaplasmataceae. In Europe, it is transmitted by Ixodes ricinus ticks. Rodents are the reservoirs. It is widely distributed in mammals (both wild and domestic) and birds. It causes an inflammatory disease in humans with underlying diseases, but the microorganism also affects immunocompetent individuals in which asymptomatic infection has been recognized. A high degree of suspicion and the use of molecular tools are needed for the correct diagnosis. Efforts to cultivate it and to investigate its pathogenesis should be a priority.
Collapse
Affiliation(s)
- A Portillo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| | - P Santibáñez
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| | - A M Palomar
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| | - S Santibáñez
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| | - J A Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| |
Collapse
|
40
|
Uspensky IV. Blood-sucking ticks (Acarina, Ixodoidea) as an essential component of the urban environment. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s0013873817070107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Oechslin CP, Heutschi D, Lenz N, Tischhauser W, Péter O, Rais O, Beuret CM, Leib SL, Bankoul S, Ackermann-Gäumann R. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasit Vectors 2017; 10:558. [PMID: 29121976 PMCID: PMC5680829 DOI: 10.1186/s13071-017-2500-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Background Throughout Europe, Ixodes ricinus transmits numerous pathogens. Its widespread distribution is not limited to rural but also includes urbanized areas. To date, comprehensive data on pathogen carrier rates of I. ricinus ticks in urban areas of Switzerland is lacking. Results Ixodes ricinus ticks sampled at 18 (sub-) urban collection sites throughout Switzerland showed carrier rates of 0% for tick-borne encephalitis virus, 18.0% for Borrelia burgdorferi (sensu lato), 2.5% for Borrelia miyamotoi, 13.5% for Rickettsia spp., 1.4% for Anaplasma phagocytophilum, 6.2% for "Candidatus Neoehrlichia mikurensis", and 0.8% for Babesia venatorum (Babesia sp., EU1). Site-specific prevalence at collection sites with n > 45 ticks (n = 9) significantly differed for B. burgdorferi (s.l.), Rickettsia spp., and "Ca. N. mikurensis", but were not related to the habitat type. Three hundred fifty eight out of 1078 I. ricinus ticks (33.2%) tested positive for at least one pathogen. Thereof, about 20% (71/358) were carrying two or three different potentially disease-causing agents. Using next generation sequencing, we could detect true pathogens, tick symbionts and organisms of environmental or human origin in ten selected samples. Conclusions Our data document the presence of pathogens in the (sub-) urban I. ricinus tick population in Switzerland, with carrier rates as high as those in rural regions. Carriage of multiple pathogens was repeatedly observed, demonstrating the risk of acquiring multiple infections as a consequence of a tick bite. Electronic supplementary material The online version of this article (10.1186/s13071-017-2500-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corinne P Oechslin
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.,Institute for Infectious Diseases, University of Bern, Friedbühlstrasse, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Daniel Heutschi
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Nicole Lenz
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.,Institute for Infectious Diseases, University of Bern, Friedbühlstrasse, Bern, Switzerland
| | - Werner Tischhauser
- ZHAW Life Science and Facility Management, Grüental, Wädenswil, Switzerland
| | - Olivier Péter
- retired, Infectious Diseases, Central Institute of Valais Hospitals, Sion, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Emile Argand, Neuchâtel, Switzerland
| | - Christian M Beuret
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Stephen L Leib
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.,Institute for Infectious Diseases, University of Bern, Friedbühlstrasse, Bern, Switzerland
| | - Sergei Bankoul
- Medical Services Directorate, Swiss Armed Forces, Ittigen, Switzerland
| | - Rahel Ackermann-Gäumann
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland. .,Swiss National Reference Centre for tick-transmitted diseases, Spiez, Switzerland.
