1
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Afrifa J, Ofori EG, Opoku YK, Asare KK, Sorkpor RD, Naveh-Fio IW, Armah R, Ofori S, Ephraim RKD. Oxidative Stress and Cancer Risk in Schistosomiasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9701021. [PMID: 39720557 PMCID: PMC11668550 DOI: 10.1155/omcl/9701021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Background: Schistosomiasis is considered one of the most devastating parasitic diseases globally, coming second only to malaria in terms of morbidity. The disease-causing parasite can inhabit the body for over a decade, leading to imbalances in the host's metabolic systems. The flukes and their eggs can illicit various immunological and metabolic complications resulting in the generation of reactive oxygen species (ROS). These are known to have several devastating effects on the host through increased oxidative stress, DNA mutation, and gene modifications, which can lead to fibrosis and cancer. Main Body: Here, we discuss oxidative stress and cancer risk in Schistosoma infection. The concept of ROS generation and the complex antioxidant systems that enable the parasite to evade oxidant insults and prolong its life span in the host are explored. Further, the various roles of ROS during the initiation and progression of schistosomiasis and its influence on the host are discussed. Finally, mechanisms linked to the risk of bladder cancer in Schistosoma haematobium (S. haematobium) infections are elucidated. Conclusion: Finally, we provide an opinion on how some of these mechanisms could give directions for future studies as well as provide a springboard for diagnostics and drug targeting in schistosomiasis.
Collapse
Affiliation(s)
- Justice Afrifa
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Gyamerah Ofori
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Kwame Kumi Asare
- Infectious and Non-Communicable Diseases, Biomedical and Clinical Research Centre, University of Cape Coast, Cape Coast, Ghana
| | - Rosemary Doe Sorkpor
- Inspectorate Directorate, Food and Drugs Authority, Cape Coast P.O. Box CC13733, Ghana
| | - Ibrahim W. Naveh-Fio
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Richard Armah
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sandra Ofori
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Richard K. D. Ephraim
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
3
|
Xiang F, Zhang Z, Li Y, Li M, Xie J, Sun M, Peng Q, Lin L. Research progress in the treatment of schistosomiasis with traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118501. [PMID: 38944361 DOI: 10.1016/j.jep.2024.118501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schistosomiasis, caused by infection with organisms of the Schistoma genus, is a parasitic and infectious disease that poses a significant risk to human health. Schistosomiasis has been a widespread issue in China for at least 2000 years. Traditional Chinese medicine (TCM) has a rich history of treating this disease, and the significant theoretical and practical knowledge attained therein may be useful in modern practice. AIM OF THE STUDY To comprehensively review TCM for the treatment of schistosomiasis, summarize the molecular basis, mechanism of action, active ingredients and formulas of TCM, and clarify the value of TCM for expanding drug options for the clinical treatment of schistosomiasis. MATERIALS AND METHODS In PubMed, Web of Science, ScienceDirect, Google Scholar and CNKI databases, "Schistosomiasis", "Schistosoma mansoni", "Schistosoma japonicum", "Liver fibrosis" and "Granuloma" were used as the key words. Information related to in vivo animal studies and clinical studies of TCM for the treatment of schistosomiasis in the past 25 years was retrieved, and the inclusion criteria focused on medicinal plants that had a history of use in China. RESULTS In this study, we collected and organized a large amount of literature on the treatment of schistosomiasis by TCM. TCM exerts therapeutic effects through antischistosomal and immunomodulatory effects, suppresses HSC activation and proliferation, reduces ECM deposition, and inhibits oxidative stress and other activities. The treatment of schistosomiasis by TCM has a unique advantage, especially for the treatment of schistosomal liver fibrosis, and the treatment of schistosomiasis with TCM in combination with praziquantel is superior to monotherapy. CONCLUSION Schistosomiasis remains a global public health problem, and TCM has made significant progress in the prevention and treatment of schistosomiasis and is a potential source of drugs for the treatment of schistosomiasis. However, research on drug screening and the mechanism of action of TCM for the treatment of schistosomiasis is lacking, and further studies and research are needed.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Miao Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Qinghua Peng
- Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| |
Collapse
|
4
|
Lei J, Feng Y, Zheng W, Khamis M, Zhang J, Hou X, Guan F. Type I/II Immune Balance Contributes to the Protective Effect of AIF-1 on Hepatic Immunopathology Induced by Schistosoma japonicum in a Transgenic Mouse Model. Inflammation 2024; 47:1806-1819. [PMID: 38554240 DOI: 10.1007/s10753-024-02010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease in the world. Liver egg granuloma and fibrosis are the main damage of schistosomiasis. In this study, the role of allograft inflammatory factor-1 (AIF-1) in liver pathology and its regulation in immune responses were investigated in a transgenic mouse infected with Schistosoma japonicum. We found that AIF-1 overexpression reduced worm burden and decreased egg granuloma sizes and serum alanine aminotransferase levels, along with inhibited hepatic collagen deposition and serum hydroxyproline levels during S. japonicum infection. Moreover, AIF-1 overexpression resulted in an increased ratio of Th1/Th2, increased levels of IFN-γ and T-bet, and lower levels of GATA-3 in the spleen, accompanied by increased M1 percentages, decreased M2 percentages, and thus a higher ratio of M1/M2 in the peritoneal cavity and liver. AIF-1 induced CD68 and iNOS mRNA expression and protein levels of cytoplasmic p-P38 and nuclear NF-κB, along with enhanced levels of TNF-α and TGF-β in macrophages in vitro. Moreover, the hepatic pathology had a negative correlation with Th1/Th2 and M1/M2 ratios in the infected mice. The findings reveal that the beneficial role of AIF-1 in alleviating hepatic damage is related to restoring type I/II immune balance in S. japonicum infection.
Collapse
Affiliation(s)
- Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujie Feng
- Department of Clinical Laboratory, First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mwadini Khamis
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinyuan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Hou
- Department of Clinical Laboratory, General Hospital of Central Theater Command, Wuhan, 430000, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Wang H, Yu Q, Wang M, Hou J, Wang M, Kang X, Hou X, Li D, Rousu Z, Jiang T, Li J, Wen H, Zhang C. Hepatic macrophages play critical roles in the establishment and growth of hydatid cysts in the liver during Echinococcus granulosus sensu stricto infection. PLoS Negl Trop Dis 2023; 17:e0011746. [PMID: 37930989 PMCID: PMC10653610 DOI: 10.1371/journal.pntd.0011746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/16/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023] Open
Abstract
Cystic echinococcosis (CE) is a worldwide neglected zoonotic disease caused by infection with the larval stage of the tapeworm Echinococcus granulosus sensu lato (E. granulosus s.l.), which predominantly resides in the liver accompanied by mild inflammation. Macrophages constitute the main cellular component of the liver and play a central role in controlling the progression of inflammation and liver fibrosis. However, the role of hepatic macrophages in the establishment and growth of hydatid cysts in the liver during E. granulosus sensu stricto (E. granulosus s.s.) infection has not been fully elucidated. Here, we showed that CD68+ macrophages accumulated in pericystic areas of the liver and that the expression of CD163, a marker of anti-inflammatory macrophages, was more evident in active CE patients than in inactive CE patients. Moreover, in a mouse model of E. granulosus s.s. infection, the pool of hepatic macrophages expanded dramatically through the attraction of massive amounts of monocyte-derived macrophages (MoMFs) to the infection site. These infiltrating macrophages preferentially polarized toward an iNOS+ proinflammatory phenotype at the early stage and then toward a CD206+ anti-inflammatory phenotype at the late stage. Notably, the resident Kupffer cells (KCs) predominantly maintained an anti-inflammatory phenotype to favor persistent E. granulosus s.s. infection. In addition, depletion of hepatic macrophages promoted E. granulosus s.s. larval establishment and growth partially by inhibiting CD4+ T-cell recruitment and liver fibrosis. The above findings demonstrated that hepatic macrophages play a vital role in the progression of CE, contributing to a better understanding of the local inflammatory responses surrounding hydatid cysts and possibly facilitating the design of novel therapeutic approaches for CE.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qian Yu
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mingkun Wang
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jiao Hou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Maolin Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuejiao Kang
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinling Hou
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dewei Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zibigu Rousu
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tiemin Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Valldeperes M, Granados JE, Pérez V, López-Olvera JR, Ráez-Bravo A, Fandos P, Pérez JM, Mentaberre G, Tampach S, Soriguer RC, Espinosa J. The local skin cellular immune response determines the clinical outcome of sarcoptic mange in Iberian ibex ( Capra pyrenaica). Front Vet Sci 2023; 10:1183304. [PMID: 37323847 PMCID: PMC10267361 DOI: 10.3389/fvets.2023.1183304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Sarcoptic mange, caused by Sarcoptes scabiei, is a disease with implications for wildlife conservation and management. Its severity depends on the host's local skin immune response, which is largely unknown in Iberian ibex (Capra pyrenaica), a mountain ungulate dramatically affected by mange. In this species, the clinical outcome of sarcoptic mange varies among individuals, and the local immune response could be key to controlling the infestation. This study aims to characterize the local cellular immune response and its relationship with the clinical outcome. Methods Fourteen Iberian ibexes were experimentally infested with S. scabiei and six more served as controls. Clinical signs were monitored, and skin biopsies were collected from the withers at 26, 46, and 103 days post-infection (dpi). The presence and distribution of macrophages (including M1 and M2 phenotypes), T lymphocytes, B lymphocytes, plasma cells, and interleukine 10 were quantitatively evaluated using immunohistochemical techniques. Results An inflammatory infiltrate that decreased significantly from 26 to 103 dpi was observed in all the infested ibexes. The predominant inflammatory cell population in the skin of the mangy ibexes was formed by macrophages (mainly the M2 phenotype) followed by T lymphocytes, with lower numbers of B lymphocytes and plasma cells. Three clinical courses were identified: total recovery, partial recovery, and terminal stage. The inflammatory infiltrates were less pronounced in the fully recovered ibexes than in those that progressed to the terminal stage throughout the study. Discussion The results suggest an exacerbated but effective Th1-type cellular immune response controlling mange in Iberian ibex. Furthermore, the local immune response appears to determine the variability of the clinical responses to S. scabiei infestation in this species. This first report on the progression of local skin immune cells is relevant not only for individuals but also for population management and conservation.
