1
|
Lu JM, Jin GN, Xin Y, Ma JW, Shen XY, Quan YZ, Liu YM, Zhou JY, Wang BZ, Li YB, Xu X, Piao LX. Lactoferrin-modified nanoemulsions enhance brain-targeting and therapeutic efficacy of arctigenin against Toxoplasma gondii-induced neuronal injury. Int J Parasitol Drugs Drug Resist 2024; 27:100575. [PMID: 39729771 DOI: 10.1016/j.ijpddr.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Toxoplasma gondii, a neurotropic protozoan parasite, affects the central nervous system and causes various neurological disorders. Previous studies have demonstrated that Arctigenin (AG) exhibits anti-T. gondii activity and reduces depression-like behaviors induced by T. gondii infection. This study aimed to enhance AG's brain-targeting and therapeutic efficacy by developing lactoferrin-modified nanoemulsions loaded with AG (Lf-AG-NEs). Lf-modified nanoemulsions were prepared and assessed using in vivo and in vitro infection models with the T. gondii RH strain, and a co-culture system of BV2 microglia and primary neuron cells. The effects of Lf-AG-NEs on T. gondii-induced neuronal injury were examined, and potential molecular mechanisms were elucidated through real-time quantitative PCR, western blotting, immunofluorescence, flow cytometry, immunohistochemistry, and Nissl staining. In vitro assessments showed significant increases in cellular uptake and blood-brain barrier penetration by Lf-AG-NEs. These nanoemulsions notably inhibited T. gondii proliferation in brain tissue and BV2 cells, surpassing the effects of free AG or AG-NEs alone. Additionally, Lf-AG-NEs substantially alleviated neuropathological changes and reduced microglial activation and neuroinflammation by downregulating the TLR4/NF-κB and TNFR1/NF-κB signaling pathways. Co-culturing BV2 cells with primary cortical neurons indicated that Lf-AG-NEs, similarly to CLI-095 and R7050, attenuated T. gondii-induced microglial activation and subsequent neuronal injury. In conclusion, the successfully prepared Lf-AG-NEs not only enhanced the anti-T. gondii effect but also strengthened the protective impact against neuronal injury induced by T. gondii, through the modulation of microglial signaling pathways.
Collapse
Affiliation(s)
- Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan Xin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Wen Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jin-Yi Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Bing-Zhe Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Ying-Biao Li
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
2
|
Yang Z, Chen J, Zhang C, Peng H. Pathological mechanisms of glial cell activation and neurodegenerative and neuropsychiatric disorders caused by Toxoplasma gondii infection. Front Microbiol 2024; 15:1512233. [PMID: 39723133 PMCID: PMC11668811 DOI: 10.3389/fmicb.2024.1512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Toxoplasma gondii is an intracellular opportunistic parasite that exists in a latent form within the human central nervous system (CNS), even in immune-competent hosts. During acute infection, T. gondii traverses the blood-brain barrier (BBB). In the subsequent chronic infection phase, the infiltration of immune cells into the brain, driven by T. gondii infection and the formation of parasitic cysts, leads to persistent activation and proliferation of astrocytes and microglia. This process results in neuronal damages that are fatal in some cases. Through inducing systemic immune responses, T. gondii infection can dramatically alter the behavior of rodents and increase the risk of various neuropsychiatric disorders in humans. In this review, we explore some recent research progress on the major events involved in BBB disruption, glial cell activation and neuronal damage following T. gondii infection in hosts. It further discusses potential pathological mechanisms and the feasible treatment approaches for the neurodegenerative and neuropsychiatric disorders caused by T. gondii infection to extend our understanding for pathogenesis and preventive control of toxoplasmosis in humans.
Collapse
Affiliation(s)
| | | | | | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Mladinich MC, Himmler GE, Conde JN, Gorbunova EE, Schutt WR, Sarkar S, Tsirka SAE, Kim HK, Mackow ER. Age-dependent Powassan virus lethality is linked to glial cell activation and divergent neuroinflammatory cytokine responses in a murine model. J Virol 2024; 98:e0056024. [PMID: 39087762 PMCID: PMC11334436 DOI: 10.1128/jvi.00560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 08/02/2024] Open
Abstract
Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in Ixodes ticks resulted in age-dependent POWV lethality 10-20 dpi. POWV infection of 50-week-old mice was 82% fatal with lethality sequentially reduced by age to 7.1% in 10-week-old mice. POWV LI9 was neuroinvasive in mice of all ages, causing acute spongiform CNS pathology and reactive gliosis 5-15 dpi that persisted in survivors 30 dpi. High CNS viral loads were found in all mice 10 dpi. However, by 15 dpi, viral loads decreased by 2-4 logs in 10- to 40-week-old mice, while remaining at high levels in 50-week-old mice. Age-dependent differences in CNS viral loads 15 dpi occurred concomitantly with striking changes in CNS cytokine responses. In the CNS of 50-week-old mice, POWV induced Th1-type cytokines (IFNγ, IL-2, IL-12, IL-4, TNFα, IL-6), suggesting a neurodegenerative pro-inflammatory M1 microglial program. By contrast, in 10-week-old mice, POWV-induced Th2-type cytokines (IL-10, TGFβ, IL-4) were consistent with a neuroprotective M2 microglial phenotype. These findings correlate age-dependent CNS cytokine responses and viral loads with POWV lethality and suggest potential neuroinflammatory therapeutic targets. Our results establish the age-dependent lethality of POWV in a murine model that mirrors human POWV severity and long-term CNS pathology in the elderly. IMPORTANCE Powassan virus is an emerging tick-borne flavivirus causing lethal encephalitis in aged individuals. We reveal an age-dependent POWV murine model that mirrors human POWV encephalitis and long-term CNS damage in the elderly. We found that POWV is neuroinvasive and directs reactive gliosis in all age mice, but at acute stages selectively induces pro-inflammatory Th1 cytokine responses in 50-week-old mice and neuroprotective Th2 cytokine responses in 10-week-old mice. Our findings associate CNS viral loads and divergent cytokine responses with age-dependent POWV lethality and survival outcomes. Responses of young mice suggest potential therapeutic targets and approaches for preventing severe POWV encephalitis that may be broadly applicable to other neurodegenerative diseases. Our age-dependent murine POWV model permits analysis of vaccines that prevent POWV lethality, and therapeutics that resolve severe POWV encephalitis.
Collapse
Affiliation(s)
- Megan C. Mladinich
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Jonas N. Conde
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Shayan Sarkar
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Styliani-Anna E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| |
Collapse
|
4
|
da Silva Bellini Ramos AB, Torres T, Dos Reis LFC, Lambert GC, Colombo FA, Marques MJ, Reimão JQ. Assessment of nebivolol efficacy in experimental models of toxoplasmosis: insights into parasite burden reduction and neuronal protection. Parasitol Res 2024; 123:303. [PMID: 39160298 DOI: 10.1007/s00436-024-08318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.
Collapse
Affiliation(s)
| | - Tayline Torres
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| | - Luis Felipe Cunha Dos Reis
- Departamento de Biologia Estrutural, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Gabriel Carvalho Lambert
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Fábio Antônio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Marcos José Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Juliana Quero Reimão
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Faculdade de Medicina de Jundiaí, Jundiaí, Brazil.
| |
Collapse
|
5
|
Chen J, Zhang C, Yang Z, Wu W, Zou W, Xin Z, Zheng S, Liu R, Yang L, Peng H. Intestinal microbiota imbalance resulted by anti-Toxoplasma gondii immune responses aggravate gut and brain injury. Parasit Vectors 2024; 17:284. [PMID: 38956725 PMCID: PMC11221008 DOI: 10.1186/s13071-024-06349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chi Zhang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zihan Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weiling Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zixuan Xin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shuyu Zheng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Runchun Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Lili Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Yao Y, Yuan Y, Sheng S, Li Y, Tang X, Gu H. Observing astrocyte polarization in brains from mouse chronically infected with Toxoplasma gondii. Sci Rep 2024; 14:10433. [PMID: 38714696 PMCID: PMC11076485 DOI: 10.1038/s41598-024-60304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/21/2024] [Indexed: 05/10/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a protozoan parasite that infects approximately one-third of the global human population, often leading to chronic infection. While acute T. gondii infection can cause neural damage in the central nervous system and result in toxoplasmic encephalitis, the consequences of T. gondii chronic infection (TCI) are generally asymptomatic. However, emerging evidence suggests that TCI may be linked to behavioral changes or mental disorders in hosts. Astrocyte polarization, particularly the A1 subtype associated with neuronal apoptosis, has been identified in various neurodegenerative diseases. Nevertheless, the role of astrocyte polarization in TCI still needs to be better understood. This study aimed to establish a mouse model of chronic TCI and examine the transcription and expression levels of glial fibrillary acidic protein (GFAP), C3, C1q, IL-1α, and TNF-α in the brain tissues of the mice. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay, and Western blotting were employed to assess these levels. Additionally, the expression level of the A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA). In mice with TCI, the transcriptional and expression levels of the inflammatory factors C1q, IL-1α, and TNF-α followed an up-down-up pattern, although they remained elevated compared to the control group. These findings suggest a potential association between astrocyte polarization towards the A1 subtype and synchronized changes in these three inflammatory mediators. Furthermore, immunofluorescence assay (IFA) revealed a significant increase in the A1 astrocytes (GFAP+C3+) proportion in TCI mice. This study provides evidence that TCI can induce astrocyte polarization, a biological process that may be influenced by changes in the levels of three inflammatory factors: C1q, IL-1α, and TNF-α. Additionally, the release of neurotoxic substances by A1 astrocytes may be associated with the development of TCI.