| |
Collapse
|
42
|
Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Appl Environ Microbiol 2017; 83:AEM.00609-17. [PMID: 28550059 DOI: 10.1128/aem.00609-17] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Lyme borreliosis is the most common zoonotic disease transmitted by ticks in Europe and North America. Despite having multiple tick vectors, the causative agent, Borrelia burgdorferisensu lato, is vectored mainly by Ixodes ricinus in Europe. In the present study, we aimed to review and summarize the existing data published from 2010 to 2016 concerning the prevalence of B. burgdorferi sensu lato spirochetes in questing I. ricinus ticks. The primary focus was to evaluate the infection rate of these bacteria in ticks, accounting for tick stage, adult tick gender, region, and detection method, as well as to investigate any changes in prevalence over time. The data obtained were compared to the findings of a previous metastudy. The literature search identified data from 23 countries, with 115,028 ticks, in total, inspected for infection with B. burgdorferi sensu lato We showed that the infection rate was significantly higher in adults than in nymphs and in females than in males. We found significant differences between European regions, with the highest infection rates in Central Europe. The most common genospecies were B. afzelii and B. garinii, despite a negative correlation of their prevalence rates. No statistically significant differences were found among the prevalence rates determined by conventional PCR, nested PCR, and real-time PCR.IMPORTANCEBorrelia burgdorferisensu lato is a pathogenic bacterium whose clinical manifestations are associated with Lyme borreliosis. This vector-borne disease is a major public health concern in Europe and North America and may lead to severe arthritic, cardiovascular, and neurological complications if left untreated. Although pathogen prevalence is considered an important predictor of infection risk, solitary isolated data have only limited value. Here we provide summarized information about the prevalence of B. burgdorferi sensu lato spirochetes among host-seeking Ixodes ricinus ticks, the principal tick vector of borreliae in Europe. We compare the new results with previously published data in order to evaluate any changing trends in tick infection.
Collapse
|
43
|
Hamšíková Z, Coipan C, Mahríková L, Minichová L, Sprong H, Kazimírová M. Borrelia miyamotoi and Co-Infection with Borrelia afzelii in Ixodes ricinus Ticks and Rodents from Slovakia. MICROBIAL ECOLOGY 2017; 73:1000-1008. [PMID: 27995301 DOI: 10.1007/s00248-016-0918-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Borrelia miyamotoi causes relapsing fever in humans. The occurrence of this spirochete has been reported in Ixodes ricinus and wildlife, but there are still gaps in the knowledge of its eco-epidemiology and public health impact. In the current study, questing I. ricinus (nymphs and adults) and skin biopsies from rodents captured in Slovakia were screened for the presence of B. miyamotoi and Borrelia burgdorferi s.l. DNA. The prevalence of B. miyamotoi and B. burgdorferi s.l. in questing ticks was 1.7 and 16.9%, respectively. B. miyamotoi was detected in Apodemus flavicollis (9.3%) and Myodes glareolus (4.4%). In contrast, B. burgdorferi s.l. was identified in 11.9% of rodents, with the highest prevalence in Microtus arvalis (68.4%) and a lower prevalence in Apodemus spp. (8.4%) and M. glareolus (12.4%). Borrelia afzelii was the prevailing genospecies infecting questing I. ricinus (37.9%) and rodents (72.2%). Co-infections of B. miyamotoi and B. burgdorferi s.l. were found in 24.1 and 9.3% of the questing ticks and rodents, respectively, whereas the proportion of ticks and rodents co-infected with B. miyamotoi and B. afzelii was 6.9 and 7.0%, respectively. The results suggest that B. miyamotoi and B. afzelii share amplifying hosts. The sequences of the B. miyamotoi glpQ gene fragment from our study showed a high degree of identity with sequences of the gene amplified from ticks and human patients in Europe. The results seem to suggest that humans in Slovakia are at risk of contracting tick-borne relapsing fever, and in some cases together with Lyme borreliosis.
Collapse
Affiliation(s)
- Zuzana Hamšíková
- Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506, Bratislava, Slovakia
| | - Claudia Coipan
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Lenka Mahríková
- Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506, Bratislava, Slovakia
| | - Lenka Minichová
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Mária Kazimírová
- Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506, Bratislava, Slovakia.
| |
Collapse
|
44
|
Hansford KM, Fonville M, Gillingham EL, Coipan EC, Pietzsch ME, Krawczyk AI, Vaux AG, Cull B, Sprong H, Medlock JM. Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England. Ticks Tick Borne Dis 2017; 8:353-361. [DOI: 10.1016/j.ttbdis.2016.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
|
45
|
Kybicová K, Baštová K, Malý M. Detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in questing ticks Ixodes ricinus from the Czech Republic. Ticks Tick Borne Dis 2017; 8:483-487. [PMID: 28238642 DOI: 10.1016/j.ttbdis.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
The aim of the present study is to compare the prevalence of Borrelia burgdorferi sensu lato (s.l.) and Anaplasma phagocytophilum in questing ticks by using molecular methods from spring to autumn 2007. A total of 526 Ixodes ricinus ticks were collected from vegetation in three different sampling sites, representing an urban area (city park), a suburban area (village) and a natural montane habitat. The prevalence of B. burgdorferi s.l. was 17.3% (7.5% in males, 18.7% in females and 20.2% in nymphs), while 4.4% of ticks (13.1% of males, 3.7% of females and 1.6% of nymphs) tested positive for A. phagocytophilum. We found higher rates of Anaplasma infection in ticks from the urban area (8.6%) than from the suburban (0.8%) and natural (1.6%) habitats in the spring months. The prevalence of Borrelia infection in the urban park increased significantly from spring (14% in March) to autumn (50% in October). The Anaplasma positivity in the urban area in the autumn months (2.2%) was significantly lower than in the spring and summer months (9.6%). The prevalence of A. phagocytophilum was significantly higher in male ticks than in females and nymphs. For B. burgdorferi s.l., the inverse was true. We conclude that infection risks associated with the presence of Anaplasma and Borrelia in ticks in cities may be comparable to those in natural ecosystems or may be even higher. Our results indicate the need for the surveillance of tick-borne pathogens in urban areas.