Collapse
Affiliation(s)
- Marta Valldeperes
- Wildlife Ecology and Health Group (WE&H), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Departament de Medicina i Cirurgia Animals, Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - José Enrique Granados
- Wildlife Ecology and Health Group (WE&H), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Parque Nacional y Parque Natural de Sierra Nevada, Granada, Spain
| | - Valentín Pérez
- Department of Animal Health-Instituto de Ganadería de Montaña (IGM), ULe-CSIC León, León, Spain
- Faculty of Veterinary Science, University of León, León, Spain
| | - Jorge Ramón López-Olvera
- Wildlife Ecology and Health Group (WE&H), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Departament de Medicina i Cirurgia Animals, Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Arián Ráez-Bravo
- Wildlife Ecology and Health Group (WE&H), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Departament de Medicina i Cirurgia Animals, Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Jesús M. Pérez
- Wildlife Ecology and Health Group (WE&H), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Department of Animal and Plant Biology, and Ecology, Jaén University, Campus Las Lagunillas, Jaén, Spain
| | - Gregorio Mentaberre
- Wildlife Ecology and Health Group (WE&H), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Departament de Ciència Animal, Universitat de Lleida (UdL), Lleida, Spain
| | - Stefania Tampach
- Wildlife Ecology and Health Group (WE&H), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Departament de Medicina i Cirurgia Animals, Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - José Espinosa
- Department of Animal Health-Instituto de Ganadería de Montaña (IGM), ULe-CSIC León, León, Spain
- Faculty of Veterinary Science, University of León, León, Spain
| |
Collapse
|
7
|
Licá ICL, Frazão GCCG, Nogueira RA, Lira MGS, dos Santos VAF, Rodrigues JGM, Miranda GS, Carvalho RC, Silva LA, Guerra RNM, Nascimento FRF. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150:401-415. [PMID: 36601859 PMCID: PMC10089811 DOI: 10.1017/s0031182023000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Human schistosomiasis is caused by helminths of the genus Schistosoma. Macrophages play a crucial role in the immune regulation of this disease. These cells acquire different phenotypes depending on the type of stimulus they receive. M1 macrophages can be ‘classically activated’ and can display a proinflammatory phenotype. M2 or ‘alternatively activated’ macrophages are considered anti-inflammatory cells. Despite the relevance of macrophages in controlling infections, the role of the functional types of these cells in schistosomiasis is unclear. This review highlights different molecules and/or macrophage activation and polarization pathways during Schistosoma mansoni and Schistosoma japonicum infection. This review is based on original and review articles obtained through searches in major databases, including Scopus, Google Scholar, ACS, PubMed, Wiley, Scielo, Web of Science, LILACS and ScienceDirect. Our findings emphasize the importance of S. mansoni and S. japonicum antigens in macrophage polarization, as they exert immunomodulatory effects in different stages of the disease and are therefore important as therapeutic targets for schistosomiasis and in vaccine development. A combination of different antigens can provide greater protection, as it possibly stimulates an adequate immune response for an M1 or M2 profile and leads to host resistance; however, this warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Gleycka Cristine Carvalho Gomes Frazão
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Vitor Augusto Ferreira dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Silva Miranda
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lucilene Amorim Silva
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
8
|
Jiang T, Wu X, Zhou H, Hu Y, Cao J. Pathological Changes in Hepatic Sinusoidal Endothelial Cells in Schistosoma japonicum-Infected Mice. Trop Med Infect Dis 2023; 8:tropicalmed8020124. [PMID: 36828540 PMCID: PMC9959305 DOI: 10.3390/tropicalmed8020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Schistosomiasis japonica is a zoonotic parasitic disease causing liver fibrosis. Liver sinusoidal endothelial cells (LSECs) exhibit fenestrations, which promote hepatocyte regeneration and reverses the process of liver fibrosis. To investigate the pathological changes of LSECs in schistosomiasis, we established a Schistosomiasis model. The population, phenotype, and secretory function of LSECs were detected by flow cytometry at 20, 28, and 42 days post infection. The changes in LSEC fenestration and basement membrane were observed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Quantitative real-time PCR and Western blotting were used to detect the expression of molecules associated with epithelial-mesenchymal transition (EMT) and fibrosis of LSECs and the liver. The flow cytometry results showed that the total LSEC proportions, differentiated LSEC proportions, and nitric oxide (NO) secretion of LSECs were decreased, and the proportion of dedifferentiated LSECs increased significantly post infection. The electron microscopy results showed that the number of fenestrate was decreased and there was complete basement membrane formation in LSECs following infection. The qPCR and Western blot results showed that EMT, and fibrosis-related indicators of LSECs and the liver changed significantly during the early stages of infection and were aggravated in the middle and late stages. The pathological changes in LSECs may promote EMT and liver fibrosis induced by Schistosoma japonicum infection.
Collapse
Affiliation(s)
- Tingting Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Xiaoying Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Hao Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Correspondence: (Y.H.); (J.C.)
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Y.H.); (J.C.)
| |
Collapse
|
9
|
Yin C, Cai J, Gou Y, Li D, Tang H, Wang L, Liu H, Luo B. Dynamic changes in human THP-1-derived M1-to-M2 macrophage polarization during Thelazia callipaeda MIF induction. Front Immunol 2023; 13:1078880. [PMID: 36713445 PMCID: PMC9876561 DOI: 10.3389/fimmu.2022.1078880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Macrophages are innate immune cells with essential roles in the immune response during helminth infection. Particularly, the direction of macrophage polarization could contribute to pathogen trapping and killing as well as tissue repair and the resolution of type 2 inflammation. This study establishes that the recombinant protein of Thelazia callipaeda macrophage migration inhibitory factor (T.cp-MIF) induces THP-1-derived macrophages to undergo M1 to M2 type dynamic polarization, using the methods of flow cytometry, real-time quantitative PCR, differential transcriptomic analysis and western blot. Interestingly, there was an increase in protein and mRNA expression of M1-type proteins and cytokines after the use of PI3K inhibitors, suggesting that the polarization state tends to favor the M1 type after M2 type inhibition. In conclusion, the dynamic polarization mechanism of T.cp-MIF-induced human THP-1-derived macrophages from M1 to M2 type is related to the binding of TLR4. It can first affect the M1 type polarization of macrophages by activating its downstream NF-κB pathway. Activation of the PI3K/Akt pathway and inhibition of NF-κB phosphorylation affects the M2 type polarization of macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Liu
- *Correspondence: Hui Liu, ; Bo Luo,
| | - Bo Luo
- *Correspondence: Hui Liu, ; Bo Luo,
| |
Collapse
|
10
|
Huang M, Li X, Zheng X, Wang F, Zou Y, Wang L. PD-L2 Blockade Exacerbates Liver Lesion in Mice Infected with Capillaria hepatica through Reducing Alternatively Activated Macrophages. Trop Med Infect Dis 2023; 8:tropicalmed8010046. [PMID: 36668953 PMCID: PMC9866821 DOI: 10.3390/tropicalmed8010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Capillaria hepatica is a seriously neglected zoonotic parasite, which infects the liver of mammalian hosts, causing fibrosis or even hepatic failure. At present, the immune responses elicited by C. hepatica are not fully understood, and the role(s) of the programmed death 1 (PD-1) signaling pathway in the context of C. hepatica-induced pathology are not known. In this study, we identify that the late stage of infection with C. hepatica-especially the egg-derived antigens-modulates the host immune responses to promote alternatively activated macrophage (M2) polarization and programmed death ligand 2 (PD-L2) expression. The PD-L2-expressing alternatively activated M2 macrophages play an important role in maintaining Th2-biased regulatory immune responses, which may facilitate the survival of parasitic worms or eggs within the infected liver and reduce the liver pathology caused by the egg granulomas. Treatment with anti-PD-L2 antibody had no effect on the survival of parasitic eggs but deteriorated the pathology of egg granulomas. The obtained results suggest that PD-1/PD-L2 signaling, which is involved in alternative macrophage polarization, determines the immune response pattern and the immunopathology, consequently determining the outcome of the parasitic infection.
Collapse
Affiliation(s)
- Minjun Huang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing 100050, China
| | - Xiaoli Li
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing 100050, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing 100050, China
| | - Fei Wang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing 100050, China
| | - Yang Zou
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing 100050, China
| | - Lei Wang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing 100050, China
- Correspondence:
| |
Collapse
|
11
|
Hou X, Zhu F, Zheng W, Jacques ML, Huang J, Guan F, Lei J. Protective effect of Schistosoma japonicum eggs on TNBS-induced colitis is associated with regulating Treg/Th17 balance and reprogramming glycolipid metabolism in mice. Front Cell Infect Microbiol 2022; 12:1028899. [PMID: 36304936 PMCID: PMC9592807 DOI: 10.3389/fcimb.2022.1028899] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) have been classified as modern refractory diseases. However, safe, well-tolerated, and effective treatments for IBDs are still lacking. Therefore, there is an urgent need to develop novel therapeutic targets with fewer undesirable adverse reactions. A growing body of research has shown that infection with live helminths or exposure to defined helminth-derived components can downregulate pathogenic inflammation due to their immunoregulatory ability. Here we were to explore the protective role of Schistosoma japonicum eggs on murine experimental colitis caused by trinitrobenzene sulfonic acid (TNBS) and the underlying mechanism. Frequencies of splenic Treg and Th17 cells were detected by flow cytometry. Protein and mRNA expressions of Foxp3 and RORγt were investigated by Western Blot and quantitative real-time polymerase chain reaction (qPCR), respectively. Concentrations of transforming growth factor-beta1 (TGF-β1), interleukin-10 (IL-10) and IL-17A were assessed with ELISA. Expression levels of genes related to glycolipid metabolism were measured with qPCR. The results showed that pre-exposure to S. japonicum eggs contributed to the relief of colitis in the TNBS model, evidenced by improved body weight loss, reversing spleen enlargement and colon shortening, and decreased histology scores. Compared with the TNBS group, the TNBS+Egg group had increased Treg immune response, accompanied by decreased Th17 immune response, leading to the reconstruction of Treg/Th17 balance. In addition, a ratio of Treg/Th17 was correlated negatively with the histological scores in the experiment groups. Furthermore, the regulation of Treg/Th17 balance by S. japonicum eggs was associated with inhibiting the glycolysis pathway and lipogenesis, along with promoting fatty acid oxidation in the TNBS+Egg group. These data indicate that S. japonicum eggs have a protective effect against TNBS-induced colitis, which is related to restoring Treg/Th17 balance and regulating glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiao Hou
- Department of Clinical Laboratory, The General Hospital of Central Theater Command, The People's Liberation Army, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muziazia Lupemba Jacques
- Department of Parasitology, Kinshasa Institute of Medical, Kinshasa, Democratic Republic of the Congo
| | - Jin Huang
- Department of Clinical Laboratory, Wuhan Pu’ai Hospital, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiahui Lei,
| |
Collapse
|
12
|
Abou-El-Naga IF. Emerging roles for extracellular vesicles in Schistosoma infection. Acta Trop 2022; 232:106467. [PMID: 35427535 DOI: 10.1016/j.actatropica.2022.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/05/2022] [Accepted: 04/11/2022] [Indexed: 11/01/2022]
Abstract
The co-evolution of Schistosoma and its host necessitates the use of extracellular vesicles (EVs) generated by different lifecycle stages to manipulate the host immune system to achieve a delicate balance between the survival of the parasite and the limited pathology of the host. EVs are phospholipid bilayer membrane-enclosed vesicles capable of transferring a complex mixture of proteins, lipids, and genetic materials to the host. They are nano-scale-sized vesicles involved in cellular communication. In this review, the author summarized the proteins involved in the biogenesis of schistosome-derived EVs and their cargo load. miRNAs are one cargo molecule that can underpin EVs functions and significantly affect parasite/host interactions and immune modulation. They skew macrophage polarization towards the M1 phenotype and downregulate Th2 immunity. Schistosoma can evade the host immune system's harmful effects by utilizing this strategy. In order to compromise the protective effect of Th2, EVs upregulate T regulatory cells and activate eosinophils, which contribute to granuloma formation. Schistosomal EVs also affect fibrosis by acting on non-immune cells such as hepatic stellate cells. These vesicles drew attention to translational applications in diagnosis, immunotherapy, and potential vaccines. A deep understanding of the interaction of schistosome-derived EVs with host cells will significantly increase our knowledge about the dynamics between the host and the worm that may aid in controlling this debilitating disease.