Collapse
Affiliation(s)
- Yong Yao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
- College of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yaping Yuan
- Department of Medicine, Anhui College of Traditional Chinese Medicine, Wuhu, 241002, Anhui, China
| | - Shuyan Sheng
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yifan Li
- College of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaoniu Tang
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Tian Y, Wang S, Tong W, Wang H, Zhang Y, Teng B. Pseudoginsenoside GQ mitigates chronic intermittent hypoxia-induced cognitive damage by modulating microglia polarization. Int Immunopharmacol 2024; 126:111234. [PMID: 37977071 DOI: 10.1016/j.intimp.2023.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Obstructive sleep apnea (OSA), a state of sleep disruption, is characterized by recurrent apnea, chronic intermittent hypoxia (CIH) and hypercapnia. Previous studies have showed that CIH-induced neuroinflammatory plays a crucial role in cognitive deficits. Pseudoginsenoside GQ (PGQ) is a new oxytetracycline-type saponin formed by the oxidation and cyclization of the 20(S) Rg3 side chain. Rg3 has been found to afford anti-inflammatory effects, while whether PGQ plays a role of anti-neuroinflammatory remains unclear. The purpose of this study was to investigate whether PGQ attenuates CIH-induced neuroinflammatory and cognitive impairment and the possible mechanism it involves. We found that PGQ significantly ameliorated CIH-induced spatial learning deficits, and inhibited microglial activation, pro-inflammatory cytokine release, and neuronal apoptosis in the hippocampus of CIH mice. In addition, PGQ pretreatment promoted microglial M1 to M2 phenotypic transition in IH-induced BV-2 microglial, as well as indirectly inhibited IH-induced neuronal injury via modulation of microglia polarization. Furthermore, we noted that activation of HMGB1/TLR4/NF-κB signaling pathway induced by IH was inhibited by PGQ. Molecular docking results revealed that PGQ could bind to the active sites of HMGB1 and TLR4. Taken together, this work supports that PGQ inhibits M1 microglial polarization via the HMGB1/TLR4/NF-κB signaling pathway, and indirectly exerts neuroprotective effects, suggesting that PGQ may be a potential therapeutic strategy for cognitive impairment accompanied OSA.
Collapse
Affiliation(s)
- Yanhua Tian
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Sanchun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weifang Tong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yating Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Teng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Liu S, Yan Z, Peng Y, Liu Y, Li Y, Xu D, Gong Y, Cui Z, Wu Y, Zhang Y, Wang D, Pan W, Yang X. Lentinan has a beneficial effect on cognitive deficits induced by chronic Toxoplasma gondii infection in mice. Parasit Vectors 2023; 16:454. [PMID: 38093309 PMCID: PMC10717010 DOI: 10.1186/s13071-023-06023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is increasingly considered a risk factor for neurodegenerative diseases. However, there is only limited information on the development of drugs for T. gondii infection. Lentinan from Lentinula edodes is a bioactive ingredient with the potential to enhance anti-infective immunity. The present study aimed to investigate the neuroprotective effect of lentinan on T. gondii-associated cognitive deficits in mice. METHODS A chronic T. gondii infection mouse model was established by administering 10 cysts of T. gondii by gavage. Lentinan was intraperitoneally administered 2 weeks before infection. Behavioral tests, RNA sequencing, immunofluorescence, transmission electron microscopy and Golgi-Cox staining were performed to assess the effect of lentinan on cognitive deficits and neuropathology in vivo. In vitro, the direct and indirect effects of lentinan on the proliferation of T. gondii tachyzoites were evaluated in the absence and presence of BV-2 cells, respectively. RESULTS Lentinan prevented T. gondii-induced cognitive deficits and altered the transcriptome profile of genes related to neuroinflammation, microglial activation, synaptic function, neural development and cognitive behavior in the hippocampus of infected mice. Moreover, lentinan reduced the infection-induced accumulation of microglia and downregulated the mRNA expression of proinflammatory cytokines. In addition, the neurite and synaptic ultrastructural damage in the hippocampal CA1 region due to infection was ameliorated by lentinan administration. Lentinan decreased the cyst burden in the brains of infected mice, which was correlated with behavioral performance. In line with this finding, lentinan could significantly inhibit the proliferation of T. gondii tachyzoites in the microglial cell line BV2, although lentinan had no direct inhibitory effect on parasite growth. CONCLUSIONS Lentinan prevents cognitive deficits via the improvement of neurite impairment and synaptic loss induced by T. gondii infection, which may be associated with decreased cyst burden in the brain. Overall, our findings indicate that lentinan can ameliorate T. gondii-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yunqiu Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yiling Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zeyu Cui
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yongshui Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yumei Zhang
- Department of Pathogenic Biology, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, 323000, Zhejiang, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Diao Y, Yao Y, El-Ashram S, Bian M. Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells? Pathogens 2023; 12:pathogens12050679. [PMID: 37242349 DOI: 10.3390/pathogens12050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Toxoplasma gondii is an obligatory intracellular protozoan in the family Apicomplexa. It infects almost one-third of the world's population and causes toxoplasmosis, a prevalent disease. The parasite's egress from infected cells is a key step in the pathology caused by T. gondii. Moreover, T. gondii's continuous infection relies heavily on its capacity to migrate from one cell to another. Many pathways are involved in T. gondii egress. Individual routes may be modified to respond to various environmental stimuli, and many paths can converge. Regardless of the stimuli, the relevance of Ca2+ as a second messenger in transducing these signals, and the convergence of various signaling pathways in the control of motility and, ultimately, egress, is well recognized. This review attempts to outline intra- and extra-parasitic regulators that mediate T. gondii egress, and provides insight into potential clinical interventions and research.
Collapse
Affiliation(s)
- Yujie Diao
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yong Yao
- College of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, China
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
10
|
Jin GN, Lu JM, Lan HW, Lu YN, Shen XY, Xu X, Piao LX. Protective effect of ginsenoside Rh2 against Toxoplasma gondii infection-induced neuronal injury through binding TgCDPK1 and NLRP3 to inhibit microglial NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 112:109176. [PMID: 36067653 DOI: 10.1016/j.intimp.2022.109176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is a neurotropic obligate intracellular parasite that can activate microglial and promote neuronal apoptosis, leading to central nervous system diseases. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling complex plays a key role in inducing neuroinflammation. Our previous studies have found that ginsenoside Rh2 (GRh2) inhibits T. gondii infection-induced microglial activation and neuroinflammation by downregulating the Toll-like receptor 4/nuclear factor-kappa B signaling pathway. However, whether GRh2 reduces T. gondii infection-induced neuronal injury through actions on microglial NLRP3 inflammasome signaling has not yet been clarified. METHODS In this study, we employed T. gondii RH strain to establish in vitro and in vivo infection models in BV2 microglia cell line and BALB/c mice. Molecular docking, localized surface plasmon resonance assay, quantitative competitive-PCR, ELISA, western blotting, flow cytometric analysis, and immunofluorescence were performed. RESULTS Our results showed that GRh2 alleviated neuropathological damage and neuronal apoptosis in cortical tissue of T. gondii-infected mice. GRh2 and CY-09 (an inhibitor of NLRP3) exhibited potent anti-T. gondii effects through binding T. gondii calcium-dependent protein kinase 1 (TgCDPK1). GRh2 decreased Iba-1 (a specific microglial marker) and NLRP3 inflammasome signaling pathway-related protein expression by binding NLRP3. Co-culture of microglia/primary cortical neurons revealed that T. gondii-induced microglial activation caused neuronal apoptosis, but GRh2 reduced this effect, consistent with the effects of CY-09. CONCLUSION Taken together, our results show that GRh2 has a protective effect against T. gondii infection-induced neuronal injury by binding TgCDPK1 and NLRP3 to inhibit NLRP3 inflammasome signaling pathway in microglia.
Collapse
Affiliation(s)
- Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hui-Wen Lan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| |
Collapse
|
11
|
Bai RX, Chen XZ, Ren JF, Hu L, Li H, Wang H, He C. Toxoplasma gondii rhoptry protein (TgROP18) enhances the expression of pro-inflammatory factor in LPS/IFN-γ-induced murine BV2 microglia cells via NF-κB signal pathway. Acta Trop 2022; 235:106650. [PMID: 35963313 DOI: 10.1016/j.actatropica.2022.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Toxoplasma gondii, an opportunistic pathogenic protozoan, exhibits a strong predilection to infect the brain, causing severe neurological diseases, such as toxoplasmic encephalitis (TE), in immunocompromised patients. Microglia, the resident immune cells in the brain, is reported to play important roles in regulating the neuroinflammation mediated by T. gondii infection. Here we demonstrated that the tachyzoites of T. gondii RH strain could significantly upregulate the expression levels of microglial M1 phenotype markers including IL-1β, IL-6, TNF-α, iNOS and IL18 in activated murine BV2 microglia cells, which were regulated by T. gondii rhoptry protein 18 (TgROP18). Moreover, we found that TgROP18 could enhance the expression of M1 phenotype markers in activated murine BV2 microglia cells via activating NF-κB signal pathway. Additionally, TgROP18 was suggested to interact with the host p65 in activated murine BV2 microglia cells and induce the phosphorylation of p65 at S536. In summary, the present study demonstrated that TgROP18 could promote the activated microglia to polarize to M1 phenotype and enhanced the expression of pro-inflammatory factors via activating NF-κB signal pathway, which could contribute to elucidating the mechanism underlying the neuroinflammation mediated by activated microglia in the brain with T. gondii infection.