Collapse
Affiliation(s)
- Kateřina Kybicová
- National Reference Laboratory of Lyme Borreliosis, National Institute of Public Health, Šrobárova 48, 10042 Prague, Czechia.
| | - Kateřina Baštová
- National Reference Laboratory of Lyme Borreliosis, National Institute of Public Health, Šrobárova 48, 10042 Prague, Czechia
| | - Marek Malý
- Department of Biostatistics, National Institute of Public Health, Šrobárova 48, 10042 Prague, Czechia
| |
Collapse
|
46
|
Cramaro WJ, Hunewald OE, Bell-Sakyi L, Muller CP. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasit Vectors 2017; 10:71. [PMID: 28179027 PMCID: PMC5299676 DOI: 10.1186/s13071-017-2008-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/01/2017] [Indexed: 01/09/2023] Open
Abstract
Background Global warming and other ecological changes have facilitated the expansion of Ixodes ricinus tick populations. Ixodes ricinus is the most important carrier of vector-borne pathogens in Europe, transmitting viruses, protozoa and bacteria, in particular Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis, the most prevalent vector-borne disease in humans in the Northern hemisphere. To faster control this disease vector, a better understanding of the I. ricinus tick is necessary. To facilitate such studies, we recently published the first reference genome of this highly prevalent pathogen vector. Here, we further extend these studies by scaffolding and annotating the first reference genome by using ultra-long sequencing reads from third generation single molecule sequencing. In addition, we present the first genome size estimation for I. ricinus ticks and the embryo-derived cell line IRE/CTVM19. Results 235,953 contigs were integrated into 204,904 scaffolds, extending the currently known genome lengths by more than 30% from 393 to 516 Mb and the N50 contig value by 87% from 1643 bp to a N50 scaffold value of 3067 bp. In addition, 25,263 sequences were annotated by comparison to the tick’s North American relative Ixodes scapularis. After (conserved) hypothetical proteins, zinc finger proteins, secreted proteins and P450 coding proteins were the most prevalent protein categories annotated. Interestingly, more than 50% of the amino acid sequences matching the homology threshold had 95–100% identity to the corresponding I. scapularis gene models. The sequence information was complemented by the first genome size estimation for this species. Flow cytometry-based genome size analysis revealed a haploid genome size of 2.65Gb for I. ricinus ticks and 3.80 Gb for the cell line. Conclusions We present a first draft sequence map of the I. ricinus genome based on a PacBio-Illumina assembly. The I. ricinus genome was shown to be 26% (500 Mb) larger than the genome of its American relative I. scapularis. Based on the genome size of 2.65 Gb we estimated that we covered about 67% of the non-repetitive sequences. Genome annotation will facilitate screening for specific molecular pathways in I. ricinus cells and provides an overview of characteristics and functions. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2008-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wibke J Cramaro
- Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Lesley Bell-Sakyi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU240NF, UK
| | - Claude P Muller
- Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
47
|
Affiliation(s)
- Fedor Gassner
- Gassner Biological Risk Consultancy, Jachthoeve 22, 3992 NV Houten, the Netherlands
| | - Kayleigh M. Hansford
- Medical Entomology & Zoonoses Ecology, Emergency Response Department – Science & Technology, Health Protection Directorate, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
- NIHR Health Protection Research Unit in Environmental Change and Health, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Jolyon M. Medlock
- Medical Entomology & Zoonoses Ecology, Emergency Response Department – Science & Technology, Health Protection Directorate, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
- NIHR Health Protection Research Unit in Environmental Change and Health, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| |
Collapse
|
48
|
Didyk YM, Blaňárová L, Pogrebnyak S, Akimov I, Peťko B, Víchová B. Emergence of tick-borne pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Ricketsia raoultii and Babesia microti) in the Kyiv urban parks, Ukraine. Ticks Tick Borne Dis 2016; 8:219-225. [PMID: 27923669 DOI: 10.1016/j.ttbdis.2016.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/25/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