Collapse
|
13
|
Zhang T, Zhang Y, Yang Z, Jiang Y, Sun L, Huang D, Tian M, Shen Y, Deng J, Hou J, Ma Y. Echinococcus multilocularis protoscoleces enhance glycolysis to promote M2 Macrophages through PI3K/Akt/mTOR Signaling Pathway. Pathog Glob Health 2022; 117:409-416. [PMID: 35876088 PMCID: PMC10177676 DOI: 10.1080/20477724.2022.2104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Alveolar Echinococcosis (AE) is a zoonotic parasitic disease caused by Echinococcus multilocularis, but its pathogenesis remains unclear. The primary objective of this study is to explore whether Echinococcus multilocularis protoscoleces (PSCs) regulate macrophage polarization and glucose metabolism by PI3K/Akt/mTOR signaling pathway. We found that large numbers of CD68+ macrophages gathered in close liver issue from the lesion in AE patients. PSCs preferentially differentiated into M2 macrophages and the expressions of HK1, PFKL, PKM2, PI3K, Akt, p-Akt, mTOR and p-mTOR increased. The above results show that Echinococcus multilocularis protoscoleces enhance glycolysis to promote M2 macrophages through PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Tao Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai province, China.,Key Laboratory of Application of High Altitude Medicine in Qinghai, Qinghai University, Xining, Qinghai province, China.,Department of Rehabilitation Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Yaogang Zhang
- Central Laboratory of Qinghai University Affiliated Hospital, Qinghai University Affiliated Hospital, Xining, Qinghai province, China.,Qinghai Province Research Key Laboratory of Echinococcosis, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Zihan Yang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai province, China.,Key Laboratory of Application of High Altitude Medicine in Qinghai, Qinghai University, Xining, Qinghai province, China.,Department of Neurology, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Yuan Jiang
- Central Laboratory of Qinghai University Affiliated Hospital, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Li Sun
- Central Laboratory of Qinghai University Affiliated Hospital, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Dengliang Huang
- Central Laboratory of Qinghai University Affiliated Hospital, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Meiyuan Tian
- Central Laboratory of Qinghai University Affiliated Hospital, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Yinhong Shen
- Department of Pediatrics, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Jun Deng
- Department of Pediatrics, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Jing Hou
- Central Laboratory of Qinghai University Affiliated Hospital, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| | - Yanyan Ma
- Central Laboratory of Qinghai University Affiliated Hospital, Qinghai University Affiliated Hospital, Xining, Qinghai province, China.,Qinghai Province Research Key Laboratory of Echinococcosis, Qinghai University Affiliated Hospital, Xining, Qinghai province, China.,Department of Pediatrics, Qinghai University Affiliated Hospital, Xining, Qinghai province, China
| |
Collapse
|
14
|
Chang H, Ni Y, Shen C, Li C, He K, Zhu X, Chen L, Chen L, Qiu J, Ji Y, Hou M, Ji M, Xu Z. Peritoneal GATA6 + macrophage drives hepatic immunopathogenesis and maintains the T reg cell niche in the liver. Immunol Suppl 2022; 167:77-93. [PMID: 35689656 DOI: 10.1111/imm.13519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
The source of macrophages that contribute to human liver disease remains poorly understood. The purpose of this study is to investigate the functional mechanism of peritoneal macrophages in the development of hepatic immunopathology. By performing the natural infection with the blood fluke Schistosoma japonicum (S. japonicum) and the chemically carbon tetrachloride (CCl4 )-induced liver injured mouse model, we identified the peritoneal cavity as an essential source of hepatic macrophages. Here, we show that a large number of F4/80+ macrophages was accumulated in the peritoneal cavity during liver injury. An unknown source population of macrophages, which highly expressed GATA6 that is specific to peritoneal macrophages, was found to exist in the injured livers. Peritoneal macrophage deletion by injection with clodronate-containing liposomes led to an attenuated hepatic pathology and the inflammatory microenvironment, while adoptive transfer of macrophages into the abdominal cavity, by contrast, results in restoring liver pathology. Importantly, there are set genes of monocyte chemoattractant protein (MCP)-1, -2, and -3 that are highly related to recruit GATA6+ macrophages during S. japonicum infection, while administration of bindarit, a selective inhibitor of MCPs synthesis, dramatically decreased the hepatic expression of GATA6+ macrophages and thus attenuated hepatic pathology. Furthermore, in vivo study showed that peritoneal macrophages promote hepatic immunopathology is dependent on the accumulation of regulatory T cells (Tregs) in the liver. Altogether, these data provide the first clear evidence that GATA6+ peritoneal macrophages play critical roles in both the formation of hepatic immunopathology and the accumulation of Tregs cells.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyue Ni
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kaiyue He
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Chen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Chen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingfan Qiu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Shen P, Zhang T, Chen G, Zhang B, Huang A, Duan L, Zhu D, Chen J, Wang J, Duan Y. Recombinant P40 protein of Schistosoma japonicum inhibits TREM-1 expression in RAW264.7 cells via FOXO3a. Biomed Pharmacother 2022; 149:112826. [PMID: 35306429 DOI: 10.1016/j.biopha.2022.112826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) is a transmembrane glycoprotein receptor and TREM-1 expression reached the peak at 6 weeks after infection with Schistosoma japonicum and inhibited subsequently. Since TREM-1 may be involved in the macrophage polarization process, the reason for the inhibition of TREM-1 expression in chronic schistosomiasis engaged us in them. In this study, flow cytometry was used to observe TREM-1 expression in peritoneal macrophages from mice infected with Schistosoma japonicum. Since P40 is one of the main components from schistosoma eggs, western blot and dual-luciferase reporter assays were performed to observe the effect of recombinant Schistosoma japonicum P40 protein (rSjP40) on TREM-1 expression in the mouse leukemic monocyte/macrophage cell line RAW264.7. These methods were also conducted to observe the effect of FOXO3a on the expression of TREM-1 in RAW264.7 cells, and a ChIP assay was performed to confirm the binding site of FOXO3a to the TREM-1 promoter. Our results showed that TREM-1 expression reached the peak in peritoneal macrophages from mice at 6 weeks after infection with Schistosoma japonicum. rSjP40 inhibited TREM-1 promoter activity at the position of - 1924 ~ - 1531 bp. rSjP40 down-regulated TREM-1 and FOXO3a protein expression in RAW264.7 cells. TREM-1 protein expression may be regulated by binding of FOXO3a to the promoter of TREM-1 in RAW264.7 cells. In conclusion, we found that rSjP40 inhibited TREM-1 expression in macrophages by inhibiting FOXO3a expression. This study will provide the basis for the study to explore the role of TREM-1 in Schistosoma japonicum infection.
Collapse
Affiliation(s)
- Pei Shen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China; Department of Laboratory Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Tianyu Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Guo Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Bei Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Ailong Huang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Lian Duan
- Department of Medical Informatics, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China.
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jianxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Dai M, Yang X, Yu Y, Pan W. Helminth and Host Crosstalk: New Insight Into Treatment of Obesity and Its Associated Metabolic Syndromes. Front Immunol 2022; 13:827486. [PMID: 35281054 PMCID: PMC8913526 DOI: 10.3389/fimmu.2022.827486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity and its associated Metabolic Syndromes (Mets) represent a global epidemic health problem. Metabolic inflammation, lipid accumulation and insulin resistance contribute to the progression of these diseases, thereby becoming targets for drug development. Epidemiological data have showed that the rate of helminth infection negatively correlates with the incidence of obesity and Mets. Correspondingly, numerous animal experiments and a few of clinic trials in human demonstrate that helminth infection or its derived molecules can mitigate obesity and Mets via induction of macrophage M2 polarization, inhibition of adipogenesis, promotion of fat browning, and improvement of glucose tolerance, insulin resistance and metabolic inflammation. Interestingly, sporadic studies also uncover that several helminth infections can reshape gut microbiota of hosts, which is intimately implicated in the pathogenesis of obesity and Mets. Overall, these findings indicate that the crosstalk between helminth and hosts may be a novel direction for obesity and Mets therapy. The present article reviews the molecular mechanism of how helminth masters immunity and metabolism in obesity.
Collapse
Affiliation(s)
- Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The Second Clinical Medicine, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| |
Collapse
|
17
|
Chen H, Li G, Zhang J, Zheng T, Chen Q, Zhang Y, Yang F, Wang C, Nie H, Zheng B, Gong Q. Sodium butyrate ameliorates Schistosoma japonicum-induced liver fibrosis by inhibiting HMGB1 expression. Exp Parasitol 2021; 231:108171. [PMID: 34736899 DOI: 10.1016/j.exppara.2021.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/16/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022]
Abstract
Schistosomiasis is a prevalent zoonotic parasitic disease caused by schistosomes. Its main threat to human health is hepatic granuloma and fibrosis due to worm eggs. Praziquantel remains the first choice for the treatment of schistosomiasis but has limited benefit in treating liver fibrosis. Therefore, the need to develop effective drugs for treating schistosomiasis-induced hepatic fibrosis is urgent. High-mobility group box 1 protein (HMGB1) is a potential immune mediator that is highly associated with the development of some fibrotic diseases and may be involved in the liver pathology of schistosomiasis. We speculated that HMGB1 inhibitors could have an anti-fibrotic effect. Sodium butyrate (SB), a potent inhibitor of HMGB1, has shown anti-inflammatory activity in some animal disease models. In this study, we evaluated the effects of SB on a murine schistosomiasis model. Mice were percutaneously infected with 20 ± 2 cercariae of Schistosoma japonicum. SB (500 mg/kg/day) was administered every 3 days for the entire experiment period. The activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), liver histopathology, HMGB1 expression, and the levels of interferon gamma (IFN-γ), transforming growth factor-β1 (TGF-β1), and interleukin-6 (IL-6) in serum were analyzed. SB reduced hepatic granuloma and fibrosis of schistosomiasis, reflected by the decreased levels of ALT and AST in serum and the reduced expression of pro-inflammatory and fibrogenic cytokines (IFN-γ, TGF-β1, and IL-6). The protective effect could be attributable to the inhibition of the expression of HMGB1 and release by SB.
Collapse
Affiliation(s)
- Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Gang Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Department of Gastroenterology, Jingmen Second People's Hospital, Jingmen, Hubei Province, 448000, PR China
| | - Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Ting Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Qianglin Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Yanxiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Fei Yang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Chao Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China.
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China.
| |
Collapse
|
18
|
Shen H, Wang Z, Huang A, Zhu D, Sun P, Duan Y. Lipocalin 2 Is a Regulator During Macrophage Polarization Induced by Soluble Worm Antigens. Front Cell Infect Microbiol 2021; 11:747135. [PMID: 34616693 PMCID: PMC8489661 DOI: 10.3389/fcimb.2021.747135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Caused by schistosomes, the human schistosomiasis is a tropical zoonotic parasitic disease. Pathologically, it occurs most often in the intestines and the liver, the sites of Schistosoma japonicum egg accumulation. The parasites' produced eggs cause the main pathology in patients. Deposited parasite eggs in the liver induce the production of multiple cytokines that mediate the immune response, which in turn leads to granulomatous responses and liver fibrosis. These impact the hosts' quality of life and health status, resulting in severe morbidity and even mortality. In this study, differentially expressed genes (DEGs) between ordinary samples and three 6- week infected mice were mined from microarray analysis based on the limma package. In total, we excavated the differential expression LCN2 was exhibited high expressions profile in GSE59276, GSE61376 demonstrated the result. Furthermore, CIBERSORT suggested detailed analysis of the immune subtype distribution pattern. In vivo experiments like real-time quantitative PCR, immunohistochemical (IHC) staining, and immunofluorescence (IF) demonstrated the expressions of LCN2 was significantly upregulated in S. japonicum-infected mice liver tissues and located in macrophages. Previous studies have shown that macrophages act as the first line of defense during schistosome infection and are an important part of liver granuloma. We used S. japonicum soluble worm antigens (SWA) to induce RAW264.7 cells to construct an in vitro inflammatory model. The current study aimed to investigate whether the NF-κB signaling network is involved in LCN2 upregulation induced by SWA and whether LCN2 can promote M1 polarization of macrophages under SWA treatment. Our research work suggests that LCN2 is significant in the development of early infection caused by S. japonicum and is of great value for further exploration. Collectively, the findings indicated that SWA promoted the expression of LCN2 and promoted M1 polarization of macrophages via the upregulation of NF-κB signaling pathway. Our findings demonstrate that NF-κB/LCN2 is necessary for migration and phagocytosis of M1 macrophages in response to SWA infection. Our study highlights the essential role of NF-κB/LCN2 in early innate immune response to infection.
Collapse
Affiliation(s)
- Hanyu Shen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Ziheng Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Ailong Huang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
19
|
Zhang Y, Wu Y, Liu H, Gong W, Hu Y, Shen Y, Cao J. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection. Parasit Vectors 2021; 14:497. [PMID: 34565440 PMCID: PMC8474882 DOI: 10.1186/s13071-021-05006-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background CD4+ T helper (Th) cells play critical roles in both host humoral and cellular immunity against parasitic infection and in the immunopathology of schistosomiasis. T follicular helper (Tfh) cells are a specialized subset of Th cells involved in immunity against infectious diseases. However, the role of Tfh cells in schistosome infection is not fully understood. In this study, the dynamics and roles of Tfh cell regulation were examined. We demonstrated that granulocytic myeloid-derived suppressor cells (G-MDSC) can suppress the proliferation of Tfh cells. Methods The levels of Tfh cells and two other Th cells (Th1, Th2) were quantitated at different Schistosoma japonicum infection times (0,3, 5, 8, 13 weeks) using flow cytometry. The proliferation of Tfh cells stimulated by soluble egg antigen (SEA) and soluble worm antigen (SWA) in vivo and in vitro were analyzed. Tfh cells were co-cultured with MDSC to detect the proliferation of Tfh cells labelled by 5(6)-carboxyfluorescein diacetate N-succinimidyl ester. We dynamically monitored the expression of programmed cell death protein 1 (PD-1) on the surface of Tfh cells and programmed cell death ligand 1 (PD-L1) on the surface of MDSC at different infection times (0, 3, 5, 8 weeks). Naïve CD4+ T cells (in Tfh cell differentiation) were co-cultured with G-MDSC or monocytic MDSC in the presence, or in the absence, of PD-L1 blocking antibody. Results The proportion of Tfh cells among CD4+ T cells increased gradually with time of S. japonicum infection, reaching a peak at 8 weeks, after which it decreased gradually. Both SEA and SWA caused an increase in Tfh cells in vitro and in vivo. It was found that MDSC can suppress the proliferation of Tfh cells. The expression of PD-1 on Tfh cells and PD-L1 from MDSC cells increased with prolongation of the infection cycle. G-MDSC might regulate Tfh cells through the PD-1/PD-L1 pathway. Conclusions The reported study not only reveals the dynamics of Tfh cell regulation during S. japonicum infection, but also provides evidence that G-MDSC may regulate Tfh cells by PD-1/PD-L1. This study provides strong evidence for the important role of Tfh cells in the immune response to S. japonicum infection. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yumei Zhang
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,Department of Pathogenic Biology, Binzhou Medical University, Yantai, Shandong, 264003, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Yulong Wu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Hua Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Wenci Gong
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Yuan Hu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Yujuan Shen
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China. .,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China. .,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.