Collapse
Affiliation(s)
- Rui-Xue Bai
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xin-Zhu Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jin-Feng Ren
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Lang Hu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Hui Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Hui Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Cheng He
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
12
|
Gao X, Cao Z, Tan H, Li P, Su W, Wan T, Guo W. LncRNA, an Emerging Approach for Neurological Diseases Treatment by Regulating Microglia Polarization. Front Neurosci 2022; 16:903472. [PMID: 35860297 PMCID: PMC9289270 DOI: 10.3389/fnins.2022.903472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders cause untold human disability and death each year. For most neurological disorders, the efficacy of their primary treatment strategies remains suboptimal. Microglia are associated with the development and progression of multiple neurological disorders. Targeting the regulation of microglia polarization has emerged as an important therapeutic strategy for neurological disorders. Their pro-inflammatory (M1)/anti-inflammatory (M2) phenotype microglia are closely associated with neuronal apoptosis, synaptic plasticity, blood-brain barrier integrity, resistance to iron death, and astrocyte regulation. LncRNA, a recently extensively studied non-coding transcript of over 200 nucleotides, has shown great value to intervene in microglia polarization. It can often participate in gene regulation of microglia by directly regulating transcription or sponging downstream miRNAs, for example. Through proper regulation, microglia can exert neuroprotective effects, reduce neurological damage and improve the prognosis of many neurological diseases. This paper reviews the progress of research linking lncRNAs to microglia polarization and neurological diseases.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zilong Cao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Haifeng Tan
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenen Su
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Teng Wan,
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Weiming Guo,
| |
Collapse
|
13
|
Hou Z, Wang L, Su D, Cai W, Zhu Y, Liu D, Huang S, Xu J, Pan Z, Tao J. Global MicroRNAs Expression Profile Analysis Reveals Possible Regulatory Mechanisms of Brain Injury Induced by Toxoplasma gondii Infection. Front Neurosci 2022; 16:827570. [PMID: 35360170 PMCID: PMC8961362 DOI: 10.3389/fnins.2022.827570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasitic protozoan that can cause toxoplasmosis in humans and other endotherms. T. gondii can manipulate the host gene expression profile by interfering with miRNA expression, which is closely associated with the molecular mechanisms of T. gondii-induced brain injury. However, it is unclear how T. gondii manipulates the gene expression of central nervous system (CNS) cells through modulation of miRNA expression in vivo during acute and chronic infection. Therefore, high-throughput sequencing was used to investigate expression profiles of brain miRNAs at 10, 25, and 50 days post-infection (DPI) in pigs infected with the Chinese I genotype T. gondii strain in this study. Compared with the control group 87, 68, and 135 differentially expressed miRNAs (DEMs) were identified in the infected porcine brains at 10, 25, and 50 DPI, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that a large number significantly enriched GO terms and KEGG pathways were found, and were mostly associated with stimulus or immune response, signal transduction, cell death or apoptosis, metabolic processes, immune system or diseases, and cancers. miRNA–gene network analysis revealed that the crucial connecting nodes, including DEMs and their target genes, might have key roles in the interactions between porcine brain and T. gondii. These results suggest that the regulatory strategies of T. gondii are involved in the modulation of a variety of host cell signaling pathways and cellular processes, containing unfolded protein response (UPR), oxidative stress (OS), autophagy, apoptosis, tumorigenesis, and inflammatory responses, by interfering with the global miRNA expression profile of CNS cells, allowing parasites to persist in the host CNS cells and contribute to pathological damage of porcine brain. To our knowledge, this is the first report on miRNA expression profile in porcine brains during acute and chronic T. gondii infection in vivo. Our results provide new insights into the mechanisms underlying T. gondii-induced brain injury during different infection stages and novel targets for developing therapeutic agents against T. gondii.
Collapse
Affiliation(s)
- Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Dingzeyang Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Weimin Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Yu Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Siyang Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Zhiming Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
- *Correspondence: Jianping Tao,
| |
Collapse
|
14
|
Nayeri T, Sarvi S, Daryani A. Toxoplasmosis: Targeting neurotransmitter systems in psychiatric disorders. Metab Brain Dis 2022; 37:123-146. [PMID: 34476718 DOI: 10.1007/s11011-021-00824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022]
Abstract
The most common form of the disease caused by Toxoplasma gondii (T. gondii) is latent toxoplasmosis due to the formation of tissue cysts in various organs, such as the brain. Latent toxoplasmosis is probably a risk factor in the development of some neuropsychiatric disorders. Behavioral changes after infection are caused by the host immune response, manipulation by the parasite, central nervous system (CNS) inflammation, as well as changes in hormonal and neuromodulator relationships. The present review focused on the exact mechanisms of T. gondii effect on the alteration of behavior and neurotransmitter levels, their catabolites and metabolites, as well as the interaction between immune responses and this parasite in the etiopathogenesis of psychiatric disorders. The dysfunction of neurotransmitters in the neural transmission is associated with several neuropsychiatric disorders. However, further intensive studies are required to determine the effect of this parasite on altering the level of neurotransmitters and the role of neurotransmitters in the etiology of host behavioral changes.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
15
|
Lan HW, Lu YN, Zhao XD, Jin GN, Lu JM, Jin CH, Ma J, Jin X, Xu X, Piao LX. New role of sertraline against Toxoplasma gondii-induced depression-like behaviours in mice. Parasite Immunol 2021; 43:e12893. [PMID: 34637545 DOI: 10.1111/pim.12893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii (T. gondii) is a neurotropic protozoan parasite, which can cause mental and behavioural disorders. The present study aimed to elucidate the effects and underlying molecular mechanisms of sertraline (SERT) on T. gondii-induced depression-like behaviours. In the present study, a mouse model and a microglial cell line (BV2 cells) model were established by infecting with the T. gondii RH strain. In in vivo and in vitro experiments, the underlying molecular mechanisms of SERT in inhibiting depression-like behaviours and cellular perturbations caused by T. gondii infection were investigated in the mouse brain and BV2 cells. The administration of SERT significantly ameliorated depression-like behaviours in T. gondii-infected mice. Furthermore, SERT inhibited T. gondii proliferation. Treatment with SERT significantly inhibited the activation of microglia and decreased levels of pro-inflammatory cytokines such as tumour necrosis factor-alpha, and interferon-gamma, by down-regulating tumour necrosis factor receptor 1/nuclear factor-kappa B signalling pathway, thereby ameliorating the depression-like behaviours induced by T. gondii infection. Our study provides insight into the underlying molecular mechanisms of the newly discovered role of SERT against T. gondii-induced depression-like behaviours.
Collapse
Affiliation(s)
- Hui-Wen Lan
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
16
|
Roe K. A role for T-cell exhaustion in Long COVID-19 and severe outcomes for several categories of COVID-19 patients. J Neurosci Res 2021; 99:2367-2376. [PMID: 34288064 PMCID: PMC8427009 DOI: 10.1002/jnr.24917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Unusual mortality rate differences and symptoms have been experienced by COVID‐19 patients, and the postinfection symptoms called Long COVID‐19 have also been widely experienced. A substantial percentage of COVID‐19‐infected individuals in specific health categories have been virtually asymptomatic, several other individuals in the same health categories have exhibited several unusual symptoms, and yet other individuals in the same health categories have fatal outcomes. It is now hypothesized that these differences in mortality rates and symptoms could be caused by a SARS‐CoV‐2 virus infection acting together with one or more latent pathogen infections in certain patients, through mutually beneficial induced immune cell dysfunctions, including T‐cell exhaustion. A latent pathogen infection likely to be involved is the protozoan parasite Toxoplasma gondii, which infects approximately one third of the global human population. Furthermore, certain infections and cancers that cause T‐cell exhaustion can also explain the more severe outcomes of other COVID‐19 patients having several disease and cancer comorbidities.
Collapse
|
17
|
Afshari K, Momeni Roudsari N, Lashgari NA, Haddadi NS, Haj-Mirzaian A, Hassan Nejad M, Shafaroodi H, Ghasemi M, Dehpour AR, Abdolghaffari AH. Antibiotics with therapeutic effects on spinal cord injury: a review. Fundam Clin Pharmacol 2020; 35:277-304. [PMID: 33464681 DOI: 10.1111/fcp.12605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/06/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Accumulating evidence indicates that a considerable number of antibiotics exert anti-inflammatory and neuroprotective effects in different central and peripheral nervous system diseases including spinal cord injury (SCI). Both clinical and preclinical studies on SCI have found therapeutic effects of antibiotics from different families on SCI. These include macrolides, minocycline, β-lactams, and dapsone, all of which have been found to improve SCI sequels and complications. These antibiotics may target similar signaling pathways such as reducing inflammatory microglial activity, promoting autophagy, inhibiting neuronal apoptosis, and modulating the SCI-related mitochondrial dysfunction. In this review paper, we will discuss the mechanisms underlying therapeutic effects of these antibiotics on SCI, which not only could supply vital information for investigators but also guide clinicians to consider administering these antibiotics as part of a multimodal therapeutic approach for management of SCI and its complications.
Collapse
Affiliation(s)
- Khashayar Afshari
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Nazgol-Sadat Haddadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Malihe Hassan Nejad
- Department of Infectious Diseases, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA, 01655, USA
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 31375-1369, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
| |
Collapse
|
18
|
Namavar MR, Ghalavandi M, Bahmanpour S. The effect of glutathione and buserelin on the stereological parameters of the hypothalamus in the cyclophosphamide-treated mice. J Chem Neuroanat 2020; 110:101871. [PMID: 33039509 DOI: 10.1016/j.jchemneu.2020.101871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION New anticancer drugs have increased the survival and fertility rates in young patients. These drugs (i.e., cyclophosphamide; Cyc) have some side effects on the hypothalamus and fertility. One possible chemical for reducing these side effects is thiol or GnRH agonist. This study aimed to evaluate the capability of these agents for reducing the cyclophosphamide effects on the hypothalamus. METHODS Sixty-three female mice were randomly assigned into seven groups. All groups including the control group had free access to water and mouse chow ad libitum. The sham group received normal saline. The Glu and Bus groups received glutathione (Glu) and buserelin (Bus) daily for 16 days, while the Cyc group received only cyclophosphamide as a single dose; the Cyc + Glu and Cyc + Bus groups, in addition to cyclophosphamide, received glutathione and buserelin, respectively. The volume of the hypothalamus, its neuron number, and dead neurons were evaluated using stereological methods. RESULTS There was no significant difference in the evaluated stereological parameters between the control and sham groups. However, the animals which received Cyc showed a decrease in the volume of the hypothalamus and its neuron number and density and an increase in cell death as compared with the control group. The treatment of the mice that received Cyc with Glu or Bus prevented these changes. CONCLUSION This study showed that both GnRH agonist and thiol preserved or improved structural changes in the hypothalamus caused by cyclophosphamide in mice, suggesting that using thiol and especially GnRH agonist along with chemotherapy drugs may have protective effects on fertility.