To date, only limited data about the presence of ticks and circulation of tick-borne pathogens in urban parks of Kyiv in northern Ukraine are available. In total, 767 ticks (696 Ixodes ricinus and 69 Dermacentor reticulatus) collected in seven urban parks and one suburban oak wood park in Kyiv were individually analyzed by the PCR assays. Tick-borne pathogens, namely spirochetes from Borrelia burgdorferi sensu lato complex, Anaplasma phagocytophilum, and Babesia microti, were detected in 11.1% of tested I. ricinus ticks. In total, 4% of I. ricinus ticks tested positive for the presence of B. burdorferi s.l. (Borrelia afzelii and Borrelia garinii), 5.2% for A. phagocytophilum, and Ba. microti was confirmed in 1.9% of examined ticks. Mixed infections were recorded in four DNA samples, representing the prevalence of 0.6%. One female and two I. ricinus nymphs were simultaneously infected with B. afzelii and A. phagocytophilum, and one female carried B. afzelii and Ba. microti. In addition, 10.1% of D. reticulatus ticks tested positive for Rickettsia raoultii. Identification of infectious agents and their diversity, assessment of the relative epidemiological importance and determination of the prevalence in questing ticks from central parts of the cities are crucial steps towards the tick-borne diseases surveillance in urban environment.
Collapse
Affiliation(s)
- Yuliya M Didyk
- Schmalhausen Institute of Zoology NAS of Ukraine, B. Khmelnytsky, 15, 01030, Kyiv, Ukraine; Institute of Zoology SAS, Dúbravska cesta 9, 845 06, Bratislava, Slovakia
| | - Lucia Blaňárová
- Institute of Parasitology SAS, Hlinkova, 3, 040 01, Košice, Slovakia
| | - Svyatoslav Pogrebnyak
- National Museum of Natural History NAS of Ukraine, B. Khmelnytsky, 15, 01030, Kyiv, Ukraine
| | - Igor Akimov
- Schmalhausen Institute of Zoology NAS of Ukraine, B. Khmelnytsky, 15, 01030, Kyiv, Ukraine
| | - Branislav Peťko
- Institute of Parasitology SAS, Hlinkova, 3, 040 01, Košice, Slovakia
| | | |
Collapse
|
49
|
Silaghi C, Beck R, Oteo JA, Pfeffer M, Sprong H. Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:279-97. [PMID: 26081117 DOI: 10.1007/s10493-015-9935-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/27/2015] [Indexed: 05/17/2023]
Abstract
Candidatus Neoehrlichia mikurensis is an emerging tick-borne pathogen causing a systemic inflammatory syndrome mostly in persons with underlying hematologic or autoimmune diseases. As it is neither well-known nor well-recognized, it might be misdiagnosed as recurrence of the underlying disease or as an unrelated arteriosclerotic vascular event. The pathogen is transmitted by hard ticks of the genus Ixodes and is closely associated with rodents in which transplacental transmission occurs. Transovarial transmission in ticks has not yet been shown. Infection rates vary greatly in ticks and rodents, but the causes for its spatiotemporal variations are largely unknown. This review summarizes the current state of knowledge on the geographical distribution and clinical importance of Ca. N. mikurensis. By elucidating the life history traits of this pathogen and determining more accurately its incidence in the human population, a better assessment of its public health relevance can be made. Most urgent research needs are the in vitro-cultivation of the pathogen, the development of specific serological tests, the determination of the full genomic sequence, the routine implementation of molecular diagnosis in diseased patients with a particular panel of underlying diseases, and promoting the knowledge about neoehrlichiosis among general practitioners, hospital physicians and the risk groups such as forest workers or immune-compromised people to raise awareness about this disease that can easily be treated when correctly diagnosed.
Collapse
Affiliation(s)
- Cornelia Silaghi
- National Center for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| | - Relja Beck
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - José A Oteo
- Center of Rickettsiosis and Arthropod-borne Diseases, Hospital San Pedro-Center of Biomedical Research of La Rioja, Logroño, Spain
| | - Martin Pfeffer
- Institute for Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute of Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
50
|
Neglected tick-borne pathogens in the Czech Republic, 2011–2014. Ticks Tick Borne Dis 2016; 7:107-112. [DOI: 10.1016/j.ttbdis.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
|