| |
Collapse
|
20
|
Liu L, Peng S, Duan M, Liu C, Li L, Zhang X, Ren B, Tian H. The role of C/EBP homologous protein (CHOP) in regulating macrophage polarization in RAW264.7 cells. Microbiol Immunol 2021; 65:531-541. [PMID: 34491597 DOI: 10.1111/1348-0421.12937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 11/27/2022]
Abstract
Schistosomiasis is a zoonotic parasitic disease that is endemic in Asia. Macrophages are mainly involved in the inflammatory response of late schistosoma infection. Our previous study found that C/EBP homologous protein (CHOP) expression is significantly increased, and M2 macrophages are activated in schistosome-induced liver fibrosis mice. However, the role of CHOP in the regulation of macrophage polarization remains to be further studied. Western blotting or quantitative PCR revealed that IL-4 increased the expression of arginase-1, macrophage mannose receptor 1, phosphorylation signal transducer and activator of transcription 6 (p-STAT6), Krüppel-like factor 4 (KLF4), CHOP, and IL-13 receptor alpha (IL-13Rα) and induced M2 polarization in RAW264.7 as measured by flow cytometry. Inhibiting STAT6 phosphorylation (AS1517499) reduced the IL-4-induced expression of KLF4, CHOP, and IL-13Rα and also the number of M2 macrophages. The overexpression of CHOP stimulated M2 polarization, but AS1517499 inhibited this effect. CHOP increased the protein expression of KLF4 but did not change the expression of p-STAT6. Soluble egg antigen (SEA) could promote the IL-4-induced protein expression of p-STAT6, CHOP, and KLF4. Overall, the findings show that SEA can promote the activation of M2 macrophages by causing increased CHOP-induced KLF4 levels and activation of STAT6 phosphorylation.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, China
| | - Shuang Peng
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyun Duan
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Cuiliu Liu
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Lingrui Li
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Xing Zhang
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Boxu Ren
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Hongyang Tian
- Department of Hepatobiliary Surgery, Wusan Hospital, Jingmen, China
| |
Collapse
|
21
|
Identification of infiltrating immune cell subsets and heterogeneous macrophages in the lesion microenvironment of hepatic cystic echinococcosis patients with different cyst viability. Acta Trop 2021; 221:106029. [PMID: 34216561 DOI: 10.1016/j.actatropica.2021.106029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
Human cystic echinococcosis (CE) is characterized by lesion microenvironment formation through gathering various immune cells, including macrophages. However, immune cell subsets and heterogeneous macrophages in CE lesion microenvironment are poorly defined. Massive infiltrating immune cells formed lesion microenvironment, among which CD4+T cells and CD19+B cells were predominant and CD68+ macrophages were more evident in patients with active cysts. Different degrees of liver fibrosis was observed in Peri-Lesion (PL) liver samples, which was more evident in patients with active cysts. Expression of both M1 and M2 macrophage markers was significantly increased in PL liver samples. Importantly, elevation of M1 macrophage markers was more obvious in patients with inactive cysts, whereas M2 macrophage markers represented dominant macrophage phenotype in patients with active cysts. Additionally, macrophage-derived MIF, TGF-β1 and ECM1 were also expressed at higher level in CE lesion microenvironment of patients with active cysts. Moreover, MIF was evidently enhanced in the serum of hepatic CE patients, which was also predominant in patients with active cysts. Correlation analysis demonstrated positive correlation between expression of macrophage-derived cytokines and liver fibrosis degree. Heterogeneous macrophages may play significant roles in liver fibrosis of CE lesion microenvironment through producing pro-fibrogenic cytokines.
Collapse
|
22
|
Yu Y, Wang J, Wang X, Gu P, Lei Z, Tang R, Wei C, Xu L, Wang C, Chen Y, Pu Y, Qi X, Yu B, Chen X, Zhu J, Li Y, Zhang Z, Zhou S, Su C. Schistosome eggs stimulate reactive oxygen species production to enhance M2 macrophage differentiation and promote hepatic pathology in schistosomiasis. PLoS Negl Trop Dis 2021; 15:e0009696. [PMID: 34398890 PMCID: PMC8389433 DOI: 10.1371/journal.pntd.0009696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/26/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease of public health concern. The most devastating pathology in schistosomiasis japonica and mansoni is mainly attributed to the egg-induced granulomatous response and secondary fibrosis in host liver, which may lead to portal hypertension or even death of the host. Schistosome eggs induce M2 macrophages-rich granulomas and these M2 macrophages play critical roles in the maintenance of granuloma and subsequent fibrosis. Reactive oxygen species (ROS), which are highly produced by stimulated macrophages during infection and necessary for the differentiation of M2 macrophages, are massively distributed around deposited eggs in the liver. However, whether ROS are induced by schistosome eggs to subsequently promote M2 macrophage differentiation, and the possible underlying mechanisms as well, remain to be clarified during S. japonicum infection. Herein, we observed that extensive expression of ROS in the liver of S. japonicum-infected mice. Injection of ROS inhibitor in infected mice resulted in reduced hepatic granulomatous responses and fibrosis. Further investigations revealed that inhibition of ROS production in S. japonicum-infected mice reduces the differentiation of M2, accompanied by increased M1 macrophage differentiation. Finally, we proved that S. japonicum egg antigens (SEA) induce a high level of ROS production via both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and mitochondria in macrophages. Our study may help to better understand the mechanism of schistosomiasis japonica-induced hepatic pathology and contribute to the development of potential therapeutic strategies by interfering with ROS production. Schistosomiasis is a neglected parasitic disease of poverty that affects ~200 million people mainly in (sub)tropical regions, resulting in a massive health burden and serious morbidity. During Schistosoma japonicum (S. japonicum) or S. mansoni infection, parasite eggs are trapped in host liver and induce hepatic granulomas and fibrosis, which leads to severe liver damage, and even death of the host. In hepatic schistosomiasis, considerable amounts of ROS accumulate in granulomas surrounding liver-trapped eggs. However, whether schistosome eggs trigger the production of ROS, and if so, whether and how ROS promote hepatic pathology in host remain unknown. In this study, the authors illustrated that S. japonicum eggs evoke high production of ROS in macrophages, which is necessary for egg-mediated M2 macrophage differentiation and promotes hepatic granulomas and fibrosis in S. japonicum-infected mice. These discoveries provide a potential target regarding schistosome eggs-induced ROS production, which can be manipulated to regulate immunopathology in hepatic schistosomiasis.
Collapse
Affiliation(s)
- Yanxiong Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junling Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohong Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pan Gu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhigang Lei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanan Pu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Beibei Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Sha Zhou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (SZ); (CS)
| | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (SZ); (CS)
| |
Collapse
|
23
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Wang N, Bai X, Jin X, Tang B, Yang Y, Sun Q, Li S, Wang C, Chang Q, Liu M, Liu X. The dynamics of select cellular responses and cytokine expression profiles in mice infected with juvenile Clonorchis sinensis. Acta Trop 2021; 217:105852. [PMID: 33548205 DOI: 10.1016/j.actatropica.2021.105852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
Clonorchiasis is a zoonotic disease that can result in chronic infection in humans. The causative agent, Clonorchis sinensis (C. sinensis), is believed to primarily induce a Th2 immune response in infected mice. However, few studies have profiled host immune responses to C. sinensis infection during the juvenile phase. In the present study, the dynamics of select cellular responses and cytokine expression profiles during juvenile C. sinensis infection were investigated. The flow cytometry results showed that the CD4+ T cells percentage was significantly decreased between 12 days post-infection (dpi) and 24 dpi in the peripheral blood, and the CD8+ T cells percentage was significantly elevated after 3 dpi. The ratio of CD4+/CD8+ T cells was also significantly decreased after 3 dpi. Furthermore, we observed that the proportion of CD14+ monocyte-macrophages in the peripheral blood was significantly increased between 1 dpi and 12 dpi and peaked at 6 dpi. The percentage of classically activated macrophages (M1) and alternatively activated macrophages (M2) in the liver was significantly increased between 18 dpi and 30 dpi. qRT-PCR results showed that the expression levels of iNOS in the liver were significantly elevated after 3 dpi, and Arg-1 expression was significantly increased beginning at 12 dpi. ELISA results showed that the serum levels of the Th1 cytokines IFN-γ and IL-2 peaked at 6 dpi and decreased thereafter. Furthermore, the Th2 cytokines IL-4 and IL-13 began to be expressed and peaked at 24 dpi and 30 dpi, respectively. In addition, the levels of the Treg cytokines IL-10 and TGF-β1 were significantly increased beginning at 6 dpi until 30 dpi. In the liver homogenate, the expression of IFN-γ, IL-2, and IL-4 mainly occurred before 6 dpi. IL-13 expression was significantly increased at 30 dpi. IL-10 and TGF-β1 levels were significantly increased at 12 dpi and 24 dpi, and expression peaked at 24 dpi and 30 dpi, respectively. This study provides a fundamental characterization for the future analysis of host-parasite interactions and immune responses in hosts infected with juvenile C. sinensis.
Collapse
|
25
|
Yang X, Ding W, Qian X, Jiang P, Chen Q, Zhang X, Lu Y, Wu J, Sun F, Pan Z, Li X, Pan W. Schistosoma japonicum Infection Leads to the Reprogramming of Glucose and Lipid Metabolism in the Colon of Mice. Front Vet Sci 2021; 8:645807. [PMID: 33791356 PMCID: PMC8006365 DOI: 10.3389/fvets.2021.645807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
The deposition of Schistosoma japonicum (S. japonicum) eggs commonly induces inflammation, fibrosis, hyperplasia, ulceration, and polyposis in the colon, which poses a serious threat to human health. However, the underlying mechanism is largely neglected. Recently, the disorder of glucose and lipid metabolism was reported to participate in the liver fibrosis induced by the parasite, which provides a novel clue for studying the underlying mechanism of the intestinal pathology of the disease. This study focused on the metabolic reprogramming profiles of glucose and lipid in the colon of mice infected by S. japonicum. We found that S. japonicum infection shortened the colonic length, impaired intestinal integrity, induced egg-granuloma formation, and increased colonic inflammation. The expression of key enzymes involved in the pathways regulating glucose and lipid metabolism was upregulated in the colon of infected mice. Conversely, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and its downstream signaling targets were significantly inhibited after infection. In line with these results, in vitro stimulation with soluble egg antigens (SEA) downregulated the expression of PTEN in CT-26 cells and induced metabolic alterations similar to that observed under in vivo results. Moreover, PTEN over-expression prevented the reprogramming of glucose and lipid metabolism induced by SEA in CT-26 cells. Overall, the present study showed that S. japonicum infection induces the reprogramming of glucose and lipid metabolism in the colon of mice, and PTEN may play a vital role in mediating this metabolic reprogramming. These findings provide a novel insight into the pathogenicity of S. japonicum in hosts.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Weimin Ding
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Xinyu Qian
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Jiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Qingqing Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Xin Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Yang Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Jiacheng Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China.,The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Zhihua Pan
- National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
26
|
Xie H, Wu L, Chen X, Gao S, Li H, Yuan Y, Liang J, Wang X, Wang S, Xu C, Chu L, Zhan B, Zhou R, Yang X. Schistosoma japonicum Cystatin Alleviates Sepsis Through Activating Regulatory Macrophages. Front Cell Infect Microbiol 2021; 11:617461. [PMID: 33718268 PMCID: PMC7943722 DOI: 10.3389/fcimb.2021.617461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Multi-organ failure caused by the inflammatory cytokine storm induced by severe infection is the major cause of death for sepsis. Sj-Cys is a cysteine protease inhibitor secreted by Schistosoma japonicum with strong immunomodulatory functions on host immune system. Our previous studies have shown that treatment with Sj-Cys recombinant protein (rSj-Cys) attenuated inflammation caused by sepsis. However, the immunological mechanism underlying the immunomodulation of Sj-Cys for regulating inflammatory diseases is not yet known. In this study, we investigated the effect of Sj-Cys on the macrophage M2 polarization and subsequent therapeutic effect on sepsis. The rSj-Cys was expressed in yeast Pichia pastoris. Incubation of mouse bone marrow-derived macrophages (BMDMs) with yeast-expressed rSj-Cys significantly activated the polarization of macrophages to M2 subtype characterized by the expression of F4/80+ CD206+ with the elated secretion of IL-10 and TGF-β. Adoptive transfer of rSj-Cys treated BMDMs to mice with sepsis induced by cecal ligation and puncture (CLP) significantly improved their survival rates and the systemic clinical manifestations of sepsis compared with mice receiving non-treated normal BMDMs. The therapeutic effect of Sj-Cys-induced M2 macrophages on sepsis was also reflected by the reduced pathological damages in organs of heart, lung, liver and kidney and reduced serological levels of tissue damage-related ALT, AST, BUN and Cr, associated with downregulated pro-inflammatory cytokines (IFN-gamma and IL-6) and upregulated regulatory anti-inflammatory cytokines (IL-10 and TGF-β). Our results demonstrated that Sj-Cys is a strong immunomodulatory protein with anti-inflammatory features through activating M2 macrophage polarization. The findings of this study suggested that Sj-Cys itself or Sj-Cys-induced M2 macrophages could be used as therapeutic agents in the treatment of sepsis or other inflammatory diseases.