Collapse
Affiliation(s)
- M R Namavar
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphological and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Ghalavandi
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Bahmanpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Xu X, Zeng XY, Cui YX, Li YB, Cheng JH, Zhao XD, Xu GH, Ma J, Piao HN, Jin X, Piao LX. Antidepressive Effect of Arctiin by Attenuating Neuroinflammation via HMGB1/TLR4- and TNF-α/TNFR1-Mediated NF-κB Activation. ACS Chem Neurosci 2020; 11:2214-2230. [PMID: 32609480 DOI: 10.1021/acschemneuro.0c00120] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a potential factor in the pathophysiology of depression. A traditional Chinese herbal medicine, arctiin, and its aglycone, arctigenin, are the major bioactive components in Fructus arctii and exhibit neuroprotective and anti-inflammatory activities. Arctigenin has been reported to have antidepressant-like effects. However, the antidepressant-like effects of arctiin, its precursor, remain unknown. In this study, we investigated the antidepressant-like effects of arctiin and its underlying mechanisms by in vivo and in vitro experiments in mice. Our results showed that arctiin significantly attenuated sucrose consumption and increased the immobility time in tail suspension and forced swimming tests. Arctiin decreased neuronal damage in the prefrontal cortex (PFC) of the brain. Arctiin also attenuated the levels of three inflammatory mediators, indoleamine 2,3-dioxygenase, 5-hydroxytryptamine, and dopamine, that were elevated in the PFC or serum of chronic unpredictable mild stress (CUMS)-exposed mice. Arctiin reduced excessive activation of microglia and neuroinflammation by reducing high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)- and tumor necrosis factor-α (TNF-α)/TNF receptor 1 (TNFR1)-mediated nuclear factor-kappa B (NF-κB) activation in the PFC of CUMS-exposed mice and HMGB1- or TNF-α-stimulated primary cultured microglia. These findings demonstrate that arctiin ameliorates depression by inhibiting the activation of microglia and inflammation via the HMGB1/TLR4 and TNF-α/TNFR1 signaling pathways.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiao-Yu Zeng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Yue-Xian Cui
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Ying-Biao Li
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Jia-Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| |
Collapse
|
20
|
Salvioni A, Belloy M, Lebourg A, Bassot E, Cantaloube-Ferrieu V, Vasseur V, Blanié S, Liblau RS, Suberbielle E, Robey EA, Blanchard N. Robust Control of a Brain-Persisting Parasite through MHC I Presentation by Infected Neurons. Cell Rep 2020; 27:3254-3268.e8. [PMID: 31189109 DOI: 10.1016/j.celrep.2019.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/03/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Control of CNS pathogens by CD8 T cells is key to avoid fatal neuroinflammation. Yet, the modalities of MHC I presentation in the brain are poorly understood. Here, we analyze the antigen presentation mechanisms underlying CD8 T cell-mediated control of the Toxoplasma gondii parasite in the CNS. We show that MHC I presentation of an efficiently processed model antigen (GRA6-OVA), even when not expressed in the bradyzoite stage, reduces cyst burden and dampens encephalitis in C57BL/6 mice. Antigen presentation assays with infected primary neurons reveal a correlation between lower MHC I presentation of tachyzoite antigens by neurons and poor parasite control in vivo. Using conditional MHC I-deficient mice, we find that neuronal MHC I presentation is required for robust restriction of T. gondii in the CNS during chronic phase, showing the importance of MHC I presentation by CNS neurons in the control of a prevalent brain pathogen.
Collapse
Affiliation(s)
- Anna Salvioni
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Marcy Belloy
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Aurore Lebourg
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Emilie Bassot
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Vincent Cantaloube-Ferrieu
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Virginie Vasseur
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Sophie Blanié
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Roland S Liblau
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Elsa Suberbielle
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Ellen A Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas Blanchard
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France.
| |
Collapse
|
21
|
Baker TL, Sun M, Semple BD, Tyebji S, Tonkin CJ, Mychasiuk R, Shultz SR. Catastrophic consequences: can the feline parasite Toxoplasma gondii prompt the purrfect neuroinflammatory storm following traumatic brain injury? J Neuroinflammation 2020; 17:222. [PMID: 32711529 PMCID: PMC7382044 DOI: 10.1186/s12974-020-01885-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world’s population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Shiraz Tyebji
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
22
|
Sun X, Wang T, Wang Y, Ai K, Pan G, Li Y, Zhou C, He S, Cong H. Downregulation of lncRNA-11496 in the Brain Contributes to Microglia Apoptosis via Regulation of Mef2c in Chronic T. gondii Infection Mice. Front Mol Neurosci 2020; 13:77. [PMID: 32499679 PMCID: PMC7243434 DOI: 10.3389/fnmol.2020.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Though it is well known that chronic infections of Toxoplasma gondii (T. gondii) can induce mental and behavioral disorders in the host, little is known about the role of long non-coding RNAs (lncRNAs) in this pathological process. In this study, we employed an advanced lncRNAs and mRNAs integration chip (Affymetrix HTA 2.0) to detect the expression of both lncRNAs and mRNAs in T. gondii Chinese 1 strain infected mouse brain. As a result, for the first time, the downregulation of lncRNA-11496 (NONMMUGO11496) was identified as the responsible factor for this pathological process. We showed that dysregulation of lncRNA-11496 affected proliferation, differentiation and apoptosis of mouse microglia. Furthermore, we proved that Mef2c (Myocyte-specific enhancer factor 2C), a member of the MEF2 subfamily, is the target gene of lncRNA-11496. In a more detailed study, we confirmed that lncRNA-11496 positively regulated the expression of Mef2c by binding to histone deacetylase 2 (HDAC2). Importantly, Mef2c itself could coordinate neuronal differentiation, survival, as well as synapse formation. Thus, our current study provides the first evidence in terms of the modulatory action of lncRNAs in chronic toxoplasmosis in T. gondii infected mouse brain, providing a solid scientific basis for using lncRNA-11496 as a therapeutic target to treat T. gondii induced neurological disorder.
Collapse
Affiliation(s)
- Xiahui Sun
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongliang Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kang Ai
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ge Pan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunxue Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shenyi He
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Cong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Cheng JH, Xu X, Li YB, Zhao XD, Aosai F, Shi SY, Jin CH, Piao JS, Ma J, Piao HN, Jin XJ, Piao LX. Arctigenin ameliorates depression-like behaviors in Toxoplasma gondii-infected intermediate hosts via the TLR4/NF-κB and TNFR1/NF-κB signaling pathways. Int Immunopharmacol 2020; 82:106302. [PMID: 32086097 DOI: 10.1016/j.intimp.2020.106302] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 01/23/2023]
Abstract
Toxoplasma gondii (T. gondii) is a known neurotropic protozoan that remains in the central nervous system and induces neuropsychiatric diseases in intermediate hosts. Arctigenin (AG) is one of the major bioactive lignans of the fruit Arctium lappa L. and has a broad spectrum of pharmacological activities such as neuroprotective, anti-inflammatory and anti-T. gondii effects. However, the effect of AG against depressive behaviors observed in T. gondii-infected hosts has not yet been clarified. In the present study, we analyzed the effects of AG against T. gondii-induced depressive behaviors in intermediate hosts using a microglia cell line (BV2 cells) and brain tissues of BALB/c mice during the acute phase of infection with the RH strain of T. gondii. AG attenuated microglial activation and neuroinflammation via the Toll-like receptor/nuclear factor-kappa B (NF-κB) and tumor necrosis factor receptor 1/NF-κB signaling pathways, followed by up-regulating the dopamine and 5-hydroxytryptamine levels and inhibiting the depression-like behaviors of hosts. AG also significantly decreased the T. gondii burden in mouse brain tissues. In conclusion, we elucidated the effects and underlying molecular mechanisms of AG against depressive behaviors induced by T. gondii infection.
Collapse
Affiliation(s)
- Jia-Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Ying-Biao Li
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Su-Yun Shi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Jing-Shu Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China.
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China. https://orcid.org/0000-0002-8315-5918
| |
Collapse
|
24
|
Zhou H, Chen Z, Limpanont Y, Hu Y, Ma Y, Huang P, Dekumyoy P, Zhou M, Cheng Y, Lv Z. Necroptosis and Caspase-2-Mediated Apoptosis of Astrocytes and Neurons, but Not Microglia, of Rat Hippocampus and Parenchyma Caused by Angiostrongylus cantonensis Infection. Front Microbiol 2020; 10:3126. [PMID: 32038563 PMCID: PMC6989440 DOI: 10.3389/fmicb.2019.03126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/24/2019] [Indexed: 01/18/2023] Open
Abstract
Infection with the roundworm Angiostrongylus cantonensis is the main cause of eosinophilic meningitis worldwide. The underlying molecular basis of the various pathological outcomes in permissive and non-permissive hosts infected with A. cantonensis remains poorly defined. In the present study, the histology of neurological disorders in the central nervous system (CNS) of infected rats was assessed by using hematoxylin and eosin staining. Quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot and immunofluorescence (IF) were used in evolutions of the transcription and translation levels of the apoptosis-, necroptosis-, autophagy-, and pyroptosis-related genes. The distribution of apoptotic and necroptotic cells in the rat hippocampus and parenchyma was further detected using flow cytometry, and the features of the ultrastructure of the cells were examined by transmission electron microscopy (TEM). The inflammatory response upon CNS infection with A. cantonensis evolved, as characterized by the accumulation of a small number of inflammatory cells under the thickened meninges, which peaked at 21 days post-infection (dpi) and returned to normal by 35 dpi. The transcription levels and translation of caspase-2, caspase-8, RIP1 and RIP3 increased significantly at 21 and 28 dpi but decreased sharply at 35 dpi compared to those in the normal control group. However, the changes in the expression of caspase-1, caspase-3, caspase-11, Beclin-1 and LC3B were not obvious, suggesting that apoptosis and necroptosis but not autophagy or pyroptosis occurred in the brains of infected animals at 21 and 28 dpi. The results of RT-qPCR, western blot analysis, IF, flow cytometry and TEM further illustrated that necroptosis and caspase-2-mediated apoptosis occurred in astrocytes and neurons but not in microglia in the parenchyma and hippocampus of infected animals. This study provides the first evidence that neuronal and astrocytic necroptosis and caspase-2-mediated apoptosis are induced by A. cantonensis infection in the parenchymal and hippocampal regions of rats at 21 and 28 dpi but these processes are negligible at 35 dpi. These findings enhance our understanding of the pathogenesis of A. cantonensis infection and provide new insights into therapeutic approaches targeting the occurrence of cell death in astrocytes and neurons in infected patients.
Collapse
Affiliation(s)
- Hongli Zhou
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhe Chen
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yue Hu
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yubin Ma
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ping Huang
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Paron Dekumyoy
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Minyu Zhou
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yixin Cheng
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhiyue Lv
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
25
|
Mitochondrial Bioenergetics in Brain Following Ozone Exposure in Rats Maintained on Coconut, Fish and Olive Oil-Rich Diets. Int J Mol Sci 2019; 20:ijms20246303. [PMID: 31847143 PMCID: PMC6941048 DOI: 10.3390/ijms20246303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Dietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days. Results show that mitochondrial complex I enzyme activity was significantly decreased in the cerebellum, hypothalamus and hippocampus by diets. Complex II enzyme activity was significantly lower in frontal cortex and cerebellum of rats maintained on all test diets. Complex IV enzyme activity was significantly lower in the frontal cortex, hypothalamus and hippocampus of animals maintained on fish oil. Ozone exposure decreased complex I and II activity in the cerebellum of rats maintained on the normal diet, an effect blocked by diet treatments. While diet and ozone have no apparent influence on endogenous reactive oxygen species production, they do affect antioxidant levels in the brain. Fish oil was the only diet that ozone exposure did not alter. Microglial morphology and GFAP immunoreactivity were assessed across diet groups; results indicated that fish oil consistently decreased reactive microglia in the hypothalamus and hippocampus. These results indicate that acute ozone exposure alters mitochondrial bioenergetics in brain and co-treatment with omega-6 and omega-3 fatty acids alleviate some adverse effects within the brain.
Collapse
|
26
|
Trans-10-hydroxy-2-decenoic acid protects against LPS-induced neuroinflammation through FOXO1-mediated activation of autophagy. Eur J Nutr 2019; 59:2875-2892. [PMID: 31820078 DOI: 10.1007/s00394-019-02128-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Neuroinflammation is thought to be associated with the pathogenesis of a series of neurodegenerative diseases. We have previously reported that royal jelly (RJ) has an anti-inflammatory effect on microglial BV-2 cells. However, components contributing to the effect of RJ were largely unexplored. The aim of this study was to assess whether trans-10-hydroxy-2-decenoic acid (10-HDA), the exclusive fatty acid in RJ, can alleviate neuroinflammation and to further explore the underlying mechanisms. METHODS Immunohistochemistry staining, ELISA, qRT-PCR and Western blot were used to assess the effect of 10-HDA on LPS-induced neuroinflammation both in vivo and in vitro. To determine the extent of inflammatory changes after 10-HDA treatment, RNAseq transcriptomic analysis was conducted. RESULTS 10-HDA pretreatment significantly reduced the production of pro-inflammatory mediators in LPS-treated C57BL/6J mice and microglial BV-2 cells. 10-HDA inhibited the activation of the TNF-α/NF-κB axis and NLRP3 inflammasome-IL-1β pathway, which may be the anti-neuroinflammatory mechanism of 10-HDA. We also demonstrated that 10-HDA triggered cell autophagy, as evidenced by elevated levels of microtubule-associated protein 1 light chain 3-II (LC3-II) and decreased expression of SQSTM1. More importantly, 10-HDA increased the transcriptional activity of FOXO1 by increasing FOXO1 nuclear localization. Inhibition of FOXO1 and autophagy using chemical inhibitors markedly blunted the effect of 10-HDA on the TNF-α pathway and NLRP3 inflammasome-IL-1β pathway, indicating that 10-HDA alleviates neuroinflammation in BV-2 cells by modulating FOXO1-mediated autophagy. CONCLUSIONS 10-HDA may be a promising agent for various neuroinflammation-associated diseases.
Collapse
|
27
|
Jin Y, Yao Y, El-Ashram S, Tian J, Shen J, Ji Y. The Neurotropic Parasite Toxoplasma gondii Induces Astrocyte Polarization Through NFκB Pathway. Front Med (Lausanne) 2019; 6:267. [PMID: 31803748 PMCID: PMC6877604 DOI: 10.3389/fmed.2019.00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022] Open
Abstract
Background:Toxoplasma gondii is a protozoan parasite that chronically infects nearly one-third of the world's human population. In immunosuppressed individuals and fetus, infection with T. gondii contributes to a series of devastating conditions, including toxoplasmic encephalitis (TE), which is characterized by neuron damage in the central nervous system (CNS). Astrocyte polarization is currently found in some neurodegenerative diseases, and A1 subtype of astrocyte leads to neuron apoptosis. However, little information has been available on the role of astrocyte polarization in TE. Methods: In the present study, we established a mouse model to study TE and detected A1 astrocyte in the brains of mice with TE. Expression level of A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA) and Western blotting. Primary mouse astrocytes were incubated with different concentrations of T. gondii excreted-secreted antigens (TgESAs) in vitro. Expression level of C3 and A1 astrocyte-specific transcription levels were assessed using Western blotting and qRT-PCR, respectively. Bay11-7082 was used to study nuclear factor (NF) κB pathway in TgESA-induced astrocyte polarization. Results: In mice with TE, the proportion of A1 astrocyte (GFAP+C3+) increased significantly. The results of in vitro study showed that TgESAs induced astrocyte polarization to A1 subtype. Blocking of NFκB pathway by Bay11-7082 inhibited TgESA-induced astrocyte polarization. Conclusions: Our preliminary study showed the involvement of A1 astrocyte in the process of TE in mice, and TgESAs could trigger astrocyte to polarize to A1 subtype. These findings suggest a new mechanism underlying the neuropathogenesis induced by T. gondii infection.
Collapse
Affiliation(s)
- Yu Jin
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Yong Yao
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Saeed El-Ashram
- School of Life Science and Engineering, Foshan University, Foshan, China.,Faculty of Science, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Jiaming Tian
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Yongsheng Ji
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Dietary Supplementation of the Antioxidant Curcumin Halts Systemic LPS-Induced Neuroinflammation-Associated Neurodegeneration and Memory/Synaptic Impairment via the JNK/NF- κB/Akt Signaling Pathway in Adult Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7860650. [PMID: 31827700 PMCID: PMC6885271 DOI: 10.1155/2019/7860650] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/23/2019] [Accepted: 09/26/2019] [Indexed: 12/30/2022]
Abstract
Curcumin is a natural polyphenolic compound widely known to have antioxidant, anti-inflammatory, and antiapoptotic properties. In the present study, we explored the neuroprotective effect of curcumin against lipopolysaccharide- (LPS-) induced reactive oxygen species- (ROS-) mediated neuroinflammation, neurodegeneration, and memory deficits in the adult rat hippocampus via regulation of the JNK/NF-κB/Akt signaling pathway. Adult rats were treated intraperitoneally with LPS at a dose of 250 μg/kg for 7 days and curcumin at a dose of 300 mg/kg for 14 days. After 14 days, the rats were sacrificed, and western blotting and ROS and lipid peroxidation assays were performed. For immunohistochemistry and confocal microscopy, the rats were perfused transcardially with 4% paraformaldehyde. In order to verify the JNK-dependent neuroprotective effect of curcumin and to confirm the in vivo results, HT-22 neuronal and BV2 microglial cells were exposed to LPS at a dose of 1 μg/ml, curcumin 100 μg/ml, and SP600125 (a specific JNK inhibitor) 20 μM. Our immunohistochemical, immunofluorescence, and biochemical results revealed that curcumin inhibited LPS-induced oxidative stress by reducing malondialdehyde and 2,7-dichlorofluorescein levels and ameliorating neuroinflammation and neuronal cell death via regulation of the JNK/NF-κB/Akt signaling pathway both in vivo (adult rat hippocampus) and in vitro (HT-22/BV2 cell lines). Moreover, curcumin markedly improved LPS-induced memory impairment in the Morris water maze and Y-maze tasks. Taken together, our results suggest that curcumin may be a potential preventive and therapeutic candidate for LPS-induced ROS-mediated neurotoxicity and memory deficits in an adult rat model.
Collapse
|
29
|
Figarella K, Wolburg H, Garaschuk O, Duszenko M. Microglia in neuropathology caused by protozoan parasites. Biol Rev Camb Philos Soc 2019; 95:333-349. [PMID: 31682077 DOI: 10.1111/brv.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Involvement of the central nervous system (CNS) is the most severe consequence of some parasitic infections. Protozoal infections comprise a group of diseases that together affect billions of people worldwide and, according to the World Health Organization, are responsible for more than 500000 deaths annually. They include African and American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, and amoebiasis. Mechanisms underlying invasion of the brain parenchyma by protozoa are not well understood and may depend on parasite nature: a vascular invasion route is most common. Immunosuppression favors parasite invasion into the CNS and therefore the host immune response plays a pivotal role in the development of a neuropathology in these infectious diseases. In the brain, microglia are the resident immune cells active in defense against pathogens that target the CNS. Beside their direct role in innate immunity, they also play a principal role in coordinating the trafficking and recruitment of other immune cells from the periphery to the CNS. Despite their evident involvement in the neuropathology of protozoan infections, little attention has given to microglia-parasite interactions. This review describes the most prominent features of microglial cells and protozoan parasites and summarizes the most recent information regarding the reaction of microglial cells to parasitic infections. We highlight the involvement of the periphery-brain axis and emphasize possible scenarios for microglia-parasite interactions.