Collapse
Affiliation(s)
- Hong Xie
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xingzhi Chen
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shifang Gao
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Jinbao Liang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shuying Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changyan Xu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Liang Chu
- Department of General Surgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Rui Zhou
- Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases of Bengbu Medical College, Bengbu, China
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| |
Collapse
|
27
|
Llanwarne F, Helmby H. Granuloma formation and tissue pathology in Schistosoma japonicum versus Schistosoma mansoni infections. Parasite Immunol 2021; 43:e12778. [PMID: 32692855 PMCID: PMC11478942 DOI: 10.1111/pim.12778] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is the most important helminth disease in the world from a public health perspective. S mansoni and S japonicum account for the majority of global intestinal schistosomiasis cases, and the pathogenesis is widely assumed to be fundamentally similar. However, the majority of research on schistosomiasis has been carried out on S mansoni and comparisons between the two species are rarely made. Here, we will discuss aspects of both older and recent literature where such comparisons have been made, with a particular focus on the pathological agent, the host granulomatous response to the egg. Major differences between the two species are apparent in features such as egg production patterns and cellular infiltration; however, it is also clear that even subtle differences in the cascade of various cytokines and chemokines contribute to the different levels of pathology observed between these two main species of intestinal schistosomiasis. A better understanding of such differences at species level will be vital when it comes to the development of new treatment strategies and vaccines.
Collapse
Affiliation(s)
- Felix Llanwarne
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| | - Helena Helmby
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
28
|
Wang Z, Du Z, Sheng H, Xu X, Wang W, Yang J, Sun J, Yang J. Polarization of intestinal tumour-associated macrophages regulates the development of schistosomal colorectal cancer. J Cancer 2021; 12:1033-1041. [PMID: 33442402 PMCID: PMC7797650 DOI: 10.7150/jca.48985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Tumour-associated macrophages (TAMs) can be divided into M1 and M2 TAMs. M2 TAMs play an important role in tumor progression, promoting a pro-angiogenic and immunosuppressive signal in the tumor. Previous studies have shown a correlation between schistosomiasis and colorectal cancer (CRC), but the specific mechanism has not been clarified. The differences between schistosomal CRC and non-schistosomal CRC were explored by analysing the clinicopathological data and survival time prognosis of schistosomal CRC and non-schistosomal CRC patients. The underlying mechanisms leading to the differences were investigated via tissue pathology experiments. Here, we investigated whether TAMs play a role in schistosomal CRC, leading to different clinicopathological features and prognoses in schistosomal CRC and non-schistosomal CRC patients and whether TAMs have a regulatory effect on the development and prognosis of schistosomal CRC. We found that schistosomal CRC and non-schistosomal CRC patients differ in age, sex, TNM staging and prognosis survival. Applying a logistic regression analysis model, the results showed that age, sex, pathological T stage and combined schistosomiasis were independent risk factors for CRC. Prognostic analysis of follow-up patients with schistosomal CRC found that the T stage, M stage and M2 TAMs numbers were independent prognostic factors for overall survival (OS). TAMs are significantly higher in tissues of schistosomal CRC than in non-schistosomal CRC patients, especially M2 TAMs. Studies on schistosomal colorectal tissue found that the expression of M2 TAMs increased with the malignant process of intestinal tissue. In summary, schistosomal CRC and non-schistosomal CRC patients have different clinicopathological features and prognosis, schistosomiasis is a risk factor for CRC and M2 TAMs are independent prognostic factors for OS.
Collapse
Affiliation(s)
- Zijian Wang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Zhixiang Du
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Haoyu Sheng
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Xiuliang Xu
- Department of Infectious Diseases, The People's Hospital of Chizhou, Chizhou, Anhui 247000, P. R. China
| | - Wenjie Wang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Jian Yang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Jian Sun
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Jianghua Yang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| |
Collapse
|
29
|
Chang H, He KY, Li C, Ni YY, Li MN, Chen L, Hou M, Zhou Z, Xu ZP, Ji MJ. P21 activated kinase-1 (PAK1) in macrophages is required for promotion of Th17 cell response during helminth infection. J Cell Mol Med 2020; 24:14325-14338. [PMID: 33124146 PMCID: PMC7753984 DOI: 10.1111/jcmm.16050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
CD4+T cells differentiate into distinct functional effector and inhibitory subsets are facilitated by distinct cytokine cues present at the time of antigen recognition. Maintaining a balance between T helper 17 (Th17) and regulatory T (Treg) cells are critical for the control of the immunopathogenesis of liver diseases. Here, by using the mouse model of helminth Schistosoma japonicum (Sjaponicum) infection, we show that the hepatic mRNA levels of P21‐activated kinase 1 (PAK1), a key regulator of the actin cytoskeleton, adhesion and cell motility, are significantly increased and associated with the development of liver pathology during Sjaponicum infection. In addition, PAK1‐deficient mice are prone to suppression of Th17 cell responses but increased Treg cells. Furthermore, PAK1 enhances macrophage activation through promoting IRF1 nuclear translocation in an NF‐κB‐dependent pathway, resulting in promoting Th17 cell differentiation through inducing IL‐6 production. These findings highlight the importance of PAK1 in macrophages fate determination and suggest that PAK1/IRF1 axis‐dependent immunomodulation can ameliorate certain T cell–based immune pathologies.
Collapse
Affiliation(s)
- Hao Chang
- Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Kai-Yue He
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yang-Yue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Mai-Ning Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zikai Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Peng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min-Jun Ji
- Center for Global Health, Nanjing Medical University, Nanjing, China.,Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Song LJ, Yin XR, Mu SS, Li JH, Gao H, Zhang Y, Dong PP, Mei CJ, Hua ZC. The Differential and Dynamic Progression of Hepatic Inflammation and Immune Responses During Liver Fibrosis Induced by Schistosoma japonicum or Carbon Tetrachloride in Mice. Front Immunol 2020; 11:570524. [PMID: 33117360 PMCID: PMC7575768 DOI: 10.3389/fimmu.2020.570524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis can result from various causes and could progress to cirrhosis and cancer; however, there are no effective treatments due to that its molecular mechanism is unclear. liver fibrosis model made by Schistosoma japonicum (S. japonicum) infection or Carbon tetrachloride (CCl4) intraperitoneal injection is a conventional model used in liver fibrosis-related studies for mechanism or pharmaceutical research purposes. But the differences in the pathological progression, immune responses and the underlying mechanism between the two liver fibrosis model have not been carefully compared and characterized, which hinders us from correctly understanding and making better use of the two models. In the present study, the pathological changes to the liver, and the cytokines, inflammatory factors, macrophages, and lymphocytes subsets involved were analyzed in the liver fibrosis model of S. japonicum infection or CCl4 intraperitoneal injection. Additionally, the pathological progression, immune responses and the underlying injury mechanism in these two models were compared and characterized. The results showed that the changing trend of interleukin-13 (IL-13), transforming growth factor beta (TGF-β), inflammatory factors, and M1, M2 macrophages, were consistent with the development trend of fibrosis regardless of whether liver fibrosis was caused by S. japonicum or CCl4. For lymphocyte subsets, the proportions of CD3+ T cells and CD4+ T cells decreased gradually, while proportion of CD8+ T cells peaked at 6 weeks in mice infected with S. japonicum and at 12 weeks in mice injected with CCl4. With prolonged S. japonicum infection time, Th1 (CD4+IFN-γ+) immunity converted to Th2 (CD4+IL-4+)/Th17 (CD4+IL-17+) with weaker regulatory T cell (Treg) (CD4+CD25+FOXP3+) immunity. However, in liver fibrosis caused by CCl4, Th1 cells occupied the dominant position, while proportions of Th2, Th17, and Treg cells decreased gradually. In conclusion, liver fibrosis was a complex pathological process that was regulated by a series of cytokines and immune cells. The pathological progressions and immune responses to S. japonicum or CCl4 induced liver fibrosis were different, possibly because of their different injury mechanisms. The appropriate animal model should be selected according to the needs of different experiments and the pathogenic factors of liver fibrosis in the study.
Collapse
Affiliation(s)
- Li-Jun Song
- School of Life Sciences and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Public Health Research Center, Jiangnan University, Wuxi, China
| | - Xu-Ren Yin
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Sha-Sha Mu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jia-Huang Li
- School of Life Sciences and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China.,Jiangsu TargetPharma Laboratories Inc., Changzhou High-Tech Research Institute of Nanjing University, Changzhou, China
| | - Hong Gao
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ying Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Pan-Pan Dong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Cong-Jin Mei
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Zi-Chun Hua
- School of Life Sciences and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China.,Jiangsu TargetPharma Laboratories Inc., Changzhou High-Tech Research Institute of Nanjing University, Changzhou, China
| |
Collapse
|
31
|
Souza COS, Gardinassi LG, Rodrigues V, Faccioli LH. Monocyte and Macrophage-Mediated Pathology and Protective Immunity During Schistosomiasis. Front Microbiol 2020; 11:1973. [PMID: 32922381 PMCID: PMC7456899 DOI: 10.3389/fmicb.2020.01973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Infection by Schistosoma parasites culminates in a chronic granulomatous disease characterized by intense tissue fibrosis. Along the course of schistosomiasis, diverse leukocytes are recruited for inflammatory foci. Innate immune cell accumulation in Th2-driven granulomas around Schistosoma eggs is associated with increased collagen deposition, while monocytes and macrophages exert critical roles during this process. Monocytes are recruited to damaged tissues from blood, produce TGF-β and differentiate into monocyte-derived macrophages (MDMs), which become alternatively activated by IL-4/IL-13 signaling via IL-4Rα (AAMs). AAMs are key players of tissue repair and wound healing in response to Schistosoma infection. Alternative activation of macrophages is characterized by the activation of STAT6 that coordinates the transcription of Arg1, Chi3l3, Relma, and Mrc1. In addition to these markers, monocyte-derived AAMs also express Raldh2 and Pdl2. AAMs produce high levels of IL-10 and TGF-β that minimizes tissue damage caused by Schistosoma egg accumulation in tissues. In this review, we provide support to previous findings about the host response to Schistosoma infection reusing public transcriptome data. Importantly, we discuss the role of monocytes and macrophages with emphasis on the mechanisms of alternative macrophage activation during schistosomiasis.
Collapse
Affiliation(s)
- Camila Oliveira Silva Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Ye Z, Huang S, Zhang Y, Mei X, Zheng H, Li M, Chen J, Lu F. Galectins, Eosinophiles, and Macrophages May Contribute to Schistosoma japonicum Egg-Induced Immunopathology in a Mouse Model. Front Immunol 2020; 11:146. [PMID: 32231658 PMCID: PMC7082360 DOI: 10.3389/fimmu.2020.00146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is a severe public health problem, which can cause tissue fibrosis and can even be fatal. Previous studies have proven that galectins and different kinds of cells involve in the regulation of tissue fibrosis process. In this study, outbred Kunming mice were infected with Schistosoma japonicum (S. japonicum). Our results showed that compared with uninfected mice, there were severe egg granulomatous inflammation and tissue fibrosis in the livers, spleens, and large intestines of S. japonicum-infected mice at 8 weeks post-infection (p.i.), and the number of eosinophils by hematoxylin and eosin staining and CD68 macrophage-positive area by immunohistochemical staining were significantly increased. Detected by using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), at 8 weeks after S. japonicum infection, the mRNA expression levels of galectin (Gal)-1, Gal-3, CD69, eosinophil protein X (EPX), and chitinase 3-like protein 3 (Ym1) were significantly increased in liver, spleen, and large intestine; eotaxin-1 (CCL11) and eosinophil cationic protein were significantly increased in both liver and spleen; eotaxin-2 (CCL24) and Arginase1 (Arg1) were significantly increased in both spleen and large intestine; and CD200R was significantly increased in both liver and large intestine. However, interleukin (IL)-1ß and inducible nitric oxide synthase (iNOS) were only significantly increased in liver. The M2/M1 ratio of CD200R/CD86 genes was significantly increased in liver, and ratios of Ym1/IL-1β and Ym1/iNOS were significantly increased in liver, spleen, and large intestine of S. japonicum-infected mice. Ex vivo study further confirmed that the levels of Gal-1, Gal-3, CD200R, Arg1, and Ym1 were significantly increased, and the ratios of CD200R/CD86 and Ym1/IL-1β were significantly increased in peritoneal macrophages isolated from S. japonicum-infected mice at 8 weeks p.i. In addition, correlation analysis showed that significant positive correlations existed between mRNA levels of Gal-1/Gal-3 and EPX in liver, between Gal-3 and Ym1 in both liver and large intestine, and between Gal-3 and CD200R in peritoneal macrophages of S. japonicum-infected mice. Our data suggested that Gal-1, Gal-3, eosinophils, and macrophages are likely involved in the development of egg granulomatous response and fibrosis induced by S. japonicum infection.
Collapse
Affiliation(s)
- Zhanhong Ye
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China
| | - Yanxia Zhang
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xu Mei
- Artemisinin Research Center and Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huanqin Zheng
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Meiyu Li
- Medical Experimental Teaching Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianhuang Chen
- Medical Experimental Teaching Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Wang Z, Du Z, Liu Y, Wang W, Liang M, Zhang A, Yang J. Comparison of the clinicopathological features and prognoses of patients with schistosomal and nonschistosomal colorectal cancer. Oncol Lett 2020; 19:2375-2383. [PMID: 32194737 PMCID: PMC7039146 DOI: 10.3892/ol.2020.11331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with schistosomal colorectal cancer (CRC) and nonschistosomal CRC have different clinicopathological features, laboratory test results and survival rates. Long-term infection with schistosomiasis in patients with CRC may affect the pathogenesis and subsequently change the mechanisms of CRC in these patients, resulting in changes in the survival rates of patients with schistosomal and nonschistosomal CRC. In China, the most common type of schistosomiasis is S. japonicum. The present study aimed to investigate the clinicopathological features and prognostic factors of schistosomal and nonschistosomal CRC. A total of 253 patients with schistosomal CRC and 2,885 patients with nonschistosomal CRC were analyzed and their symptoms, clinicopathological features and laboratory test results were retrospectively evaluated. Patients with CRC in the present study underwent radical resection at The First Affiliated Yijishan Hospital of Wannan Medical College between January 2012 and December 2018. A total of 3,138 patients with CRC were enrolled, 253 of whom were patients with schistosomal CRC. Patients were followed-up to examine differences in the 5-year survival rates between patients with schistosomal and nonschistosomal CRC to determine whether schistosomiasis impacted the prognosis of CRC. There were significant differences in age, sex, fecal occult blood positive, pathological T stage, and CA19-9, WBC, RBC and PLT levels between patients with schistosomal CRC and nonschistosomal CRC. For residents in areas with higher levels of schistosomiasis infections, especially middle-aged and elderly males, serum tumor markers and digestive tract endoscopy should be regularly evaluated to detect the presence of digestive tract tumors as early as possible.
Collapse
Affiliation(s)
- Zijian Wang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhixiang Du
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Yinhua Liu
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenjie Wang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Manman Liang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Aiping Zhang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Jianghua Yang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
34
|
Qian XY, Ding WM, Chen QQ, Zhang X, Jiang WQ, Sun FF, Li XY, Yang XY, Pan W. The Metabolic Reprogramming Profiles in the Liver Fibrosis of Mice Infected with Schistosoma japonicum. Inflammation 2020; 43:731-743. [PMID: 31907686 DOI: 10.1007/s10753-019-01160-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Guegan H, Ory K, Belaz S, Jan A, Dion S, Legentil L, Manuel C, Lemiègre L, Vives T, Ferrières V, Gangneux JP, Robert-Gangneux F. In vitro and in vivo immunomodulatory properties of octyl-β-D-galactofuranoside during Leishmania donovani infection. Parasit Vectors 2019; 12:600. [PMID: 31870416 PMCID: PMC6929453 DOI: 10.1186/s13071-019-3858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chemotherapeutic arsenal available to treat visceral leishmaniasis is currently limited, in view of many drawbacks such as high cost, toxicity or emerging resistance. New therapeutic strategies are particularly needed to improve the management and the outcome in immunosuppressed patients. The combination of an immunomodulatory drug to a conventional anti-Leishmania treatment is an emerging concept to reverse the immune bias from Th2 to Th1 response to boost healing and prevent relapses. METHODS Here, immunostimulating and leishmanicidal properties of octyl-β-D-galactofuranose (Galf) were assessed in human monocyte-derived macrophages (HM) and in a murine model, after challenge with Leishmania donovani promastigotes. We recorded parasite loads and expression of various cytokines and immune effectors in HM and mouse organs (liver, spleen, bone marrow), following treatment with free (Galf) and liposomal (L-Galf) formulations. RESULTS Both treatments significantly reduced parasite proliferation in HM, as well as liver parasite burden in vivo (Galf, P < 0.05). Consistent with in vitro results, we showed that Galf- and L-Galf-treated mice displayed an enhanced Th1 immune response, particularly in the spleen where pro-inflammatory cytokines TNF-α, IL-1β and IL-12 were significantly overexpressed compared to control group. The hepatic recruitment of myeloid cells was also favored by L-Galf treatment as evidenced by the five-fold increase of myeloperoxidase (MPO) induction, which was associated with a higher number of MPO-positive cells within granulomas. By contrast, the systemic level of various cytokines such as IL-1β, IL-6, IL-17A or IL-27 was drastically reduced at the end of treatment. CONCLUSIONS Overall, these results suggest that Galf could be tested as an adjuvant in combination with current anti-parasitic drugs, to restore an efficient immune response against infection in a model of immunosuppressed mice.
Collapse
Affiliation(s)
- Hélène Guegan
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Kevin Ory
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Sorya Belaz
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Aurélien Jan
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Sarah Dion
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Christelle Manuel
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Loïc Lemiègre
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Thomas Vives
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Jean-Pierre Gangneux
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Florence Robert-Gangneux
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France.
| |
Collapse
|
36
|
Wang H, Zhang CS, Fang BB, Li ZD, Li L, Bi XJ, Li WD, Zhang N, Lin RY, Wen H. Thioredoxin peroxidase secreted by Echinococcus granulosus (sensu stricto) promotes the alternative activation of macrophages via PI3K/AKT/mTOR pathway. Parasit Vectors 2019; 12:542. [PMID: 31727141 PMCID: PMC6857240 DOI: 10.1186/s13071-019-3786-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Larvae of Echinococcus granulosus (sensu lato) dwell in host organs for a long time but elicit only a mild inflammatory response, which indicates that the resolution of host inflammation is necessary for parasite survival. The recruitment of alternatively activated macrophages (AAMs) has been observed in a variety of helminth infections, and emerging evidence indicates that AAMs are critical for the resolution of inflammation. However, whether AAMs can be induced by E. granulosus (s.l.) infection or thioredoxin peroxidase (TPx), one of the important molecules secreted by the parasite, remains unclear. METHODS The activation status of peritoneal macrophages (PMs) derived from mice infected with E. granulosus (sensu stricto) was analyzed by evaluating the expression of phenotypic markers. PMs were then treated in vivo and in vitro with recombinant EgTPx (rEgTPx) and its variant (rvEgTPx) in combination with parasite excretory-secretory (ES) products, and the resulting activation of the PMs was evaluated by flow cytometry and real-time PCR. The phosphorylation levels of various molecules in the PI3K/AKT/mTOR pathway after parasite infection and antigen stimulation were also detected. RESULTS The expression of AAM-related genes in PMs was preferentially induced after E. granulosus (s.s.) infection, and phenotypic differences in cell morphology were detected between PMs isolated from E. granulosus (s.s.)-infected mice and control mice. The administration of parasite ES products or rEgTPx induced the recruitment of AAMs to the peritoneum and a notable skewing of the ratio of PM subsets, and these effects are consistent with those obtained after E. granulosus (s.s.) infection. ES products or rEgTPx also induced PMs toward an AAM phenotype in vitro. Interestingly, this immunomodulatory property of rEgTPx was dependent on its antioxidant activity. In addition, the PI3K/AKT/mTOR pathway was activated after parasite infection and antigen stimulation, and the activation of this pathway was suppressed by pre-treatment with an AKT/mTOR inhibitor. CONCLUSIONS This study demonstrates that E. granulosus (s.s.) infection and ES products, including EgTPx, can induce PM recruitment and alternative activation, at least in part, via the PI3K/AKT/mTOR pathway. These results suggest that EgTPx-induced AAMs might play a key role in the resolution of inflammation and thereby favour the establishment of hydatid cysts in the host.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, 831100, Xinjiang, People's Republic of China.,Basic Medical College, Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Chuan-Shan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Bin-Bin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Zhi-De Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Xiao-Juan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Wen-Ding Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ren-Yong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| |
Collapse
|
37
|
Liu H, Liu J, Huang J, Bai X, Wang Q. Heterogeneity and plasticity of porcine alveolar macrophage and pulmonary interstitial macrophage isolated from healthy pigs in vitro. Biol Open 2019; 8:bio.046342. [PMID: 31615770 PMCID: PMC6826289 DOI: 10.1242/bio.046342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study investigated the heterogeneity and plasticity of porcine alveolar macrophages (PAM) and pulmonary interstitial macrophages (IM) isolated from healthy pigs, including phenotype, function and gene expression. Dynamic changes of nitric oxide (NO) levels secreted by PAM and IM with stimulation of different doses of lipopolysaccharide (LPS) were investigated by Griess method, and the viability of the PAM and IM cells was investigated by MTT assay. Flow cytometry, fluorescence quantitative PCR and ELISA techniques were used to measure cell phenotype, gene expression and cytokine secretion, respectively. The PAM and IM cells in normal healthy pigs showed heterogeneity with 95.42±1.51% and 31.99±5.84% of CD163+ macrophage, respectively. The NO level in IM was significantly higher versus PAM after LPS treatment. Consistently, the ratio of Arg I/iNOS in IM was much lower than that in PAM, suggesting that the PAM belong to M2 macrophages and the IM belong to M1 macrophages. The PAM and IM cells in normal healthy pigs also showed plasticity. The Arg I/iNOS ratio and TIMP1/MMP12 ratio were significantly decreased in LPS- or LPS+IFNγ-treated PAM and IM, suggesting that cells were polarized towards M1 macrophages under LPS or LPS+IFNγ stimulation. On the contrary, IL-4 and IL-13 stimulation on PAM and IM lead to M2 polarization. A similar result was found in IL-1β gene expression and TNFα secretion. In conclusion, porcine macrophages have shown heterogeneity and plasticity on polarization under the stimulation of LPS, IFNγ, IL-4 and IL-13.
Collapse
Affiliation(s)
- Huan Liu
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Jia Liu
- Dalian Modern Agricultural Production Development Service Center, Dalian 116037, China
| | - Jing Huang
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Xianchang Bai
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Qinfu Wang
- College of Life Science and Technology, Dalian University, Dalian 116622, China
| |
Collapse
|
38
|
Ariyaratne A, Finney CAM. Eosinophils and Macrophages within the Th2-Induced Granuloma: Balancing Killing and Healing in a Tight Space. Infect Immun 2019; 87:e00127-19. [PMID: 31285249 PMCID: PMC6759305 DOI: 10.1128/iai.00127-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Granuloma formation is a key host immune response generated to confine invading pathogens and limit extensive host damage. It consists of an accumulation of host immune cells around a pathogen. This host response has been extensively studied in the context of inflammatory diseases. However, there is much less known about Th2-type granulomas generated in response to parasitic worms. Based on in vitro data, innate immune cells within the granuloma are thought to immobilize and kill parasites but also act to repair damaged tissue. Understanding this dual function is key. The two billion people and many livestock/wild animals infected with helminths demonstrate that granulomas are not effective at clearing infection. However, the lack of high mortality highlights their importance in ensuring that parasite migration/tissue damage is restricted and wound healing is effective. In this review, we define two key cellular players (macrophages and eosinophils) and their associated molecular players involved in Th2 granuloma function. To date, the underlying mechanisms remain poorly understood, which is in part due to a lack of conclusive studies. Most have been performed in vitro rather than in vivo, using cells that have not been obtained from granulomas. Experiments using genetically modified mouse strains and/or antibody/chemical-mediated cell depletion have also generated conflicting results depending on the model. We discuss the caveats of previous studies and the new tools available that will help fill the gaps in our knowledge and allow a better understanding of the balance between immune killing and healing.