Collapse
Affiliation(s)
- Katherine Figarella
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Michael Duszenko
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Xu X, Jin L, Jiang T, Lu Y, Aosai F, Piao HN, Xu GH, Jin CH, Jin XJ, Ma J, Piao LX. Ginsenoside Rh2 attenuates microglial activation against toxoplasmic encephalitis via TLR4/NF-κB signaling pathway. J Ginseng Res 2019; 44:704-716. [PMID: 32913400 PMCID: PMC7471213 DOI: 10.1016/j.jgr.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Ginsenoside Rh2 (GRh2) is a characterized component in red ginseng widely used in Korea and China. GRh2 exhibits a wide range of pharmacological activities, such as anti-inflammatory, antioxidant, and anticancer properties. However, its effects on Toxoplasma gondii (T. gondii) infection have not been clarified yet. Methods The effect of GRh2 against T. gondii was assessed under in vitro and in vivo experiments. The BV2 cells were infected with tachyzoites of T. gondii RH strain, and the effects of GRh2 were evaluated by MTT assay, morphological observations, immunofluorescence staining, a trypan blue exclusion assay, reverse transcription PCR, and Western blot analyses. The in vivo experiment was conducted with BALB/c mice inoculated with lethal amounts of tachyzoites with or without GRh2 treatment. Results and conclusion The GRh2 treatment significantly inhibited the proliferation of T. gondii under in vitro and in vivo studies. Furthermore, GRh2 blocked the activation of microglia and specifically decreased the release of inflammatory mediators in response to T. gondii infection through TLR4/NF-κB signaling pathway. In mice, GRh2 conferred modest protection from a lethal dose of T. gondii. After the treatment, the proliferation of tachyzoites in the peritoneal cavity of infected mice markedly decreased. Moreover, GRh2 also significantly decreased the T. gondii burden in mouse brain tissues. These findings indicate that GRh2 exhibits an anti–T. gondii effect and inhibits the microglial activation through TLR4/NF-κB signaling pathway, providing the basic pharmacological basis for the development of new drugs to treat toxoplasmic encephalitis.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Lan Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Tong Jiang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Ying Lu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Jilin, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
31
|
Ghosh B, Nong J, Wang Z, Urban MW, Heinsinger NM, Trovillion VA, Wright MC, Lepore AC, Zhong Y. A hydrogel engineered to deliver minocycline locally to the injured cervical spinal cord protects respiratory neural circuitry and preserves diaphragm function. Neurobiol Dis 2019; 127:591-604. [PMID: 31028873 DOI: 10.1016/j.nbd.2019.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/06/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
We tested a biomaterial-based approach to preserve the critical phrenic motor circuitry that controls diaphragm function by locally delivering minocycline hydrochloride (MH) following cervical spinal cord injury (SCI). MH is a clinically-available antibiotic and anti-inflammatory drug that targets a broad range of secondary injury mechanisms via its anti-inflammatory, anti-oxidant and anti-apoptotic properties. However, MH is only neuroprotective at high concentrations that cannot be achieved by systemic administration, which limits its clinical efficacy. We have developed a hydrogel-based MH delivery system that can be injected into the intrathecal space for local delivery of high concentrations of MH, without damaging spinal cord tissue. Implantation of MH hydrogel after unilateral level-C4/5 contusion SCI robustly preserved diaphragm function, as assessed by in vivo recordings of compound muscle action potential (CMAP) and electromyography (EMG) amplitudes. MH hydrogel also decreased lesion size and degeneration of cervical motor neuron somata, demonstrating its central neuroprotective effects within the injured cervical spinal cord. Furthermore, MH hydrogel significantly preserved diaphragm innervation by the axons of phrenic motor neurons (PhMNs), as assessed by both detailed neuromuscular junction (NMJ) morphological analysis and retrograde PhMN labeling from the diaphragm using cholera toxin B (CTB). In conclusion, our findings demonstrate that local MH hydrogel delivery to the injured cervical spinal cord is effective in preserving respiratory function after SCI by protecting the important neural circuitry that controls diaphragm activation.
Collapse
Affiliation(s)
- Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 7-716, Philadelphia, PA 19104, United States of America
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 7-716, Philadelphia, PA 19104, United States of America
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Nicolette M Heinsinger
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Victoria A Trovillion
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Megan C Wright
- Department of Biology, Arcadia University, 450 S Easton Rd, 220 Boyer Hall, Glenside, PA 19038, United States of America
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America.
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 7-716, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
32
|
Tyebji S, Seizova S, Hannan AJ, Tonkin CJ. Toxoplasmosis: A pathway to neuropsychiatric disorders. Neurosci Biobehav Rev 2018; 96:72-92. [PMID: 30476506 DOI: 10.1016/j.neubiorev.2018.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/24/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that resides, in a latent form, in the human central nervous system. Infection with Toxoplasma drastically alters the behaviour of rodents and is associated with the incidence of specific neuropsychiatric conditions in humans. But the question remains: how does this pervasive human pathogen alter behaviour of the mammalian host? This fundamental question is receiving increasing attention as it has far reaching public health implications for a parasite that is very common in human populations. Our current understanding centres on neuronal changes that are elicited directly by this intracellular parasite versus indirect changes that occur due to activation of the immune system within the CNS, or a combination of both. In this review, we explore the interactions between Toxoplasma and its host, the proposed mechanisms and consequences on neuronal function and mental health, and discuss Toxoplasma infection as a public health issue.
Collapse
Affiliation(s)
- Shiraz Tyebji
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Victoria, Australia.
| | - Simona Seizova
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, 3052, Victoria, Australia.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| |
Collapse
|
33
|
Wang T, Sun X, Qin W, Zhang X, Wu L, Li Y, Zhou C, Zhou H, He S, Cong H. From inflammatory reactions to neurotransmitter changes: Implications for understanding the neurobehavioral changes in mice chronically infected with Toxoplasma gondii. Behav Brain Res 2018; 359:737-748. [PMID: 30253194 DOI: 10.1016/j.bbr.2018.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/01/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022]
Abstract
Toxoplasma gondii is a protozoan parasite that can cause a latent infection in the central nervous system, leading to neurobehavioral abnormalities in the host. However, the mechanism underlying these changes remains relatively unexplored. In this study, we detected behavioral changes, pathological injury, secretion of neurotransmitters and related signal pathway in mice infected by T. gondii using behavioral test, histopathology, immunofluorescence staining, western blotting, HPLC and real time PCR. Mice showed neurobehavioral disturbances two months after infection with T. gondii. Histopathology revealed the activation of astrocytes and microglia, apoptosis of neurons and decreases in synapses in the brain of infected mice. Excessive secretion of cytokines and chemokines was detected in the brains of mice infected by T. gondii compared to uninfected mice. Furthermore, T. gondii infection led to abnormalities in neurotransmitters and the activation of NF-κB and dopamine (DA) signaling pathways in the infected mice. In conclusion, excessive activation of the inflammation in the brain could induce neuronal apoptosis in mice chronically infected with T. gondii. Dysregulation of the dopaminergic neurotransmitter could provide an explanation of neurobehavioral disorders in infected hosts.
Collapse
Affiliation(s)
- Ting Wang
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, Shandong, PR China
| | - Xiahui Sun
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, Shandong, PR China
| | - Wen Qin
- University hospital, Shandong University, Jinan, Shandong, PR China
| | - Xiaoli Zhang
- Department of Histology and Embryology, Shandong University, School of Medicine, Jinan, Shandong, PR China
| | - Leilei Wu
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, Shandong, PR China
| | - Yan Li
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, Shandong, PR China
| | - Chunxue Zhou
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, Shandong, PR China
| | - Huaiyu Zhou
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, Shandong, PR China
| | - Shenyi He
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, Shandong, PR China
| | - Hua Cong
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, Shandong, PR China.
| |
Collapse
|
34
|
HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment. Nat Rev Neurol 2018; 12:662-674. [PMID: 27786246 DOI: 10.1038/nrneurol.2016.149] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nearly 30 years after the advent of antiretroviral therapy (ART), CNS opportunistic infections remain a major cause of morbidity and mortality in HIV-positive individuals. Unknown HIV-positive disease status, antiretroviral drug resistance, poor drug compliance, and recreational drug abuse are factors that continue to influence the morbidity and mortality of infections. The clinical and radiographic pattern of CNS opportunistic infections is unique in the setting of HIV infection: opportunistic infections in HIV-positive patients often have characteristic clinical and radiological presentations that can differ from the presentation of opportunistic infections in immunocompetent patients and are often sufficient to establish the diagnosis. ART in the setting of these opportunistic infections can lead to a paradoxical worsening caused by an immune reconstitution inflammatory syndrome (IRIS). In this Review, we discuss several of the most common CNS opportunistic infections: cerebral toxoplasmosis, progressive multifocal leukoencephalopathy (PML), tuberculous meningitis, cryptococcal meningitis and cytomegalovirus infection, with an emphasis on clinical pearls, pathological findings, MRI findings and treatment. Moreover, we discuss the risk factors, pathophysiology and management of IRIS. We also summarize the challenges that remain in management of CNS opportunistic infections, which includes the lack of phase II and III clinical trials, absence of antimicrobials for infections such as PML, and controversy regarding the use of corticosteroids for treatment of IRIS.