Collapse
Affiliation(s)
- Anupama Ariyaratne
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Constance A M Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Dong D, Chen C, Hou J, Yang K, Fang H, Jiang H, Guo F, Wu X, Chen X. KLF4 upregulation is involved in alternative macrophage activation during secondary
Echinococcus granulosus
infection. Parasite Immunol 2019; 41:e12666. [DOI: 10.1111/pim.12666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Dan Dong
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Congzhe Chen
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
- People's Liberation Army General Hospital Beijing China
| | - Jun Hou
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Kun Yang
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Hairui Fang
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Hongqun Jiang
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Feng Guo
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Xiangwei Wu
- Department of General Surgery First Affiliated Hospital School of Medicine Shihezi University Shihezi, Xinjiang China
- Laboratory of Transitional Medicine School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Xueling Chen
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| |
Collapse
|
40
|
Xu ZP, Chang H, Ni YY, Li C, Chen L, Hou M, Ji MJ. Schistosoma japonicum infection causes a reprogramming of glycolipid metabolism in the liver. Parasit Vectors 2019; 12:388. [PMID: 31375125 PMCID: PMC6679454 DOI: 10.1186/s13071-019-3621-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background Recent investigations indicate that schistosome infection is closely associated with aberrant glycolipid metabolism. However, the actual glycolipid metabolism gene expression, as well as the possible pathways that regulate glycolipid metabolism in the schistosome-infected liver, has not been extensively explored. Methods In this study, we evaluated the dynamic expression of glycolipid metabolism-associated genes and proteins in the livers from mice infected with Schistosoma japonicum at the indicated time points using real-time PCR and immunofluorescence. Then, cultures of macrophages were treated with schistosome soluble egg antigen (SEA) to detect the expression levels of genes associated with glucose and lipid metabolism in order to identify macrophages metabolic characteristics in response to these antigens. Furthermore, SEA-stimulated macrophages were co-cultures with hepatocytes and detected the effects of macrophages on the gene expression of hepatocytes metabolism. Results The expression of glycolysis-related genes (Ldha, Glut4, Pkm2, Glut1, Pfkfb3, Aldoc, HK2, Pfk) in the liver were upregulated but the gluconeogenesis gene (G6pc) was downregulated during S. japonicum infection. In addition, the mRNA levels of fatty acid (FA) oxidation-related genes (Ucp2, Atp5b, Pparg) in the liver were significantly upregulated; however, the FA synthesis genes (Fas, Acc, Scd1, Srebp1c) and lipid uptake gene (Cd36) were downregulated post-S. japonicum-infection. In consistence with these data, stimulation with SEA in vitro significantly enhanced the gene expression that involved in glycolysis and FA oxidation, but decreased genes related to gluconeogenesis, FA synthesis and lipid uptake in macrophages. The levels of phosphorylated AMPK, AKT and mTORC1 were increased in macrophages after SEA stimulation. Inhibition of phosphorylated AMPK, AKT and mTORC1 promoted SEA-treated macrophages to produce glucose. In addition, suppression of phosphorylated-AMPK, but not phosphorylated-AKT and phosphorylated-mTOR, induced the lipid accumulation in SEA-stimulated macrophages. Furthermore, SEA-treated macrophages significantly reduced the expression of Acc mRNA in hepatocytes in vitro. Conclusions These findings reveal S. japonicum infection induces dynamic changes in the expression levels of genes involved in catabolism (glucose uptake, glycolysis and fatty acid oxidation) and suppressing anabolism (glycogen synthesis) in the liver, which could occur via macrophages’ metabolic states, particularly those involved in the AMPK, AKT and mTORC1 pathways. Electronic supplementary material The online version of this article (10.1186/s13071-019-3621-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi-Peng Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Hao Chang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yang-Yue Ni
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Chen Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lin Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Min Hou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Min-Jun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
41
|
Sarazin A, Dendooven A, Delbeke M, Gatault S, Pagny A, Standaert A, Rousseaux C, Desreumaux P, Dubuquoy L, Capron M. Treatment with P28GST, a schistosome-derived enzyme, after acute colitis induction in mice: Decrease of intestinal inflammation associated with a down regulation of Th1/Th17 responses. PLoS One 2018; 13:e0209681. [PMID: 30592734 PMCID: PMC6310452 DOI: 10.1371/journal.pone.0209681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Background P28GST, a 28Kd glutathione S-transferase enzymatic protein derived from a schistosome helminth prevents experimental colitis when administered subcutaneously in the presence of adjuvant by decreasing pro-inflammatory Th1/Th17 response. Given the antioxidant properties of P28GST, we evaluated its anti-inflammatory potential when administered locally after colitis induction in the absence of adjuvant. Methods Colitis was induced in BALB/c mice by rectal administration of TNBS, followed by two intraperitoneal injections of P28GST at day 1 and day 2. Mice were sacrificed 48h after TNBS administration and evaluated for macroscopic and histological scores, myeloperoxidase (MPO) quantification and cytokine messenger RNA expression in the colonic tissues. Results Both clinical and histological scores significantly decreased in mice treated with P28GST at 5 or 50μg/kg when compared to vehicle- treated mice. A significant reduction of MPO was detected in colonic tissues from P28GST–treated mice, similarly to mice treated with methylprednisolone as the reference treatment. Pro-inflammatory cytokines TNF, IL-1β, and IL-6, mRNA as well as serum levels were down-regulated in mice colonic tissues treated with P28GST at 5 or 50μg/kg. In addition, a significant decrease of mRNA expression levels of T-bet, and ROR-γ, respective markers of Th1 and Th17 cells was observed. Whereas no significant effect was detected on Gata3 mRNA, a marker of Th2 cells, the Arg/iNOS mRNA levels significantly increased in P28GST-treated mice, suggesting the induction of M2 macrophages. Conclusions These findings provide evidence that P28GST injected locally after colitis induction induces a potent decrease of colitis inflammation in mice, associated to downregulation of Th1/Th17 response, and induction of anti-inflammatory alternatively activated macrophages.
Collapse
Affiliation(s)
- Aurore Sarazin
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Arnaud Dendooven
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Marie Delbeke
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Solène Gatault
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Aurélien Pagny
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Annie Standaert
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | | | - Pierre Desreumaux
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Monique Capron
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
- * E-mail:
| |
Collapse
|
42
|
Costain AH, MacDonald AS, Smits HH. Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Front Immunol 2018; 9:3042. [PMID: 30619372 PMCID: PMC6306409 DOI: 10.3389/fimmu.2018.03042] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Many parasitic worms possess complex and intriguing life cycles, and schistosomes are no exception. To exit the human body and progress to their successive snail host, Schistosoma mansoni eggs must migrate from the mesenteric vessels, across the intestinal wall and into the feces. This process is complex and not always successful. A vast proportion of eggs fail to leave their definite host, instead becoming lodged within intestinal or hepatic tissue, where they can evoke potentially life-threatening pathology. Thus, to maximize the likelihood of successful egg passage whilst minimizing host pathology, intriguing egg exit strategies have evolved. Notably, schistosomes actively exert counter-inflammatory influences on the host immune system, discreetly compromise endothelial and epithelial barriers, and modulate granuloma formation around transiting eggs, which is instrumental to their migration. In this review, we discuss new developments in our understanding of schistosome egg migration, with an emphasis on S. mansoni and the intestine, and outline the host-parasite interactions that are thought to make this process possible. In addition, we explore the potential immune implications of egg penetration and discuss the long-term consequences for the host of unsuccessful egg transit, such as fibrosis, co-infection and cancer development.
Collapse
Affiliation(s)
- Alice H. Costain
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
43
|
Smith H, Forman R, Mair I, Else KJ. Interactions of helminths with macrophages: therapeutic potential for inflammatory intestinal disease. Expert Rev Gastroenterol Hepatol 2018; 12:997-1006. [PMID: 30113218 DOI: 10.1080/17474124.2018.1505498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophages represent a highly heterogeneous and plastic cell type found in most tissues of the body; the intestine is home to enormous numbers of these cells. Considerable interest surrounds the 'M2 macrophage,' as it is able to control and regulate inflammation, while promoting tissue repair. Areas covered: As potent inducers of M2 macrophages, intestinal helminths and helminth-derived products are ideal candidates for small molecule drug design to drive M2 macrophage polarization. Several gastrointestinal helminths have been found to cause M2 macrophage-inducing infections. This review covers current knowledge of helminth products and their impact on macrophage polarization, which may in the future lead to new therapeutic strategies. A literature search was performed using the following search terms in PubMed: M2 macrophage, alternative activation, helminth products, helminth ES, helminth therapy, nanoparticle, intestinal macrophages. Other studies were selected by using references from articles identified through our original literature search. Expert commentary: While the immunomodulatory potential of helminth products is well established, we have yet to fully characterize many components of the intestinal helminth product library. Current work aims to identify the protein motifs responsible for modulation of macrophages and other components of the immune system.
Collapse
Affiliation(s)
- Hannah Smith
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Ruth Forman
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Iris Mair
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Kathryn J Else
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| |
Collapse
|
44
|
Rodrigues RM, Gonçalves ALR, Silva NM, Cardoso CRDB, Araújo NR, Coutinho LB, Alves R, Ueta MT, Costa-Cruz JM. Inducible nitric oxide synthase controls experimental Strongyloides infection. Parasite Immunol 2018; 40:e12576. [PMID: 30035318 DOI: 10.1111/pim.12576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
Infection with Strongyloides sp. induces a host immune response, predominantly the Th2 type, that is able to eliminate the parasite. However, little is known about the role of the nitric oxide (NO) mediator, induced by the enzyme nitric oxide synthase (NOS), in strongyloidiasis. Therefore, in this study, we investigated the immune response of mice genetically deficient in the enzyme inducible nitric oxide synthase (iNOS-/- ), infected with Strongyloides venezuelensis. C57BL/6 wild-type (WT) and iNOS-/- mice were individually inoculated by subcutaneous injection of 3000 S. venezuelensis L3 larvae. In the absence of iNOS, mice were more susceptible to the infection than WT animals, in which the parasite was completely eliminated. The overall production of cytokines and specific IgG, IgG1 or IgE antibodies against the parasite was significantly lowered in infected iNOS-/- mice. The expression of iNOS was observed in the intestine of WT hosts but mainly in the wall of the parasite, despite the presence of iNOS in mice. Altogether, we concluded that iNOS expression may play an important role in the control of S. venezuelensis infection.
Collapse
Affiliation(s)
| | - Ana Lúcia Ribeiro Gonçalves
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Neide Maria Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Loyane Bertagnolli Coutinho
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Ronaldo Alves
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlene Tiduko Ueta
- Departamento de Parasitologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
45
|
Guan Y, Feng M, Min X, Zhou H, Fu Y, Tachibana H, Cheng X. Characteristics of inflammatory reactions during development of liver abscess in hamsters inoculated with Entamoeba nuttalli. PLoS Negl Trop Dis 2018; 12:e0006216. [PMID: 29420539 PMCID: PMC5821383 DOI: 10.1371/journal.pntd.0006216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/21/2018] [Accepted: 01/05/2018] [Indexed: 12/28/2022] Open
Abstract
Background Entamoeba nuttalli is an intestinal protozoan with pathogenic potential that can cause amebic liver abscess. It is highly prevalent in wild and captive macaques. Recently, cysts were detected in a caretaker of nonhuman primates in a zoo, indicating that E. nuttalli may be a zoonotic pathogen. Therefore, it is important to evaluate the pathogenicity of E. nuttalli in detail and in comparison with that of E. histolytica. Methodology/Principal findings Trophozoites of E. nuttalli GY4 and E. histolytica SAW755 strains were inoculated into liver of hamsters. Expression levels of proinflammatory factors of hamsters and virulence factors from E. histolytica and E. nuttalli were compared between the two parasites. Inoculations with trophozoites of E. nuttalli resulted in an average necrotic area of 24% in liver tissue in 7 days, whereas this area produced by E. histolytica was nearly 50%. Along with the mild liver tissue damage induced by E. nuttalli, expression levels of proinflammatory factors (TNF-α, IL-6 and IL-1β) and amebic virulence protein genes (lectins, cysteine proteases and amoeba pores) in local tissues were lower with E. nuttalli in comparison with E. histolytica. In addition, M2 type macrophages were increased in E. nuttalli-induced amebic liver abscesses in the late stage of disease progression and lysate of E. nuttalli trophozoites induced higher arginase expression than E. histolytica in vitro. Conclusions/Significance The results show that differential secretion of amebic virulence proteins during E. nuttalli infection triggered lower levels of secretion of various cytokines and had an impact on polarization of macrophages towards a M1/M2 balance. However, regardless of the degree of macrophage polarization, there is unambiguous evidence of an intense acute inflammatory reaction in liver of hamsters after infection by both Entamoeba species. Entamoeba nuttalli is the phylogenetically closest protozoan to Entamoeba histolytica and is highly prevalent in macaques. Previous studies have indicated that E. nuttalli is virulent in a hamster model. In this study, we compared the immunopathological basis of formation of liver abscess in hamsters between E. nuttalli and E. histolytica. Mild liver tissue damage developed after intrahepatic injection of trophozoites of E. nuttalli, and lower expression levels of genes for host proinflammatory factors and amebic virulence proteins were detected at the edges of liver abscesses induced by E. nuttalli. In addition, alternatively activated macrophages were increased in E. nuttalli-induced liver abscesses in the late stage of disease progression. The lysate of E. nuttalli trophozoites also induced higher arginase expression than E. histolytica in vitro. Polarization of macrophages is likely to affect the degree of acute inflammatory reactions in liver in an animal model during E. nuttalli infection. Our data reveal new characteristics of abscess formation by E. nuttalli.