Collapse
|
35
|
Genetic modifications of cytokine genes and Toxoplasma gondii infections in pregnant women. Microb Pathog 2018; 121:283-292. [PMID: 29859292 DOI: 10.1016/j.micpath.2018.05.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 01/05/2023]
Abstract
PURPOSE Toxoplasma gondii causes one of the most common intrauterine infections worldwide, thus being a severe threat during pregnancy. IL1, IL6, IL10, IL12, and TNF-α cytokines were reported to be involved in immune responses to infections with T. gondii. The research was aimed to reveal relationships between genetic changes within the polymorphisms of these cytokine genes and the incidence of T. gondii infection among pregnant women, as well as congenital transmission of the parasite to the foetuses of their infected mothers. METHODS The primary study was performed in 148 Polish pregnant women, including 74 T. gondii-infected patients and 74 age-matched uninfected individuals; and further analysis - among the additional 142 pregnant women. Genotypes within IL1A -889 C>T, IL1B +3954 C>T, IL6 -174 G>C, IL10 -1082 G>A, IL12B -1188 A>C and TNFA -308 G>A single nucleotide polymorphisms (SNPs) were determined, using self-designed nested PCR-RFLP assays. Randomly selected PCR products, representing distinct genotypes in the analyzed polymorphisms, were confirmed by sequencing, using the Sanger method. A statistical analysis was carried out of relationships between genetic alterations within studied SNPs and the occurrence of T. gondii infection, using the following tools: cross-tabulation, Pearson's Chi-square test and the logistic regression model to estimate genetic models of inheritance. A power analysis of statistically significant outcomes was performed by Cramér's V test. RESULTS A multiple-SNP analysis showed TC haplotype for IL1A and IL1B SNPs to be significantly associated with a decreased risk of the parasitic infection (OR 0.41, P≤0.050). The association remained important after power analysis (Cramér's V = 0.39, χ2 = 7.73, P≤0.050), and the additional analysis with larger groups of patients (OR 0.47, P≤0.050). Moreover, the CCCAGA complex variants were for all the studied polymorphisms at an increased risk of T. gondii infection (OR 8.14, P≤0.050), although this strong relationship was not significant in the further analysis (Cramér's V = 0.76, χ2 = 26.81, P = 0.310). Regarding the susceptibility to congenital transmission of T. gondii from mothers to their foetuses among the infected pregnant women, the presence of GA heterozygotic status within IL10 polymorphism significantly increased the risk of parasitic transmission (OR 5.73 in the codominant model and OR 5.18 in the overdominant model; P≤0.050). The correlation stayed important in the power analysis (Cramér's V = 0.29, χ2 = 6.03, P≤0.050), although it was non-significant in larger groups of patients. Important relationships specific for the first study cohort remained non-significant in the second group of studied pregnant women. CONCLUSIONS Within the analyzed cohort of Polish pregnant women, the genetic modifications from SNPs of genes, encoding both the proinflammatory IL1α, IL1β, IL6, IL12 and TNF-α, and anti-inflammatory IL10 cytokines, may have been associated with susceptibility to T. gondii infection. It is the first study on the contribution of cytokine genes polymorphisms to the occurrence of T. gondii infection during pregnancy. Further studies for other populations of pregnant women would be justified to reveal a detailed role of the analyzed polymorphisms for the occurrence of T. gondii infections during pregnancy.
Collapse
|
36
|
Encephalitis is mediated by ROP18 of Toxoplasma gondii, a severe pathogen in AIDS patients. Proc Natl Acad Sci U S A 2018; 115:E5344-E5352. [PMID: 29784816 DOI: 10.1073/pnas.1801118115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neurotropic parasite Toxoplasma gondii is a globally distributed parasitic protozoan among mammalian hosts, including humans. During the course of infection, the CNS is the most commonly damaged organ among invaded tissues. The polymorphic rhoptry protein 18 (ROP18) is a key serine (Ser)/threonine (Thr) kinase that phosphorylates host proteins to modulate acute virulence. However, the basis of neurotropism and the specific substrates through which ROP18 exerts neuropathogenesis remain unknown. Using mass spectrometry, we performed proteomic analysis of proteins that selectively bind to active ROP18 and identified RTN1-C, an endoplasmic reticulum (ER) protein that is preferentially expressed in the CNS. We demonstrated that ROP18 is associated with the N-terminal portion of RTN1-C and specifically phosphorylates RTN1-C at Ser7/134 and Thr4/8/118. ROP18 phosphorylation of RTN1-C triggers ER stress-mediated apoptosis in neural cells. Remarkably, ROP18 phosphorylation of RTN1-C enhances glucose-regulated protein 78 (GRP78) acetylation by attenuating the activity of histone deacetylase (HDAC), and this event is associated with an increase of neural apoptosis. These results clearly demonstrate that both RTN1-C and HDACs are involved in T. gondii ROP18-mediated pathogenesis of encephalitis during Toxoplasma infection.
Collapse
|
37
|
Anthocyanins Improve Hippocampus-Dependent Memory Function and Prevent Neurodegeneration via JNK/Akt/GSK3β Signaling in LPS-Treated Adult Mice. Mol Neurobiol 2018; 56:671-687. [PMID: 29779175 DOI: 10.1007/s12035-018-1101-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/29/2018] [Indexed: 10/16/2022]
Abstract
Microglia plays a critical role in the brain and protects neuronal cells from toxins. However, over-activation of microglia leads to deleterious effects. Lipopolysaccharide (LPS) has been reported to affect neuronal cells via activation of microglia as well as directly to initiate neuroinflammation. In the present study, we evaluated the anti-inflammatory and anti-oxidative effect of anthocyanins against LPS-induced neurotoxicity in an animal model and in cell cultures. Intraperitoneal injections of LPS (250 μg/kg/day for 1 week) induce ROS production and promote neuroinflammation and neurodegeneration which ultimately leads to memory impairment. However, anthocyanins treatment at a dose of 24 mg/kg/day for 2 weeks (1 week before and 1 week co-treated with LPS) prevented ROS production, inhibited neuroinflammation and neurodegeneration, and improved memory functions in LPS-treated mice. Both histological and immunoblot analysis indicated that anthocyanins reversed the activation of JNK, prevented neuroinflammation by lowering the levels of inflammatory markers (p-NF-kB, TNF-α, and IL-1β), and reduced neuronal apoptosis by reducing the expression of Bax, cytochrome c, cleaved caspase-3, and cleaved PARP-1, while increasing the level of survival proteins p-Akt, p-GSK3β, and anti-apoptotic Bcl-2 protein. Anthocyanins treatment increased the levels of memory-related pre- and post-synaptic proteins and improved the hippocampus-dependent memory in the LPS-treated mice. Overall, this data suggested that consumption of naturally derived anti-oxidant agent such as anthocyanins ameliorated several pathological events in the LPS-treated animal model and we believe that anthocyanins would be a safe therapeutic agent for slowing the inflammation-induced neurodegeneration in the brain against several diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
|
38
|
Luo S, OuYang L, Wei J, Wu F, Wu Z, Lei W, Yuan D. Neuronal Apoptosis: Pathological Basis of Behavioral Dysfunctions Induced by Angiostrongylus cantonensis in Rodents Model. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:267-278. [PMID: 28719951 PMCID: PMC5546160 DOI: 10.3347/kjp.2017.55.3.267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/04/2022]
Abstract
Angiostrongylus cantonensis invades the central nervous system (CNS) of humans to induce eosinophilic meningitis and meningoencephalitis and leads to persistent headache, cognitive dysfunction, and ataxic gait. Infected mice (nonpermissive host), admittedly, suffer more serious pathological injuries than rats (permissive host). However, the pathological basis of these manifestations is incompletely elucidated. In this study, the behavioral test, histological and immunohistochemical techniques, and analysis of apoptotic gene expression, especially caspase-3, were conducted. The movement and motor coordination were investigated at week 2 post infection (PI) and week 3 PI in mice and rats, respectively. The cognitive impairs could be found in mice at week 2 PI but not in rats. The plaque-like lesion, perivascular cuffing of inflammatory cells, and dilated vessels within the cerebral cortex and hippocampus were more serious in mice than in rats at week 3 PI. Transcriptomic analysis showed activated extrinsic apoptotic pathway through increased expression of TNFR1 and caspase-8 in mice CNS. Immunohistochemical and double-labeling for NeuN and caspase-3 indicated the dramatically increased expression of caspase-3 in neuron of the cerebral cortex and hippocampus in mice but not in rats. Furthermore, western-blotting results showed high expression of cleaved caspase-3 proteins in mice but relatively low expression in rats. Thus, extrinsic apoptotic pathway participated in neuronal apoptosis might be the pathological basis of distinct behavioral dysfunctions in rodents with A. cantonensis infection. It provides the evidences of a primary molecular mechanism for the behavioral dysfunction and paves the ways to clinical diagnosis and therapy for A. cantonensis infection.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou 510080, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangdong, Guangzhou 510080, China
| | - Lisi OuYang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie Wei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Feng Wu
- Department of Clinical Laboratory, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou 510655, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou 510080, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangdong, Guangzhou 510080, China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dongjuan Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou 510080, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangdong, Guangzhou 510080, China
| |
Collapse
|
39
|
Involvement of Host Defense Mechanisms against Toxoplasma gondii Infection in Anhedonic and Despair-Like Behaviors in Mice. Infect Immun 2017; 85:IAI.00007-17. [PMID: 28138019 DOI: 10.1128/iai.00007-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Toxoplasma gondii is a pathogen relevant to psychiatric disorders. We recently showed that reactivation of chronic T. gondii infection induced depression-like behaviors in mice. Furthermore, it has been hypothesized that depression-like behaviors are mediated via a host defense mechanism against invading pathogens; proximate mechanisms of this behavioral hypothesis remain unclear. In the present study, we investigate the contribution of indoleamine 2,3-dioxygenase (IDO), inflammation, and interferon gamma (IFN-γ) to anhedonic and despair-related behaviors in T. gondii-infected mice by using sucrose preference and forced-swim tests, respectively. First, we confirmed that BALB/c mice exhibited both sickness and depression-like behaviors during acute infection. Treatment of infected wild-type mice with minocycline (anti-inflammatory drug) abated sickness and anhedonic and despair-like behaviors, whereas in T. gondii-infected mice, treatment normalized kynurenine/tryptophan (Kyn/Trp) ratios in both plasma and brain tissue. Additionally, T. gondii infection failed to induce anhedonic and despair-like behaviors or increase the Kyn/Trp ratio in immunocompromised (IFN-γ-/-) mice, whereas sickness behavior was observed in both immunocompetent and IFN-γ-/- mice following infection. Furthermore, treatment with 1-methyl tryptophan (an IDO inhibitor) did not affect locomotor activity, attenuated clinical scores and anhedonic and despair-like behaviors, and resulted in normal Kyn/Trp ratios in T. gondii-infected wild-type mice. Although low levels of serotonin and dopamine were observed in the brain during acute and chronic infections, anhedonic and despair-like behaviors were not detected in the chronic stage of infection. Collectively, our results demonstrated that immune enhancement in response to infection with T. gondii resulted in IFN-γ production, IDO activation, and inflammation associated with anhedonic and despair-like behaviors.