Collapse
Affiliation(s)
- Yue Guan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiangyang Min
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Laboratory Medicine, Yangpu Hospital of Tongji University, Shanghai, China
| | - Hang Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- * E-mail: (XC); (HT)
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- * E-mail: (XC); (HT)
| |
Collapse
|
46
|
Kim EM, Kwak YS, YI MH, Kim JY, Sohn WM, Yong TS. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo. PLoS Negl Trop Dis 2017; 11:e0005614. [PMID: 28542159 PMCID: PMC5460902 DOI: 10.1371/journal.pntd.0005614] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 06/06/2017] [Accepted: 04/28/2017] [Indexed: 01/12/2023] Open
Abstract
Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection. Infection with Clonorchis sinensis is a major public health problem in Asia, resulting in loss of liver function and chronic liver diseases, including cancers. However, to the best of our knowledge, the immune response to fluke infection in the liver has not been systematically investigated. Here, we demonstrated that C. sinensis infection triggered a shift in the characteristics of macrophages, the primary cells associated with host immunity, throughout the course of the worm’s life cycle. Eventually, the increased number of M2 macrophages may result in fibrosis and the remodeling of bile ducts within the liver. Our findings suggest that, while the infection initially led to changes in the immune response that facilitated C. sinensis survival, ongoing infection may also reduce the severity of disruption of liver function. Hepatic macrophages activated during C. sinensis infection may not only be operating in histological lesions around the bile duct, but may also play a role in local immunity.
Collapse
Affiliation(s)
- Eun-Min Kim
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - You Shine Kwak
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Myung-Hee YI
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Yeong Kim
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
47
|
Yang Q, Qiu H, Xie H, Qi Y, Cha H, Qu J, Wang M, Feng Y, Ye X, Mu J, Huang J. A Schistosoma japonicum Infection Promotes the Expansion of Myeloid-Derived Suppressor Cells by Activating the JAK/STAT3 Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 198:4716-4727. [PMID: 28476935 DOI: 10.4049/jimmunol.1601860] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/06/2017] [Indexed: 11/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immune cells from the myeloid lineage, play an important part in suppression of host immune responses during many pathologic conditions, including cancer and infectious diseases. Thus, understanding the functional diversity of these cells as well as the underlying mechanisms is crucial for the development of disease control strategies. The role of MDSCs during Schistosoma japonicum infection, however, is not clear, and there is a lack of systematic study so far. In this study, we provide strong evidence that the soluble egg Ag (SEA) and schistosome worm Ag (SWA) of S. japonicum enhance the accumulation of MDSCs. Ag-induced MDSCs have more potent suppressive effects on T cell responses than do control MDSCs in both in vivo S. japonicum infection and in vitro SEA- and SWA-treated mouse bone marrow cells experiments. Interestingly, the enhanced suppressive activity of MDSCs by Ag administration was coupled with a dramatic induction of the NADPH oxidase subunits gp91phox and p47phox and was dependent on the production of reactive oxygen species. Moreover, mechanistic studies revealed that the Ag effects are mediated by JAK/STAT3 signaling. Inhibition of STAT3 phosphorylation by the JAK inhibitor JSI-124 almost completely abolished the Ag effects on the MDSCs. In summary, this study sheds new light on the immune modulatory role of SEA and SWA and demonstrates that the expansion of MDSCs may be an important element of a cellular network regulating immune responses during S. japonicum infection.
Collapse
Affiliation(s)
- Quan Yang
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Huaina Qiu
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Hongyan Xie
- Functional Experiment Center, Guangzhou Medical University, 511436 Guangzhou, China
| | - Yanwei Qi
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Hefei Cha
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Jiale Qu
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Mei Wang
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Yuanfa Feng
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Xin Ye
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Jianbing Mu
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China; .,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China; .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436 Guangzhou, China
| |
Collapse
|
48
|
Ke XD, Shen S, Song LJ, Yu CX, Kikuchi M, Hirayama K, Gao H, Wang J, Yin X, Yao Y, Liu Q, Zhou W. Characterization of Schistosoma japonicum CP1412 protein as a novel member of the ribonuclease T2 molecule family with immune regulatory function. Parasit Vectors 2017; 10:89. [PMID: 28212670 PMCID: PMC5316207 DOI: 10.1186/s13071-016-1962-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/29/2016] [Indexed: 01/05/2023] Open
Abstract
Background Schistosome infection typically induces a polarized Th2 type host immune response. As egg antigen molecules play key roles in this immunoregulatory process, clarifying their functions in schistosomiasis would facilitate the development of vaccine and immunotherapeutic methods. Schistosoma japonicum (Sj) CP1412 (GenBank: AY57074.1) has been identified as a new member of the RNase T2 family with immune regulatory functions. Methods The expression plasmid Sj CP1412-pET28a was constructed and transformed into bacteria for production of recombinant Sj CP1412 protein (rSj CP1412) via IPTG induction. The RNase activity of Sj CP1412 was predicted by bioinformatic analysis and confirmed by digesting the yeast tRNA with rSj CP1412.C57BL/6j mice were immunized with rSj CP1412, and its immune regulatory effects in vivo and in vitro were investigated. Meanwhile, the relationship between the RNase activity of Sj CP1412 and its immune regulation was observed. Results Sj CP1412 was confirmed as a novel RNase T2 family protein with RNase activity. Immunoblotting and RT-PCR analyses demonstrated Sj CP1412 as a protein exclusively secreted/excreted from eggs, but not cercariae and adult worms. Stimulating RAW264.7 macrophages with rSj CP1412 raised the expression of CD206, Arg-1 and IL-10, which are related to M2 type macrophage differentiation. Stimulating dendritic cells (DCs) with rSjCP1412 failed to induce their maturation, and the recombinant protein also inhibited LPS-stimulated DC maturation. Depletion of Sj CP1412 from soluble egg antigen (SEA) impaired the ability of SEA to induce M2 type polarization of RAW264.7 macrophages. Immunizing mice with rSj CP1412 induced high antibody titers, increased serum IL-4 and TGF-β levels and splenic CD4 + CD25 + Foxp3 + T cells, downregulated serum IFN-γ levels and alleviated the egg granuloma pathology of schistosome infection. In vitro stimulation by rSj CP1412 significantly increased CD4 + CD25 + Foxp3 + T cell numbers in splenocytes of healthy mice. The rSj CP1412 protein with RNase activity inactivated by DEPC failed to induce M2 surface marker CD206 expression in RAW264.7 macrophages. Conclusions The Sj CP1412 protein expressed specifically in S. japonicum eggs is a novel member of the RNase T2 family. Similar to Omega-1 of Schistosoma mansoni, the Sj CP1412 protein drives polarization of the host Th2 immune response, which is dependent on its RNase activity. These data provide new evidence towards understanding the immune regulatory role of RNase T2 family proteins during schistosome infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1962-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Dan Ke
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Shuang Shen
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China.,Medical College, Jiangnan University, Wuxi, 214122, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, People's Republic of China.,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Li-Jun Song
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Chuan-Xin Yu
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China. .,Medical College, Jiangnan University, Wuxi, 214122, China. .,Public Health Research Center, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hong Gao
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China.,Department of Pathology, Nanjing Drum Tower Hospital, Nanjing, 210003, People's Republic of China
| | - Jie Wang
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xuren Yin
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Yuan Yao
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Qian Liu
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Wei Zhou
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| |
Collapse
|
49
|
Zhu S, Wang S, Lin Y, Jiang P, Cui X, Wang X, Zhang Y, Pan W. Release of extracellular vesicles containing small RNAs from the eggs of Schistosoma japonicum. Parasit Vectors 2016; 9:574. [PMID: 27825390 PMCID: PMC5101684 DOI: 10.1186/s13071-016-1845-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis. Secreted extracellular vesicles (EVs) play a key role in pathogen-host interfaces. Previous studies have shown that S. japonicum adult worms can release microRNA (miRNA)-containing EVs, which can transfer their cargo to mammalian cells and regulate gene expression in recipient cells. Tissue-trapped eggs are generally considered the major contributor to the severe pathology of schistosomiasis; however, the interactions between the host and parasite in this critical stage remain largely unknown. Methods The culture medium for S. japonicum eggs in vitro was used to isolate EVs. Transmission electron microscopy (TEM) analysis was used to confirm that vesicles produced by the eggs were EVs based on size and morphology. Total RNA extracted from EVs was analyzed by Solexa technology to determine the miRNA profile. The in vitro internalization of the EVs by mammalian cells was analyzed by confocal microscopy. The presence of EVs associated miRNAs in the primary hepatocytes of infected mice was determined by quantitative real-time PCR (qRT-PCR). Results EVs were isolated from the culture medium of in vitro cultivated S. japonicum eggs. TEM analysis confirmed that nanosized vesicles were present in the culture medium. RNA-seq analysis showed that the egg-derived EVs contained small non-coding RNA (sncRNA) populations including miRNAs, suggesting a potential role in host manipulation. This study further showed that Hepa1-6, a murine liver cell line, internalized the purified EVs and their cargo miRNAs that were detectable in the primary hepatocytes of mice infected with S. japonicum. Conclusions Schistosoma japonicum eggs can release miRNA-containing EVs, and the EVs can transfer their cargo to recipient cells in vitro. These results demonstrate the regulatory potential of S. japonicum egg EVs at the parasite-host interface. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1845-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanli Zhu
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Sai Wang
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Yu Lin
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Pengyue Jiang
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaobin Cui
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xinye Wang
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Yuanbin Zhang
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Weiqing Pan
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China. .,Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China.
| |
Collapse
|
50
|
IL-33 Contributes to Schistosoma japonicum-induced Hepatic Pathology through Induction of M2 Macrophages. Sci Rep 2016; 6:29844. [PMID: 27445267 PMCID: PMC4956744 DOI: 10.1038/srep29844] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022] Open
Abstract
Interleukin (IL)-33 is involved in T helper (Th)2-biased immune responses in mice infected with Schistosoma, but the precise mechanism remains to be elucidated. Herein, we investigated the role of IL-33 and its receptor ST2L in hepatic granuloma pathology induced by Schistosoma japonicum infection. We found that IL-33 induced the increased production of IL-5 and IL-13 from splenocytes and liver mononuclear cells (MNCs) of infected mice. The infected mice developed significantly higher number of ST2L-expressing cells in spleen and liver. Most of the ST2L-expressing cells in liver were F4/80(+) macrophages, indicating the key role of macrophages in the response to IL-33. However, the liver MNCs in male-only worm infection had a poor response to IL-33, though elevated serum IL-33 was observed. ST2L(+)F4/80(+) cells were lower in male-only worm infection than that of mixed infection. IL-33 and soluble egg antigen (SEA) upregulated ST2L expression on macrophages in vitro and ST2L-expressing macrophage displayed MHCII(-)CD11b(+)M2 phenotype. Macrophage deletion significantly attenuated IL-33-induced type 2 immunity and egg granuloma formation during S. japonicum infection. These data demonstrate that IL-33 contributes to hepatic granuloma pathology through induction of M2 macrophages during S. japonicum infection.
Collapse
|