Collapse
|
40
|
Chen F, Ghosh A, Wu F, Tang S, Hu M, Sun H, Kong L, Hong H. Preventive effect of genetic knockdown and pharmacological blockade of CysLT 1R on lipopolysaccharide (LPS)-induced memory deficit and neurotoxicity in vivo. Brain Behav Immun 2017; 60:255-269. [PMID: 27810377 DOI: 10.1016/j.bbi.2016.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/17/2016] [Accepted: 10/30/2016] [Indexed: 12/19/2022] Open
Abstract
Previously we reported that cysteinyl leukotrienes (Cys-LTs) and the type 1 receptor for Cys-LTs (CysLT1R) are related to amyloid β (Aβ)-induced neurotoxicity. The aim of the current study was to find out the role of CysLT1R on lipopolysaccharide (LPS)-induced cognitive deficit and neurotoxicity. shRNA-mediated knockdown or pharmacological blockade (by pranlukast) of CysLT1R were performed in ICR mice for 21days prior to systemic infusion of LPS. From day 22, LPS was administered for 7days and then a set of behavioral, histopathological and biochemical tests were employed to test memory, neuroinflammation and apoptotic responses in the mouse hippocampus. LPS (only)-treated mice showed poor performance in both Morris water maze (MWM) and Y-maze tests. However, shRNA-mediated knockdown or pranlukast-treated blockade of CysLT1R improved performance of the mice in these tests. To find out the possible underlying mechanisms, we assessed several parameters such as microglial activation (by immunohistochemistry), level of CysLT1R (by WB and qRT-PCR) and the inflammatory/apoptotic pathways (by ELISA or TUNEL or WB) in the mouse hippocampus. LPS-induced memory impairment was accompanied by activation of microglia, higher level of CysLT1R, IL-1β, TNF-α and nuclear NF-κB p65. LPS also caused apoptosis in the hippocampus as detected by TUNEL staining, further supplemented by detection of increased Caspase-3 and a reduced Bcl-2/Bax ratio. All of these adverse changes in the mouse hippocampus were inhibited by pretreatment with CysLT1R-shRNA and pranlukast. Through this study we suggest that CysLT1R shares a strong correlation with LPS-associated memory deficit, neuroinflammation and apoptosis and CysLT1R could be a novel target for preventive measures to intervene the progression of Alzheimer's disease (AD)-like phenotypes.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Arijit Ghosh
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Feng Wu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Susu Tang
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Mei Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Hongbin Sun
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Lingyi Kong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Hao Hong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
41
|
Esen F, Orhun G, Ozcan PE, Senturk E, Kucukerden M, Giris M, Akcan U, Yilmaz CU, Orhan N, Arican N, Kaya M, Gazioglu SB, Tuzun E. Neuroprotective effects of intravenous immunoglobulin are mediated through inhibition of complement activation and apoptosis in a rat model of sepsis. Intensive Care Med Exp 2017; 5:1. [PMID: 28058672 PMCID: PMC5215999 DOI: 10.1186/s40635-016-0114-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background Intravenous (IV) immunoglobulin (Ig) treatment is known to alleviate behavioral deficits and increase survival in the experimentally induced model of sepsis. To delineate the mechanisms by which IVIg treatment prevents neuronal dysfunction, an array of immunological and apoptosis markers was investigated. Methods Sepsis was induced by cecal ligation perforation (CLP) in rats. The animals were divided into five groups: sham, control, CLP + saline, CLP + immunoglobulin G (IgG) (250 mg/kg, iv), and CLP + immunoglobulins enriched with immunoglobulin M (IgGAM) (250 mg/kg, iv). Blood and brain samples were taken in two sets of experiments to see the early (24 h) and late (10 days) effects of treatment. Total complement activity, complement 3 (C3), and soluble complement C5b-9 levels were measured in the sera of rats using ELISA-based methods. Cerebral complement, complement receptor, NF-κB, Bax, and Bcl-2 expressions were analyzed by western blot and/or RT-PCR methods. Immune cell infiltration and gliosis were examined by immunohistochemistry using CD3, CD4, CD8, CD11b, CD19, and glial fibrillary acidic protein antibodies. Apoptotic neuronal death was investigated by TUNEL staining. Results IVIgG and IgGAM administration significantly reduced systemic complement activity and cerebral C5a and C5a receptor expression. Likewise, both treatment methods reduced proapoptotic NF-κB and Bax expressions in the brain. IVIgG and IgGAM treatment induced considerable amelioration in glial cell proliferation and neuronal apoptosis which were increased in non-treated septic rats. Conclusions We suggest that IVIgG and IgGAM administration ameliorates neuronal dysfunction and behavioral deficits by reducing apoptotic cell death and glial cell proliferation. In both treatment methods, these beneficial effects might be mediated through reduction of anaphylatoxic C5a activity and subsequent inhibition of inflammation and apoptosis pathways. Electronic supplementary material The online version of this article (doi:10.1186/s40635-016-0114-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Figen Esen
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, Capa-Fatih, 34039, Istanbul, Turkey
| | - Gunseli Orhun
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, Capa-Fatih, 34039, Istanbul, Turkey
| | - Perihan Ergin Ozcan
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, Capa-Fatih, 34039, Istanbul, Turkey.
| | - Evren Senturk
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, Capa-Fatih, 34039, Istanbul, Turkey
| | - Melike Kucukerden
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Giris
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ugur Akcan
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Canan Ugur Yilmaz
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurcan Orhan
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nadir Arican
- Department of Forensic Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Kaya
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sema Bilgic Gazioglu
- Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
42
|
Shultz RB, Zhong Y. Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 2017; 12:702-713. [PMID: 28616020 PMCID: PMC5461601 DOI: 10.4103/1673-5374.206633] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Minocycline hydrochloride (MH), a semi-synthetic tetracycline derivative, is a clinically available antibiotic and anti-inflammatory drug that also exhibits potent neuroprotective activities. It has been shown to target multiple secondary injury mechanisms in spinal cord injury, via its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The secondary injury mechanisms that MH can potentially target include inflammation, free radicals and oxidative stress, glutamate excitotoxicity, calcium influx, mitochondrial dysfunction, ischemia, hemorrhage, and edema. This review discusses the potential mechanisms of the multifaceted actions of MH. Its anti-inflammatory and neuroprotective effects are partially achieved through conserved mechanisms such as modulation of p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways as well as inhibition of matrix metalloproteinases (MMPs). Additionally, MH can directly inhibit calcium influx through the N-methyl-D-aspartate (NMDA) receptors, mitochondrial calcium uptake, poly(ADP-ribose) polymerase-1 (PARP-1) enzymatic activity, and iron toxicity. It can also directly scavenge free radicals. Because it can target many secondary injury mechanisms, MH treatment holds great promise for reducing tissue damage and promoting functional recovery following spinal cord injury.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
43
|
Gatti-Mays ME, Manion M, Bowen LN, Brown GT, Danner RL, Khan O, Nath A, Battiwalla M, Barrett AJ, Ito S. Toxoplasmosis encephalitis with immune-reconstitution inflammatory syndrome in an allogeneic stem cell transplant patient: a case report. Bone Marrow Transplant 2016; 51:1622-1624. [PMID: 27643867 DOI: 10.1038/bmt.2016.230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M E Gatti-Mays
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Manion
- National Institute of Allergy and Infection Disease, National Institutes of Health, Bethesda, MD, USA
| | - L N Bowen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - G T Brown
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - R L Danner
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - O Khan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - A Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - M Battiwalla
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - A J Barrett
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Ito
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Wan L, Gong L, Wang W, An R, Zheng M, Jiang Z, Tang Y, Zhang Y, Chen H, Yu L, Shen J, Du J. T. gondii rhoptry protein ROP18 induces apoptosis of neural cells via endoplasmic reticulum stress pathway. Parasit Vectors 2015; 8:554. [PMID: 26489755 PMCID: PMC4618732 DOI: 10.1186/s13071-015-1103-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022] Open
Abstract
Background The neurotropic parasite T. gondii is widespread among mammalian hosts including humans. During the course of T. gondii infection, the central nervous system is the most commonly damaged of all invasive organs. The polymorphic rhoptry protein ROP18 has been identified as a key factor in the pathogenesis of T. gondii; however, the molecular mechanism by which this protein exerts neuropathogenesis remains elusive. Methods Immunofluorescence staining was performed to detect neuropathogenesis of the mouse brain tissues. The apoptosis of neural cells and the expressions of related proteins in the endoplasmic reticulum stress (ER Stress)-mediated apoptosis pathway were detected by flow cytometry and Western blotting. Results Immunofluorescence staining reveals induction of the propidium iodide (PI) - positive neural cells in mouse cerebral cortex and hippocampus infected with ROP18 over-expressing transgenic tachyzoites. Western blotting analyses reveal that ROP18 increases the expressions of cleaved caspase-12, CHOP and cleaved caspase-3 when compared to the control groups. After the pretreatment of Z-ATAD-FMK (a specific caspase-12 inhibitor), the apoptotic level of neural cells had an apparent decline, and correspondingly, the expressions of those related proteins were notably decreased. Conclusions Our findings here highlight that the virulence factor ROP18 in T. gondii may contribute to neuronal apoptosis through the ER stress-mediated apoptosis pathway, which may be a potential molecular mechanism responsible for neurological disorders of toxoplasmosis.
Collapse
Affiliation(s)
- Lijuan Wan
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Lingli Gong
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Wei Wang
- Department of Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Ran An
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Meijuan Zheng
- Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
| | - Zongru Jiang
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Yuewen Tang
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Yihua Zhang
- Department of Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China. .,The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China.
| | - He Chen
- Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China. .,The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China.
| | - Li Yu
- The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China. .,Department of Microbiology, Anhui Medical University, Hefei, China.
| | - Jilong Shen
- Department of Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China. .,The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China.
| | - Jian Du
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China. .,The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China.
| |
Collapse
|
45
|
Tricarico PM, Piscianz E, Monasta L, Kleiner G, Crovella S, Marcuzzi A. Microglia activation and interaction with neuronal cells in a biochemical model of mevalonate kinase deficiency. Apoptosis 2015; 20:1048-55. [DOI: 10.1007/s10495-015-1139-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|